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Abstract (120) 

 

‘Channelopathies’, or mutations in ion channels, are long-established causes of epilepsy. 

Comprehensive genetic, mechanistic and clinical data for SCN1A, a voltage-gated sodium channel, 

has highlighted the differing contributions of neuronal sub-types in epilepsy and confirmed that 

genotype-phenotype relations, even for monogenic epilepsies, are strongly influenced by modifier 

genes and environmental factors. An emerging population of de novo mutations in voltage-gated 

potassium channels has defined two novel potassium channelopathies (KCNC1 and KCNA2), which 

may benefit from mechanistic insights from SCN1A. Meanwhile, increasing genetic evidence has 

strengthened the long-standing association of voltage-gated calcium channels with epilepsy. Finally, 

an integrative approach for the characterisation of genetic variation in NMDA receptors has created 

a new standard for predicting functional effects in new epilepsy genes.   

 

1. Introduction 

Voltage-gated ion channels (VGICs) are critical regulators of neuronal excitability and are well-

established causes of genetic epilepsies [1,2]. Advances in sequencing technologies continue to 

identify novel mutations at rapid pace demanding a refinement in the strategies used to link 

mutations in VGICs to mechanisms triggering seizures.  Extensive clinical, genetic and functional data 

for SCN1A, the best-studied epilepsy gene, has highlighted the phenotypic variability that can arise 

from a single mutation, the degree to which modifiers can influence disease severity and how a 

mutation may selectively exert its effects in different sub-sets of neurons. These findings are 

informing efforts to develop new treatments and are guiding studies of other monogenic epilepsies, 

including those caused by mutations in voltage-gated sodium, potassium and calcium channels 

(VGSCs, VGKCs and VGCCs). Recent studies in NMDA receptors (NMDARs) provide a framework for 

how to integrate functional data from multiple variants. Approaches integrating multiple variants 

including from multiple genes are likely to become increasingly important as sequencing allows 

characterisation of non-monogenic epilepsies.  

 

2. Voltage-gated sodium channelopathies 

Mutations in voltage-gated sodium channels (VGSCs) are some of the most frequent causes of 

genetic epilepsy in humans [3,4]. Whilst mutations have been identified in all four VGSC genes that 

are highly expressed in the central nervous system (CNS): (SCN1A, SCN2A, SCN3A, SCN8A), SCN1A 

remains the most clinically important epilepsy gene, with over 1000 mutations identified[4,5]. We 

focus first on progress made characterising the consequences of SCN1A mutations. 

 

2.1 Identifying the complete clinical picture of SCN1A-associated epilepsies 

Mutations in SCN1A are most frequently associated with Dravet syndrome (DS), a severe epileptic 

encephalopathy of childhood. Defects in SCN1A are also causative for generalised epilepsy with 

febrile seizures plus (GEFS+) and migraine; another paroxysmal disorder often comorbid with 

epilepsy[6]. The clinical spectrum of DS has broadened as the patient cohort has grown, such that 

non-epileptic features of DS, such as sleep disturbance, altered sensory processing and gate 

impairment are increasingly recognised[4]. The type of mutation that a patient has, e.g. truncating 

or missense, is not the only, or even the strongest predictor of severity[1]. Evidence from a cohort of 

children with DS caused by variable mutations (n=182) suggests that environmental factors, 



particularly age of seizure onset, are stronger indicators of prognosis[7]. However, whilst vaccination 

may provoke the first seizures in a subset of children, this does not appear linked to clinical 

outcome[8].  With an increasing number of children with de novo mutations, the ability to reliably 

predict the pathogenicity of SCN1A variants, without resorting to in vitro models, has become more 

urgent. A recent in silico approach successfully predicted the pathogenicity of missense variants in 

VGSCs with an accuracy score above 0.9 [9]. 

Such predictive algorithms, combined with 

structural modelling, promise to be 

important diagnostic tools with relevance to 

other channelopathies[10].  

 

2.2 Disease mechanisms in DS implicate 

interneurons 

VGSCs are critical for the activity of all 

neurons, and essential for network 

excitability. The first mouse model of DS  

suggested that loss of the Nav1.1 channels 

encoded by SCN1A might cause seizures by 

‘inhibition of an inhibitor’, because SCN1A 

haploinsufficiency disproportionately 

affected interneurons[11]. An interneuronal 

pathology of DS has recently been 

supported by transcranial magnetic 

stimulation studies on patients [12].  

Meanwhile, the contributions of different 

subsets of interneurons continue to be 

teased apart. One study has linked autistic 

behaviours to parvalbumin-positive interneurons, and hyperactivity to somatostatin-positive 

interneurons[13], suggesting different neuronal circuits may underlie different clinical features of 

DS.  

 

2.3 Current treatments for DS 

DS is difficult to manage because seizures are typically drug-resistant [*14]. Seizure control is 

important because the occurrence of early life seizures markedly increases disease severity in 

humans[7] as well as in mice carrying SCN1A mutations[15]. Adverse effects of early seizures may be 

general to epilepsies, as mice with mutations in Kv7 experience pronounced benefits from early life 

prophylactic treatment to prevent seizures [**16].  However, stopping seizures requires an effective 

treatment, and several strategies are underway to identify such a treatment for DS.  

 

Cannabidiol, a non-intoxicating ingredient of marihuana, has recently received publicity as a game-

changing treatment.  In a  randomised trial of patients with DS, cannabidiol was found to elicit a 

~50% reduction in convulsive seizures, with 5% of patients achieving seizure freedom after 14 weeks 

[*14]. However, many patients experienced adverse effects on cannabidiol, highlighting the non-

specificity of its pharmacology.  Separately, surveys of physicians working with children with DS have 

identified elements of consensus for treatment with existing anti-epileptics. Benzodiazepines and 



valproate are seen as effective[17,18], as well as some older drugs, including bromide, the first anti-

epileptic drug used[4,19]. Overall, there is a strong consensus that sodium-channel blockers are 

contraindicated in DS because they worsen symptoms, presumably by exacerbating the inhibitory 

deficit associated SCN1A haploinsufficiency[11].  Mouse models of DS are now being used to screen 

treatments, with the first studies validating current clinical findings[18]. 

 

2.4. Precision medicine for DS 

DS is a prime candidate for a precision medicine approach, but many translational challenges exist. 

Theoretically, a selective agonist for Nav1.1 (encoded by SCN1A) would be ideal[20]. However, in 

practice, achieving specificity for Nav1.1 promises to be tremendously challenging given the degree 

of sequence identity shared between VGSCs – off-target interactions with, for example cardiac 

VGSCs, could have grave consequences.  Only recently, and after several failed attempts, has the 

search for a specific inhibitor of SCN9A/NaV1.7, to treat pain, begun to find success[21]. 

 

An alternative therapeutic strategy for DS might be targeting disease-modifying genes rather than 

Nav1.1 itself. It is increasingly recognised that genetic modifiers influence disease severity, even in 

patients with highly penetrant, monogenic epilepsies such as DS[1].  In mouse models of DS the 

genetic background, (i.e. 129 vs C57BL/6) influences multiple readouts of disease severity, and the 

key modifying loci are being mapped[22]. Genetic factors are also likely to explain why genetically 

stratified patients exhibit varied responses to the same treatment. One study found that a patient 

with SCN1A deletion actually improved on carbamazepine, a drug that usually aggravates DS[23].   

 

Genetic modifiers of VGSCs may not be the ‘usual suspects’ (e.g. binding partners, accessory 

subunits), but could represent distant or unrelated genes (Figure 1). In these cases, modifiers might 

be identified using systems genetic approaches, aimed at identifying networks of co-regulated genes 

that underlie key biological processes, such as memory [**24]. Recently, a gene co-expression 

network analysis approach identified a network of 320 genes (the M30 network) that was enriched 

for genetic variation in patients with epilepsy, and found the same network to be downregulated in 

mouse models of DS. Critically, valproate, which is one of the consensus treatments for DS[17,18], 

was found to upregulate the network [25]. Targeting new genetic modifiers will require efficient 

drug-screening platforms. The human gene network approach could be combined, for example, with 

a pharmacological screen in Drosophila to determine if compounds not yet used in DS could 

upregulate reporter genes in the M30 network[26]. Pharmacological screens in Drosphila have 

already been used to identify compounds that are capable of modulating a splice regulator known to 

modify sodium channel activity[26] – as one strategy for boosting SCN1A expression in DS. 

 

2.5 Beyond SCN1A: other voltage-gated sodium channelopathies 

SCN8A (Nav1.6) has emerged as an important cause of monogenetic epilepsy[27], and the 

mechanism is almost a mirror image of DS/SCN1A. Whilst SCNA1-associated seizures are typically 

caused by loss-of-function, mutations in SCN8A typically cause gain-of-function. Knock-in mouse 

models, created using pathogenic variants of SCN8A, support this molecular diagnosis, revealing 

different populations of neurons to be hyper-excitable[28,29]. Treatments are being developed that 

aim to rebalance neuronal activity, with efforts directed towards the development of selective 

antagonists of SCN8A[27]. Interestingly, GS967, an unconventional sodium channel blocker found to 



alleviate symptoms in DS, appears to downregulate Nav1.6 channels in excitatory neurons, and may 

also have therapeutic benefit in SCN8A channelopathies[30].  

 

The closely-related SCN2A is also an epilepsy gene where mutations tend to increase channel activity 

[2,31]. As with SCN1A, patients with mutations in SCN2A can have clinical phenotypes with widely 

varying severity and outcome[2,31,32], which has significant therapeutic implications for clinicians 

and families[31]. Meanwhile, whilst SCN3A is thought to be only expressed at low levels in the adult 

CNS, it has also been implicated as a rare cause of epilepsy and reduced channel availability is 

sufficient to cause seizures in mice [33]. No other VGSCs have been firmly linked to monogenic 

epilepsy (but see a case report of a single patient with bi-allelic mutations in SCN10A[34]). 

 

3. Novel potassium channelopathies 

Compared to VGSCs, mutations in voltage-gated potassium channels (VGKCs) are still relatively rare 

causes of epilepsy. However, whilst the pace of gene discovery may have slowed for VGSCs, two 

novel (voltage-gated) potassium channelopathies been identified in the past two years.  A number of 

de novo mutations have been discovered in KCNA2 in epileptic encephalopathies. Functionally 

characterised variants have been found to be loss-of-function or (surprisingly for a potassium 

channel) gain-of-function [35]. The phenotypic spectrum of patients with mutations in KCNA2, even 

within families, is broad, although gain-of-function mutations are associated with more severe 

phenotypes [36,37].  

 

A recurring de novo mutation has also been identified in KCNC1 as a novel cause of progressive 

myoclonic epilepsy[38]. An impressive cohort of 20 patients, all sharing the same R320H mutation in 

the S4 voltage sensor, recently allowed highly detailed genotype-phenotype investigations. One 

outcome from this study was the realisation that symptoms are alleviated for a number of patients 

during fever and that this could be explained by altered biophysical properties of the channel at 

higher temperatures[39]. Meanwhile a de novo mutation in KCND3 has been described in a complex 

patient who has seizures[40], although it is unclear whether the mutation directly causes seizures.  

  

4. Voltage-gated calcium channels (VGCCs) and epilepsy: an equivocal relationship  

Like VGSCS, VGCCs are critical for supporting excitability in neuronal networks. In humans, mutations 

in CACNA1A have been most strongly associated with ataxia or migraine, but some CACNA1A 

mutations are associated with a significant epileptic comorbidity[6]. In addition, compound 

heterozygous mutations[41], and de novo mutations[42,43] in CACNA1A have been linked epileptic 

encephalopathies. Evidence from mouse models suggest CACNA1A plays a key role in regulating 

thalamocortical connections and suppresses absence-like seizures under normal conditions[44].  

 

However, it is the T-type calcium channels that are most closely associated with absence 

epilepsy[45]. Rodent models of absence epilepsy have been mapped to both mutations in in T-type 

channels and to non-genetic changes in T-type currents, but causative mutations in humans have not 

been clearly identified. Antagonists specific for T-type channels are highly effective in models of 

absence epilepsy[46], and genetic variation in these channels has been linked with differing 

responses to treatment in patients [47]. These findings may hold relevance for other epilepsies 

because variation in in a T-type channel gene (CACNA1G) has been shown to modify severity in a 

mouse model of SCN2A-associated epilepsy [48]. Thus, whilst it remains uncertain whether 



mutations in T-type calcium channels cause epilepsy (in humans), these channels appear to be 

important modifiers of severity and treatment outcome in other types of epilepsy. 

 

5. NMDA receptors (NMDARs) leap to the front of the epilepsy genetics field 

NMDARs are not intrinsically 

voltage gated, but they do require 

depolarisation to open, and recent 

studies of rare variants in these 

channels, have catapulted these 

genes to the centre of the epilepsy 

field. The NMDAR genes GRIN2A 

(more associated with epilepsy) 

and GRIN2B (more associated with 

intellectual disability) are some of 

the most intolerant to functional 

variation in the human 

genome[**49]. A novel strategy to 

estimate the ‘overall impact’ of a 

panel of disease associated rare 

variants on receptor function 

(Figure 2) has established a new 

gold-standard for probing 

genotype-phenotype relationships 

[**49]. This approach has already 

led to potential new treatments for 

a cohort of patients with NMDAR 

mutations[50]. 

 

6. Concluding remarks 

VGICs have revealed a tremendous amount about the genetics and mechanisms of epilepsy. As 

initially demonstrated for DS and increasingly and emerging as a trend in channelopathies, 

genotype-phenotype relationships can be highly variable even with identical or equivalent 

mutations. Studies are probing beyond the channels themselves to identify genetic modifiers, which 

may allow for a much needed paradigm-shift in epilepsy drug development.  In addition mutations in 

genes other than ion channels are increasingly being identified in epilepsy. Future work exploring 

how these mutations cause seizures may benefit from lessons learnt from channelopathies. For 

example, the discovery that loss-of-function mutations in SCN1A disproportionately affect 

interneurons was a mechanistic breakthrough that radically changed the consensus on treatments 

for DS. Modelling the effects of non-ion channel mutations in different types of neuron may produce 

similar breakthroughs for many genes. After a spell of unbiased gene sequencing the field should re-

assess how much the preponderance of channelopathies in epilepsy was a consequence of where 

we looked. 
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