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Fig. 1. Perceptual rasterization is a generalization of classic rasterization to the requirements of HMDs such as foveation (top row) and rolling image formation

(bo�om row). On a HMD, most pixels appear in the periphery (a). We rasterize images with continuously-varying pixel density (b). A zoom of the the foveated

area shows how a common same-shading-e�ort image has aliasing (c), while our result benefits from higher pixel density, resulting in super-sampling (d). In
common rasterization, each pixel on the display is e�ectively sampled at the same simulation time (t = 0 for the first frame (e) and t = 1 for the next frame

(f)). When displayed on a “rolling” HMD display, where pixels are illuminated at di�erent points in time, latency is introduced: the rightmost pixel is outdated

by ca. 16ms. Our rolling rasterization (g) allows spatially-varying time: starting at t = 0 on the le� of the image and increasing to 1 on the right.

We suggest a rasterization pipeline tailored towards the need of HMDs,
where latency and �eld-of-view requirements pose new challenges beyond
those of traditional desktop displays. Instead of rendering and warping for
low latency, or using multiple passes for foveation, we show how both can
be produced directly in a single perceptual rasterization pass. We do this
with per-fragment ray-casting. �is is enabled by derivations of tight space-
time-fovea pixel bounds, introducing just enough �exibility for requisite
geometric tests, but retaining most of the the simplicity and e�ciency of the
traditional rasterizaton pipeline. To produce foveated images, we rasterize to
an image with spatially varying pixel density. To reduce latency, we extend
the image formation model to directly produce “rolling” images where the
time at each pixel depends on its display location. Our approach overcomes
limitations of warping with respect to disocclusions, object motion and view-
dependent shading, as well as geometric aliasing artifacts in other foveated
rendering techniques. A set of perceptual user studies demonstrates the
e�cacy of our approach.

1 INTRODUCTION

�e use cases of HMDs have requirements beyond those of typical
desktop display-based systems. Completely subsuming the user’s
vision, the HMD and system driving it must maintain low and pre-
dictable latency to facilitate a sense of agency and avoid serious

negative consequences such as breaks-in-presence (Slater 2002), sim-
ulator sickness (Buker et al. 2012), and reduced performance (Ellis
et al. 1999). �is challenge is exacerbated by other characteristics
of HMDs, such as high Field-of-view (FOV) and resolution. Further,
as human vision has varying spatial resolution with a rapid fall-o�
in the periphery, much of this computational e�ort is wasted.

Ray-tracing could cast more rays to the foveal area (foveation) and
update the view parameters during image generation (low latency).
Regre�ably, ray-tracing remains too slow in large and dynamic
scenes. Traditional rasterization e�ciently draws an image, but
with uniform detail. It does not take advantage of how that image
will be perceived. Here, we suggest perceptual rasterization that
retains most of the e�ciency of rasterization, but has additional
optimizations that are especially bene�cial for HMDs: low-latency
and foveation.

�is is achieved by generalizing common OpenGL-style rasteriza-
tion. Our foveated rasterization can work with HMDs that provide
eye-tracking data, such as the FOVE (2018), allowing rasterization
into a framebu�er with a non-constant pixel density that peaks at
the fovea. Our rolling rasterization gives every column of pixels a
di�erent time and can be used on HMDs with rolling displays, such
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as the Oculus Ri� DK2, that illuminate di�erent spatial locations at
di�erent times. �e techniques can be used together.

A�er discussing previous work (Sec. 2), we will, describe our
novel perceptual rasterization pipeline (Sec. 3) before presenting
the speci�c time, space and retinal bounds in Sec. 4. In Sec. 5 we
present image results and analysis and in Sec. 6 we present four user
studies that demonstrate the e�cacy of perceptual rasterization.

2 PREVIOUS WORK

Foveated rendering. �e wide FOVs (100 degrees and more) found
in current HMDs (FOVE 2018; Patney et al. 2016; Toth et al. 2016;
Weier et al. 2017) require higher resolutions and therefore increasing
amounts of memory and bandwidth on the GPU. At the same time,
only a small percentage of the screen falls onto the fovea, where
the highest resolution is required. �is makes foveated rendering
particularly important for HMDs. In-HMD eye tracking (FOVE 2018;
Stengel et al. 2015) is required to know the fovea’s location.

Guenter et al. (2012) demonstrate a working end-to-end foveated
system based on rasterization. To achieve foveation, they rasterize
in multiple passes (three in their example) to individual images
with di�erent but uniform pixel densities. We also use rasterization,
but into an image with continuously varying pixel density and in a
single pass. �e work of Patney et al. (2016) applies blur and contrast
enhancement to the periphery to hide artifacts. In doing so, they
can further reduce the size of the highest resolution foveal region
without becoming noticeable. Reducing shading in the periphery is
discussed by He et al. (2014). However, this does not increase pixel
density in the fovea, whereas our approach provides substantial
super-sampling of both shading and geometry.

Display latency. In Virtual Reality (VR) systems to date, an impor-
tant delay that contributes to the end-to-end latency is the interval
[ts, te] during which a pixel will be displayed. �e longer the inter-
val, the more “outdated” a stimulus will become: if each pixel holds
a constant value for 1/60 of a second, at the end of the interval te
the image may deviate signi�cantly from the ideal representation
of the state of the virtual world at the time it was rendered (at or
before ts). In combination with head or eye motion, this leads to
hold-type blur (Didyk et al. 2010; Sluyterman 2006).

Fig. 2. a) Seven frames (24ms) high-speed capture (Casio Exilim EX-ZR1000)

of an HDK 2 HMD (twin) display. Specific locations are illuminated (blue)
at specific points in time. b) Time-varying illumination of a 4 mm band of

an Oculus DK2 display captured with a photodiode and a PicoScope 6402B.

To compensate for these negative e�ects, designers use displays
with increasing refresh rates, and lower persistence. Increased
refresh rates reduce apparent latency by limiting the maximum age
of a given pixel. Low persistence displays illuminate the screen

for a time far below the refresh period of the display. �is reduces
artifacts such as blur. Some of these low persistence displays use
a “global scan”, in which the entire display is illuminated at once.
�ese have two complications: the display is much darker and
global changes in brightness can produce noticeable �icker. Low
brightness is a relatively minor issue for HMDs because the user’s
vision can adapt. However �icker will be very noticeable, as the
human ability to detect �icker is stronger if the target is large (the
Granit-Harper (1930) law). An alternative low persistence display
technology behaves similarly to traditional cathode ray tubes. �at
is, pixels are illuminated for a short period as they are updated. We
consider such displays to have a “rolling scan” (Fig. 2). Drawbacks
and bene�ts of such a display are discussed by Sluyterman (2006).
�ey exhibit less �icker (as the target is smaller (Granit and Harper
1930)) while remaining resistant to blur. Both global and rolling
scan displays will show outdated stimuli, as there is still a delay
between the time t a pixel is rendered, and ts when it is displayed.

Our solution is to produce a rolling image, where pixels at di�erent
spatial locations correspond to di�erent points in time (Friston et al.
2016). �is is analogous to a rolling shu�er sensor which captures
light at di�erent points in time for di�erent sensor locations.

Ray-tracing. Both rolling and foveated images can be generated
by ray-tracing: rays are free to use a di�erent time value to inter-
sect the virtual world and more rays could be sent to the fovea
(Stengel et al. 2016; Weier et al. 2016). Low-latency ray-tracing
has been demonstrated at interactive rates for simple scenes with
specialized hardware (Friston et al. 2016). Foveated ray-tracing is
demonstrated by Stengel et al. (2016) in a system that adaptively
sends more rays into perceptually important areas, including the
fovea. Weier et al. (2016) also describe a solution that provides
foveated ray-tracing for HMDs in real-time. Both systems require
scenes that �t the assumptions of interactive ray-tracing.

Signi�cant advances in ray-tracing have been made (Wald et al.
2014), but it is still typically considered too slow for modern inter-
active applications with complex dynamic scenes, such as computer
games. It is also not clear how a modern ray tracer making use of
bounding volume hierarchies (BVH) would handle a more contin-
uous approximation of frame time. Rebuilding the BVH for every
pixel would certainly be less than ideal.
Warping. One source of latency is the time expended between

beginning a render and displaying it. One way to counteract this
is to warp, i. e., deform, the �nal image, accounting for changes
in viewpoint during the render. Early approaches changed which
regions of an image were read out (Oculus VR 2017; Regan and Pose
1994), or drew points (Chen and Williams 1993) or grids (Mark et al.
1997). Modern approaches such as Asynchronous Time Warping
(ATW) (Antonov 2015) incorporate a number of these techniques to
compensate for multiple sources of latency. �e main drawback of
warping is that it su�ers disocclusion artefacts. Some techniques
can help ameliorate these, such as perceptually improved hole �lling
(Didyk et al. 2010; Schollmeyer et al. 2017). Alternatively the result
can be improved by changing the images provided to the algorithm
itself (Reinert et al. 2016). No deformation however can reveal what
is behind a surface. Our images have no disocclusion artefacts, and
also support correct specular shading.
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Shading latency. Due to latency, specular shading is also incorrect
as highlights depend on the moving viewpoint that is frozen at the
start of the frame in classic pipelines (Antonov 2015). �is could
be resolved by ray-tracing, but would still produce problems if
combined with warping. Perceptual rasterization correctly resolves
specular shading.
Non-standard rasterzation. A simple solution to achieve both

rolling and foveated images is to change the vertex shader (Brosz
et al. 2007) from a linear to a non-linear projection, such as �rst
done for shadow mapping (Brabec et al. 2002). Doing this for latency
compensation or foveation results in holes, in particular if primitives
are large or close to the camera, as primitive edges remain straight
(Brosz et al. 2007). Our approach is a type of non-linear rasterization
(Gascuel et al. 2008). Toth et al. (2016) suggest single-pass rendering
into spatially neighboring but linear sub-projections to address the
non-uniform pixel distribution in HMDs, but do not account for eye
tracking. Rasterization has been made more �exible in stochastic
rasterization (Akenine-Möller et al. 2007; Brunhaver et al. 2010;
McGuire et al. 2010), but we are not aware of an approach to produce
rolling or foveated images directly using rasterization in a single
pass. In particular, we derive non-trivial bounds speci�c to our
projection that drastically improve the sample test e�ciency, i. e.,
how many fragments need to be tested against each primitive (Laine
et al. 2011; Pineda 1988).

3 PERCEPTUAL RASTERIZATION

We �rst describe the general perceptual rasterization pipeline before
deriving speci�c bounds enabling its application to foveation, rolling
and both. �e key is to achieve just enough ray tracing-like �exibility
while retaining the e�ciency of rasterization.

Let us �rst recall rasterization and ray-tracing: ray-tracing iter-
ates over pixels and �nds the primitive mapping to them, while
rasterization iterates over primitives and maps them to pixels. Our
technique is a hybrid of these approaches. To decide what pix-
els a primitive maps to, the rasterisation essentially performs ray-
primitive intersections (Pineda 1988) followed by a z-test. A correct,
but slow, solution would be to test all primitives against all pixels.
Instead, the approach becomes fast by using tight primitive-pixel
bounds: ideally, a compact, easy-to-compute subset of pixels is found
for the projection of each primitive in a �rst step, and only the rays
going through these pixels are tested against the primitive.

�e idea of perceptual rasterization is to construct such pixel-
primitive bounds for the requirements of HMDs. To this end, we
will next propose di�erent ray-primitive models we use (Sec. 3.1),
before describing the pipeline in detail in Sec. 3.2. �e actual bounds
are then derived in Sec. 4.

3.1 Ray-primitive Models

�e interaction between rays and primitives required on an HMD
are not arbitrary, as, say, in path tracing, but have a very speci�c
layout in time, space and the retina, which we will later exploit to
construct appropriate bounds. We will now discuss the ray-primitive
models required for common, as well as our foveated, rolling and
jointly foveated-rolling rasterization.

3.1.1 Foveated. To retain the simplicity of rasterization on a
regular grid, we seek inspiration from information visualization
(Furnas 1986) and directly from cortical magni�cation theory (Daniel
and Whi�eridge 1961): to give more importance to an area, it simply
needs to be magni�ed. So instead of increasing the pixel density in
the fovea, we just magnify it.

p(d)
d

1

0

2

0 21/2

q(x)

q-1(x)p-1(d) b)a)

Unfoveated Foveated
Fig. 3. Foveation and unfoveation function (a) and domains (b).

Domain. We suggest an image domain where the ray (or pixel)
density depends on a function p(d) ∈ (0,

√
2) → R+, where d is

the distance to the foveation point xf . In common rasterization,
this function is a constant: 1 (Fig. 3 a, constant line). For foveated
rendering, it is higher close to the fovea (d is small) and lower than
1 for the periphery (d is large) (Fig. 3, a, yellow line).
p can be any foveation function, whether physiologically based

(Daniel and Whi�eridge 1961) or empirically based (Patney et al.
2016; Weier et al. 2017). �e size of the foveated region, and therefore
p, must account for non-idealities such as imperfect tracking and
suboptimal frame rates. �ese may also change over time. �erefore
we refrain from using any analytic model and instead assume that
the function is arbitrary, subject to the constraints below, and free
to change every frame.

Given p, we de�ne another function q(x) ∈ (−1, 1)2 → (−1, 1)2 :
xf + norm(x − xf ) · p(| |x − xf | |). �is function essentially scales x
by p, away from the gaze position. Near the center, this results in
stretching, as the pixel density is larger than 1. In the periphery,
compression, as fewer pixels are required (Fig. 3, b). We also de�ne
q−1, to be q but with p−1 in place of p. p−1 is the inverse of p.
Note that d is not a scaling factor but an exact distance. �us p
maps an unfoveated distance to a foveated distance, and p−1 maps
it back. q and q−1 use these functions to do the same for pixel
locations. We refer to these pixel transformations as to ”foveate” and
”unfoveate”. �is necessitates that p is invertible. Any monotonic p
can be inverted numerically in a pre-processing pass, if an analytic
inversion is non-trivial.
Display. A�er rasterizing all primitives, the foveated image If

has to be converted back into an unfoveated Iu one for display. �is
imposes several challenges for �ltering: q−1 is heavily minifying in
the center and heavily magnifying in the periphery. A simple and
fast solution is to create a MIP map for the foveated image and then
evaluate Iu(x) = If (q−1(x)) using proper tri-linear MIP mapping and
a 3-tap cubic �lter (0.6 ms in 1024×1024 on an Nvidia GTX 980 GPU).
A higher-quality version (1.6 ms in 1024×1024, same GPU) computes

Ld(x) =
∑
y∈5×5

Lc(q(x) + y) · r (| |x − q−1(q(x) + y))| |),

where Ld is the display image, Lc the foveated imaged, and r an
arbitrary, e. g., Gaussian, reconstruction �lter parametrized by dis-
tances in the display image domain. Such an operation e�ectively
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Fig. 4. Overview of perceptual rasterization. Common rasterization (a) produces images at a fixed time and uniform pixel density. We suggest to account for

primitive motion, here shown as two frames (b) and non-uniform pixel density, here visualized as iso-lines (c). Primitive-ray interaction is bound, here using a

rectangle (d) and intersected (e) to produce a rolling and foveated image to be shaded (f). (Depiction uses a monoscopic HMD display for simplicity.)

computes the (irregular-shaped) projection of the display’s recon-
struction �lter into the cortical domain.

3.1.2 Rolling. Here, the ray direction and position at a certain
pixel depends on the time that pixel is displayed. When testing a
ray through a given pixel, the state of the primitive intersected also
has to be its state at the time the pixel is displayed.

Display. We consider a rolling-scan display to have three proper-
ties: rolling illumination, a short hold-time, and we must be able to
predict the absolute head pose at any point in the interval [ts,te].

First, a rolling scan implies that di�erent parts of the display
are visible at di�erent times. �e term “rolling” is chosen as an
analogy to a camera’s rolling shu�er sensor. A classic Cathode Ray
Tube (CRT) is an example of a rolling scan display. Most LCDs these
days perform a global synchronized illumination of all pixels at once.
OLEDs, such as those used in the DK2 and other HMDs sometimes
use rolling illumination.

We will formalize this as a rolling-function r (x) ∈ (0, 1)2 →
(0, 1) : x · d that maps a (unit) spatial location x to a (unit) point in
time at which the display will actually show it by means of a skew
direction d. d depends on the properties of an individual display.
For example d = (0, .9) describes a display with a horizontal scanout
in the direction of the x-axis and a (blank) sync period of 10 % of
the frame period. For the DK2, d = (1, 0) based on behavior pro�led
with an oscilloscope (Fig. 2).

Second, the display has to be low persistence (non-hold-type),
i. e., a pixel is visible for only a short time relative to the total
refresh period. A CRT is typically of this type. CRT phosphor has
a decay that typically reduces brightness by a factor of 100 within
one millisecond (Fig. 1 in (Sluyterman 2006)).

�ird, we assume that the model-view transformation can be
linearly interpolated across the animation interval and that vertices
move along linear paths during that time. More general motion is
possible, but not for the tightest bound (Zenon’s bound), which uses
an analytic derivation requiring linearity.

3.1.3 Joint foveated-rolling. �e composition r◦q(x) of the above.

3.2 Pipeline

An overview of perceptual rasterization is see in Fig. 4, d–f. We
extend a classic OpenGL-style rasterization pipeline using vertex,
geometry and fragment programs (VP, GP and FP) to produce a

typical deferred shading bu�er from primitives in two steps: bound-
ing and intersecting. We will explain how to bound tightly and
e�ciently for the di�erent models later in Sec. 4.

Bounding. Input to the VP are the world-space vertex positionsvs
at the beginning andve at the end of the frame interval. Additionally,
the VP is provided two model-view-projection matrices Ms and Me
that hold the model and view matrices at the beginning and the end
of the frame interval. �e VP transforms both the start and the end
vertex, each with the start and the end matrix (Msvs and Meve),
and passes this information on to the GP. Note, that no projection
is required at this step.

Input to the GP is the tuple of animated camera-space vertices
S = (vs,0,ve,0,vs,1,ve,1,vs,2,ve,2), i. e., an animated camera space
triangle. �e GP bounds the projection of this space-time triangle
with a 2D primitive, such that all pixels that would at any point in
time be a�ected by the triangle are covered by the new bounding
primitive B. �e geometry program passes the space-time triangle
on to the fragment program as (�at) a�ributes. Note, that the bound-
ing primitive B is not passed on from the GP to the FP: It is only
required as a proxy to determine the pixels to test directly against
S (and not B) i. e., what pixels to rasterize. �e fragment program
then performs the intersection test described next.
Intersection. �e fragment program is now executed for every

pixel i that could be a�ected by the primitive’s bound. Note that this
test is the same regardless of what bounding is used. To decide if the
pixel xi actually is a�ected by the space-time triangle, we intersect
the ray Ri at this pixel with the triangle at time r (xi ). �e entire
triangle, its normals, texture coordinates and material information,
were emi�ed as flat a�ributes from the GP. Note, thatR depends on
the time as well: every pixel i has to ray-trace the scene at a di�erent
time following r . For foveation, Ri is not formed by a pin-hole model
but follows q. �e joint model distributes rays according to r ◦q. �e
position of the entire triangle at time r (xi ) is easily found by linear
interpolation of the vertex motion. �is results in a camera-space
triangle Ti , that can be intersected with Ri using a 3D ray-triangle
intersection test. If the test fails, nothing happens. If the test passes,
the fragment is wri�en with the actual z value of the intersection
and with common z bu�ering enabled. �is will resolve the correct
(i. e., nearest to the viewer) fragment information. For every pixel
there is a unique time and fovea location, and hence distances of
multiple primitives mapping to that pixel are z-comparable. �is is
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key to make perceptual rasterization possible when primitives are
submi�ed in a streaming fashion in an arbitrary order.

Shading. Shading has to respect the ray-primitive model as well:
the time at every pixel is di�erent for the rolling and joint model,
having the implication that parameters used for shading, such as
light and eye position should also be rolling and di�er per pixel.
�is again can be done by simple linear interpolation. Note that
shading is not a�ected by foveation.

4 BOUNDS

A key technical contribution of this paper is the derivation of tight
and e�ciently computable bounds for the ray-primitive model re-
quired for modern HMDs.

4.1 Foveation bounds

x0

x1
x2

q(x0)

q(x2)
q(x1)

n0,1 n2,0

Δmax

a) b)

c) d)

odd

odd

odd

even

even

even

Fig. 5. Foveated bounding. a) the original primitive. b) the foveated prim-

itive. c) the simple bounds displaces the original edges. d) the advanced
bound first foveates the edges and then bounds the displacement.

As there is no closed-form foveation function available, we cannot
derive a closed-form solution as will be done for rolling rasterization.
�is might become possible in future work when using an analytic
foveation function. For now, the monotonicity property still allows
for tight bounds that are quick to compute (Fig. 5).

�e key is to use q and q−1. �e bounding geometry we generate
will always consist of a convex polygon with six vertices, and does
not require a convex hull computation. Every even pair of vertices
is produced by bounding a single edge of the original triangle. Every
odd pair joins the start and end of a bounding edge produced from a
primitive edge. �e remaining task is then to bound a single triangle
edge from x0 to x1. We have derived two bounds, a simple and a
tighter recursive bound.

4.1.1 Simple. Here, the bounding edge is assumed to be parallel
to the original edge (Fig. 5,c) All we need to �nd is the maximal
positive distance along the normal from the edge joining x0 and x1

∆max = max
s ∈(0,1)

{∆(s) = (ηs (s) − ηc (s)) · n(ηs (0),ηs (1))}

ηs(s) = x0 + s(x1 − x0) and ηc(s) = q(x0 + s(x1 − x0)),
where n creates a direction orthogonal to the line between its two
arguments. As the distance is a convex function, it can be minimized
using a ternary search that converges to a pixel-precise result in
log(n) steps, ifn is the number of possible values, here, the number of

pixels on the edge. Consequently, for a 4 k image example, bounding
requires 3 × 2 × log(4096) = 96 multiply-adds and dot products per
triangle at most, but typically much less as triangle edges are shorter.

4.1.2 Recursive. Consider the original vertices x0 and x1 (Fig. 5,
a) and the foveation q(x0) and q(x1) of these vertices (Fig. 5, b).
While the simple bound displaces relative to the straight original
edge from x0 to x1 (Fig. 5, c) the new recursive bound will displace
relative to the straight edge q(x0) to q(x1) (Fig. 5, d):

ηs(s) = q(x0) + s(q(x1) − q(x0))
�is is possible, as the edge has to be straight, but not necessarily
the “original” one. �e resulting bound is tighter, i. e., the blue area
is smaller than the yellow one in Fig. 5. Note, that the normal for a
di�erent straight edge is also di�erent, as q is a nonlinear function:
an edge joining a point close to the origin and a point farther from
the origin will change its slope as both are scaled di�erently.

4.2 Rolling bounds

t=0 t=1t=.3 t=.6
Quad Hull Adaptive Zenon

Fig. 6. Rasterization bounds for a space-time triangle moving across the

screen. The triangle starts at a position where the frame time already is

.3 and ends where frame time is .6. Consequently, it can not cover the

full convex hull, but only the convex hull of a spatio-temporal subset. We

identify this region, resulting in an increased sample test e�iciency (cf. the

ratio of areas of “Hull” and “Adaptive”). Finally, there is an analytic solution

to when exactly the rolling beam will catch up with a moving primitive

allowing for even tighter bounds (“Zenon”).

4.2.1 Boxes. A reasonably tight bound for the time-space trian-
gle S as de�ned in Sec. 3.2, is the 2D bounding box

B = bbox{P(Si, j , t)|i ∈ {s, e}, j ∈ {0, 1, 2}, t ∈ {0, 1}}
of all vertices in the start and end of the frame, where bbox builds
the 2D bounding box of a set of points and P is the projection of
a point at time t , i. e., multiplication with a time-varying matrix
followed by a homogeneous division (“�ad” in Fig. 6).

4.2.2 Convex hull. A bounding box would create substantial
overdraw for thin and diagonal primitives. Investing time to pro-
duce tighter bounding primitives can be worthwhile as it reduces the
amount of work done for each pixel (“Hull” in Fig. 6). Fortunately,
all points of a triangle under linear motion fall into the convex hull
of its vertices (Akenine-Möller et al. 2007). We can therefore replace
the operator bbox by the convex hull of a set hull that could be
implemented e�ciently (McGuire et al. 2010) (our current imple-
mentation uses a GLSL quick hull implementation). For primitives
intersecting the near plane we proceed as similar to McGuire et al.
(2010): all primitives completely outside the frustum are culled;
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primitives completely in front of the camera (but maybe not in the
frustum) are kept, and those that intersect the near plane are split
by this plane and their convex hull is used. We found using a convex
hull of up to 15 points (there are 15 edges between 6 space-time ver-
tices (McGuire et al. 2010)) resulted in higher overall performance
than when using the simpler bounding box.

4.2.3 Adaptive. While convex hulls are tight spatially, the rolling
case allows for a surprisingly tighter bound under some simple and
reasonable assumptions on w , the mapping from pixel locations to
frame times (“Adaptive” in Fig. 6). �e key observation is that a
rolling space-time triangle only has to cover

B = hull{P(Si, j , t)|i ∈ {s, e}, j ∈ {0, 1, 2}, t ∈ {tmin, tmax}},
where the triangle-speci�c time interval (tmin, tmax) is found by
mapping back 2D position to time

tmin = min{w−1P(Si, j , t)|i ∈ {s, e}, j ∈ {0, 1, 2}, t ∈ {0, 1}}.
�e maximal time tmax is de�ned by replacing the minimum with a
maximum operation. In other words, to bound, we �rst project all
six vertices with time 0 and 1, to get bounds in 2D but then �nd the
maximal and minimal time at which these pixels would be relevant.
As this time span is usually shorter than the frame i. e., tmin � ts
and tmax � te, the spatial bounds also get tighter.

4.2.4 Zenon’s hull. �e problem of bounding where the rolling
scan will “catch up” with the projection of a moving triangle has
similarity with Zenon’s paradoxon where Achilles tries to catch up
with the tortoise (Wicksteed and Cornford 1929) (Fig. 7, a).
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Fig. 7. Linear (a) and perspective (b) Zenon’s paradoxon (see text below).

If Achilles starts at xs and moves at constant speed Ûxs, it will
reach (other than what the paradoxon claims) a tortoise at position
xp with 1D speed Ûxp at the time t where

xs + t Ûxs = xp + t Ûxp, which occurs at t =
xs − xp
Ûxs − Ûxp

.

�e same holds for a rolling scan (Achilles) catching up with a vertex
(tortoise). Regre�ably, in our case, the rolling scan moves in image
space, while the primitive moves in a 2D projective space (horizontal
x component and projective coordinate w) from spatial position x
with speed Ûx and projective positionw with speed Ûw (Fig. 7, b). �is
can be stated as

xs + t Ûxs =
xp + t Ûxp
wp + t Ûwp

,

which is a rational polynomial with a unique positive solution

t = −
(
√

4xs Ûwp + Ûx2
s − 2 Ûxswp +w2

p − Ûxs +wp)
2 Ûwp

. (1)

To produce the �nal bounds, the time ti , and the 2D position xi at
this time, is computed for each of the six vertices of the space-time
triangle. �e convex hull of the xi is the �nal bounding geometry.

4.3 Joint Foveated-rolling bounds

A joint approach for rolling and foveation operates similarly to the
foveation-only approach. To add rolling to foveation, we add the
rolling transformation to q (Fig. 8). Order is important: the rolling
time coordinate has to depend on where the pixel will e�ectively be
displayed in the non-foveated domain. Let x0 and x1 be the original
world coordinates of that edge �e new edge functions are therefore
ηs(s) = Q(x0)+s(Q(x1)−Q(x0)) and ηc(s) = Q(x0 +s(x1 −x0))
where Q is the joint action of rolling and foveation Q(x) ∈ R3 →
R2 : Q(x) = q(P(x, t)). �e time t can be found using Eq. 1.

a) b) c)

x0

x1

p(x0)

p(x1)

q(p(x0))

q(p(x1))

Fovea

Fig. 8. Joint rolling-foveated rasterization. a)One original edge of a primitive

in orange. b) rolling of the same edge results in the blue curve. c) Foveation
of that curve leads to another pink curve, that is bound from the line joining

its ends, adding the gray area.

5 RESULTS

We discuss qualitative (Sec. 5.1) and quantitative (Sec. 5.2) results.

5.1 �alitative

Foveation. Results of our foveated rasterization approach are seen
in Fig. 9. Our image was produced by foveating the center using a
simple power-fallo� p(x) = x2 foveation function. �e inset shows
a 32×32 patch. �e reference was produced by 4×4 super-sampling.

We see that the amount of detail varies across the image in the �rst
column. While the center is sharp, yet super-sampled, the periphery
has less detail, yet blurred with a high-quality cubic �lter. In the
common condition (second column) the �ne hairs of the hairball
lead to almost random results without super-sampling, while our
result remains smooth and similar to the reference. �e same is
true for the �ne geometric details in the car’s grill. In the Children
scene, the super-sampling of shading is salient.

�e common images were produced using the same memory, the
same shading e�ort and not less than half the compute time than
ours (third column), yet the di�erences are visible. At the same
time, the reference (fourth column), uses 16 times more memory
and shading e�ort and is more than twice the compute time than
ours, yet the di�erences are subtle.
Rolling. Images produced by our rolling rasterization approach

can be seen in Fig. 10. A non-rolling image is seen in the �rst column.
�e second and third columns contain rolling images where the
camera has both translated and rotated during a rolling scan-out
from le� to right. �e second column shows image warping using
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Fig. 9. Foveation results. The first column shows the result we produce, fovea marked in yellow. The second to fourth columns shows the foveated region

using non-foveated rendering, our approach, and a 4 × 4 super-sampling reference. �antitative evaluation is found in Tbl. 1.

a pixel-sized grid, where triangles that have a stretch that di�ers
by more than a threshold are culled entirely (Mark et al. 1997).
Disoccluded areas are marked with a checkerboard pa�ern. �e
third column shows the results produced by our approach. �e
fourth and ��h columns show insets from the second and third row.
�e scenes were intentionally chosen to contain large polygons,
which are di�cult for non-linear projections (Brosz et al. 2007;
Gascuel et al. 2008).

We see that rolling images contain the expected non-linear pro-
jection e�ects: long edges that are straight in 3D appear as curves in
the image. As this mapping is consistent, other e�ects such as shad-
ows and specularities appear consistent for all approaches. Warping
however has di�culties with disocclusions, edges and �ne details.
We see that large parts of the background are missing. �e biggest
challenge are areas occluded in the input image. Large parts are
missing in warping, e. g., the sky background in Helicopter condi-
tion, and the ground plane in Houses, that are easily resolved by our

approach. Current Warping techniques always have di�culties with
edges, where a pixel can only be either warped or not, resulting in
jagging artifacts such as on the edges of Children. When motion,
occlusion and �ne edge structures come together, such as in the
area around the Helicopter’s rotor, the warped images bear li�le
resemblance to the reference.
Joint rasterization. Results for joint rolling-foveated images are

show in Fig. 11. We see both the expected improvement in the
foveal inset and the global rolling: the car and fence have straight
3D edges that turn into curves under viewer motion. �ose scenes
have around 100,00 k faces and render in less than 50 ms.
Lens Distortion. Including a barrel lens distortion (Oculus VR

2017) in the joint approach is simple (Fig. 12): we just use a foveation
function p that is a composition p(d) = pc ◦ pl(d) of the cortical
foveation pc function and a lens distortion function pl. When sam-
pling back from the foveated domain, only pc is applied, as pl will
happen optically. Only the – much smaller – chromatic blur still
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Fig. 10. Results of our rolling rastrization approach. Di�erent rows show di�erent scenes. The first column shows the input image. The result of warping is

shown in the second, where disocclusions were filled with gray. The third column shows our approach. The fourth and fi�h columns shown the inset areas

from columns two and three. �antitative evaluation is found in Tbl. 2. Please, see the supplemental video for animated versions of these results.

Fig. 11. Joint i. e., rolling and foveated, perceptual rasterization for three scenes. The insets compare joint and rolling-only results.
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needs to be applied, as the e�ort of rasterizing three channels inde-
pendently does not appear justi�ed.

Fig. 12. This stereo image is both rolling and foveated, as well as it will

appear lens-undistorted in space and chroma when observed in a HMD.

Rolling Shading. Here we compare rolling shading, included in
all the above results, to rolling rasterization without rolling shading
in Fig. 13. Specular inconsistencies will result in popping artifacts
over time (Antonov 2015), where a highlight does not slide across
the side of the car but judders between frames.

Common
shading

Rolling
shading

Fig. 13. Rolling rasterization without rolling shading (le�) lack some specu-

lar e�ects. Rolling shading (right) produces highlights that change across
the image due to the change in view over time.

5.2 �antitative

Here alternatives and variants of our approach are compared in
terms of speed and image similarity.
Methods. We tested our approach on a Nvidia �adro K6000.

Image similarity is measured in terms of an adapted SSIM (Wang
et al. 2004) metric. It ignores all disoccluded pixels, i. e., it provides
an upper bound on quality to what any hole �lling, however sophis-
ticated, could do (Didyk et al. 2010; Schollmeyer et al. 2017). For
foveated comparisons, SSIM is computed for the 64×64 foveal pixels.
For foveation, we compare speed and quality to a common method,
that directly operates at the same resolution as ours, and speed to a
three-layered method (Guenter et al. 2012) assuming it will provide
similar quality. �e foveated reference is a 8 × 8 super-sampled
rasterized image. Shading e�ort (SSAO and IBL) is the same for
ours and common, while it is three times larger for layered and 16
times larger for the reference. As rolling methods we compare “No
rolling” corresponding to the �rst column in Fig. 10, “Warping” from
the second column in Fig. 10 and our “Rolling” approach from the
third column in Fig. 10. �e rolling reference is ray-traced, that is,
identical to all images perceptual rasterization produces. We state

the ray-tracing time of a reasonably implemented GPU traversal of
an SAH-optimized BVH.
Comparison. Foveation results are shown in (Tbl. 1). Our ap-

proach is more similar to the reference than common rasterization.
Furthermore, it achieves speed that is roughly half as fast rasterizing
multiple layers and very similar to rendering in a full resolution.
Finally, we see that re�ned bounds increase sample test e�ciency
as well as actual compute time.

Rolling results are stated in Tbl. 2. First, we see that rolling and
non-rolling images are substantially di�erent according to the SSIM
metric. At the same time, classic GPU rasterization is highly opti-
mized and produces images very quickly. When warping the image,
the similarity increases, but time is increased by two milliseconds:
high-quality warping requires two primitives per pixel (Mark et al.
1997). Next, we compare our method using di�erent bounds. Note,
that the SSIM is always 1 as our rasterization has been veri�ed to be
identical to ray-tracing a rolling shu�er image. We also note, that
scenes with many polygons, such as Children (1.4 M) are feasible,
but noticeably slower, likely due to the straightforward convex hull
implementation used in the GP.

For both foveation and rolling, ray-tracing – while very con-
venient and clean to implement – is slower than all versions of
rasterization. Note, that the ray-tracing numbers do not include the
SAH building time required, which is likely substantially larger.

Overall, perceptual rasterization achieves quality similar to a
reference, while being slower than highly-optimized, �xed-pipeline
rasterization by a moderate factor, but much faster than ray-tracing.
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Fig. 14. Comparison of di�erent rolling approaches in Helicopter: Classic

rasterization, warping and rolling. a) Image resolution and compute time

(less is be�er). b) Transformation (a camera rotation) and compute time

(less is be�er). c) Transformation and image similarity in SSIM (more is

be�er). Scalability of foveation in Car: Similarity (yellow line) and compute

time (pink line) as a function of foveation.

Sample Test E�ciency. We also compute the sample test e�ciency
(STE) (Akenine-Möller et al. 2007; Laine et al. 2011; McGuire et al.
2010), de�ned as the ratio of pixels belonging to a primitive to
the number of pixels tested. An STE of 100 % would mean that
only necessary test were made, i. e., the bounds were very tight.
A low STE indicates that unnecessary tests occurred. Comparing
the bounding approaches in Tbl. 1 and Tbl. 2, it can be seen that
investing computational e�ort into tight bounds, pays o� with a
higher STE and is ultimately faster overall. Visualizations of the
STE for rolling rasterization are seen in Fig. 15.

Scalability. Dependency of speed and image similarity on external
variables is plo�ed for di�erent approaches in Fig. 14. �e �rst plot
shows how image resolution a�ects computation time (Fig. 14, a).
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Table 1. �alitative evaluation of foveated rasterization from Fig. 9. Layered SSIM is assumed to be 0.

Tris Ours Common Layered Raytrace Reference
Trivial �ad Recursive

Sim. Shade Raster STE Raster STE Raster STE Sim. Shade Raster Shade Raster Raster Shade Raster
Hairball 115 k .988 2.2 ms 28.7 ms 5.0 % 9.8 ms 10.1 % 5.2 ms 40.0 % .970 2.2 ms 1.1 ms 6.6 ms 2.7 ms 280.0 ms 228.4 ms 3.5 ms
Car 178 k .992 2.2 ms 35.2 ms 1.0 % 12.2 ms 14.3 % 6.5 ms 37.3 % .962 2.2 ms 1.4 ms 6.6 ms 3.3 ms 33.2 ms 228.4 ms 4.6 ms
Children 1,400 k .992 2.2 ms 3 s 0.0% 30.0 ms 16.0 % 29.3 ms 48.2 % .938 2.2 ms 2.9 ms 6.6 ms 7.9 ms 48.5 ms 228.4 ms 13.8 ms

Table 2. �alitative evaluation of rolling rasterization from Fig. 10. Our SSIM is 1 in all conditions.

Scene Tris No Rolling Warping Rolling (ours) Raytrace
�ad Hull Adaptive Zenon

Sim. Time Sim. Time Sim. Time STE Time STE Time STE Time STE Time
Helicopter 15 k .768 0.9 ms .700 2.5 ms 1.00 31.2 ms 4.2% 15.5 ms 9.7% 5.8 ms 36.9% 4.1 ms 48.1% 30.4 ms
Sponza 223 k .177 1.9 ms .322 4.5 ms 1.00 3 s 0.0% 361.9 ms 1.8% 134.0 ms 5.5% 38.5 ms 18.5% 113.5 ms
Houses 13 k .674 0.7 ms .727 2.5 ms 1.00 25.0 ms 5.6% 13.9 ms 12.2% 6.7 ms 28.2% 5.2 ms 39.1% 16.0 ms
Children 1,400 k .610 3.8 ms .780 6.3 ms 1.00 80.0 ms 1.0% 65.5 ms 2.2% 36.7 ms 26.7% 28.1 ms 37.2% 45.3 ms

STE
100%
(fast)

STE
1%

(slow)

Quad Convex hull

AdapƟve Zenon

Fig. 15. Sample test e�iciency of di�erent rolling bounds in Helicopter. We

see, that convex hulls are tighter than quads, but only bounds that adapt to

the space-time structure have a workable STE, where Zenon’s is more tight

to the right of the image where motion is largest.

We see that our approach is, as expected, slower than common
rasterization, which is highly-optimized in GPUs. At the same time
warping does not scale well with resolution due to the many pixel-
sized triangles to draw. At high resolutions, the warping method is
worse both in terms of speed, as well as image quality.

Next, we analyze computation time as a factor of the transfor-
mation occurring during the scan-out (Fig. 14, b). We quantify this
as view rotation angle around the vertical axis. We see that clas-
sic rasterization is not a�ected by transformation at all. Warping
adds an almost-constant time overhead that only increases as larger
polygons are to be drawn. Our approach is linearly dependent. �e
amount of pixel motion is expected to be linear in small angles.
Our tighter bounds can at best reduce the magnitude of the linear
relationship. For large motions our approach is approximately half
as fast as �xed-function rasterization plus warping, or six times
slower than �xed-function rasterization alone.

Next, we analyze similarity (more is be�er) depending on the
transformation, again parametrized as an angle (Fig. 14, c). We
�nd that our approach, as expected, has no error relative to the
ray-tracing reference. With no user motion, common rasterization
has no error either, while warping still introduces pixel-sampling
problems. As motion becomes more extreme warping reduces error
with respect to common rasterization, but similarity still decreases,
as disocclusions cannot be resolved from a single image.

Finally, we see the dependency of similarity and compute time
on foveation strength α (Fig. 14, d), in the power foveation function
p(d) = dα . We �nd that similarity is a convex function, peaking
around the value α = 2 we use. Too low-a foveation does not
magnify enough to bene�t from the super-sampling. Too high
values magnify so much, that only the central part of the fovea
bene�ts, reducing SSIM again. Time is a linear function of foveation
strength, as polygonal bounds to increasingly curved triangles are
decreasingly tight.
Head Pose Estimation. Finally, we investigate the e�ect of head

pose prediction error on our approach. Before (e. g., Fig. 14, c),
we have seen that the image error is proportional to the error in
transformation. �erefore, we sampled head motion using the DK2
at approximately 1000 Hz. At each time step we used the SDK’s
predictor - the same that drives the rolling rasterization - to predict
the pose one frame ahead. We use these captures to determine
how the linearly interpolated pose and a time-constant pose di�er
from the actual pose. For 3,459 frames of typical DK2 motion, we
we found the linear prediction to have an error of .001 meter in
translation and .25 degree in rotation while the error of a constant
prediction is much larger, at .05 meter and 1.3 degrees, indicating a
linear model already removes most of the overall error.

6 PERCEPTUAL EVALUATION

To quantify the perceptual e�ect of our technique, we conducted
four user studies: a threshold estimation experiment to establish
the optimal foveation for a particular apparatus (Sec. 6.1); an image
judgment experiment comparing super-sampling in our foveation
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approach to a reference super-sampled image (Sec. 6.2); an object
tracking experiment with and without rolling rasterization (Sec. 6.3)
and an image preference experiment comparing our rolling ap-
proach to other approaches such as warping in an HMD (Sec. 6.4).

6.1 Foveation Strength

�is study demonstrated that there was no perceptual di�erence
between a non-trivially foveated image and a traditionally rendered
image. We based our protocol on that of Patney et al. (2016), per-
forming a 2AFC staircase task to identify the Just Noticeable Di�er-
ence (JND) threshold - the foveation strength at which participants
begin to reliably detect foveation artefacts.
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Fig. 16. Foveation study stimuli (a) and analysis (Please see text) (b).

Procedure. A�er being ��ed with an eye-tracker, participants
engaged in a 2AFC task. In each trial, participants were exposed to
two 1.5 second sequences of a rotating model - one with foveation
and one traditionally rendered - with a .75-second gap in-between.
�e rotation was around the vertical axis at one revolution every
14 seconds. A�er viewing both sequences, participants were asked
to indicate via the keyboard which of the two was “higher quality”.
�e order of rendering technique was randomized. Participants each
completed 180 trials on one of three models. Foveation strength was
determined by a 1-up/3-down staircase following the guidelines of
Garcia-Perez & Alcala-�intana (2007).
Apparatus. We used a typical desktop PC with a GTX 980 GPU

and an Asus VG248 144 Hz monitor to render the scenes with image-
based lighting and specular materials (Fig. 16,a) under natural HDR
illumination. �e eye-tracker was an SR-Research EyeLink II con-
nected via Ethernet directly to our application.
Participants. 25 naı̈ve participants successfully completed our

study across three conditions: Lucy (7), Rockbox (9), CAD (9).
Analysis. We opted for a �xed-size staircase with empirically

set step-sizes, as our technique is novel and we do not have any
reasonable priors for parametric sampling schemes. For our analysis
though we �t a logistic psychometric function (Garcı́a-Pérez and
Alcalá-�intana 2007) for simplicity and comparability to estimate
thresholds and con�dence intervals at 95 %.
Results. Fig. 16 shows an approximate psychometric function

computed by averaging the function parameters for each partici-
pant, for each condition. A psychometric function describes the
probability of detecting a distortion (vertical axis) depending on the
foveation strength (horizontal). We see that the 75 % detection prob-
ability JND threshold occurs at non-zero levels of foveation. �is
indicates subjects cannot detect our foveation even when present
at such strengths. �e con�dence intervals (colored bars) show the
signi�cance of this observation. Participant’s individual functions,
staircase results and further analysis are included in our supplemen-
tary materials.

6.2 Super-sampled Image Comparison

We performed a second study to determine how users compare our
foveally super-sampled images to traditionally rendered images,
when presented with a super-sampled image as a reference.

Protocol. A�er being ��ed with an eye-tracker, participants en-
gaged in a series of Two-Alternative Forced Choice (2AFC) trials.
In each trial, participants viewed three instances of a slowly ro-
tating model side-by-side (Fig. 16). �e center model was a 4×4
super-sampled reference, with common and foveated to the sides
in a randomized order. Participants were asked to indicate via the
keyboard which side appeared most similar to the reference. Sub-
jects each completed 45 trials spread evenly across three conditions,
randomly interleaved.

Participants. 7 naı̈ve participants completed this study.
Apparatus. We used the same apparatus as the previous study.
Analysis. We compute the preference for foveation as the propor-

tion of aggregated trials in which the foveated image was chosen,
for each condition. Two-tailed binomial tests (n = 105) indicated
that the preferences are signi�cantly di�erent to chance (p = .5) for
all conditions (p < .001);
Results. �e results show a strong and consistent preference

for foveation across all models (Lucy: 90%, Flower: 94%, CAD:
87%). �e slight reduction for CAD is likely because when viewing
the back of the model there were few details to distinguish the
techniques.

6.3 Rolling Rasterization Task Performance

We conducted a user study to examine how rolling rasterization
a�ects perception in VR. We used an object tracking task to measure
how behavior is in�uenced by both rolling rasterization and the
asynchronous time-warping.

Protocol. Participants were shown a simple virtual environment
in which a 50 cm box moved along a 180° curve, 8 m in front of them,
just above eye level. �e box reversed direction at the extents and
moved at 85.9 ± 68.7 ° s−1, the rate changing randomly every second.
A head-�xed reticle was visible 8 m ahead.

Fig. 17. Stimuli of the first (a) and second (b) experiment. c) Probability
Functions of Phase for each condition.

Participants were told to use their head to keep the reticle in the
middle of the box. Participants followed the box in two trials, each
lasting 4 minutes. Between the trials participants had a short break
outside the HMD. �ere were three conditions pertaining to the
rasterization method used: traditional (STD), Oculus’ Asynchronous
Time-warping (ATW) and our Rolling-Rasterization (ROL). �e con-
ditions were presented in 30-second-blocks, randomly interleaved.
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Participants. 20 naı̈ve participants completed the study.
Apparatus. Our experiment was performed with an Oculus Ri�

DK2. �is HMD has a single low-persistence rolling-scanout display
that scans right-to-le� at 75 Hz with a persistence of 4 ms (Fig. 2).
�e DK2 has an inertial measurement unit (IMU) that samples at
1 kHz. �e head and box positions were sampled at 75 Hz.

Analysis and Results. We began by analyzing the phase of the
head motion. �is is the instantaneous angular di�erence between
the head and the box, positive when the head is leading the box, and
negative when it is following. If participants were tracking the box
exactly, we would expect a symmetrical distribution with a slight
negative bias due to latency. Instead, a set of Kolmogorov-Smirnov
tests show a non-normal distribution for the conditions separately
and cumulatively (P < 0.05). All conditions also show a positive
bias (Fig. 17, c). �is indicates a tendency to lead the target.

Table 3. ANOVA test results for mixed-model terms

Variable E�ect F-Stat DoF DoF p

Per-Parti. Inter. Random 1394.14 1 501,799 <.0001
Condition Fixed 114.53 2 501,799 <.0001
Speed Fixed 7984.79 1 501,799 <.0001
Condition: Speed - 134.06 2 501,799 <.0001

In this case, we would expect the lead to increase as apparent
latency decreases, and this is what is shown. ROL enables the largest
anticipatory behavior (a lead of 2.7°). STD presents the second
largest (2.2°), having a latent but head-�xed image. ATW has the
smallest lead (1.7°), because while it compensates for latency, it does
so by moving the entire image - including the target - counter to
head rotation introducing apparent lag into the target.

To test the signi�cance of this, we performed an ANOVA on the
terms of a linear-mixed model, to control for per-participant biases
and speed. �e results of this test are shown in Tbl. 3, indicating a
highly signi�cant e�ect of rendering condition (p < .0001), as well as
an interaction between rendering condition and speed (p < .0001).

6.4 �alitative Rolling Study

�is study compares �delity of rolling rasterization to a traditional
warping technique using a set of two-alternative forced choice trials.
In this study the stimuli were head-�xed and in mono, to avoid any
e�ects of latency or head motion.
Protocol. Participants were provided with the same HMD as

before (Sec. 6.3) and exposed to a set of video pairs. Each video pair
was seen consecutively and preference indicated using a keyboard.

Stimuli. �e videos all showed moving objects (Fig. 17). �e
videos were one of three types. Std rendered each frame at a �xed
time. Warp took each frame from STD and warped it from ts to te
with a traditional warping algorithm (Mark et al.’s (1997) pixel-sized
grid warping, where triangles stretching by more than a threshold
are culled). ROL rendered an image for ts to te with our technique.
Each video was presented for 2.5 seconds. Both the pairings of the
types, and the order in which they were presented within the pair,
were balanced an random.

Participants. 9 naı̈ve participants completed the study seeing all
combinations �ve times.

Analysis and Results. We summed the number of times each
condition was preferred for each participant, and performed a one-
way ANOVA on these three groups. We show a signi�cant e�ect
of rendering technique [F (2, 24) = 13.45,p = .0001], with users
preferring STD or ROL over WARP. �ere is no signi�cant di�erence
between STD or ROL (p = .993). �ese results indicate that rolling
rasterization can be indistinguishable from a traditional render in
this protocol.

7 DISCUSSION

Comparison to warping. �e di�erences between an ideal ground

E2

Rolling Rasterization
Rasterization

Ground truth
Warp

Frame n Frame n+1

E1

E3

t1 t2

E4
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View
transform

Fig. 18. Conceptual di�erences of our approach andwarping to ground truth

when producing frame n + 1. Time is the horizontal axis and the vertical

axis is view transformation. Di�erences in images, and by this the perceived

error, are likely proportional to di�erences in view transform (do�ed lines).

The ground truth view transform is shown as a single function curve for

frame n and n + 1. Di�erent methods are encoded as colors. Colored

horizontal blocks are working time, colored lines are approximations of the

view transform for images on display.

truth zero-latency rasterizer, warping and our approach is seen in
Fig. 18. �e ground truth approach (orange), would instantaneously
produce an image that at every position in space-time will match
the view transform. Normal rasterization preceding warping (light
blue) will render frame n + 1 with the transform known at time t1.
By t3, the end of frame n + 1, the display image will be severely
outdated (di�erence E1). Warping (dark blue), will move pixels to
compensate for the transformation at t2, but can still not mitigate
the image to become outdated during n+1, (di�erence E2) and it has
no way to remedy disocclusions occurring between t1 and t2. Our
approach (green) also starts work at t1, but using the transformation
predicted for continuous points in time on frame n + 1, removing all
occlusion and shading error and leaving only the prediction error E3.
Even when assuming a hypothetical and unpublished competitor
that rasterizes using a predicted view transform (do�ed light blue
line) and a rolling form of warping (dark blue do�ed line), there
remains an appearance error E4 at t4 that can not ever be resolved
by rasterizing outdated (i. e., non-rolling) occlusion and shading.
Fast Rendering. It is tempting to just hope faster rendering will

make rolling rasterization obsolete. But any common non-rolling
method will never reduce latency below the scan-our duration,
typically around 16 ms. Even if a fast non-rolling rasterization
takes only 1 ms (a short light-blue bar in Fig. 18), the scan-out still
takes 16 ms, and the latency will remain to be 15 ms. Using rolling
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rasterization, that might be slower, say 4 ms, (green bar longer than
the light-blue bar in Fig. 18) would be be�er deal, as the latency can
get arbitrarily small if a su�ciently correct prediction is made.

Prediction. Like any method that has to �nish before the scan-out
starts, we require a prediction of scene and viewer motion during
the scan-out. Grossmann et al. (1988) have measured the velocity
and acceleration of head motions. �eir results show that rotational
and translational head velocity can be substantial, indicating, that
the rendering with a view transform that changes during the display
interval is useful. �ey also �nd, that the acceleration i. e., derivation
form a linear model, is small as it requires force. �is indicates
that our �rst order-model, with substantial velocity but limited
acceleration, is physiologically plausible.
Streaming. Friston et al. (2016) update the view matrix for each

scan-line and ray-trace a simplistic scene in a period far below that
of the display’s scan out. It would not be clear how to ray-trace a
complex scene in this time. Geometry in animated scenes changes
for every scan line, which would require a very high frequency of
BVH rebuilds when using ray-tracing. In our case of streaming
OpenGL rasterization, which maps primitives to pixels, we have
no guarantees on the space or time layout of the primitive stream.
Consequently, we need to predict the head pose across the scan-
out. Prediction is essential and cannot be omi�ed. Even if a sensor
could give the absolute viewpoint continuously, there is still the
delay due to rendering the image from this viewpoint, and therefore
an interval between the rasterization and the actual scan-out. We
further assume the change in transformation is small enough that
the transform matrices can be linearly interpolated; an optimization
that could be replaced with a more advanced interpolation.
Speed. We demonstrate a prototypical implementation using

a GPU, which has speed comparable non-rolling or non-foveated
implementation. Our current implementation runs at real-time rates,
suggesting a full hardware implementation (with optimizations such
as tiling, etc. (Akenine-Möller et al. 2007)) could achieve speeds
similar to a traditional rasterizer.

Joint analysis. We have derived bounds for joint foveated-rolling
rasterization and show example results in Fig. 11, but did not conduct
a perceptual (stereo) experiment for this combination.
Periphery. Similar to other methods (Guenter et al. 2012; Pat-

ney et al. 2016; Stengel et al. 2016) our foveated rasterization can
create temporal aliasing in the periphery, where humans are unfor-
tunately particularly sensitive. Future work will investigate special-
ized spatio-temporal �lters to circumvent this issue.
Screen-space e�ects. Screen space shading needs to be adapted

to support perceptual rasterization. We have done so for SSAO by
multiplying all image distances by the pixel density p(x).

8 CONCLUSION

In this paper we introduced a new e�cient rasterization technique
that exploits the spatio-temporal-retinal relation of rays and prim-
itives found in HMDs. It prevents the artifacts and overhead of
warping and works in a single pass while supporting moving ob-
jects, viewer translation and rotation as well as specular shading
and lens distortion - all of which are challenging for warping. �e
main technical contribution is the derivation of tight and e�ciently
computable pixel-primitive bounds.

Future investigations could extend the rolling concept to physics
and other simulations, and would also need to seek be�er under-
standing of the relationship between latency and motion blur, focus
and the role of eye and head motion. We only touched upon the
relation to stereo or even light �eld displays.
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