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Abstract 

Although the central and autonomic nervous systems can be defined by anatomical, functional 

and neurochemical characteristics, neither functions in isolation. For example, fundamental 

components of autonomically mediated homeostatic processes are afferent interoceptive 

signals reporting the internal state of the body and efferent signals acting on interoceptive 

feedback assimilated by the brain. Recent predictive coding (interoceptive inference) models 

formulate interoception in probabilistic inference terms to explain mechanisms supporting 

emotion and selfhood. We propose interoception may serve as a way to investigate holistic 

nervous system function and dysfunction in disorders of brain, body and behaviour. Here, we 

apply a formal predictive coding framework  grounded in the free-energy principle, to describe 

homeostatic functions of the central and autonomic nervous systems that are bound by 

interoceptive processes. We do so by (i)  firstly describing the application of predictive coding 

– as circumscribed within the active inference framework – to homeostasis via symbiotic 

interoceptive and autonomic function, before (ii) secondly describing clinical applications of 

this framework. Finally, we (iii) describe how this offers an overarching approach to human 

physiology, particularly autonomically mediated systems, thereby offering a new means to 

investigate the interaction of the central and peripheral nervous systems in health and disease.   
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1. Introduction 

‘Interoception’ refers to afferent sensory information arising from the viscera that underwrites 

homeostatic functioning (1). The control of interoceptive stability or homeostasis (i.e., 

autonomic nervous system regulation) can be mapped onto a hierarchical organisation; 

ranging from basic physiological reflexes to global cortical networks that integrate the function 

of the central and autonomic nervous systems (2-5). Fundamental components of these 

homeostatic processes are afferent interoceptive signals reporting the internal state of the 

body and efferent signals acting on interoceptive feedback (4, 6-8), in the form of homeostatic 

reflexes that are informed by somatic states represented in the central nervous system. Co-

ordinated central and peripheral nervous system function is required, even at lower tiers in the 

hierarchy, where structures such as the spinal cord, brainstem and hypothalamus mediate 

autonomic outflows and descending cortical inhibition (9, 10). For example, the periaqueductal 

gray (PAG), which regulates input/output of nociceptive and visceral signals, is also innervated 

by descending anterior cingulate cortex (ACC) projections, which can boost or inhibit pain 

responsivity, selectively (9). Moreover, chemoreceptors in the brain stem monitor arterial 

carbon dioxide, oxygen and hydrogen ion levels to regulate carbon dioxide, oxygen and pH 

perfusion via sympathetic and phrenic efferents. More generally, hypothalamic, pontine and 

medullary sympathetic and parasympathetic nuclei interact with homeostatic representations 

to generate effector-organ specific autonomic responses (11). In the cardiovascular domain, 

heart rate changes are related to amygdala and dorsal anterior cingulate cortex (dACC) 

activity (12) and during stress, amygdala activity predicts systolic contractility (13). The 

amygdala, ACC and other limbic structures supply descending inputs to the hypothalamus 

and brainstem for emotion-related autonomic responses (11).  

 

1.1. The functional anatomy of interoception 

As key players in the functional anatomy of interoception, the ACC and insula cortex are 

important for the processing of interoceptive feedback and mediating autonomic responses to 
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interoceptive information (14, 15). dACC (16) and insula cortex (17, 18) activity reflects 

engagement of sympathetic nervous system activity coupled to mental and physical 

behaviours. The anterior and posterior insula show increased neuronal activity during 

respiration, isometric exercise, cold pressor and Valsalva manoeuvres (19) (20). Increases in 

blood pressure positively correlate with right dACC activity (17), supporting findings that 

sympathetic responses are lateralized to the right hemisphere (21), whereas the left insular 

cortex is involved in parasympathetic nervous system cardiovascular regulation, as evidenced 

by acute left insular stroke disrupting the correlation between heart rate and blood pressure 

(22).   

 

The insula has a posterior-to-anterior gradient, with initial sensory afferent information 

received by the posterior insula, which is then passed to the anterior insula cortex (AIC) – 

especially the right – where it is integrated with cognitive-affective biases and autobiographical 

information. This unique integrative structure has led to a variety models relating to the 

function of the region, ranging from general theories of consciousness and affect to a putative 

role as a primary viscero-sensory region (23). Accordingly, the AIC modulates homeostatic 

autonomic and interoceptive function via connections to allostatic centres (24). Reduced 

baroreceptor tone is associated with ACC, amygdala and AIC function, whereas initiation of 

baroreflexes increases activity in lateral prefrontal cortex (lPFC) and posterior insula (25). The 

mid and posterior insula are associated with somatomotor function and representations (26) 

and the AIC and mid insula cortices, ACC and somatomotor cortex are functionally associated 

with shifting one’s attention to interoceptive signals (27). Bilateral insula cortices are activated 

during oesophageal stimulation (28) but as stimulation increases to the point of becoming 

painful, the right AIC is recruited (29), illustrating how increasing interoceptive feedback will 

ascend the interoceptive hierarchy from bilateral insula to right AIC, as initial reporting of 

somatic sensory feedback escalates to a violation of homeostasis then to nociception; 

engaging conscious awareness. More generally, the insula is implicated in the integration of 
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both interoceptive and exteroceptive inputs, has been proposed to act as a core comparator 

underlying the generation of a multisensory embodied self (30, 31), which also regulates 

interactions between the cognitive and affective aspects of pain (32-34). 

 

With respect to descending neural pathways, central efferent signals can drive allostatic 

changes in autonomic and behavioural function. During rest (35) and exercise (36, 37), 

perceived changes in skin temperature and thermal discomfort typically induce behavioural 

modifications before the recruitment of endocrine or autonomic thermostatic mechanisms (38, 

39). Behaviour-dependent increases in blood pressure are enabled and moderated by the 

baroreflex (40, 41) and baroreflex dysfunction causes loss of consciousness due to cerebral 

hypoperfusion. The baroreflex arc ensures cerebral perfusion by mechanoreceptors in the 

carotid arteries and aortic arch detecting changes in arterial pressure and constantly feeding 

back this interoceptive information to the nucleus of the solitary tract (NTS), which synapses 

with the rostral ventrolateral medulla to set efferent pressor tone. During emotional or cognitive 

stress, the baroreflex feedback loop is disrupted by top-down cortical influences increasing 

heart rate and blood pressure during steady-state physiological demands. Specifically, the 

aberrant cardiovascular up-regulation in the absence of allostatic demand results from 

suppression of low-order baroreceptor brainstem signalling by the solitary nucleus of the 

medulla, hippocampus, hypothalamic nuclei and prefrontal cortex (PFC) (42). In summary, 

although the central and autonomic nervous systems are defined by unique anatomical, 

functional and neurochemical characteristics, they also interact in a variety of ways to maintain 

homeostasis. Interoceptive signalling and control spans and integrates central and peripheral 

homeostatic processes, as well as influencing emotional and cognitive functions (43-45).  

 

In the following, we propose that interoception may serve as a unique window on holistic 

human nervous system function and dysfunction in disorders of brain, body and behaviour. 
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Due to the scope of this proposition, we offer a formal framework – grounded in interoceptive 

inference – that offers a methodological foundation for generating empirical predictions. To 

this end, we first formulate homeostasis in terms of interoceptive inference; via symbiotic 

interoceptive and autonomic nervous system function, before describing the clinical 

application of this approach. We then illustrate how this formulation can offer an overarching 

approach to human physiology, particularly autonomically mediated systems. Finally, we will 

review our initial empirical findings and their relationship to interoceptive inference. 

 

1.2. Interoceptive predictive coding – neural correlates for conscious and unconscious 

processes 

Discrepancies between predicted and experienced interoceptive signals have been proposed 

as a potential cause for anxiety (46). In predictive coding terms, discrepancies between ‘top-

down’ predictions generated by the brain and incoming sensory signals from the periphery are 

compared to produce a ‘prediction error’. Subsequent minimisation of this prediction error 

corresponds to a Bayes optimal estimation of how sensory signals were caused; this can be 

seen easily by noting that if descending predictions match sensations exactly, the predictions 

must have been generated by representations of the world (i.e. expectations) that are, in some 

sense, veridical. This can be formalised in terms of Bayesian inference, where the evaluation 

of an expectation about the world is based on prior beliefs and the likelihood of observed data.  

 

The application of predictive coding to perceptual inference involves minimisation of 

unpredicted or surprising sensory signals (prediction errors) within the cortical hierarchy by 

the generation of top-down predictions (figure 1). In this setting, the prediction errors at the 

sensory level play the role of a likelihood (i.e., reporting how unlikely the sensations were 

given expectations about their causes), while prediction errors at higher levels play the role of 
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empirical priors (i.e., how unlikely expectations at one level are, given expectations of the level 

above). It is fairly easy to show that minimising prediction errors at each and every level of the 

hierarchy produces a set of expectations that constitute a Bayes optimal representation of 

how sensations are generated. In brief, the minimisation of prediction errors involves 

reciprocal exchange of signals between hierarchical levels: prediction errors ascend the 

hierarchy to revise expectations, which generate descending predictions that resolve or 

suppress prediction errors at the level below. 

 

In biologically plausible versions of the scheme, prediction errors are thought to be encoded 

by the activity of superficial pyramidal neurons, which compare expectations with predictions 

descending from deep-layer pyramidal neurons in higher hierarchical levels. The prediction 

error is then projected (via intrinsic or interlaminar connections) to deep pyramidal cells 

encoding expectations in the higher cortical level, enabling a more accurate prediction to be 

reciprocated. This recurrent message passing allows prediction units to produce a more 

accurate prediction and effectively silence prediction error.  

 

Figure 1 near here 

 

A prediction error’s strength or influence on expectations or representations as higher levels 

depends on its ‘precision’ or reliability (figure 1). If a prediction error is less reliable, such as 

vision on a foggy day, more precision or weight will be afforded to prior expectations or beliefs 

about the environment. This ensures Bayes optimal perception, meaning that precision 

determines the influence of prediction error on subsequent hierarchical cortical evidence (i.e., 

prediction error) accumulation. This hierarchical form of estimation for inference necessitates 

a generative model, in which the expected cause of representations at one level of the 
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hierarchy become priors for expectations in the subordinate level. The term ‘generative model’ 

is used because the model generates the predictions of subordinate causes and ultimately 

sensations per se. When a generative (i.e. internal or forward) model is converted given the 

data at hand, sensations are explained in terms of the most likely hierarchical causes. These 

expected causes are constantly updated as new data are successively sampled to provide a 

biologically plausible form of evidence accumulation for data assimilation (47). Inversion of 

generative models refers to the deduction of the causes (hidden states of the world) from the 

consequences of sensory samples that one receives from the world. This inverts the mapping 

prescribed by the generative model that generates consequences (sensations) from causes 

(hidden or latent states). 

 

The primate brain is hierarchically structured (48), which suggests the generative model used 

by the brain must also be hierarchical. This hierarchical architecture allows for the reciprocal 

message passing of predictions and prediction errors among hierarchical levels described 

above. Predictive coding models – derived from the ‘the free-energy principle’ (FEP) (49, 50) 

– assume the brain endeavours to minimise precision weighted prediction errors throughout 

and implicitly maximise the evidence for its generative model1. This is known as self-

evidencing (51), which can be regarded as a generalisation of homoeostasis to every sensory 

modality predicted by the brain. Crucially, the FEP posits a defining role for homeostatic and 

allostatic processes in the functioning of the nervous system by casting the homeostatic 

imperative to stay alive as an innate and very precise prior over physiological states (30). 

 

                                                 
1 Free energy can be regarded as the total amount of (precision weighted) prediction error summed 
over all levels of a hierarchical model. 
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1.3. Active inference under the free-energy principle 

Under the free-energy principle, ‘active inference’ refers to the bilateral reduction of free-

energy when: (i) prediction errors ascend the cortical hierarchy to change predictions, or (ii) 

prediction errors descend to the periphery to engage motor (or autonomic) reflexes, which 

change sensations (52). In the sensory system, prediction errors can only be modified by 

changing predictions, whereas proprioceptive and interoceptive prediction errors can also be 

modified by engaging reflexes to alter the sensory signal at its point of origin. In short, the 

prediction error can be reduced by changing the prediction (i.e., perception) or by changing 

the sensations being predicted (i.e., action). Movements can be initiated by predictions of the 

sensory consequences of action because the motor system automatically moves the sense 

organs to meet proprioceptive predictions, thereby shifting the imperative for action from what 

the individual wants to achieve with the action to what he/she wants to experience (50). An 

intuitive example of this is the common pain reflex; if a sufficiently precise and unexpected 

stimulus is received (e.g., placing one’s hand on a hot stove), an optimal response would be 

to immediately alter sensations (e.g., by withdrawing one’s hand); rather than to update one’s 

beliefs about the stimulus. This would be the homologue of a homoeostatic reflex. The 

alternative would be to perceive the stove is too hot and turn down the gas. This would be the 

homologue of allostasis that calls on deep or hierarchical inference – driven by ascending 

prediction errors – to regain homeostasis. One can see that the two ways of minimising 

prediction error depend sensitively on the precision afforded to ascending prediction errors; 

one can either ignore ascending prediction errors via sensory attenuation to engage reflexes 

(c.f., homoeostasis) or allow ascending prediction errors to engage adaptive behaviour (c.f., 

allostasis). In this scenario, the greater the nociceptive prediction error (i.e. the more it 

deviates from homeostasis), the less it will be allowed to ascend the cortical hierarchy before 

peripheral reflexes are necessitated. In contrast, a more minor burn (a smaller prediction error) 

with less precision could ascend to higher-order processes and be integrated with more 
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complex adaptive behaviours. In what follows, we look more closely at the crucial role of 

precision in mediating between these two sorts of responses.  

 

1.4 Precision and gain control 

The precision of ascending prediction errors determines the balance between priors and 

sensory signals to govern the influence of sensory evidence and prior beliefs (figure 2). In this 

setting, attention is intimately related to precision; in that attention is thought to increase the 

precision of prediction errors so that they have a greater influence on perception. Conversely, 

sensory attenuation is thought to reduce the precision of ascending prediction errors to enable 

motor reflexes (53). In this process, a vital element of sensory attenuation requires ignoring 

the consequences of action to be ignored so that precise predictions, to allow intentions to be 

realised through the releases of reflexive action (54). In this scenario, by allowing predictions 

to be fulfilled via spinal reflex arcs, sensory attenuation allows movement to occur, meaning 

that sensory attenuation is therefore crucial for labelling movements as self-generated (55). A 

key neurobiological issue here is that precision can be associated with the excitability or 

postsynaptic gain of units encoding prediction error (56). This means that the accentuation or 

attenuation of precision rests upon neuromodulatory processes and gain control mechanisms 

mediated by short-term changes in synaptic efficacy. This is an important observation because 

it speaks to the pathophysiology of several disorders that can usually be traced back to 

neuromodulatory abnormalities (57). 

 

Figure 2 near here 
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2. Interoceptive (active) inference in theory and practice 

We now briefly describe how active inference may be transferred from the proprioceptive to 

the interoceptive domain as interoceptive inference. This will help elucidate how interoceptive 

inputs drive the autonomic nervous system to mediate homeostasis (figure 3). We begin with 

psychophysiological aspects, such as classical conditioning, the placebo effect and substance 

abuse and relapse, as well as affective disorders and psychosomatic illness. We then describe 

how interoceptive inference can offer an overarching methodology to study human physiology; 

using bladder function and thermoregulation as examples – in addition to the previously 

described cardiovascular reflex arcs. We conclude with a brief summary of our studies of 

interoceptive inference. 

  

Figure 3 near here 

 

The free-energy principle has been applied to proprioceptive and exteroceptive sensory 

domains to elucidate the neurobiology of perception, motor control and attention (58) (59), 

with applications to autism spectrum disorder (60) and schizophrenia (61, 62). However, its 

potential role in interoception has only recently been considered (4, 6, 7, 63, 64). It has been 

suggested that Pavlovian classical conditioning can be viewed an elementary form of 

interoceptive inference (65). Pavlov demonstrated not only that an unconditioned interoceptive 

prediction error (food) induces homeostatic autonomic responses (salivation) but that through 

the encoding of an exteroceptive signal (a bell), the same autonomic reflex can be induced by 

top-down predictions (66). Recently we have found preliminary empirical support of 

interoceptive inference by demonstrating that the orienting response, which was first 

described by Pavlov, is exaggerated during combined emotional aversion and the 

interoceptive threat (and therefore, increased interoceptive prediction error) of dysautonomic 
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symptom provocation in patients with the postural tachycardia syndrome and vasovagal 

syncope – two forms of dysautonomia defined by baroreflex dysfunction (67) (68). These 

findings provide insights into how interoceptive inference can prescribe autonomic reflexes 

and the destructive effect of dysautonomia on homeostasis due to the breakdown of 

autonomic reflex arcs. 

 

Pavlov also foreshadowed the role of predictive coding when noting that previously neutral 

stimuli conditioned the effects of apomorphine and morphine (69). The implication of the opiate 

system in the placebo effect (70) further suggests that interoceptive inference can explain how 

an inert stimulus can induce physiological responses via the attenuation of bottom-up 

prediction errors (71). Learning theories have underlined the role of prior expectations in the 

placebo effect, particularly placebo analgesics actual feelings of pain are overridden by the 

prediction of pain relief (72) (73) (74, 75) (76-79). Functional imaging studies have provided 

the neural correlates of the interrelated altered precision of peripheral prediction errors, 

personality, endogenous opioid system engagement and anticipatory changes that scaffold 

the effects of placebo hypoalgesia, particularly prefrontal suppression of prediction error 

processing in the ventral striatum. 

 

Recently, separate studies have started to look at the role of prediction error traits (80) (81) 

and interoception as markers for substance abuse and relapse (82). Using a within subjects 

placebo design, Gu and colleagues used a computational model of mesolimbic dopamine 

systems. found that prior beliefs about a smoked cigarette’s nicotinic content modulated 

striatum responses to reward prediction errors, evidencing how beliefs can override a potent 

neuroactive compound, such as nicotine (81).  Although these studies explored prediction 

error traits and interoception in isolation, we believe that drawing together these cornerstones 

of interoceptive inference may be useful for future work. 
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Under the active inference, anxiogenic traits, such as catastrophizing or somatic 

hypervigilance can be viewed in terms of the aberrant precision of top-down predictions or 

bottom-up prediction errors respectively. Therefore, it stands to reason that anxious 

individuals possess greater interoceptive accuracy (as measured by heartbeat tracking 

paradigms) (83, 84), on the view that these individuals assign too much precision to ascending 

interoceptive prediction errors; i.e., a failure to attenuate ascending interoceptive prediction 

errors. Cornwell and colleagues recently provided support for this by using Bayesian analyses 

to evidence how anxiogenic stimuli unbalance feedforward signalling that occurs in response 

to sensory prediction errors. Specifically, dynamic causal modelling described how anxiety-

related hypervigilant responses are best explained by the increased postsynaptic gain and 

modulation of feedforward coupling within a temporo-frontal network {Cornwell, 2017 #125}.  

 

In contrast, clinically depressed subjects have diminished interoceptive accuracy (85-87). 

Recently, reduced resting state connectivity between attentional and interoceptive networks 

has been found in melancholia (87), offering an explanation for the impoverished interoception 

and somatic ideation in these patients. These findings suggest that investigating somatic 

attention and awareness in anxiety and depression may offer targets for behavioural or 

pharmaceutical treatment strategies. In particular, an interesting clinical question is whether 

‘normalising’ interoceptive precision can affect affective symptomatology.  Furthermore, the 

focus on synaptic gain in the encoding of precision (and its attenuation) speaks to quantifying 

pathophysiology in terms of effective connectivity; specifically, the intrinsic excitability of 

neuronal sources in the interoceptive hierarchy. See (60) for an exemplar study that used 

dynamic causal modelling to look at the intrinsic excitability of the anterior insular, using an 

empathy for pain task in normal subjects and autistic spectrum disorder. 
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In hypochondriasis and somatisation disorders, patients report somatic hypervigilance and 

interoceptive sensitivity (88-91), indicating aberrant interoceptive precision. Pareés and 

colleagues (55) report loss of sensory attenuation and a related diminished sense of agency, 

which is offered as an explanation for functional movement disorder (FMD). This misattribution 

of agency – regarding voluntary movement – results in FMD patients experiencing the intent 

to move and actual movement as being simultaneous. Recently, we have applied this 

paradigm to functional syncope (fainting); i.e., apparent syncope (loss of postural tone and 

unresponsiveness) during normal blood pressure and heart rate indices that would not cause 

cerebral hypoperfusion and subsequent loss of consciousness (92). We identified two 

subgroups that experienced functional syncope during clinical autonomic assessment (93). 

The first had no undiagnosed form of dysautonomia but a prevalence (41%) of psychiatric 

illness, presenting as a typical conversion disorder group. The second had undiagnosed 

postural tachycardia syndrome during orthostatic (upright posture) manoeuvres. Neither group 

were hypotensive during functional syncopal episodes (figure 4). However, the functional 

syncope/postural tachycardia syndrome group were typically tachycardic (figure 5) during 

functional syncopal episodes, which occurred almost entirely during orthostatic stress; i.e., 

whilst symptomatic with (undiagnosed) orthostatic tachycardia. Some individuals may 

therefore be prone to impaired sensory attenuation if in a state of undiagnosed 

sympathoexcitation. One might suppose that the apparent loss of postural tone may reflect a 

failure to modulate the precision of interoceptive prediction errors during undiagnosed posture-

related tachycardia (due to baroreflex dysfunction). This provides a potential explanation for 

functional syncope in the functional syncope/postural tachycardia syndrome subgroup (94). 

 

Figure 4 and 5 near here 
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Interoceptive inference offers a new and mechanistic perspective on basic and clinical 

homeostatic issues. For example, with the context-specific knowledge that polite society 

generally prefers us to micturate in private, ascending lower urinary tract information reaches 

the brain via the PAG before relaying to the thalamus and hypothalamus, both of which send 

bladder-related interoceptive signals to the dACC, AIC and lPFC (95). If the decision is made 

not to void, then the medial prefrontal cortex (mPFC) inhibits the PAG. If it is decided that 

voiding should occur, the mPFC disinhibits the PAG, which activates the pontine micturition 

centre (PMC). The PMC then engages sacral autonomic efferents to relax the urethral 

sphincter and contract the detrusor (96, 97). This model provides a nice example of how 

context-specific information about the environment is inferred (from a Bayesian perspective) 

to mediate and contextualise autonomic and behavioural homeostatic outputs. Crucially, this 

rests, under interoceptive inference, on properly contextualising (i.e., predicting) the precision 

or gain of interoceptive prediction errors that underwrite homoeostatic or allostatic behaviour. 

 

Interoceptive inference proposes that interoceptive predictions and prediction errors can be 

suppressed by modifying predictions or demarcating these predictions as reference points for 

autonomically mediated reflexes (6). As with the urinary or cardiovascular systems, 

thermoregulation can be modelled within the active inference framework. Hypothermia and 

hyperthermia represent profound deviations from thermostasis; with increasingly complex 

endocrine, autonomic and behavioural homeostatic reflexes engaged as one’s core 

temperature rises or falls from its homoeostatic set point of 37C (i.e., as prediction error 

increases) (98). During this process, thermoceptive prediction errors will have greater 

precision on subsequent central signalling, as glutamatergic, cool-sensitive neurons synapse 

with GABAergic interneurons in the median preoptic area to initiate thermoregulatory 

autonomic or motor reflexes (99). Depending on whether temperature must be increased or 

decreased, the processing of thermoregulatory prediction error can also result in the inhibition 

of action potentials in warm-sensitive neurons of the medial preoptic subnucleus, which 
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mediates autonomic control of cutaneous vasoconstriction as well as motor control of 

shivering and thermogenic brown adipose tissue (BAT) (100, 101). As interoceptive inference 

dictates efferent homeostatic changes, BAT neuromodulators, such as glutamate, serotonin 

and vesicular glutamate transporter 3 will be released to control BAT sympathetic outflow and 

thermogenesis (99, 102). 

 

Under interoceptive inference, descending predictions can only elicit autonomic responses if 

the ascending prediction error has been attenuated. Without this functional change in gain, 

prediction errors would lead to revised predictions rather than action (103). We recently 

examined the relationship between measures of cardiac interoception and autonomic cardiac 

control in healthy controls and patients with forms of cardiovascular dysautonomia defined by 

baroreflex dysfunction (the postural tachycardia syndrome and vasovagal syncope) to (i) seek 

empirical support for interoceptive inference and (ii) delineate if this relationship was sensitive 

to increased interoceptive prediction error in patients during head-up tilt/symptom provocation 

(104) (105). Compared to controls, interoceptive accuracy (as measured using a heartbeat 

tracking task) was reduced in both postural tachycardia syndrome and vasovagal syncope 

groups. Healthy controls’ interoceptive sensibility (subjective confidence in interoceptive 

accuracy) positively correlated with low-and-high frequency heartrate variability (HRV) whilst 

supine (table 1). Conversely, both the postural tachycardia syndrome and vasovagal syncope 

groups’ interoceptive awareness (a metacognitive measure of the degree to which objective 

interoceptive accuracy relates to interoceptive sensibility) negatively correlated with high-

frequency HRV during head-up tilt. Our pilot study offers initial empirical evidence for 

interoceptive inference and supports our previous findings (106) that postural tachycardia 

syndrome and vasovagal syncope cohorts share a central pathophysiology underlying 

interoceptive deficits expressed across distinct cardiovascular autonomic pathophysiology. 

From a predictive coding perspective, postural tachycardia syndrome and vasovagal syncope 

patients’ data indicates a failure to attenuate/modulate ascending interoceptive prediction 
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errors, reinforced by the concomitant failure to engage autonomic reflexes during head-up tilt. 

Our findings also define how both central and autonomic processes are ultimately implicated 

in dysautonomia. 

Table1 near here 

 

Activation of the right AIC is positively correlated with interoceptive accuracy in healthy 

controls during heartbeat perception paradigms, with the right insula making inferences about 

internal bodily states, that can be accessed during conscious interoception (27). The AIC has 

2 major roles in interoceptive inference: (i) integrating top-down predictions from high-level 

cortical regions with bottom-up prediction error and (ii) cascading descending predictions that 

are a reference point for autonomic mediation of homeostasis (6, 65). This functional 

architecture accounts for the recent findings that the degree of damage to the anterior insula 

is positively correlated with acquired alexithymia levels (107), reflecting the interoceptive 

contribution to inference about emotional states (43). The AIC contains a significant number 

of ‘von Economo neurons’, which are large bipolar, spindle-shaped projection neurons (108). 

Von Economo neurons are prevalent in humans and are mainly situated in layer Vb of the 

ACC and the frontoinsular cortex (i.e., the junction of AIC and posterior orbitofrontal cortex) 

and are specifically associated with interoception (109). In comparison to controls, autism 

spectrum disorder subjects have a significantly greater ratio of von Economo neurons to 

pyramidal neurons (110), which may be of particularly relevance to the common interoceptive 

sensitivity reported in autism spectrum disorder (7, 111).  

  

The primary motor cortex (M1) is predominantly comprised of agranular neurons and issues 

motor predictions to the spinal cord to engage motor responses and reflexes (112). M1 

simultaneously sends somatosensory predictions to S1 to model the sensory consequences 

of the predicted action. The predictions propagated to S1 are efferent copies of motor 
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predictions or commands. We have found that (103, 113) S1 also attenuates sensory gain 

during self-initiated movement; thereby reducing prediction error signalling to M1, which 

receives little direct ascending sensory input. This means predictions descending via M1 to 

the spinal cord are relatively immune to correction by prediction error. This makes sense if we 

consider elementary movements are executed in a largely open loop fashion. However, S1 

generates predictions about sensory afferent signals that are probabilistic and continuously 

updated by prediction errors, and changes in the gain of S1 responses are linked to both 

predictability and attention-driven modulation of felt pain (114).  

 

The functionality of this interoceptive hierarchy can be seen in studies of oesophageal 

stimulation (28), where mild stimulation activates secondary somatosensory cortex. Then, as 

stimulus intensity escalates, interoceptive inference engages primary somatosensory, 

bilateral insula, ACC and right premotor structures. These results may reflect how escalating 

interoceptive-to-nociceptive input augments the precision of ascending prediction errors, with 

subsequent activation of the somatosensory network. If we consider the aberrant interoceptive 

precision of anxious individuals, this sort of finding may shed light on the fine detail of the 

neural correlates of irritable bowel syndrome (115); particularly in consideration of autonomic 

(e.g., postprandial) stressors that may augment interoceptive prediction errors in anxious 

subjects (116).    

 

3. Viscero-sensory integration, interoceptive self-inference and metacognitive deficits 

Reflecting the function of the most central or highest level of the interoceptive hierarchy, 

metacognitive ability for conscious introspection is frequently disrupted in a variety of 

psychopathological disorders (117). Such metacognitive failures; for example, in the case of 

addiction and posttraumatic stress disorder (PTSD) have been linked to altered arousal (118, 

119) that is often highly specific and independent of first-order perceptual or cognitive deficits. 
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Although metacognition has traditionally been cast in terms of signal detection theory as 

depending solely on the feed-forward recollection of decision-related evidence (120, 121), 

recent advances suggest that conscious self-reflection may be better considered as a form of 

‘interoceptive self-inference’, in which hierarchically deep, supramodal predictions of expected 

precision (or representational stability) enforce interactions between subjective confidence in 

the interoceptive and exteroceptive domains. For example, we have recently shown that 

unexpected changes in autonomic arousal reverse the biasing impact of sensory noise (or 

precision) on subjective confidence, independently of decision accuracy (122). In a 

pharmacological follow-up study, we further demonstrated that noradrenaline blockade via the 

beta-adrenoceptor antagonist, propranolol, specifically improves metacognition for perception 

(123). More generally, confidence for exteroceptive judgements is linked to heart rate 

increases (122). This is consistent with the hypothesis that metacognition reflects 

interoceptive-self inference, which not only models the quality of ascending sensory inputs, 

but also their regulation by the ascending and descending visceromotor processes reviewed 

above. In this case, metacognitive beliefs are better cast as ‘experiential predictions’ (e.g., I 

expect to see an apple with high precision and I expect to ‘feel’ good about it), rather than the 

output of a strictly feedforward sensory process. This view suggests that maladaptive 

interoception may cause adjustments in metacognitive beliefs and first-order perception, 

ultimately resulting in disorders such as functional and chronic pain, social anxiety (in which 

neutral social stimuli are evaluated as threatening): see also (124). Likewise, deficits in 

perceptual ability may result in an alteration in autonomic tone, leading to maladaptive 

decision-making and systematically biased confidence. Collectively, this view motivates 

empirical investigations into the possibility of a domain-general neural mechanism linking 

interoceptive and metacognitive inference, raising the importance of measuring visceral-

sensory and cognitive deficits using both first and second-order (metacognitive) measures.  
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4 Conclusions 

A decade ago, it was proposed that interoceptive prediction errors could be a bottom-up 

source of anxiety. Predictive coding models, as assumed under the FEP, propose the brain 

must recognise the likely cause(s) of afferent sensory input at any given time to support 

adaptive responses via probabilistic (Bayesian) inference. This review provides a framework 

and supportive evidence suggesting that interoceptive inference can elucidate autonomic 

control of peripheral effector organs, cognitive-affective function, motor control, 

consciousness and dissociative symptoms. Insights into the neuroanatomy, neurochemistry, 

neurophysiology and psychophysiology of active inference, precision and precision-weighting 

are now beginning to suggest how interoceptive signals inform predictions about the state of 

the body. This review suggests that interoceptive prediction errors can not only be a bottom-

up source of anxiety but may also drive autonomic, metacognitive, motor homeostatic and 

allostatic systems. A key theme that emerges from this treatment is the role of 

neuromodulation and synaptic gain control in contextualising the use of ascending prediction 

errors for interoception and autonomic reflexes respectively – and how subtle deficits in the 

attenuation of ascending prediction errors can lead to pernicious and diverse pathology. 
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Figure 1. This schematic illustrates the message passing implicit in predictive coding based 

on the generative model described (mathematically) on the lower left. Sensory input is 

conveyed to visual cortex via ascending prediction errors from the lateral geniculate nucleus. 

Posterior expectations, encoded by the activity of deep pyramidal cells in primary visual 

cortex, are driven by ascending prediction errors while, at the same time, they are subject to 

lateral interactions – with second level prediction errors – that mediate (empirical) priors. 

These constraints are modulated by top-down predictions of their precision (blue arrows). 

These predictions are based upon expectations about precision in the highest level that are 

effectively driven by the variance or power of prediction errors at the lower level. Heuristically, 

expectations about precision release posterior expectations from constraints in the vicinity of 

an inferred object and allow them to respond more sensitively to ascending geniculate input. 
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Figure 2. This schematic details putative laminar-specific connections that are consistent with 

the precision-based predictive coding scheme in the main text. This architecture conforms 

roughly to the known neuroanatomy and physiology of canonical microcircuits and laminar 

specificity of extrinsic connections. The key aspect of this figure is the inclusion of deep 

pyramidal cells encoding the amplitude of prediction error (squared) that inform posterior 

expectations about precision in the (matrix cells) of the pulvinar. These cells reciprocate 

descending projections to modulate the gain of superficial pyramidal cells in cortex. Forward 

connections are in red and descending (backward) connections are in black. First-order 

streams are shown as full lines and second-order (precision related) streams are shown as 

broken lines. 
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Figure 3. This schematic extends the pulvinar example to provide a rough sketch of equivalent 

precision or gain control in interoceptive and proprioceptive systems. The architecture and 

anatomical designations should not be taken too seriously. However, there may be 

homologous architectures for exteroceptive, proprioception and interoception. Here, we have 

indicated this by assigning the pulvinar, basal ganglia and amygdala a common role; namely 

to provide precision control or contextual guidance to interoceptive (insular), proprioceptive 

(sensorimotor) and exteroceptive (visual) cortex respectively. In addition, each of these 

systems has been associated with a specific neuromodulator; namely noradrenaline, 

dopamine and acetylcholine in the ensuing regulation of autonomic arousal, action selection 

and attentional selection, respectively. Crucially, in a hierarchical setting, all these domain 

specific systems are integrated at the levels of the hierarchy (here attributed to the anterior 

cingulate and prefrontal cortex). Note that the recurrent or reciprocal message passing means 

that changes in the precision or postsynaptic gain in one (e.g., interoceptive) system, will 

necessarily effect processing in the others (e.g., exteroceptive). This is a necessary 

consequence of Bayes optimal inference in the sorts of hierarchical models. Note that the only 

way that this inference can act upon the world is through autonomic or motor reflexes. This 

means that exteroceptive processing has to be hierarchically integrated with proprioceptive 

and interoceptive inference – so that it can contextualise behaviour LC, locus coeruleus. VTA, 

ventral tegmental area. NBM, Nucleus Basalis of Meynert. VPL, ventral posterolateral 

thalamus. ACC, anterior cingulate cortex. PFC, prefrontal cortex. 

 

 

 

 

Figure 4. Baseline and functional syncope episode blood pressure data in the functional 

syncope only (FS only) and functional syncope/postural tachycardia syndrome (FS/PoTS) 

cohorts 
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Figure 5. Baseline and functional syncope episode heart rate data in the functional syncope 

only (FS only) and functional syncope/postural tachycardia syndrome (FS/PoTS) cohorts 
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Interoceptive inference 
correlations 

Supine HRV Head-up tilt HRV 

Healthy controls 

Interoceptive sensibility/LF-HRV 
(rs= .816, p=.001) 

 
Interoceptive sensibility/HF-HRV 

(rs= .676, p=.002) 

 

Postural tachycardia 
syndrome 

 
Interoceptive awareness/HF-HRV 

(rs= -.457, p=.043) 

Vasovagal syncope  
Interoceptive awareness/HF-HRV 

(rs= -.658, p=.015) 

Table 1. Overview of how interoceptive inference may subjugate autonomic reflexes, as measured by 

high frequency (HF-HRV) and low frequency heart rate variability (LF-HRV). Correlations between 

cardiac interoceptive measures and autonomic cardiac control were found in healthy controls whilst 

supine and orthostatic intolerance patient groups during increased interoceptive prediction error (head-

up tilt). Interoceptive accuracy is an objective interoceptive measure gained from the subject’s 

performance during a heartbeat tracking task. Interoceptive sensibility represents subjective confidence 

in one’s own interoceptive accuracy. Interoceptive awareness is a metacognitive measure of the degree 

to which objective interoceptive accuracy relates to interoceptive sensibility 

 


