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With incomplete data, the “missing at random” (MAR) assumption is widely understood to enable unbiased estimation
with appropriate methods.While the need to assess the plausibility of MAR and to perform sensitivity analyses consider-
ing “missing not at random” (MNAR) scenarios has been emphasized, the practical difficulty of these tasks is rarely
acknowledged. With multivariable missingness, what MAR means is difficult to grasp, and in many MNAR scenarios
unbiased estimation is possible using methods commonly associated with MAR. Directed acyclic graphs (DAGs) have
been proposed as an alternative framework for specifying practically accessible assumptions beyond the MAR-MNAR
dichotomy. However, there is currently no general algorithm for deciding how to handle themissing data given a specific
DAG. Here we construct “canonical” DAGs capturing typical missingness mechanisms in epidemiologic studies with
incomplete data on exposure, outcome, and confounding factors. For each DAG, we determine whether common target
parameters are “recoverable,” meaning that they can be expressed as functions of the available data distribution and
thus estimated consistently, or whether sensitivity analyses are necessary. We investigate the performance of available-
case and multiple-imputation procedures. Using data from waves 1–3 of the Longitudinal Study of Australian Children
(2004–2008), we illustrate how our findings can guide the treatment ofmissing data in point-exposure studies.

directed acyclic graphs; missing data; missing at random assumption; missing not at random assumption; multiple
imputation; potential outcomes; recoverability; sensitivity analysis

Abbreviations: c-DAG, complete-data directed acyclic graph; DAG, directed acyclic graph; LSAC, Longitudinal Study of Australian
Children; MAR, missing at random; m-DAG, missingness directed acyclic graph; MICE, multiple imputation by chained equations;
MNAR, missing not at random; SDQ, Strengths and Difficulties Questionnaire.

Epidemiologic studies often suffer frommissing data onmulti-
ple variables, including the exposure of interest, the outcome,
and confounding factors. Methods such as multiple imputa-
tion (1, 2) allow unbiased estimation of all possible target
parameters (e.g., mean values, regression-adjusted associa-
tions) if the “missing at random” (MAR) assumption holds.
Investigators are thus urged to assess the plausibility of this
assumption and encouraged to perform structured sensitiv-
ity analyses to examine the robustness of their conclusions
to departures from MAR (3). Such analyses usually entail
the elicitation of sensitivity parameters from subject-matter
experts, requiring considerable effort.

However, there is a shortage of guidance on how investigators
should assess the plausibility of MAR in practice. Seaman et al.

(4) highlighted a lack of clarity about the definition of MAR in
much of the missing-data literature, and they showed that a pre-
cisely defined condition called “everywhere MAR” (which is
what we mean by MAR hereafter) is needed to guarantee valid
frequentist inferences based on the likelihood—including meth-
ods such as multiple imputation. As Mealli and Rubin (5) noted,
MAR is not an assumption about conditional independencies
between variables, as is often thought, but about the nondepen-
dence of a function on one of its arguments. This is difficult to
assess on the basis of substantive knowledge (6), which is crucial
in the multivariable missingness setting (7–9). In particular, the
stringency ofMAR in general problems with multivariable miss-
ingness is poorly understood (4–6, 10, 11). Meanwhile, although
MAR is sufficient for unbiased estimation, it is not necessary: In
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problems with multivariable missingness, many “missing not at
random” (MNAR) scenarios allow unbiased estimation of all or
some parameters using standard implementations of multiple
imputation or even a complete-case analysis. This has been
noted in specific situations (7, 12), but there is little clarity as
to how researchers can distinguish such MNAR settings from
those in which sensitivity analyses are required.

Mohan and various colleagues (9, 13–15) proposed causal
directed acyclic graphs (DAGs) as intuitive tools for depicting
practically accessible and finer-grained missingness assump-
tions, beyond theMAR-MNAR dichotomy. This is a promising
framework to guide the treatment of missing data. However, its
practical applicability is currently impeded by the lack of a gen-
eral algorithm with which to ascertain, given an arbitrary DAG,
the nonparametric identifiability or “recoverability” (9, 13–15)
of target parameters. That is, there is no general algorithm for
determining from a DAG whether a given parameter can be
estimated consistently using available data (and, if so, how)
or whether sensitivity analyses are needed (16).

In this paper, we construct “canonical”DAGs capturing typi-
cal missingness mechanisms in the point-exposure study design
with incomplete data on the exposure, outcome, and confound-
ers. We derive recoverability results that can be used by epide-
miologists to obtain or interpret their estimates given the
canonical DAG(s) they consider plausible in their study.
The article is organized as follows. First, we describe the
canonical DAGs. Second, we determine the recoverability of
parameters ofmajor interest in eachDAG. Third, we investigate
the performance of available-case and multiple-imputation pro-
cedures. Finally, we use data from the Longitudinal Study of
Australian Children (LSAC) to illustrate how our findings can
be applied.

CANONICALCAUSALDIAGRAMS

We consider a general point-exposure study with incom-
plete exposure ( )X , incomplete outcome ( )Y , a set of com-
plete confounders ( )Z1 , and a set of incomplete confounders
( )Z2 . All of these variables can be of any type (binary, contin-
uous, etc.), and Z1 and Z2 can be univariate or multivariate.

Illustrative example

Our example examines the association betweenmaternal men-
tal illness and child behavior based on 4,882 children from the
LSAC kindergarten cohort (17): children aged 4–5 years re-
cruited in 2004 (wave 1 of LSAC; approved by the Australian
Institute of Family Studies Ethics Committee), with five 2-
yearly follow-upwaves. The exposure variable (X) was a binary
indicator of probable serious mental illness at wave 1 (yes/no;
15%missing), designated as affirmative if themean value across
the 6 items of the Kessler Psychological Distress Scale (18) was
less than 4. The outcome variable (Y) was the child’s score on
the Strengths and Difficulties Questionnaire (SDQ) (range, 0–40;
23% missing) at wave 3. A higher score indicates increased
behavioral difficulties.

Several potentially confounding covariates relating to the child,
mother, and family were measured at wave 1. The completely
observed covariates ( )Z1 were: sex of child; whether the child had
siblings (yes/no); maternal completion of high school (yes/no);

maternal age (years); consistent parenting score (range, 1–5); fam-
ily financial hardship score (range, 0–6); and child’s SDQ score at
wave 1. The incomplete covariates ( )Z2 were: maternal cur-
rent smoking status (yes/no; 16% missing); maternal risky
alcohol drinking (>2 standard alcoholic drinks per day (yes/no);
18% missing); and child’s physical functioning score (Pediatric
Quality of Life Inventory (range, 0–100); 15%missing). Overall,
19% of the children had any covariate in Z2 missing, and 34%
had any variable in ( )ZX Y, , 2 missing.

Canonical complete-data DAG

A causal DAG depicts assumptions about causal relationships
between variables using nodes connected by directed arrows (19,
20). The omission of variables or arrows encodes assumptions
about the absence of relationships.Withmissing data, we first con-
sider the DAG that would be assumed if the data were complete:
the complete-dataDAG (c-DAG).

Figure 1 shows the “canonical” c-DAG of a point-exposure
study like the one in our LSACexample,where certain simplifica-
tions are used as a diagrammatic shorthand to encode, in a general
way, the “no unmeasured or residual confounding” assumption
usually underlying the primary analysis of such studies. To repre-
sent that the set of measured covariates is a sufficient set for con-
founding adjustment, a vector U representing all completely
unmeasured common causes of the exposure and outcome is
included. Further, the relationships between themeasured covari-
ates themselves are not depicted; rather, all covariates have been
collected into 2 potentially vector-valued nodes representing the
variables that are completely ( )Z1 or incompletely ( )Z2 observed.

Canonical missingness DAGs

Mohan et al. (9, 13–15) defined a “missingness graph,” referred
to here as a missingness DAG (m-DAG), as an extension of the
c-DAG including the variable-specific missingness indicators to
depict assumptions relating to missingness in each variable. This
is more detailed than including the “complete case” indicator (21).
Themissingness indicator for X is defined as =M 1X ifX is miss-
ing and =M 0X otherwise, and MY is defined similarly. We con-
sider the incomplete confounders all together, with missingness
indicator =M 1Z2

if any of the components of Z2 is missing, and
=M 0Z2

otherwise. This simplification limits the number of pos-
sibleDAGswhile still capturing the essential detail formost practi-
cal purposes.

When constructing the m-DAG, the missingness indicators
should be treated like any other variable, with all causal rela-
tionships depicted. To contain the complexity in constructing
our canonical m-DAGs, we make 4 assumptions. The first 2 as-
sumptions extend the “no unmeasured or residual confounding”
assumption to the missingness setting:

• Assumption 1: There are no unmeasured common causes of
a c-DAGvariable and amissingness indicator. This precludes
direct arrows from U to the missingness indicators and from
W, the vector of unmeasured common causes of the missing-
ness indicators, to c-DAG variables.

• Assumption 2: There are no measured common causes of a c-
DAG variable and a missingness indicator that are absent from
the c-DAG.This precludes consideration of so-called “auxiliary
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variables” at the stage of making causal assumptions (see
Discussion).

The next 2 assumptions are grounded in a truly causal interpre-
tation of the arrows in a DAG, including the consideration that
causality requires a cause to temporally precede an effect:

• Assumption 3: There are no direct arrows from missingness
indicators to c-DAG variables. Such causal relationships
would be plausible only in exceptional settings (e.g., when
the data are used to determine a treatment).

• Assumption 4: There are no direct arrows between the miss-
ingness indicators. Such causal relationships would be rare in
the point-exposure study, since, aside from the outcome, all
variables and their missingness indicators are measured at the
same time and so cannot cause one another. Similarly, the
missingness of a variable at baseline would not truly cause
missingness in the outcome a few years later.

Assumptions 1–3 imply that associations between amissingness
indicator and a c-DAG variable can arise only in 2 ways: 1) a
direct arrow from the substantive variable to the missingness
indicator and 2) common causes of the substantive variable
and the missingness indicator among c-DAG variables. By
assumptions 1, 2, and 4, associations between missingness
indicators can arise from either common causes among c-
DAG variables or unmeasured common causes W distinct
from U. In the Discussion, we elaborate on the possibility
of relaxing these assumptions.

Assumptions 1–4 limit the number of possible m-DAGs ex-
tending the c-DAG. Following a process summarized here and
detailed in Web Appendix 1 (available at https://academic.oup.
com/aje), we identified 10 m-DAGs that provide the most gen-
eral forms of all essentially distinct extensions of m-DAG A in
Figure 2 in terms of recoverability (see next section). This case
forms the starting point, since it assumes the existence of arrows
from completely observed confounders ( )Z1 to the missingness
indicators ( )M M M, ,Z X Y2

, as is highly plausible in most epi-
demiologic studies. Briefly, we classified all extensions of

m-DAG A into 16 categories according to whether there were
arrows from 1) confounders and/or the exposure variable to
missingness indicators of other variables, 2) confounders and/or
the exposure variable to their own missingness indicators, 3) the
outcome variable to missingness indicators of other variables,
and 4) the outcome variable to its own missingness indicator.
The m-DAGwith the most arrows was selected as the “canon-
ical” representative of each class, since it is the most general.
Ten of the resulting 16 canonical m-DAGs, shown in Figure 2,
were selected because they represent all distinct recoverability
scenarios while having the most arrows.

RECOVERABILITY OF TARGETPARAMETERS

Definition of recoverability

Regardless of variable type (binary, continuous, etc.), 3 com-
mon target parameters in point-exposure studies are: 1) the ex-
pected value of the exposure (e.g., mean, proportion); 2) the
expected value of the outcome; and 3) the exposure-outcome
association adjusted for confounding through regression (e.g.,
regression-adjusted mean difference or odds ratio). Researchers
would like to recover the estimates of these quantities that they
would have obtained had there been nomissing data. A parame-
ter is recoverable if, based solely on causal assumptions, its
value can be expressed as a function of the (large-sample) distri-
bution of the available data (9, 13–15). In more formal statistical
terms, recoverability is the same as nonparametric identifiability,
meaning that it is possible to consistently estimate the parameter
from the available data using an appropriate procedure. In Web
Appendix 2, we provide a formal definition of recoverability by
defining estimands in terms of potential outcomes.

One can similarly define the recoverability of target distribu-
tions. The 3 aforementioned target parameters are characteristics
of the marginal exposure and outcome distributions and the con-
ditional outcome distribution given ZX, 2, and Z1, respectively.
The recoverability of these distributions implies the recoverability

Outcome ( )

Child’s SDQ score

at wave 3

Exposure ( )

Maternal mental

illness at wave 1

Complete Confounders 
Sex of child

Siblings

Maternal educational level

Maternal age

Consistent parenting

Family financial hardship

Child’s SDQ score at wave 1

( )

( )

Maternal smoking

Maternal alcohol use
Child’s physical functioning

Unmeasured Factors ( )

Incomplete Confounders

Figure 1. Canonical complete-data directed acyclic graph (c-DAG) for a general point-exposure study. For illustration, we provide under each node
heading the variables involved in an example study of maternal mental illness and child behavior that used data fromwaves 1–3 of the Longitudinal Study
of Australian Children (2004–2008). SDQ, Strengths andDifficultiesQuestionnaire.
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A) B)

C) D)

E) F)

G) H)

I) J)

Figure 2. Canonical missingness directed acyclic graphs (m-DAGs) for a general point-exposure study. These 10m-DAGswere identified as pro-
viding the most general forms of all essentially distinct extensions of the m-DAG shown in panel A (referred to as “m-DAG A”) in terms of recover-
ability. To illustrate how each m-DAG extends m-DAG A, the additional arrows are indicated with a heavier line. In the text and tables, we refer to
eachm-DAG according to its figure locant (m-DAGA, m-DAGB, etc.).

Am J Epidemiol. 2018;187(12):2705–2715

2708 Moreno-Betancur et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article-abstract/187/12/2705/5074351 by U

niversity C
ollege London user on 07 M

arch 2019



of the corresponding parameters. If the joint distribution of
ZY X, , 2, and Z1 is recoverable, then all target distributions

and parameters are recoverable.

Conditions for recoverability

In Web Appendix 2, we describe general conditions that are
required for recoverability. These broadly mirror those required
for causal effect estimation (22), but the multivariable missing-
ness situation is considerably more complex. In particular, while
theoretical results establish sufficient or necessary graphical crite-
ria for recoverability in particular cases, especially for the joint
distribution (9, 13–15, 23), currently no algorithm can definitively
ascertain the recoverability of a specific parameter given an arbi-
trary m-DAG (16). Thus, recoverability needs to be ascertained
mathematically on a case-by-case basis.

Recoverability in the point-exposure study

Using results fromMohan et al. (13, 15) and new derivations,
we established the recoverability of the joint distribution and
the 3 aforementioned target distributions and corresponding
parameters in the 10 canonical m-DAGs (Tables 1 and 2). In
brief, when no c-DAG variable causes its own missingness, the
joint distribution and thus all parameters are recoverable. Other-
wise, some quantities are recoverable but others are not. The
expectation of a variable that causes its ownmissingness is non-
recoverable, and neither is the regression-adjusted association if
the outcome causes its own missingness. Notably, if a parame-
ter is recoverable in a canonical m-DAG, it is also recoverable
in all m-DAGs in the class(es) it represents, since these are ob-
tained by removing arrows (lemma 4 in the paper by Mohan
et al. (13)). However, the converse does not hold.

ESTIMATIONWITHCOMMONMISSING-DATAMETHODS

Estimation of recoverable parameters

By definition, recoverable parameters can be consistently esti-
mated on the basis of available data only using an appropriate
method. Theoretically, “maximally efficient” estimation re-
quires semiparametric methods that have been investigated in
specific settings (24–27), but we do not consider those here, as
they require tailoring for eachm-DAG and recoverable parame-
ter and have not commonly been used. Instead, we consider the
performance, from a theoretical standpoint, of 2 common ap-
proaches that are readily implementable for any m-DAG and
parameter: “available-case analysis” andmultiple imputation.

Available-case analysis consists of estimating the target
parameter using only records with complete data on the variables
involved (e.g., those with =M 0X for estimating the expectation
of X). For the regression-adjusted exposure-outcome association,
this approach coincides with “complete-case analysis” and is
unbiased inm-DAGsA, B, D, and E because the conditional dis-
tribution is expressible as the conditional distribution among the
complete cases (Table 2). For other recoverable parameters, the
available-case analysis could be subject to selection bias.

Multivariate normal imputation (2) and multiple imputa-
tion by chained equations (MICE) (1) are the most common
multiple imputation approaches for handling multivariable

missingness. While the former imposes a normal assumption
on the full joint distribution, MICE approximates the joint
distribution by iteratively imputing all incomplete variables
using conditional models that include all other variables as
predictors. These approaches can potentially overcome the
selection bias that is expected in some situations with available-
case analysis. However, they involve parametric assumptions
beyond those of the analysis model (e.g., the outcome regres-
sion), which may entail a gain in precision relative to available-
case analysis but could also induce misspecification bias. The
unbiasedness of multiple imputation largely depends on the
quality of the parametric assumptions with respect to the target
parameter, which is related to the notion of “congeniality”
between the imputation and analysis models (28).

The comparative performance of the two approaches is there-
fore difficult to establish in general because they are subject to
different sources of bias, depending on the causal (m-DAG) and
parametric assumptions. Instead, simulation studies are required
to assess bias in specific contexts.

Estimation of nonrecoverable parameters

Nonrecoverability arises from inestimable systematic differ-
ences between the observed and missing data. Such differences
can induce an insuperable selection bias in both the available-case
approach and standard implementations of multiple imputation,
but bias magnitudes depend on the context (see next section).
Consistent estimation of nonrecoverable parameters requires
introducing external data, typically in the form of expert-elicited
values for the unknown differences. Given the inherent uncer-
tainty in elicitation, estimation can be framed as a sensitivity anal-
ysis, producing a range of estimates for the target parameter
corresponding to expert-elicited ranges of values for a set of sensi-
tivity parameters. Typically, the analysis includes the setting in
which all sensitivity parameters are 0.

An extended discussion on sensitivity analyses is beyond the
scope of this paper, but we note that in setting up such analyses,
identification of the parameters that require elicitation can be
guided by the m-DAG and recoverability results, since these
highlight the problematic arrows that lead to nonrecoverability.
As a simple example, nonrecoverability of the exposure expecta-
tion in m-DAG D arises from the arrow →X MX , which flags
exposure distribution differences between persons with observed
exposure data and those with missing exposure data. These dif-
ferences cannot be estimated from available data and thus would
require elicitation. Methods for integrating elicited values in the
estimation have been proposed, particularly within the multiple-
imputation framework (29–34).

Findings from simulation study

We conducted a simulation study to investigate bias magni-
tudes in available-case and MICE analyses across the canonical
m-DAGs in a setting like LSAC (Web Appendix 3). Our data-
generatingmechanism assumedmain-effectsmodels for themiss-
ingness indicators and set values of inestimable parameters, relat-
ing to the effect of a variable on its missingness indicator, to be of
a similar magnitude to other associations observed in LSAC. We
usedMICEwith an approximately congenial procedure.
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Table 1. Recoverability Results for the Missingness Directed Acyclic Graphs (m-DAGs) in Figure 2, StatingWhether Each Distribution and ParameterWas Found to Be Recoverable in Each
m-DAGa

Missingness
DAG

Joint Distribution of
Y X Z Z, , ,1 2

Marginal Distribution of X Marginal Distribution ofY Conditional Distribution ofY

Entire
Distribution

Expectation
(e.g., Proportion Exposed)

Entire
Distribution

Expectation
(e.g., Mean ofY )

Entire
Distribution

Expectation (If Yes, Also Holds for the
Regression Coefficient)

A Yesb Yesb Yes Yesb Yes Yesb Yes

B Yesc Yesd Yes Yesd Yes Yesb Yes

C Yesc Yesd Yes Yesd Yes Yesd Yes

D Noe Noe No Yesb Yes Yesb Yes

E Noe Noe No Unable to
establish

Conjecture no unless
⊥ Z ZM M M X, , ,ZY X 1 22

b
Yesb Yes

F Noe Noe No Yesb Yes Unable to
establish

Conjecture nob

G Noe Yesd Yes Noe No Nof No

H Noe Unable to
establish

Conjecture no unless
⊥ Z ZM M M Y, , ,ZX Y 1 22

b
Noe No Nof No

I Noe Noe No Unable to
establish

Conjecture no unless
⊥ Z ZM M M X, , ,ZY X 1 22

b
Unable to
establish

Conjecture nob

J Noe Noe No Noe No Nof No

Abbreviation: DAG, directed acyclic graph.
a Expressions in terms of available data provided in Table 2 in case of recoverability.
b Proof is provided inWeb Appendix 2.
c Result obtained by corollary 1 in the paper byMohan and Pearl (15).
d By recoverability of joint distribution (possibly of a reduced graph).
e By theorem 3 in the paper byMohan and Pearl (15).
f By corollary 2 in the paper byMohan and Pearl (15).
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Web Figure 1 provides an overview of the results, which we
summarize here. For recoverable parameters, the available-case
approach exhibited greater bias for mean values than for associa-
tion parameters and was approximately unbiased for the latter
where expected (m-DAGs A, B, D, and E). Multiple imputation
yielded approximately unbiased mean and association estimates,
with the latter being more precise than those obtained with the
available-case approach. These findings are consistent with the
common observation in practice that both approaches yield simi-
lar association estimates. For nonrecoverable parameters, both
approaches generally exhibited nonnegligible bias for the mean
value but limited bias for the association parameter, except for
m-DAG H when the underlying associations were very strong,
agreeingwith observations in the literature (35).

APPLICATION TO LSAC

In applying our findings to guide the treatment of missing data
in the LSAC analysis, we first assess which m-DAG(s) are plau-
sible using substantive knowledge (7–9). In LSAC, data on the
exposure (X) and the incomplete confounders (Z2) were collected
through questionnaires completed by parents and returned by
mail (36). Incompleteness was due to the form not being returned
(76% of missing cases for Z2 and 96% for X) or the question not
being answered (remaining cases). Data on the outcome (SDQ
score) were collected via a self-completed questionnaire adminis-
tered during an in-person interview, and parents who failed to
complete the questionnaire were asked to return the form bymail
(36).Missing SDQ data were due to either attrition in LSAC
(54%), failure to return the form (45%), or not answering the

specific question (1%). Major reasons for attrition in LSAC are
participants opting out or moving away and loss of contact (37).

It is plausible that some complete confounders are causes of
missingness in all variables (e.g., lowmaternal education seems
to be a cause of not returning forms and attrition (38, 39)), justi-
fying the choice of m-DAGA as the base scenario. In Figure 3,
we document the evidence regarding the possible presence of
arrows from each of the incomplete variables to each of the
missingness indicators.

Bothm-DAGE andm-DAG J appear plausible. In both cases,
the proportion exposed is nonrecoverable and sensitivity analyses
would be required, and similarly for mean SDQ score, unless we
adopt m-DAG E and the additional assumption that missingness
in SDQ score is independent of missingness in other variables
given the exposure and confounders (Table 1). We do not con-
sider this plausible, since failure to return forms in waves 1 and 3
could have common causes (e.g., behavioral traits) that are not
captured by the exposure and confounders. With m-DAG E, the
regression-adjusted exposure-outcome association can be unbia-
sedly estimated using common methods, but sensitivity analyses
would be requiredwithm-DAG J.

These remarks shed light on the estimates obtained using
available-case analysis and standard MICE with an approxi-
mately congenial procedure (Table 3). Both approaches yielded
qualitatively similar results for all parameters, and we would
expect bothmethods to be biased for the proportionwithmaternal
mental illness and themean SDQ score. If m-DAGE is adopted,
we would expect both methods to be unbiased for the regression-
adjusted association, but with m-DAG J, both methods could be
biased.

Table 2. Recoverability Results for the Missingness Directed Acyclic Graphs in Figure 2, Providing for Each Recoverable Distribution Its
Mathematical Expression in Terms of Available Dataa,b,c

Missingness
DAG Joint Distribution Marginal Distribution

of X
Marginal Distribution

ofY
Conditional Distribution

ofY

A Z Z M ZP Y X P0( , , | , = ) × ( )2 1 1 ∑ Z ZP X M P( | , = 0) × ( )
Z

X1 1

1

∑ Z ZP Y M P( | , = 0) × ( )
Z

Y1 1

1

Z Z MP Y X 0( | , , , = )1 2

B Z Z M
Z Z

Z
Z Z

P Y X
P M X M M

P M X M

P M M

0( , , , , = )
( = 0| , , , = 0, = 0)

× ( = 0| , , = 0)

× ( = 0| , , = 0)

Z

Z

Z

Y X

X

X

2 1

1 2

1

1 2

2

2

2

No simple expression No simple expression Z Z MP Y X 0( | , , , = )1 2

C
Z Z M

Z Z
Z

Z Z

P Y X
P M X M M

P M X Y M M

P M Y M M

0( , , , , = )
( = 0| , , , = 0, = 0)

× ( = 0| , , , = 0, = 0)

× ( = 0| , , , = 0, = 0)

Z

Z

Z

Y X

X Y

X Y

2 1

1 2

1

1 2

2

2

2

No simple expression No simple expression No simple expression

D ∑ Z ZP Y M P( | , = 0) × ( )
Z

Y1 1

1

Z Z MP Y X 0( | , , , = )1 2

E Z Z MP Y X 0( | , , , = )1 2

F ∑ Z ZP Y M P( | , = 0) × ( )
Z

Y1 1

1G No simple expression

H, I, J

Abbreviation: DAG, directed acyclic graph.
a Proofs are provided inWeb Appendix 2.
b A blank space is left where the distribution is not recoverable or it has not been established as documented in Table 1.
cM= (MY,MX ,MZ2

), 0= (0, 0, 0).
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DISCUSSION

We investigated the use of m-DAGs in an epidemiologic
setting; these were proposed by Mohan et al. (9, 13–15) as a
new paradigm with which to frame clearer and finer-grained
assumptions about missing data than the classical MAR-MNAR
framework. Specifically, we constructed a series of “canoni-
cal” m-DAGs, providing results that can guide the analysis of
point-exposure studies affected by missing data. The study of
canonical structures facilitates the use of m-DAGs in practice,
which is currently impeded by the complexity of determining the
recoverability of parameters.

In addition to providing intuitive tools to depict detailed as-
sumptions, the m-DAG paradigm reveals that it is crucial to
draw a distinction between recoverable and nonrecoverable
parameters and between missingness assumptions (m-DAG)
and estimation procedures (with their potential parametric as-
sumptions). For recoverable parameters, available-case and
multiple-imputation procedures are subject to different sources
of bias depending on the assumptions made, but both can be
approximately unbiased in certain settings, as seen in our simula-
tion study. Meanwhile, estimation of nonrecoverable parameters
warrants sensitivity analysis using externally specified param-
eters. Uncertainty around the m-DAG, and thus recoverability,
can have a bigger impact in terms of bias than the choice between

estimation approaches. Thus, in settings with more than one plau-
sible m-DAG, the likely recoverability of the target parameter
(e.g., across most/almost none of them) should be considered in
judging the reliability of estimates derived from different
approaches.

Our recoverability results are useful for determining when sen-
sitivity analyses are needed. This is important since these analyses
are far from straightforward, requiring access to cooperative
experts and elicitation and consensus methods that need to
be tailored to each problem (40). Ultimately, the pertinence
of undertaking a sensitivity analysis for a parameter hinges
on recognizing it as nonrecoverable and assessing the poten-
tial magnitude of selection bias, in addition to its relevance for the
study. The canonical m-DAGs can also guide sensitivity analyses
when they are deemed necessary, which we plan to investigate
further in future work.

Our construction of the canonical m-DAGs relied on the treat-
ment of missingness in the confounders taken together, which
led to simplified structures. In future work, more detailed DAGs
could be considered. Further, the assumptions we made in con-
structing the canonical m-DAGs may not be appropriate in all
contexts. Assumption 1 could be easily violated, similarly to the
common occurrence of unmeasured confounding in observa-
tional studies. We expect more parameters to be nonrecoverable
when there is an unmeasured common cause of a variable and its

Arrow To:

A
rr

o
w

 
F

ro
m

:
(Maternal Alcohol 

Drinking and
Smoking and

Child’s Physical 
Functioning
at Wave 1)

Likely

Failure to answer 
smoking and 
drinking questions 
can be due to stigma 
attached to these, 
and failure to return 
form can be due to 
maternal drinking 
and child physical 
functioning problems 
(42–44).

Uncertain

Failure to return 
form can be due to 
maternal drinking 
and child physical 
functioning 
problems (42–44).

Uncertain

Failure to return 
form and attrition by 
wave 3 can be due 
to maternal drinking 
and child physical 
functioning problems 
(42–44).

(Maternal
Mental Illness

at Wave 1)

Likely

Failure to return 
form and non-
response to specific 
questions can be 
due to mental health 
issues (43).

Likely

Failure to return 
form can be due to 
mental health 
issues (43).

Likely

Failure to return 
form and attrition by 
wave 3 can be due 
to mental health 
issues (39, 43).

(Child’s
SDQ Score
at Wave 3)

Not Likely 

Missingness in 
confounders 
preceded outcome 
by around 4 years.

Not Likely 

Missingness in 
exposure preceded 
outcome by around 
4 years.

Uncertain

Failure to return 
form and opt out 
from study at wave 3 
can be due to 
increased current 
child difficulties (45).

MZ2

Z2

X

Y

MX MY

Figure 3. Assessment of the existence of an arrow from each incomplete variable to each missingness indicator in the example from the Longitu-
dinal Study of Australian Children (2004–2008), drawing from evidence in the literature (39, 42–45). SDQ, Strengths and Difficulties Questionnaire.
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missingness indicator, since this is similar, from a recoverability
point of view, to the situation where there are direct arrows
between these.

It would be possible to relax assumption 2, constructing m-
DAGs that include auxiliary variables, which are often avail-
able in studies such as LSAC. This is a pragmatically driven
limitation of our proposal. Given that auxiliary variables usu-
ally have missing data themselves, incorporating them into
the m-DAGs not only would imply a considerable increase in
the number of scenarios but also would require researchers to
consider assumptions about missingness in these variables of
secondary importance. We are investigating feasible avenues
for incorporating auxiliary variables in the “assumptions” step,
but in the meantime we suggest that these continue to be used in
the “estimation” step in multiple-imputation procedures, as they
are usually beneficial for precision (41).

Relaxing assumptions 3 and 4 would not only lead to an
increase in the number of scenarios but also require further the-
oretical work. Assumption 3 underlies all the results of Mohan
et al., and the setting in which assumption 4 is relaxed is treated
separately by these authors and is substantially more complex
mathematically (9, 13–15). Fortunately, these assumptions appear
reasonable in the point-exposure design.

Mohan et al. (9, 13–15) proposed DAG-based definitions of
“missing completely at random” and “MAR,”which in our study
correspond to the “trivial”m-DAG with no arrows from c-DAG
variables to missingness indicators (see Web Appendix 1) and
m-DAG A, respectively. The connections between the graph-
based and classical (4, 5, 11) definitions have been explored (6,
9, 13). The graph-based “MAR” is stronger than (everywhere)
MAR, although the two are equivalent under additional condi-
tions: 1) independent records and 2) independence of missing-
ness indicators given substantive variables (i.e., absence ofW in
our m-DAGs) (5, 10, 11). Then, MAR implies that missingness

can depend only on fully observed variables, becoming more
stringent as the number of incomplete variables grows. Under-
standing these connections is of interest, since the classical
definitions underlie the theoretical results that underpin com-
mon missing-data methods. However, the full potential of the
m-DAG approach is realized when focus is shifted from the
MAR-MNAR classification and directed towards the specif-
ication of detailed mechanisms, a substantial number of which
allow the possibility of unbiased estimation without needing to
specify unidentifiable sensitivity parameters.

A limitation of DAGs is the impossibility of portraying inter-
actions. Our m-DAGs thus encode structural assumptions about
the missing-data mechanism, that is, main-effects models. These
are reflected in our simulation study, which constitutes an initial
investigation, under particular conditions, of the performance of
common estimation approaches in conjunctionwith the proposed
causal modeling framework. Further simulations are needed to
assess biases in more general settings, considering missingness
models with interactions, and also comparing performance with
semiparametric estimators built, for example, using the recover-
ability formulae provided in Table 2.

In conclusion, our findings can be used to guide the treatment
of missing data in point-exposure studies, and they provide ave-
nues for future work on refining DAGs, estimation, and sensi-
tivity analysis procedures.
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Parameter Estimate (SE) 95%CI

Is Estimate Reliablea if
We Adopt:

m-DAGE? m-DAG J?

Proportion of mentally ill mothers at wave 1

Available-case analysis 0.21 (0.01) 0.20, 0.22 No No

MICE 0.21 (0.01) 0.20, 0.23 No No

Mean SDQ scoreb of children at wave 3

Available-case analysis 7.48 (0.09) 7.31, 7.65 No No

MICE 7.74 (0.09) 7.57, 7.90 No No

Regression-adjusted difference in mean SDQ scorec

Available-case analysis 0.59 (0.20) 0.20, 0.98 Yes No

MICE 0.64 (0.21) 0.23, 1.06 Yes No

Abbreviations: CI, confidence interval; m-DAG, missingness directed acyclic graph; MICE, multiple imputation by
chained equations; SDQ, Strengths and Difficulties Questionnaire; SE, standard error.

a This indicates whether the estimate can be considered reliable according to which m-DAG from Figure 2 is
adopted, based on the recoverability of the parameter in that m-DAG.

b Range, 0–40. A higher score indicates increased behavioral difficulties.
c Comparingmentally ill mothers with non–mentally ill mothers.
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