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Abstract  

Effective connectivity is commonly assessed using the blood oxygenation level-dependent 

(BOLD) signal. In (Havlicek et al., 2015), we presented a novel, physiologically informed 

dynamic causal model (P-DCM) that extends current generative models with: a) an adaptive two-

state neuronal model; b) a purely feedforward neurovascular coupling (NVC); and c) uncoupling 

between cerebral blood volume (CBV) and cerebral blood flow (CBF). We demonstrated the 

improvement afforded by P-DCM in relation to current models in terms of the ability to capture 

commonly observed neuronal and vascular transients in single regions. Here, we assess the 

ability of the novel and previous DCM models to estimate effective connectivity among a 

network of five ROIs driven by a visuo-motor task. Furthermore, we implement DCM for arterial 

spin labeling (ASL) fMRI that simultaneously measures both BOLD and CBF signals – therefore 

providing additional information about neurovascular coupling. Using experimental data 

acquired with ASL, it is shown that P-DCM is statistically superior to other models in estimating 

effective connectivity, regardless when applied to BOLD data alone or to combined BOLD/CBF 

time-series. In addition, we demonstrate that connectivity estimates depend sensitively on the 

DCM used. In other words, incorrect modeling of hemodynamic response transients, such as the 

post-stimulus undershoot or adaptation during stimulation, might result in spurious (e.g. 

inhibitory, feedback) connections between areas. Finally, we demonstrate the added benefits of 

using ASL data, especially under the physiologically informed generative model (P-DCM). 
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Introduction 

Functional neuroimaging is widely used to investigate functional integration in the 

human brain (Friston, 2011), which is commonly characterized by functional or effective 

connectivity (Friston, 1994). While functional connectivity describes statistical dependencies 

among brain activations at the level of observed data, effective connectivity is defined as causal 

influence that (inferred) neuronal systems exert over another. Thus, determining effective 

connectivity requires a physically and physiologically motivated (causal) model linking local 

activation and distributed interactions among neuronal responses to the measured data. The 

requisite generative models have been proposed for several noninvasive neuroimaging 

modalities, such as functional magnetic resonance imaging (fMRI) (Friston et al., 2003) and 

electro- and magneto- encephalography (EEG and MEG) (David et al., 2006; Valdes Sosa et al., 

2009) or functional near-infrared spectroscopy (fNIRS) (Tak et al., 2015). 

A prominent modeling framework for estimating effective connectivity from BOLD data 

is dynamic causal modeling (DCM) (Friston et al., 2003). DCM has been used extensively both 

in healthy subjects and patient studies (see e.g. review by (Seghier, 2010) and references 

therein). The generative model of DCM for fMRI data comprises: (i) a neuronal model, in which 

neuronal activity in one region causes changes in its own activity (via intrinsic connections) and 

neuronal activity in distal regions (via long-range extrinsic connections); (ii) a model of 

neurovascular coupling (NVC) that links region-specific neuronal activity to local changes in 

cerebral blood flow (CBF); (iii) a hemodynamic model that transforms blood inflow to changes 

in cerebral blood volume (CBV) and blood oxygenation; and finally (iv) a physical model 

translating these changes into the measured BOLD signal.  

To estimate effective connectivity (that is, experiment- and time-dependent directed 

connectivity among different brain areas) from fMRI data using DCM, testable hypotheses about 

how brain areas are connected (and how connections change with task) are required. These 

hypotheses entail assumptions about the connectivity architecture – and how it is affected by 

experimental manipulations (Stephan et al., 2010). Then, using Bayesian inference, DCM fits the 

BOLD data by tuning the connectivity and hemodynamic parameters so that the discrepancy 

between modeled and observed fMRI time-courses is minimized under complexity constraints 

(Penny et al., 2010). This means that the aim of DCM (for a given set of connectivity 
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hypotheses) is not only to provide accurate fits to observed data, but also to account for the 

model complexity, such that more complex models are automatically penalized. The ensuing 

Bayesian approach enables one not only to estimate model parameters, but also to compare 

different models in terms of their evidence; i.e. accuracy minus complexity (Penny et al., 2010). 

Although Bayesian model selection (BMS) is typically used to choose between different 

neuronal architectures, it can also be used to identify the most likely physiological or physical 

mechanism underlying any component of the generative model ((i-iv) above). Examples of this 

sort of Bayesian model comparison can be found in Stephan et al. (2008; 2007), who compared 

linear vs. nonlinear neuronal connectivity models and several forms of BOLD generation 

equations. Furthermore, Marreiros et al. (2008) compared single-state vs. two-state neuronal 

models, while Rosa et al. (2011) compared different types of electro-physiological models of 

NVC, using simultaneous EEG and fMRI recordings.  

Recently, we introduced a physiologically informed generative model for BOLD DCM 

(Havlicek et al., 2015), called P-DCM, which extended and updated the standard model used in 

DCM for fMRI (S-DCM) (Friston et al., 2003) and two-state extension (2S-DCM) (Marreiros et 

al., 2008) in four key aspects (see also Figure 1):  

1. At the neuronal level, we model local neuronal activity as interacting excitatory and 

inhibitory (E-I) neuronal populations, allowing fine-tuning of adaptive responses during 

stimulation and post-stimulation periods – of the sort seen in electrophysiological data. 

Different brain areas are effectively connected via positive and negative long-range 

extrinsic connections among excitatory populations.  

2. The neurovascular coupling (NVC) – CBF changes evoked by changes in neuronal 

activity – is strictly feedforward. That is, CBF represents a smoothed version of neuronal 

activity.   

3. In the hemodynamic model, CBV can be uncoupled from CBF during transient periods 

due to viscoelastic properties of the post-capillary blood compartments (as in the original 

balloon model (Buxton et al., 1998)).  
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4. Finally, sequence-specific parameters of the BOLD signal equation were provided for 

both GE and SE MRI sequences and for different magnetic field strengths. 

In our previous paper (Havlicek et al., 2015), we demonstrated that these extensions allow for a 

more accurate modeling of the single-ROI BOLD response compared to S-DCM and 2S-DCM 

while simultaneously providing higher statistical evidence. This was, in particular, due to the 

characterization of the neuronal and vascular origins of BOLD signal transients, such as response 

adaptation and post-stimulus undershoot.  

However, the separation of neuronal from hemodynamic parameters in any variant of 

DCM can be hampered by the fact that the BOLD signal results from a complex interplay 

between region-specific CBF, CBV and cerebral metabolic rate of oxygen metabolism 

(CMRO2). That is, even for the same neuronal activity, the BOLD signal time-course can vary 

between different subjects, brain areas and even voxels in the same brain area due to differences 

in NVC and CBF-CBV coupling (e.g. see (Handwerker et al., 2004; Renvall et al., 2014)). This 

means that vascular transients can mask or distort estimated neuronal transients. Thus, any 

additional experimental data that allows disentangling active neuronal and passive vascular 

transients has the potential to increase the validity of the inferences made by DCM.  

In principle, DCM can also be applied to other fMRI acquisition modalities; such as 

arterial spin labeling (ASL) (Liu and Brown, 2007), which additionally measures cerebral blood 

flow (CBF), or vascular occupancy (VASO) (Huber et al., 2014; Lu et al., 2003), which 

measures cerebral blood volume (CBV). In the current paper, we extend the DCM models, 

described above, for BOLD fMRI to model ASL signals, where we jointly model both CBF and 

BOLD responses to stimulus-induced neuronal activations. In fact, when considering the causal 

chain of physiological processes that follows neuronal activation, CBF and CBV signals are 

more closely related to the neuronal signal compared to the BOLD signal. Since ASL 

simultaneously acquires BOLD signal and CBF, it affords the unique opportunity to compare 

connectivity estimates as a function of fMRI data (BOLD signal alone or BOLD signal together 

with CBF) and to evaluate the impact of physiological mechanisms embedded within different 

DCM variants (S-, 2S and P-DCM) on connectivity estimates. To the best of our knowledge, this 

is the first fMRI study systematically investigating the dependency of estimated effective 

connectivity on physiological assumptions of the generative model and on the type of fMRI data. 
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Materials and methods  

Experimental data 

Data acquisition and experimental task 

MR images were acquired on 3T Siemens Prisma scanner (Siemens Medical Solutions, 

Erlangen, Germany) from five healthy subjects (right-handed females; age range: 24–31). The 

subjects gave informed consent prior to scanning, according to the guidelines of the local ethics 

committee of the Faculty of Psychology & Neuroscience, Maastricht University. Following a 

localizer scan, MPRAGE T1-weighted anatomical images with 1 mm isotropic voxel size were 

acquired. Functional CBF and BOLD signals were measured using a PICORE-Q2TIPS ASL 

(Wong et al., 1997) sequence with the following parameters: TR = 2200 ms; TE = 17 ms; flip-

angle = 80°; FOV = 256×256 mm2; voxel size = 3×3×3 mm3; TI1 = 900 ms; TI2 = 1600 ms. Ten 

oblique slices covering early visual and motor areas were acquired in descending order. A 

descending order of slice acquisition was chosen to acquire the motor cortex first, which is 

known to have slightly shorter arterial arrival time (~800 ms) compared to the visual cortex 

(~900 ms) (Donahue et al., 2014). The tag was 10 cm in width positioned at a 1 cm gap inferior 

to the imaging slices.  

Each subject performed 4 runs (each 382 TRs long) of a visuo-motor task consisting of 4 

conditions arranged in blocks interspersed with resting fixation baseline periods (see Figure 3A). 

During the entire experiment, subjects fixated a white cross in the middle of the projected screen. 

The grey background was isoluminant with a 150° checkerboard wedge (black and white) 

stimulus presented either on the left or right visual field. During the two ipsilateral conditions 

(either left or right), subjects were instructed to respond to the visual stimulation (appearing for 

200 ms) with sequential ipsilateral finger tapping (thumb-index, thumb-middle and thumb-index 

finger). During the two contralateral conditions (either left or right), subjects were instructed to 

respond to visual stimulation with contralateral hand. Ipsilateral and contralateral conditions 

were indicated by a color change of the white fixation cross – blue for the ipsilateral conditions 

and red for the contralateral conditions. During the resting periods, subjects were instructed to 
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continue fixating the white cross. Visual stimuli for each condition were organized into 14 sec 

blocks (each included 11 events with randomized ISI lasting at least 1 sec) followed by 26 sec 

resting period. The initial and final rest conditions were 37 and 38 sec in duration, respectively. 

Blocks of ipsilateral and contralateral conditions (20 blocks in each run) were pseudo-

randomized within and between runs.   

 

Preprocessing and ROI selection 

The data were preprocessed using SPM12 (R6470) package (http://www.fil.ion.ucl. 

ac.uk/spm). Functional data from each subject were realigned to the first volume of the first run 

to correct for head motion. This was performed separately for control and labeled images 

obtained with the ASL sequence. The mean labeled image was then coregistered to the mean 

control image and the transformation matrix was applied to all the labeled images. The mean of 

the realigned functional time-series was coregistered to the anatomical image and the latter was 

used to segment gray matter, white matter and CSF. The spatial transformation parameters from 

the segmentation were used to spatially normalize the anatomical and functional images into 

MNI space, and the latter were further smoothed with a 4 mm FWHM isotropic Gaussian kernel.  

The data were then modeled using a general linear model (GLM) that included the tasks 

(two ipsilateral and two contralateral conditions) in all four runs. In particular, a GLM of ASL 

signal was constructed to reflect the simultaneous contributions of CBF and BOLD signal 

changes (see Figure 2A, for details on this ASL model see (Mumford et al., 2006)):  

y = 𝛽0 + x𝐶𝐵𝐹0 ∙ 𝛽1 + x𝐵𝑂𝐿𝐷 ∙ 𝛽2 + x𝐶𝐵𝐹0 ∙ x𝐵𝑂𝐿𝐷 ∙ 𝛽3 + H0 ∙ γ1:𝐾 + ε, (1) 

 

where y is a vector that contains the voxels’ time-courses. Besides the standard intercept 

representing the baseline of static MR signal (𝛽0), we included an explanatory variable 

representing baseline CBF (x𝐶𝐵𝐹0) that simulates the alternation of tagged and control signals 

(𝑥𝐶𝐵𝐹0(𝑡) = (−1)𝑡; i.e. −1 associated with tagged time points and +1 with control time points). 

The parameter 𝛽1 is then proportional to the tag and control MRI signal magnitude difference 

and, hence, is proportional to the amount of tagged blood delivered to the local tissue. Each task 
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condition was modeled with two explanatory variables: The first predictor represents the BOLD 

response (x𝐵𝑂𝐿𝐷) generated by convolution of the stimulus function with a double-gamma 

hemodynamic response function. As in previous studies (Hernandez-Garcia et al., 2010; 

Mumford et al., 2006), the second predictor represents CBF response that was approximated 

using the same BOLD response model (x𝐵𝑂𝐿𝐷) but modulated by CBF baseline (x𝐶𝐵𝐹0); i.e. 

yielding an interaction term x𝐶𝐵𝐹0 ∙ x𝐵𝑂𝐿𝐷. The parameters 𝛽2 and 𝛽3 are therefore proportional 

to the relative contributions of BOLD and CBF responses to the ASL signal1. Additionally, low-

frequency signal drifts (with cutoff period of 180 sec) were modeled in matrix H0 using discrete 

cosine transform basis functions. The error vector ε = 𝒩(0, 𝜎2V) models colored noise using a 

first-order autoregressive model with intrinsic autocorrelation matrix V. This GLM was 

estimated using standard estimation routines in SPM12 software. Contrast images were created 

for each condition, assuming (‘global’) conjunction of CBF and BOLD model estimates (Friston 

et al., 2005). The statistical threshold was set at p < 0.05, corrected for family-wise errors 

(FWE).  

Finally, five regions of interests (ROIs) were defined from significant responses to the 

visuo-motor task in both CBF and the BOLD signal. In particular, ROIs centered in left and right 

V1, left and right M1 and SMA were selected. Voxel contributions from left and right SMA were 

considered together as their time-courses looked almost identical. Additionally, regions labeled as V1 and 

M1 most likely include partial contributions from V2 and S1 and PMC, respectively. The ASL signals 

(corrected for the low frequency fluctuations; cut-off = 1/180 sec) were extracted from a sphere 

(radius 10 mm) centered at the peak T-value within each contrast image, and only voxels from 

grey matter (considering intersection of contrast images with the grey matter mask) were 

included. BOLD signals were derived from the ASL time-series using surround averaging 

(Mumford et al., 2006). Finally, the signal baselines of the BOLD timeseries were identified 

from the inital and the last resting periods of each run and adjusted to zero2.  

                                                           
1 Note that we initially also included second and third temporal derivatives of the hemodynamic response to account 

for variability in response shape between brain areas in both CBF and BOLD signal component. However, we did 

not observe any significant differences in activation locations; therefore, we only report the results using the basic 

model.   
2 This is an important step if one wants to compare different DCMs, as these models are designed to model activity 

changes with respect to resting baseline.   
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Dynamic causal modeling 

In this paper, we evaluate three DCM variants: standard, two-state and physiologically-

informed DCM (S-, 2S- and P-DCM, respectively; please see (Havlicek et al., 2015) and 

Supplementary Material 1 for details). In the following, we also introduce DCM for ASL that 

allows one to perform model comparison for BOLD data alone or BOLD signal together with 

CBF. Hereafter, by stating “BOLD-data-alone”, we refer to the analysis based only on the BOLD 

signal derived from ASL data. In contrast, by stating “ASL-data”, we refer to the analysis 

performed directly on ASL data that includes both CBF and BOLD signal changes.    

DCM of arterial spin labeling 

ASL is an MRI approach that simultaneously measures CBF and BOLD signals (see Figure 2A). 

Thus, ASL – in contrast to BOLD signal alone – may provide additional information for studying 

neuronal dynamics and effective connectivity. We propose a full generative model of ASL data 

that extends the standard applications of DCMs for fMRI. In this model, we combine the abobe 

described GLM model of ASL signal (Hernandez-Garcia et al., 2010; Mumford et al., 2006; 

Woolrich et al., 2006), which has been shown to have reduced artifacts as compared to 

interpolation approaches, with physiological variables defined in hemodynamic models 

(Havlicek et al. 2015):   

𝑦𝐴𝑆𝐿(𝑡) = 𝑙0 + 𝑙1 ∙ 𝑥𝐶𝐵𝐹0(𝑡) + 𝑏(𝑡) + 𝑙2 ∙ 𝑥𝐶𝐵𝐹0(𝑡) ∙ (𝑓(𝑡) − 1) + 𝜀(𝑡). (1) 
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As in the ASL-GLM (see equation (1)), we model both MR and CBF signal baselines, whose 

effects are scaled by parameters 𝑙0 and 𝑙1, respectively. The CBF baseline has the same form as 

in ASL-GLM. In contrast to ASL-GLM, the BOLD contribution in the ASL signal is modeled 

using BOLD signal generated by the hemodynamic model 𝑏(𝑡). Therefore, changes in the BOLD 

signal are caused by the neuronal signal via input and connectivity parameters (see below). The 

CBF contribution in the ASL signal is modeled directly using the output of neurovascular 

coupling (NVC); i.e., the blood flow state (𝑓(𝑡) − 1) that is driven by the same neuronal activity 

as the BOLD signal – and is modulated by the CBF baseline due to the alternating tag and 

control image acquisition in ASL. Since the contribution of CBF to the ASL signal varies as a 

function of MR acquisition parameters, the CBF component is additionally scaled by the 

parameter 𝑙2. Note for 𝑙1 and 𝑙2 values equal zero – that is no blood flow tagging and therefore 

no direct contribution of CBF to the measured signal – we obtain the standard BOLD model of 

DCM. In line with GLM (Friston et al., 1995), the error term ε = 𝒩(0, 𝐶𝜀) models serially 

correlated noise by assuming an AR(1) plus white noise process encoded in the inverse 

covariance matrix 𝐶𝜀
−1 = ∑𝜆𝑖𝑄𝑖, where 𝑄𝑖 are known precision basis functions scaled by 

hyperparameters 𝜆𝑖. An illustration of the ASL model for DCM is provided in Figure 2B.  

Figure 2 

 

DCM analysis 

 We chose visuo-motor experiment as an exemplary data-set to compare different DCM 

models and their physiological components. Note that the main aim of this paper is not to 

evaluate the best structural connectivity model for this task, but rather to identify relevant parts 

of neuronal and hemodynamic models and their impact on connectivity estimates. That is, the 

experimental data serve merely as an illustration on how different DCM variants can account for 

neuronal and hemodynamic transients and on the influence of these transients on connectivity 

estimates. Therefore, we chose only a single candidate of connectivity structure that is common 

for all different DCMs that are being compared on the basis of their physiological mechanisms 

(see below). This connectivity model was selected over other plausible candidates based on 

initial BMS procedure; i.e. it represents connectivity structure that is well supported by the 
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experimental data and all three DCMs (S-DCM, 2S-DCM and P-DCM). Additional details about 

this pre-selection are provided in the Discussion section. 

 

Connectivity structure specification 

A network of five brain regions as illustrated in Figure 3A was considered in our DCM 

analyses. For all DCMs, we used the bilinear form of neuronal connectivity model3: 

𝑑x𝐸(𝑡)

𝑑𝑡
= (A +∑ B(𝑚)

𝑀

𝑚=1
∙ 𝑢𝑚(𝑡)) ∙ x𝐸(𝑡) + C ∙ u(𝑡). (3) 

The network received driving inputs to the left or right V1, representing stimulations presented 

on the right or left visual fields, respectively (depicted in Figure 3 with red and blue colors). The 

strengths of these inputs were encoded in matrix C. Since we are interested in evaluating 

connectivity changes only between ipsilateral and contralateral conditions (see Discussion 

section for justification), we can describe an average connectivity during the ipsilateral condition 

as the endogenous connectivity encoded in matrix A. The regions are fully interconnected 

(depicted with black arrows) except for the two inter-hemispheric connections between right V1 

and left M1 and between left V1 and right M1, which were excluded in both directions. Next, to 

introduce changes in endogenous connectivity during contralateral conditions, we assume that all 

extrinsic connections in matrix A, except connections between left and right V1, can be 

modulated (depicted with green and orange dots). Note that exclusion of modulatory connection 

weights between left and right V1 is strictly based on prior BMS, where we compared models 

with and without these connections (further explained in Discussion section). Modulatory 

connection weights were encoded in B matrix with two levels (𝑀 = 2): B(1) for visual 

stimulation in the left visual field and B(2) for visual stimulation in the right visual field. 

Therefore, the matrices B express the additive contextual changes in connectivity due to 

switching motor output with respect to lateralized visual input. Modulation of extrinsic 

connections in matrix A by B matrices was controlled via modulatory inputs represented by 

simple box-car functions that are ON during stimulation intervals (see Figure 3). This means that 

                                                           
3 Note that Equation (3) is displayed here in its general form, which lacks contribution of inhibitory neuronal 

populations that are modeled in 2S-DCM and P-DCM. For a complete description of these models see Table S1.1 in 

the Supplementary Material 1. 
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average connectivity during contralateral conditions is given by A + ∑ B(𝑚)2
𝑚=1 . Next to the 

connectivity parameters, some region-specific parameters of hemodynamic models are optimized 

during the model inversion as well – their specification is provided in the Supplementary 

Material 1. 

Figure 3 

 

Model inversion 

All models (described in detail below) were inverted using Variational Laplace (VL), 

implemented for DCM in SPM12 (update R6470, (Friston et al., 2007)). This iteratively updates 

the moments of a conditional density over model parameters 𝑞(θ) = 𝒩(η, C), to maximize a 

lower bound on the log model evidence:  

log 𝑝(y|𝑚) = 𝐹(𝑚) + 𝐾𝐿(𝑞(θ)||𝑝(θ|y,𝑚)). (4) 

 

The model evidence is the probability of obtaining observed data, 𝑦, given model, 𝑚, and is the 

cornerstone of Bayesian model selection (BMS). The first term, 𝐹(𝑚), is the lower bound (also 

called the negative free energy) and the second term represents the Kullback-Leibler (KL) 

divergence between the approximate posterior density, 𝑞(θ), and the true posterior, 𝑝(θ|y,𝑚). 

During the model inversion, the KL divergence is minimized and 𝐹(𝑚) becomes an 

approximation to the model log-evidence. 

Model inversions were performed individually for each subject and functional run, and 

separately for BOLD-data-alone and for ASL-data using the same prior distributions over model 

parameters (see Table S1.2). They all converged within 128 iterations.  

 

Analysis of the dependency of connectivity on model and data 
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To determine the dependency of connectivity strengths on the physiological assumptions 

of the three DCM models, we employed conditional parameter estimates (i.e. conditional means 

and (co)variances) to calculate group connectivity patterns provided by S-DCM, 2S-DCM and P-

DCM. In particular, these were obtained using Bayesian model and parameter averaging (BMA 

and BPA) of extrinsic and intrinsic connectivity parameters, under FFX assumptions (Penny, 

2012). Differences in averaged connectivity estimates were assessed between models for both 

ipsilateral and contralateral conditions.  

To assess the similarity of the group connectivity estimates between BOLD and ASL-

data for each DCM model, Pearson correlation coefficients were calculated between the average 

extrinsic connection strengths of BOLD-data-alone and ASL-data, respectively. Furthermore, to 

evaluate which data (BOLD-data-alone or ASL) provides more informed constraints on the 

underlying effective connectivity, we used the conditional posterior estimates of the three DCM 

models. Note that ASL-DCM cannot be directly compared with BOLD-DCM using BMS in 

terms of model log-evidence, because these two models are not fitted to the same data. However, 

posterior distributions of model parameters can be compared in terms of KL divergence between 

prior and posterior distributions. This KL divergence represents the part of model evidence that 

is directly related to model complexity (Penny, 2012). Hypothetically, one expects the prior and 

posterior distributions to diverge in a non-trivial fashion if there is sufficient information in the 

observed data to support the implicit increase in complexity. We restricted ourselves to prior and 

posterior distributions of extrinsic connectivity parameters – these are present in all DCMs for 

both BOLD-data-alone and ASL-data. Additionally, to address the same question from a 

different perspective, we used the KL divergence to calculate the number of effectively estimated 

parameters (NEP) (Penny, 2012) and to relate it to the actual number of free parameters (there 

are 44 parameters corresponding to the weights of extrinsic connections in each model).  

 

Evaluating hemodynamic response fits 

We calculated a subject-specific average BOLD response for each region and each 

condition in both measured and predicted BOLD time-courses. Further, using these averages, the 

percentage of explained response variance (PVE, also called coefficient of determination) for 



 

14 
 

each brain region was determined. These PVE values were calculated at both the subject and 

group level. These constitute measures of accuracy that complement the KL complexity 

measures, described above. 

For full ASL-data, the average CBF and BOLD responses were calculated from a 

predicted ASL time-series by applying surround averaging and surround subtraction (Liu and 

Wong, 2005; Mumford et al., 2006) in order to mimic the same processing of measured ASL-

data. For ASL, we also calculated PVE for both CBF and BOLD responses in each brain region. 

 

Comparing model families 

The above analysis focuses only on evaluating qualitative and quantitative differences 

between connectivity weights provided by the different models and their fits to the data. Here, 

we performed Bayesian model selection (BMS) (Penny et al., 2010) to compare S-, 2S- and P-

DCM. In particular, we aimed to identify the relative importance of three new model components 

in P-DCM over their previous variants in S- and 2S-DCM (see (Havlicek et al., 2015)). 

Therefore, three families within the space of model components were considered (see Table 1): 

the first family compared neuronal models, i.e. single-state vs. two-state vs. adaptive two-state 

neuronal model; the second family compared models of neurovascular coupling (NVC), i.e. 

feedback based NVC vs. feedforward NVC; and the third family compared vascular mechanisms 

within hemodynamic models, i.e. coupled vs. uncoupled CBF-CBV relationship. This resulted in 

twelve different combinations of DCMs, where the Model 1 corresponds to S-DCM, Model 5 to 

2S-DCM and Model 12 to P-DCM (see Table 1). 

 

Table 1. Families of physiological model components. 

Model Neuronal family NVC family Hemodynamic family 

 1-state 

 

2-state 

 

Adaptive 

2-state 

 

Feedback 

based NVC 

Feedforward 

NVC 

Coupled 

CBF-CBV  

Uncoupled 

CBF-CBV  

Model 1 ● - - ● - ● - 
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Model 2 ● - - ● - - ● 

Model 3 ● - - - ● ● - 

Model 4 ● - - - ● - ● 

Model 5 - ● - ● - ● - 

Model 6 - ● - ● - - ● 

Model 7 - ● - - ● ● - 

Model 8 - ● - - ● - ● 

Model 9 - - ● ● - ● - 

Model 10 - - ● ● - - ● 

Model 11 - - ● - ● ● - 

Model 12 - - ● - ● - ● 

 

 

Based on the group log-evidence (i.e. log-evidence summed up over individual runs and 

subjects under fixed effects assumptions), the model with the lowest log-evidence was identified 

and then the relative log-evidences were determined among all twelve models listed in Table 1 

(Penny et al., 2010). The model specific log-evidences were then used for family-wise BMS 

under fixed-effect (FFX) assumptions. This provided posterior probabilities of specific model 

components within each model family; i.e., the likelihood that a certain model component is 

supported by the data. The relative model log-evidences and posterior probabilities were 

calculated for both BOLD-data-alone and ASL-data.  

Results 

 

How does the connectivity depend on the model and the data? 

In the following, we describe group connectivity estimates (obtained by BMA and BPA) 

using S-, 2S- and P-DCM, first for the BOLD-data-alone and later for the ASL-data. In Figure 4 

and 5 we show: (i) the average connectivity that is associated with signal changes observed 

during the ipsilateral conditions (i.e. connectivity matrix A, left column in Figure 4 and 5); (ii) 

the average connectivity during contralateral conditions (i.e. connectivity matrix A + ∑ B(𝑚)2
𝑚=1 , 
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middle column in Figure 4 and 5); and (iii) the effective (condition-dependent) changes in 

connectivity due to experimental manipulation (i.e. the difference between ipsilateral and 

contralateral conditions, connectivity matrix ∑ B(𝑚)2
𝑚=1 , right column in Figure 4 and 5). We 

encode positive connection weights between nodes with red color arrows and negative weights 

with blue color arrows (PVEs values color-code the central part of the nodes for the BOLD 

signal and outside ring for CBF, see details below). The direction and strength of the connection 

is depicted using an arrow and line thickness, respectively. We display only absolute connection 

weights larger than 0.05. For a complete set of connection weights see Table A1.   

BOLD-data-alone 

S-DCM connectivity results (see Figure 4 top row) during the ipsilateral conditions show 

positive feedforward connections from left and right V1 to left and right M1, respectively, but 

also to SMA. In return, SMA influences both left and right V1 via strong negative feedback 

connections. Moreover, there are positive reciprocal connections between left and right V1. 

During contralateral conditions, the feedforward connections from left and right V1 to left and 

right M1, respectively, are mostly suppressed and additionally, stronger positive connections 

between SMA and left and right M1 emerged. The remaining connections are very similar to the 

ipsilateral conditions (see right column of Figure 4).  

In 2S-DCM connectivity results (see Figure 4 middle row) during the ipsilateral 

conditions, we can see a fully connected network. As in S-DCM, the network is dominated by 

feedforward connections from left and right V1 to left and right M1, respectively, and to SMA. 

In contrast to S-DCM, all connections are positive and reciprocal. During contralateral 

conditions, feedforward connection strengths from left and right V1 to SMA are slightly 

increased and to left and right M1 are decreased, but still strong. We can also notice a large 

increase in some of the feedback connections, such as from left and right M1 to left and right V1, 

respectively, and from SMA to left V1 and left M1.  

P-DCM connectivity results represent a sparse network (see Figure 4 bottom row). As in 

S-DCM, during ipsilateral conditions, we see positive feedforward connections from V1 to M1 

and to SMA, but with stronger weights. In contrast to S-DCM, there are no negative feedback 

connections from SMA to left and right V1 and the reciprocal connections between left and right 
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V1 are negligible. During contralateral conditions, the connections from V1s to M1s are 

completely suppressed and the activity propagates to contralateral M1s via connections from V1s 

to SMA and then via strongly enriched connections from SMA. Although the connectivity 

patterns seen with ipsilateral and contralateral conditions are different compared to S-DCM, the 

difference between these two conditions is similar to S-DCM (see right column of Figure 4). 

 

Figure 4 

 

ASL-data (CBF&BOLD signal) 

S-DCM results obtained from ASL-data (both ipsilateral and contralateral conditions) 

show similar connectivity patterns as obtained from BOLD-data-alone (see Figure 5 and 4, top 

row), albeit with some qualitative and quantitative differences. The Pearson correlation 

coefficient between connectivity patterns estimated using BOLD-data-alone and ASL-data (only 

extrinsic connections included) is 0.8967 (see Table 2). The main differences are in the strength 

of significant connections. Some connections exhibit much higher strengths in the case of ASL 

data. For example using ASL data, positive connections between left, right V1 and left, right M1 

are ~1.6 times stronger during ipsilateral conditions and ~2.7 times stronger during contralateral 

conditions as compared to BOLD data. Additionally, negative connections from SMA to left and 

right M1 during ipsilateral conditions, which are negligible in BOLD data, are ~4.3 times 

stronger if ASL data are used. The difference between conditions is generally comparable to 

BOLD-data-alone (see right column of Figure 5). 

2S-DCM connectivity results based on ASL-data are again not too different from those 

based on BOLD-data-alone (Figure 5 and 4, middle row). The Pearson correlation coefficient 

between connectivity patterns based on BOLD and ASL-data is 0.8532, which is slightly lower 

than for S-DCM. In general, most connection strengths estimated from ASL-data are slightly 

weaker compared to estimates based on BOLD-data-alone. This is an opposite effect compared 

to the results based on S-DCM. The largest discrepancy between estimated connectivity by 

BOLD-data-alone and ASL-data can be seen in between condition differences. There is slightly 
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more similarity to S-DCM results in the condition differences provided by ASL-data than when 

BOLD-data-alone is used (see Figure 4 and 5). 

P-DCM results obtained from ASL-data (both ipsilateral and contralateral conditions) 

strongly resemble the sparse connectivity patterns as obtained from the BOLD-data-alone 

(Figure 5 and 4, bottom row). The Pearson correlation coefficient between connectivity patterns 

that is 0.9576; i.e. higher than both S-DCM and 2S-DCM. The main noticeable difference to 

BOLD results is in the overall higher strength of significant connections for ASL-data. For 

example, connections from V1s to M1s are ~1.7 times stronger; connections from V1s to SMA 

are ~1.2 times stronger; and connections from SMA to M1s are ~1.9 times stronger. 

 

Figure 5 

 

How does the model explain hemodynamic responses in multiple areas? 

PVE values are encoded in the color of network nodes for the BOLD signal and outer 

rings for CBF (Figures 4 and 5). Individual subjects and group average PVE values for both 

BOLD-data-alone and ASL-data can be found in Table 3. Average responses of the observed 

data and fitted responses (from a single subject) are displayed in Figures 6 and 7. 

BOLD-data-alone 

For S-DCM, the region-specific PVE values range between 61% and 90%. This wide 

range of PVE values can be explained by the predicted single subject BOLD responses (red lines 

in Figure 6). The positive peaks of hemodynamic responses, including their delays, are well 

explained during ipsilateral conditions. However, during contralateral conditions, the positive 

response in left M1 is significantly delayed with respect to the measured BOLD data. 

Furthermore, S-DCM was mostly able to explain negative responses in M1 regions during both 

ipsilateral and contralateral conditions. Although S-DCM fits the undershoot in left M1 during 

ipsilateral conditions, it only provides a partial explanation in left and right V1s and right M1 

areas during contralateral conditions (see Figure 6); i.e. explained variance reduces during the 
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contralateral conditions. We note that when S-DCM fits the post-stimulus BOLD undershoot 

well in a certain brain area (e.g. left M1 during ipsilateral condition), then there are stronger 

negative feedback connections targeting the area in question (see Supplementary Material S2). 

 PVE range for 2S-DCM is between 68% and 89%. 2S-DCM fits the positive peaks of 

hemodynamic responses with similar accuracy as S-DCM (cyan lines in Figure 6). In contrast to 

S-DCM, the two-state model cannot explain contralateral negative responses in M1 areas. 

Furthermore, the majority of post-stimulus BOLD undershoots are under-fitted, resulting in 

lower PVE values than S-DCM (see Table 3).  

P-DCM generally scores higher PVE values in all regions, ranging between 83% and 

96%, but the majority is above 90%. P-DCM was able to fit the positive peak of BOLD 

responses more accurately than S-DCM and 2S-DCM, especially during rising and falling phases 

of the hemodynamic response. As with S-DCM, P-DCM explains negative responses in 

contralateral M1 areas (blue lines in Figure 6). Finally, P-DCM explains post-stimulus BOLD 

undershoot with high accuracy in all five brain regions during both ipsilateral and contralateral 

conditions. Importantly, compared to S-DCM, P-DCM fits post-stimulus BOLD undershoots 

without relying on extrinsic negative feedback connections (see Figure 4 and Supplementary 

Material 2); i.e., using local neuronal and hemodynamic mechanisms. 

Table 3. Average PVE values for individual subjects and entire group.  

 S-DCM 2S-DCM P-DCM 

BOLD (alone): 

Subject 1 80.27±4.12 81.14±3.47 92.55±2.16 

Subject 2 78.34±3.83 74.98±3.64 92.14±2.36 

Subject 3 77.14±4.66 78.22±2.51 94.85±1.49 

Subject 4 72.43±3.66 73.70±4.84 88.03±2.66 

Subject 5 76.23±4.42 77.67±3.71 90.35±2.30 

Group average 76.89±4.20 77.13±3.75 91.58±2.28 

BOLD (ASL): 

Subject 1 75.50±4.55 75.94±4.39 93.72±1.93 

Subject 2 80.91±2.59 80.84±3.04 95.19±0.97 

Subject 3 82.80±2.08 87.07±1.85 95.22±1.49 

Subject 4 73.36±3.48 76.63±3.45 90.80±2.21 

Subject 5 78.07±3.79 77.86±4.36 91.48±2.11 

Group average 78.89±3.50 79.69±3.66 93.27±1.85 

CBF (ASL): 
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Subject 1 85.02±3.36 82.65±2.28 88.65±3.44 

Subject 2 90.22±2.43 86.48±3.88 92.53±2.45 

Subject 3 91.43±1.29 90.75±1.73 94.54±1.29 

Subject 4 82.79±3.66 81.10±3.54 90.36±2.51 

Subject 5 80.05±4.83 73.11±5.18 86.36±3.54 

Group average 85.92±3.47 82.81±3.78 90.49±2.84 

 

 

Figure 6 

 

ASL-data (CBF&BOLD) 

In Figure 5, the PVE values are color-coded separately for CBF (purple-blue in the outer 

ring) and the BOLD signal (yellow-red in the inner circle) responses in each of network node. 

The average PVE values of CBF and BOLD signal predictions are displayed within nodes. 

For S-DCM, PVE values for the BOLD responses are between 65% and 89%, which is 

slightly higher than in the case of BOLD-data-alone. However, the majority of post-stimulus 

undershoots in BOLD responses are not well explained. On the other hand, PVE values for the 

CBF responses are between 81% and 91%. Thus, in majority of cases, CBF responses have 

surprisingly higher PVE values than BOLD predictions in ASL data given that CBF data 

typically are noisier than BOLD signals. In terms of single subject predictions of CBF responses 

(orange lines in Figure 7), the post-stimulus deactivations are fitted with high accuracy. 

In 2S-DCM results, the PVE values for BOLD predictions are between 72% and 92%. 

BOLD response predictions are comparable to predictions based on BOLD-data-alone – here 2S-

DCM does not explain post-stimulus undershoots (see Figure 6 and 7). For CBF predictions, 

PVE values are between 73% and 89%. CBF predictions provide moderately accurate fit to 

measured CBF responses, including post-stimulus deactivations; with lower PVE values 

compared to S-DCM (see Figure 4 and 5). It can be seen that the CBF predictions of 2S-DCM 

are more ‘wrinkled’ compared to S-DCM (purple lines in Figure 7). Negative contralateral 

responses in M1 are not explained at the CBF or BOLD signal level. 
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In P-DCM results, the PVE values for BOLD predictions range between 88% and 97%, 

which is somewhat higher than PVE values scored with BOLD-data-alone (see Table 3). More 

accurate fits of BOLD responses using ASL-data compared to BOLD-data-alone reflect more 

precise fitting of post-stimulus BOLD undershoots. CBF predictions have also higher PVE 

values compared to S-DCM and 2S-DCM, ranging between 85% and 95%. In contrast to S-DCM 

and 2S-DCM, these are – in the majority of cases – slightly lower than for BOLD predictions. In 

short, P-DCM provides the most accurate fits of CBF and BOLD responses compared to 2S-

DCM and 2S-DCM (green lines in Figure 7). 

Figure 7 

 

Does model inversion benefit from ASL-data? 

From the model inversion perspective, all three models (S-, 2S- and P-DCM) benefit 

from additional information in ASL-data, as the KL divergence between prior and posterior 

distributions of extrinsic connections is always larger for ASL-data (see Table 4). This means 

that the posterior distribution departs more significantly from the prior distribution using ASL-

data than using BOLD-data-alone. NEP and KL divergence scored by P-DCM is very close to S-

DCM, which has the highest NEP and KL divergence scores. The same information gain is 

reflected in the number of effectively estimated parameters, which is always higher for ASL-data 

and generally higher than the actual number of free parameters. Note that the ASL generative 

model has in general two additional free parameters in the output signal model (plus one more in 

the feedforward NVC) per ROI compared to the DCM for BOLD signals. Moreover, the adaptive 

neuronal model embedded in P-DCM has one more free parameter compared to S-DCM and 2S-

DCM per ROI. The higher number of free parameters in the model can, in principle, result in the 

lower confidence about the estimates of connectivity weights, hence in a smaller departure from 

the prior distributions. This suggests that observed increase in KL divergence (by ~7) or in NEP 

(by ~2) in the case of ASL-data (i.e. higher confidence about the estimates) represents a 

significant improvement. 
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Table 4 KL divergence and number of effectively estimated connectivity parameters (NEP). 

 S-DCM 2S-DCM P-DCM 

 BOLD ASL BOLD ASL BOLD ASL 

KL divergence 250.69 258.89 163.77 171.27 248.76 253.38 

NEP (N = 44) 84.74 86.94 55.00 57.51 84.20 85.29 

 

 

Which is the best model and how does it depend on data?  

Fixed effect Bayesian model selection performed on posterior parameter estimates, 

obtained by fitting models to BOLD-data-alone, over all individuals revealed that P-DCM 

(Model 12) had the highest relative log-evidence, outperforming the S-DCM (Model 1) and 2S-

DCM (Model 5) by very strong4 log-evidence differences ∆𝐹 = 1705 and ∆𝐹 = 1411, 

respectively (see Figure 8A). Log-evidence differences are consistently very large also at the 

level of individual subjects (see Table 5). Overall, this results in posterior probability >99% for 

BOLD-data-alone being compatible more with data predicted by P-DCM rather than by S- or 2S-

DCM. Furthermore, comparing S-DCM and 2S-DCM using BOLD-data-alone showed strong 

log-evidence difference (∆𝐹 = 294) in favor of 2S-DCM, which confirms previous results 

(Marreiros et al., 2008).  

 

Table 5. Log-evidence difference between competing models.  

 P-DCM vs. S-DCM P-DCM vs. 2S-DCM S-DCM vs. 2S-DCM 

 BOLD ASL BOLD ASL BOLD  ASL 

Subject 1 408 795 333 754 -75 -41 

Subject 2 220 568 342 792 122 224 

Subject 3 594 719 297 649 -297 -70 

Subject 4 49 324 31 427 -18 103 

Subject 5 434 449 408 621 -26 172 

Total  1705 2855 1411 3243 -294 388 

 

Results obtained by comparing the same models using ASL-data revealed even more 

striking differences (see Figure 8B). Here, the differences in log-evidence are more than 1.5 

                                                           
4 Usually, a difference in log-evidence above three is considered as strong evidence (Kass and Raftery, 1995). 
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times larger than in the case of BOLD-data-alone. In particular, P-DCM is chosen over S-DCM 

and 2S-DCM with very strong log-evidence differences ∆𝐹 = 2855 and ∆𝐹 = 3243, 

respectively. In contrast to BMS results obtained using BOLD-data-alone, ASL-data favors S-

DCM over 2S-DCM (∆𝐹 = 388).  

 

Figure 8 

 

At the level of model families, all three new model components of P-DCM; i.e., the 

adaptive two-state neuronal model, the feedforward NVC, and the CBF-CBV uncoupling, are 

very strongly supported by the family comparison with posterior probability >99%. This was the 

case for both BOLD-data-alone and ASL-data (see Figure 8A and B, bottom panels). In general, 

models that include the adaptive two-state neuronal model brought the largest model 

improvement (Models 9-12), scoring a larger log-evidence than models without this component 

(Models 1-8). Models that include CBF-CBV uncoupling (Models 2, 4, 6, 8, 10, 12) were also 

always supported over competing models where CBF-CBV is coupled (Models 1, 3, 5, 7, 9, 11). 

Considering the feedforward NVC instead of the feedback based NVC results in moderate 

differences in log-evidence. Note that not all models benefit from modeling this physiological 

mechanism. While for P-DCM the feedforward NVC increases log-evidence for both coupled 

and uncoupled CBF-CBV scenarios (see Models 11-12 vs. Models 9-10 for both BOLD-data-

alone and ASL-data), removing feedback in S-DCM and 2S-DCM can result in decrease of log-

evidence (see Models 3 vs. Models 1 and Models 7-8 vs. Model 5-6, respectively, for BOLD-

data-alone). However, in the case of ASL-data, S- and 2S-DCM both benefit from the 

feedforward NVC if used together with the CBF-CBV uncoupling.  

 

Discussion  

In this paper, we compared connectivity estimates obtained by fitting generative models 

to BOLD-data-alone and, for the first time, jointly to CBF and BOLD data with a novel DCM for 
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ASL. ASL-DCM differs from BOLD-DCM by including neuronally induced CBF and baseline 

CBF signals in the output equation of the physical model. Crucially, we implemented the full 

model of ASL signal, rather than fitting derived CBF and BOLD time-courses from ASL data. In 

addition, we have statistically evaluated the impact of several key physiological mechanisms as 

implemented in S-, 2-S and P-DCM (Havlicek et al., 2015) on the estimated connectivity weights 

among multiple ROIs.  

P-DCM differs from S-DCM and 2S-DCM in the following physiological model features: 

adaptation of neuronal response by local inhibitory population; feedforward NVC; and 

possibility of CBF-CBV uncoupling (see Figure 1). In a previous paper (Havlicek et al., 2015), 

we have evaluated the impact of these mechanisms on fitting single ROI time-courses and 

established their physiological relevance. However, all these features may also influence 

connectivity estimates when they are applied jointly with the bi-linear DCM neuronal 

connectivity model. This is because, in model inversion, any model component lying between 

the neuronal level and the output fMRI signal (i.e. the biophysical model) can have an effect on 

estimated neuronal signals (Roebroeck et al., 2009; Valdes-Sosa et al., 2011). 

BOLD-data-alone 

DCM is most often applied to BOLD fMRI data using S-DCM (Friston et al., 2003; 

Seghier, 2010). Based on a standard FFX Bayesian procedure for model selection (Penny et al., 

2010), our results provided clear evidence that for the given BOLD data, P-DCM is statistically 

by far the superior model in comparison to S-DCM and 2S-DCM; not only for single regions, as 

shown in the previous paper (Havlicek et al., 2015)), but also for estimating connectivity in a 

network. This was demonstrated through very large log-evidence differences between P-DCM 

and the other two models (∆𝐹 = 1705 and ∆𝐹 = 1411 with respect to S-DCM and 2S-DCM, 

respectively). These results also showed that for BOLD-data-alone, 2S-DCM is a better model 

than S-DCM, confirming previous BMS results (Marreiros et al., 2008). Note that, in general, 

difference in log-evidence ∆𝐹 > 3 is considered as strong evidence (Kass and Raftery, 1995).  

These large differences in log-evidence are mainly due to substantial fitting errors with S-

DCM and 2S-DCM, which are unable to accurately explain the form of hemodynamic responses 

(see below). As we have shown previously (Havlicek et al., 2015), P-DCM includes basic 
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physiological mechanisms that are necessary to account for the repertoire of measured BOLD 

responses, that are insufficiently modeled by S-DCM and 2S-DCM. This is further supported by 

the fact that the log-evidence is accumulated (summed up) over five subjects (each with 4 runs 

and 382 data points per run), thus allowing for very powerful inference. The log-evidence 

differences for a single functional run ranged from 30 to 120. Differences of this magnitude 

between log-model evidences have been reported before (Marreiros et al., 2008; Rosa et al., 

2011; Stephan et al., 2007), even in cases where the compared models had rather subtle 

differences in physiological mechanisms (or their impact on the shape of hemodynamic response 

function was small). 

Next, by performing model comparison at the level of model families (Penny et al., 

2010), we were able to show that all three new components of the generative model as 

implemented in P-DCM (i.e. adaptive two-state neuronal model; feedforward NVC; and CBF-

CBV uncoupling) are statistically superior to their previous counterparts (see Figure 8 for family 

comparison of posterior probabilities). This means that all the physiological mechanisms as 

proposed in (Havlicek et al., 2015) are well supported by experimental BOLD data and they are 

suitable for modeling both single and multiple ROI fMRI data.  

Examining the connectivity pattern obtained by the different DCMs, the endogenous 

connectivity estimates (see ipsilateral conditions in Figure 4) were different for all three models 

applied to the same data. While 2S-DCM yielded a fully connected network, connectivity 

estimated by P-DCM is sparse, including only positive connections. S-DCM provided a less 

sparse network with additional negative feedback connections. Nevertheless, the actual changes 

in connectivity weights due to experimental manipulation (i.e. difference between ipsilateral and 

contralateral conditions) are similar between S-DCM and P-DCM, yet differ remarkably from 

2S-DCM. Note that a larger agreement between S-DCM and P-DCM in connectivity modulation 

is well expected, because they share the same neuronal model for long-range connections. On the 

other hand, larger differences in endogenous connectivity are related to different physiological 

mechanisms embedded in S-DCM and P-DCM, because this connectivity generates neuronal 

responses also outside stimulation periods (Friston et al., 2003; Stephan et al., 2008). Therefore, 

it can reflect local temporal variation often seen in both neuronal and hemodynamic responses, 

such as post-stimulus deactivation and undershoot (Gonzalez-Castillo et al., 2012; Hoge et al., 
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1999). The reason why connectivity estimates provided by 2S-DCM differ dramatically from S-

DCM and P-DCM is due to different assumptions about extrinsic connections, which are forced 

to be positive (excitatory) by log-normal transformation5 (Marreiros et al., 2008; Stephan et al., 

2008). In contrast to our results, Stephan et al. (2007) showed that the neuronal connectivity 

parameters are fairly robust to changes in the output form of BOLD signal equation. Mechanisms 

compared in our paper (i.e. neuronal models, NVCs, CBF-CBV couplings) have a much greater 

impact on the shape of BOLD response function and thus can result in larger differences.   

To further examine the observed differences in connectivity estimates provided by 

different models, we have carefully evaluated how well each model fits region-specific BOLD 

responses (see Figure 6). Although comparing the accuracies of model fit is not a sufficient 

measure to determine which model is better or more useful (Friston et al., 2013), examining the 

accuracy (that is part of the log-evidence) next to the BMS can helps us draw a more detailed 

(quantitative) picture about the model performance and its physiological relevance. The majority 

of BOLD responses associated with the five nodes of the network exhibit strong hemodynamic 

transients in the form of post-stimulus undershoot (see Figure 6). These transients in observed 

hemodynamic responses – possibly caused by neuronal and/or vascular physiological 

mechanisms – are repeatedly reported (e.g. see (Chen and Pike, 2009; Hoge et al., 1999; 

Logothetis and Wandell, 2004; Mandeville et al., 1999; Sadaghiani et al., 2009; Shmuel et al., 

2002)). Our results showed that P-DCM explains a larger variance of the hemodynamic response 

in all regions, compared to the other models, with average PVE values of ~91% (see Table 3). 

Both S-DCM and 2S-DCM achieved considerably lower PVE values (~77%), resulting mostly 

from under-fitted post-stimulus BOLD undershoot. Note that the post-stimulus undershoot can 

be in some extreme cases almost as large as the main positive BOLD response (see Figure 6). S-

DCM was able to explain post-stimulus undershoot in some regions, but 2S-DCM was more 

accurate in fitting the rising phase of the positive BOLD response.  

In P-DCM, the presence of post-stimulus undershoot may be explained by a local 

adaptation mechanism of inhibitory populations and by uncoupling between CBF and CBV, 

                                                           
5 Note that while S-DCM and P-DCM have the prior means on connections equal zero, 2S-DCM due to the log-

transform has the prior mean equal to 1/8. In general, this can result in more non-zeros connection if the evidence 

from the data does not give enough support that these connections should be actually zeros (i.e. scaling parameters 

involved in log-transforms have to be strongly negative).   
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resulting in sparser endogenous connectivity. Since S-DCM does not include these local 

physiological mechanisms, it naturally attempts to model variation in neuronal/hemodynamic 

response, not explainable by local physiological processes, by long-range excitatory connections. 

Therefore, we see stronger negative feedback connections that cause more pronounced post-

stimulus response deactivation (at the neuronal level) and undershoot (at the BOLD signal level). 

Note that the general mechanism of negative feedback based NVC used by both S-DCM and 2S-

DCM may in principle modulate post-stimulus BOLD signal time-course as well. However, as 

we have shown earlier (Havlicek et al., 2015), for longer stimulus durations (as in our paradigm), 

this modulation is minimal – even with large variation of the decay parameter 𝜅 controling the 

flow inducing signal. Furthermore, even though 2S-DCM possesses a mechanism to locally 

control excitatory activity by the inhibitory population within the two-state model, its 

parameterization is ineffective in explaining a wide range of neuronal/hemodynamic response 

transients (see Figure 6, and see also (Havlicek et al., 2015)). Put simply, fitting errors due to 

physiologically less plausible mechanisms implemented in S-DCM and 2S-DCM can be partially 

compensated by endogenous connectivity estimates. Moreover, it is important to remember that 

the log-evidence accounts for both model fit accuracy and model complexity (Penny, 2012). That 

is, a good model has to be accurate and still reasonably simple (in terms of the number of free 

parameters) in order to win the Bayesian model comparison. In this respect, P-DCM can 

accurately fit the entire shape of hemodynamic response with only a low or negligible increase in 

complexity (measured with KL divergence and NEP, see Table 4) compared to S-DCM. 

The finding that the endogenous connectivity in S- and 2S-DCM is possibly more 

susceptible to hemodynamic variations, while the additive (or multiplicative (Stephan et al., 

2008)) changes in connectivity due to experimental manipulation are not, agrees with the original 

characterization of connectivity S-DCM (Friston et al., 2003). Indeed, one of the main 

recommendations for DCM analysis is to design experimental modulations of endogenous 

connectivity couplings (Roebroeck et al., 2009; Stephan et al., 2010). However, there are 

situations, especially in clinical studies, which call for comparing endogenous connectivity 

between two different groups (e.g. controls vs. patients) (Agosta et al., 2010; Crossley et al., 

2009; Miyake et al., 2010; Rocca et al., 2007). In addition, DCM analysis has been recently 

developed for resting-state data (Friston et al., 2014), which inherently assumes only endogenous 
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connectivity. Therefore, in these cases, connectivity estimates provided by S-DCM and 2S-DCM 

may be more susceptible to variations of vascular (in addition to neuronal) signals than P-DCM. 

In summary, results based on BOLD-data-alone suggest that models in S-DCM and 2S-

DCM may be too restrictive for certain hemodynamic changes (e.g. adaptation and post-stimulus 

undershoot) observed in many fMRI experiments. P-DCM, in comparison, provides a more 

sparse connectivity accompanied with a locally-rich repertoire of neuronal and hemodynamic 

processes, which is statistically supported by the experimental data used in this study. 

Additionally, compared to S-DCM, P-DCM provides significantly more stable connectivity 

estimate across subjects and functional runs (see Supplementary Material 2 for more details). 

ASL-data 

The DCM framework is not limited to BOLD-data-alone but can also be extended to ASL 

fMRI data (and other hemodynamic measures, such as CBV), which simultaneously measures 

CBF and BOLD signal. In this study, we have developed such an extension, which enabled us to 

estimate effective connectivity and perform model comparisons with ASL data.  

BMS on ASL-data revealed even stronger log-evidence differences in favor of P-DCM. 

In contrast to BMS results obtained using BOLD-data-alone, ASL-data favors S-DCM over 2S-

DCM. Therefore, one can speculate that 2S-DCM might be a better model for BOLD data than 

S-DCM from a statistical point of view (as summarized by BMS) but not from physiological 

point of view, when constrained with CBF. The model comparison at the family level confirmed 

the results from BOLD-data-alone, but ASL-data further showed that both S- and 2S-DCM can 

benefit from the feedforward NVC and the CBF-CBV uncoupling, if used together. The KL 

divergence between prior and posterior distributions of extrinsic connections (and NEP) showed 

that parameter estimation in all models benefit from ASL data (i.e. from additional CBF 

component) compared to BOLD-data-alone, even though the generative model for ASL-DCM 

has higher number of free parameters (see Method section and Table 4). 

We showed that connectivity estimates for DCM variants using ASL-data are similar 

(albeit stronger) to their counterparts obtained using BOLD-data-alone. The correlation between 

connectivity estimates based on BOLD-data-alone and ASL data was the lowest for 2S-DCM 

(r~0.85), slightly higher for S-DCM (r~0.90) and highest for P-DCM (r~0.96). As CBF is more 
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closely related to neuronal activity, it is reasonable to assume that ASL data – with sufficient 

SNR – provides a more accurate connectivity estimate than BOLD-data-alone. Nevertheless, the 

high correlation of the connectivity patterns using both data sets suggests that BOLD-data-alone 

provides reasonably accurate estimates of connectivity, even without additional information in 

CBF data (but see below). The stability of the connectivity estimates is the highest for P-DCM, 

arguing for the physiologically informed assumptions embedded with P-DCM. Moreover, there 

is not only a good agreement between estimated connectivity from these two modalities, but also 

between local (within-subject) parameter estimates of the generative model such as: inhibitory-

excitatory connections 𝜇; inhibitory gain factors 𝜆; global self-inhibition 𝜎; mean transit times 

𝑡𝑀𝑇𝑇; and viscoelastic constants 𝜏 (results not shown). In addition, the decay parameter 𝜒 

controlling the NVC in ASL data diverged negligibly from its prior mean (see the Supplementary 

Material 1 for parameter description).  

 We showed that in comparison to BOLD-data-alone, all models fitted to ASL-data scored 

higher PVE values. For BOLD responses, the PVE values were on average ~2% higher (see 

Table 3 and Figure 7). Interestingly, in case of S-DCM and 2S-DCM, the PVE values for CBF 

responses were even higher than for BOLD responses. One explanation of this result could be 

that the size of post-stimulus CBF deactivation is smaller than the post-stimulus BOLD 

undershoot (as generally observed). This means that neuronal and NVC mechanisms as 

implemented in S-DCM and 2S-DCM can explain this size of post-stimulus CBF deactivation; 

however, they are insufficient to explain the even larger post-stimulus BOLD undershoot. This is 

because S-DCM and 2S-DCM assume coupled dynamics between CBF and CBV, which can 

only result in a post-stimulus BOLD undershoot that is smaller or comparable to the post-

stimulus deactivation in the CBF response (Havlicek et al., 2015). Unlike S-DCM and 2S-DCM, 

P-DCM explains the discrepancy between post-stimulus deactivation in the CBF and post-

stimulus undershoot in the BOLD response by CBF and CBV being uncoupled; i.e. BOLD 

response can have more pronounced post-stimulus undershoot than CBF (Havlicek et al., 2015). 

This result points to the importance of CBF-CBV uncoupling as a component of the generative 

model, and that the generative models of S-DCM and 2S-DCM are not well suited for modeling 

of ASL data, where it is necessary to account for differences in dynamic behavior of CBF and 

BOLD responses.  
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Finally, it is worth mentioning that there are some interesting differences in connectivity 

estimates as provided by P-DCM compared to other models (see Figure 4). In particular, in P-

DCM connectivity results based on ASL-data, we see negative contralateral connections between 

left and right M1s. These small negative weights are in good agreement with our observations 

that most of the subjects showed small ipsilateral deactivation in M1 during finger tapping. 

Moreover, these ipsilateral deactivations in M1 and in sensory areas are regularly observed (e.g. 

see (Hlushchuk and Hari, 2006; Klingner et al., 2011a; Klingner et al., 2011b; Mullinger et al., 

2014; Stefanovic et al., 2004)). Furthermore, P-DCM does not show any significant connections 

between right and left V1s (in both ASL-data and BOLD-data-alone), but there are stronger 

cross-hemispheric connections estimated by S-DCM and 2S-DCM. Given the fact that we tried 

to minimize possibility of contralateral activation of V1 by experimentally controlling 

background iso-luminance with respect to checkerboard stimuli, and we did not observe any 

significant activations and deactivations in hemodynamic responses on ipsilateral sides of the 

visual cortex, we can quite safely assume that these connections detected by S-DCM and 2S-

DCM are spurious. Therefore, by considering this specific experimental manipulation, P-DCM 

(especially with ASL-data) provides more sensible connectivity estimate with better reflection of 

the underlying physiological processes. In short, the construct validity of P-DCM, with respect to 

known functional anatomy and our assumptions about connectivity architecture is reasonable. 

Generalizability and limitations 

We used experimental data of visio-motion task with five significantly involved brain 

regions. Theoretically, this task and number of regions allow for testing many competing 

hypothesis about different connectivity structures and their induced changes. Although our 

experimental task naturally resembles a fully factorial design, where we could investigate the 

main effect of switch (ipsilateral vs. contralateral conditions) and interaction between switch and 

response side (right vs. left), we focused our analysis only on average connectivity changes 

between ipsilateral and contralateral conditions. This specific choice of connectivity structure 

(see Figure 3) was motivated by an initial BMS analysis, which showed that the fully factorial 

design is statistically inferior to the design reported in this paper (results not shown).  

Moreover, weights modulating callosal connections between left and right V1 were 

excluded from the analysis, even though one may think that these pathways can play an 
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important role in explaining propagation of neuronal activity during contralateral conditions (e.g. 

transferring activity from left V1 to right M1 via right V1). However, also this hypothesis was 

not supported by our data and was rejected during initial BMS analysis as well (mainly because 

there no significant increase in the BOLD response in opposite V1 was observed, see Figure 6). 

Therefore, design of connectivity structure applied in this paper was selected based on prior 

results of BMS, where it was compared with other plausible connectivity designs (two of them 

mentioned above). Importantly, the selected model was strongly preferred by all DCM variants 

(S-DCM, 2S-DCM, and P-DCM). Note, however, it is highly unlikely that alternative (but also 

plausible) connectivity architectures (also if less ROIs are considered) would result in 

fundamentally different conclusions with respect to the necessity of the physiological 

components in P-DCM to model fMRI time courses. This is due to the fact that fMRI transients, 

as observed in this study, cannot be fully accounted for by S-DCM and 2S-DCM neither locally 

(see Havlicek et al., 2015) nor remotely via interaction of other brain regions. As a consequence, 

large differences in log-evidences for the different DCM variants are obtained (but see also 

below). 

Importantly, it should be emphasized that the primary goal of this paper was not to 

identify the best structural connectivity model for the task, but rather to evaluate relevant parts of 

neuronal and hemodynamic models and their impact on connectivity estimates. That is, the 

experimental data is a show-example of transients observed in fMRI data and how these 

transients affect connectivity estimates derived by the different DCM variants. Therefore, the 

statistical superiority of P-DCM as compared to S- and 2S-DCM may not be generalizable to all 

experimental designs and functional activation patterns. For example, we used a block design 

with resting duration long enough to allow for full evolution of the post-stimulus BOLD 

undershoot. It might be that if other experimental designs are used (e.g. fast event-related design, 

where the post-stimulus undershoot cannot be easily detected) or if none of selected ROI 

responses contains a post-stimulus undershoot and/or exhibit adaptation profile during 

stimulation, the Bayesian model comparisons may lead to different conclusions. However, as 

undershoot and adaptation are commonly observed features of the fMRI signal and the ability of 

P-DCM to effectively model those in contrast S- and 2S-DCM, the results of the comparison of 

the DCM variants are, in our minds, generalizable to the majority of fMRI studies. Note that 
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even in those cases for which S- and 2S-DCM are statistically superior, it is expected that the 

connectivity patterns obtained with P-DCM are similar to those with S- and 2S-DCM.   

We compared DCM models using BOLD-data-alone and ASL-data, and showed that the 

CBF part of ASL-data can improve the model inversion (see above). However, since the 

estimated neuronal signal can be contaminated by vascular dynamics that were not sufficiently 

explained by the hemodynamic model (as shown for S- and 2S-DCM), one may wonder if 

inverting the model directly from CBF time-courses (derived from ASL data using surround 

subtraction) would be a better choice. This means that one would connect the neuronal model 

only with NVC to generate CBF responses and fit these to the data. We have also tested this 

model in the early phase of our DCM analysis, and found it to resemble results observed using 

BOLD-data-alone and ASL-data. However, due to low SNR of CBF, the variability in estimated 

parameters was significantly higher (results not shown). Moreover, since there is a chance that 

CBF derived from ASL data is partly contaminated by the BOLD signal (due to signal 

interpolation involved within surround subtraction), it makes it less suitable for estimation of 

effective connectivity using DCM (Mumford et al., 2006).  

Summary 

Using experimental fMRI data, we found that P-DCM is statistically superior to S-DCM 

and 2S-DCM for evaluating effective connectivity among distributed ROIs. This was 

demonstrated by fitting these models to both BOLD-data-alone and combined BOLD/CBF-data 

via an extended DCM for ASL data. Our results indicate that P-DCM is the most consistent 

among all three models, in terms of the agreement between connectivity estimates, and had the 

lowest inter-subject variability. Nevertheless, connectivity differences between conditions are 

also well characterized by S-DCM. These results speak in favor of using P-DCM in the standard 

DCM for fMRI effective connectivity analysis performed on BOLD data. Overall, the statistical 

superiority of P-DCM over S-DCM and 2S-DCM suggests the importance of accurately 

modeling physiological mechanisms to deduce the neuronal connectivity from indirect fMRI 

data. These results, thus, confirm our earlier premise that P-DCM is a physiologically plausible 

model of fMRI data.  
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In addition, we argue that P-DCM has the potential to provide better estimates of 

effective connectivity and is less dependent on vascular sources of hemodynamic response 

variability, compared to S- and 2S-DCM. The validity of P-DCM is further strengthened if ASL 

data is used, since it provides direct access to CBF, a crucial variable that helps identifying 

vascular transients in hemodynamic responses. Finally, we could speculate that the ability of P-

DCM to model neuronal transients due to neuronal inhibition/adaptation that are reflected in 

observed hemodynamic responses (in addition to the vascular transients) could provide a unique 

opportunity to study changes in effective connectivity driven by neuronal inhibition.  
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Appendix A  

Table A1. The mean connectivity parameter estimates across subjects (±standard error) for the ipsilateral 

and contralateral conditions as provided by S-, 2S-, and P-DCM for both BOLD-data-alone and ASL-

data. 

 S-DCM 2S-DCM P-DCM 

Connection BOLD ASL BOLD ASL BOLD  ASL 

Ipsilateral conditions 

leftV1 → rightV1 0.13±0.02 0.15±0.02 0.10±0.01 -0.10±0.10 0.05±0.02 0.03 ± 0.01 

leftV1 → leftM1 0.16±0.02 0.25±0.03 0.41±0.04 1.29±0.13 0.21±0.02 0.34 ± 0.03 

leftV1 → SMA 0.09±0.01 0.12±0.01 0.29±0.03 0.91±0.11 0.25±0.03 0.36 ± 0.03 

rightV1 → leftV1 0.06±0.02 0.12±0.02 0.07±0.02 -0.49±0.14 0.01±0.01 0 ± 0.01 

rightV1 → rightM1 0.19±0.02 0.23±0.02 0.39±0.04 1.26±0.11 0.20±0.02 0.32 ± 0.02 

rightV1 → SMA 0.10±0.02 0.13±0.02 0.30±0.04 0.81±0.14 0.30±0.03 0.36 ± 0.04 

leftM1 → leftV1 0.04±0.03 0.08±0.05 0.12±0.01 -0.26±0.05 0.01±0.00 0.02 ± 0.01 

leftM1 → rightM1 0.04±0.02 0.03±0.02 0.06±0.01 -0.80±0.07 -0.04±0.02 -0.09 ± 0.03 

leftM1 → SMA 0.02±0.01 -0.01±0.02 0.12±0.01 -0.11±0.03 0.00±0.00 0 ± 0.00 

rightM1 → rightV1 -0.03±0.02 -0.08±0.03 0.12±0.01 -0.15±0.08 0.02±0.01 0.02 ± 0.01 

rightM1 → leftM1 0.05±0.02 0.06±0.03 0.07±0.01 -0.76±0.14 -0.02±0.01 -0.04 ± 0.01 

rightM1 → SMA 0.02±0.01 0.00±0.02 0.12±0.01 -0.14±0.07 0.01±0.00 0.00 ± 0.00 

SMA → leftV1 -0.21±0.05 -0.3±0.05 0.10±0.01 -0.42±0.07 0.03±0.02 0.01 ± 0.01 

SMA → rightV1 -0.21±0.04 -0.10±0.04 0.10±0.01 -0.36±0.07 0.04±0.02 0.05 ± 0.01 

SMA → leftM1 -0.11±0.04 -0.11±0.03 0.15±0.01 -0.04±0.13 0.09±0.02 0.14 ± 0.03 

SMA → rightM1 -0.04±0.02 -0.05±0.03 0.12±0.01 -0.37±0.08 0.09±0.03 0.11 ± 0.02 

Contralateral conditions 

leftV1 → rightV1 0.13±0.02 0.15±0.02 0.10±0.01 -0.10±0.10 0.05±0.02 0.03±0.01 
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leftV1 → leftM1 0.02±0.06 0.06±0.07 0.15±0.04 0.29±0.18 -0.01±0.02 -0.03±0.02 

leftV1 → SMA 0.13±0.02 0.19±0.02 0.31±0.07 0.80±0.16 0.26±0.03 0.37±0.03 

rightV1 → leftV1 0.06±0.02 0.12±0.02 0.07±0.02 -0.49±0.14 0.01±0.01 -0.00±0.01 

rightV1 → rightM1 0.09±0.05 0.13±0.04 0.18±0.03 0.69±0.15 0.02±0.02 0.02±0.02 

rightV1 → SMA 0.15±0.02 0.20±0.02 0.33±0.06 0.84±0.11 0.34±0.03 0.42±0.03 

leftM1 → leftV1 0.07±0.04 0.12±0.04 0.14±0.04 -0.56±0.13 0.01±0.00 0.01±0.01 

leftM1 → rightM1 0.00±0.03 0.04±0.04 0.04±0.01 -1.26±0.10 -0.06±0.02 -0.10±0.02 

leftM1 → SMA -0.01±0.01 -0.05±0.02 0.09±0.01 -0.67±0.10 -0.01±0.00 -0.02±0.01 

rightM1 → rightV1 0.00±0.02 -0.04±0.03 0.23±0.05 -0.07±0.20 0.02±0.01 0.03±0.01 

rightM1 → leftM1 0.03±0.03 0.04±0.03 0.04±0.01 -1.28±0.15 -0.04±0.01 -0.05±0.02 

rightM1 → SMA -0.01±0.02 -0.05±0.02 0.09±0.01 -0.70±0.11 -0.01±0.00 -0.02±0.01 

SMA → leftV1 -0.24±0.05 -0.31±0.06 0.15±0.04 -0.59±0.21 0.02±0.02 0.03±0.02 

SMA → rightV1 -0.23±0.04 -0.08±0.04 0.13±0.03 -0.39±0.19 0.04±0.02 0.06±0.02 

SMA → leftM1 0.22±0.04 0.22±0.05 0.31±0.04 0.59±0.23 0.44±0.05 0.70±0.06 

SMA → rightM1 0.16±0.04 0.17±0.06 0.17±0.03 -0.18±0.16 0.39±0.05 0.58±0.03 

Connections weights above 0.05 are highlighted in bold.  

 

 

 

Figures 

Figure 1. Scheme illustrating the organization of generative models entailed by S-DCM, 2S-

DCM and P-DCM. Three main parts of the generative models; i.e. neuronal model, 

neurovascular coupling and hemodynamic model, are colored in blue, orange and green, 

respectively. Main differences in P-DCM with respect to S- and 2S-DCM (see Havlicek 2015) 

are highlighted with red color, such as the adaptive part of the two state-neuronal model, 

feedforward NVC and CBF-CBV uncoupling modeled in the blood outflow. The parameters that 

are associated with optimization of specific model components during DCM analyzes are 

displayed.   

Figure 2. (A) Illustration of the ASL data acquisition. The ASL pulse sequence involves labeling 

of the inflowing arterial blood proximal to the imaging slices by magnetic inversion (during 

inversion time, TI1). Once the labeled blood, having its spins inverted, is delivered to the rest of 

the brain (after a certain inversion time, TI2), it reduces the total signal magnitude in the 

subsequently acquired ‘tagged’ images. After collecting labeled images, the procedure is 

repeated without applying the magnetic inversion, and so called ‘control’ images are acquired 

while the inflowing blood is fully relaxed. Then dynamic alternation between acquiring labeled 

and control images gives the typical ASL measurement where the difference between control and 

labeled images is proportional to the local CBF and where the envelope represents the BOLD 

signal. (B) Schematic illustration of the ASL generative model for DCM that is common to all S-

, 2S- and P-DCM. The output from NVC (i.e. CBF signal) and the BOLD signal are combined 

together with the CBF baseline to form the output ASL signal.   

Figure 3. Illustration of connectivity structure (A) and experimental design of visuo-motor task 

(B) assumed for DCM model inversions. This illustrates driving inputs entering the network of 
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brain regions during left and right visual stimulation (red and blue colors) and modulatory inputs 

introducing changes to ipsilateral connectivity, while contralateral motor responses are enforced 

(green and orange colors). 

Figure 4. Group connectivity results based on BOLD-data-alone estimated using S-DCM (top 

row), 2S-DCM (middle row) and P-DCM (bottom row). The left column depicts the endogenous 

connectivity during the ipsilateral conditions. The middle column shows modulation of the 

endogenous connectivity during the contralateral conditions. The right column displays the 

difference between ipsilateral and contralateral conditions; i.e. the effective change in 

connectivity due to the experimental manipulation. The causal direction and strength of the 

connection are depicted using an arrow and the line thickness, respectively. The positive 

connection weights between nodes are encoded with red color arrows and negative weights with 

blue color arrows (only absolute connection weights larger than 0.05 are shown). The region-

specific PVE values are displayed within each node that is further color-coded based on the scale 

depicted in the color bar.  

Figure 5. Group connectivity results based on the ASL-data estimates. This figure adheres to the 

same description as Figure 3 with the following exceptions: The PVE values are color-coded 

separately for CBF (purple-blue in the ring) and BOLD (yellow-red in the inner circle) responses 

in each of network node. The average PVE values of CBF and BOLD signal predictions are 

displayed within the nodes. 

Figure 6. Single-subject average region-specific hemodynamic responses fitted by S-DCM, 2S-

DCM and P-DCM to BOLD-data-alone. The observed BOLD responses for both ipsilateral and 

contralateral conditions are displayed with solid black lines, including error bars that represent 

the 95% confidence interval. Side of visual stimulation is marked in the upper right corner of 

each plot with colored wedge (blue color represents ipsilateral hand response and red color 

contralateral hand response). The fitted BOLD responses fitted by S-DCM, 2S-DCM and P-

DCM are displayed using solid red, cyan and blue lines, respectively. Region-specific responses 

are normalized with respect to the maximum amplitude of the observed responses across all 

conditions, i.e. the proportional differences in amplitudes between conditions are preserved.   

Figure 7. Single-subject average region-specific hemodynamic responses fitted by S-DCM, 2S-

DCM and P-DCM to ASL-data. Organization of this figure is the same as in Figure 6 except that 

only responses to contralateral conditions are displayed. Observed CBF responses are displayed 

left to the BOLD responses. These are underlaid with CBF response predicted by S-DCM, 2S-

DCM and P-DCM, depicted with solid orange, purple and green colors, respectively. 

 

Figure 8. Summary of the Bayesian model comparison results for BOLD-data-alone (A) and 

ASL-data (B). The figure compares twelve DCMs resulting from the factorial structure of 
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family-wise comparison between the generative model components (i.e. single-state vs. two-state 

vs. adaptive two-state neuronal model, feedback vs. feedforward NVC, coupled vs. uncoupled 

CBF-CBV relationship) as described in Table 1. The first row shows the relative model log-

evidence summed across all subjects (i.e. the model log-evidence minus the log-evidence of the 

reference model). The second row displays posterior probability of each model component 

within a specific model family (i.e. neuronal model, NVC, CBF-CBV relationship). The same 

description applies to the results from the ASL-data.  
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