
Vol.:(0123456789)1 3

Microfluidics and Nanofluidics (2018) 22:106 
https://doi.org/10.1007/s10404-018-2126-5

RESEARCH PAPER

Simulation of the head-disk interface gap using a hybrid multi-scale 
method

Benzi John1 · Duncan A. Lockerby2 · Alexander Patronis2 · David R. Emerson1

Received: 9 May 2018 / Accepted: 5 September 2018 / Published online: 10 September 2018 
© The Author(s) 2018

Abstract
We present a hybrid multi-scale method that provides a capability to capture the disparate scales associated with modelling 
flow in micro- and nano-devices. Our model extends the applicability of an internal-flow multi-scale method by providing 
a framework to couple the internal (small scale) flow regions to the external (large scale) flow regions. We demonstrate 
the application of both the original methodology and the new hybrid approach to model the flow field in the vicinity of the 
head-disk interface gap of a hard disk drive enclosure. The internal flow regions within the gap are modelled by an extended 
internal-flow multi-scale method that utilises a finite-difference scheme for non-uniform grids. Our proposed hybrid multi-
scale method is then employed to couple the internal micro-flow region to the flow external to the gap, to capture entrance/
exit effects. We also demonstrate the successful application of the method in capturing other localised phenomena (e.g. 
those due to localised wall heating).

Keywords  Multiscale simulations · Direct simulation Monte Carlo · Hybrid methods · Head-disk interface gap · Scale 
separation

1  Introduction

Flow in micro- and nano-scale devices are characterised by 
low-speed confined flows. A common feature of micro-scale 
devices is that they are typically of large aspect ratio and the 
associated flow is essentially multi-scale in nature. Appli-
cations of micro- and nano-fluidic devices include carbon 
nanotubes, micro heat exchangers, Knudsen compressors, 
air bearings, etc. A classic example of a multi-scale prob-
lem involving gaseous flow is the flow in the vicinity of the 
head-disk interface (HDI) gap in a hard disk drive (HDD) 
enclosure. In the HDI gap, a thin film of air between the 
slider and the rotating disk forms a gas slider bearing which 
supports the read/write head allowing it to float above the 
disk surface. The typical flying height in a modern HDD is 
of the order of just a few nanometres, as a lower flying height 
results in higher recording capacities. This means that flow 

within the HDI gap undergoes substantial non-equilibrium 
effects that cannot be accounted for using conventional 
hydrodynamic equations. Additionally, the degree of non-
equilibrium in the HDI region varies, as the channel height 
ranges from a few nanometres (at the exit) to several microns 
(at the inlet) of the channel, depending on the pitch angle of 
the slider. A good understanding of flow characteristics in 
the vicinity of the HDI region is clearly required for accu-
rate prediction of load capacity, accurate head positioning, 
and design. Estimations of the degree of rarefaction (and 
flow regime classification) are usually based on the Knud-
sen number, Kn (Gad-El-Hak 2006), which relates the ratio 
of the molecular mean free path to a characteristic length. 
Using this definition, the flow in an HDD experiences a wide 
range of Knudsen number from 0.001 < Kn < 10 (velocity-
slip to the free molecular regime) in the HDI region, whereas 
flow outside the HDI region lies in the continuum regime 
(Kn < 0.001). This presents a challenging multi-scale prob-
lem that can only be solved using an appropriate hybrid 
computational model.

Traditionally, the Reynolds gas lubrication equation has 
been employed for slider bearing simulations. To account for 
flow rarefaction effects, various models have been proposed 
in the literature. The most popular models are the various 
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slip-corrected Reynolds gas lubrication methods (Bahuku-
dumbi and Beskok 2003; Burgdorfer 1959; Chen and Bogy 
2010; Hsia and Domoto 1983) and the Fukui–Kaneko (FK) 
Reynolds model (Fukui and Kaneko 1988, 1990) based 
on the linearised Boltzmann equation with the Bhatna-
gar–Gross–Krook (BGK) model (Bhatnagar et al. 1954). 
The Fukui–Kaneko (FK) model is the most widely used 
Reynolds gas lubrication model today as it provides good 
estimates of the slider bearing pressure profile for a wide 
range of Knudsen number. Other Reynolds equation-based 
models have been proposed like the Cercignani model (Cer-
cignani et al. 2004, 2007) which is based on the ellipsoidal 
statistical BGK Boltzmann equation and the Gu and Emer-
son model (Gu et al. 2016) which is based on the method 
of moments. However, the Reynolds equation cannot be 
reliably employed to model localised thermal effects, such 
as in heat-assisted magnetic recording (HAMR) where a 
focused laser beam is used to heat up the media to increase 
the recording density (Myo et al. 2012) or for coupling it to 
the external flow where the gas lubrication equation is totally 
invalid. In such instances, reliable expressions for velocity 
and shear stress can be difficult to conveniently obtain from 
Reynolds equation models.

Alternatively, the direct simulation Monte Carlo (DSMC) 
method (Bird 1994) can be employed to accurately simulate 
the flow field in the vicinity of the HDI gap (Alexander et al. 
1994; John and Damodaran 2009; Myo et al. 2012). The 
DSMC method is a modelling approach that represents the 
discrete molecular nature of a gas. The method decouples 
the particle motions and the intermolecular collisions over 
small time intervals, and captures the essential physics of a 
dilute gas as governed by the Boltzmann equation. Particle 
motions are modelled deterministically while intermolecu-
lar collisions are treated stochastically. Although the DSMC 
approach is considered an accurate and reliable method, it is 
computationally demanding and the application of DSMC to 
HDI simulations has been limited to small-scale representa-
tive HDI geometries of the order of a few microns in chan-
nel length. However, realistic slider geometries are an order 
of magnitude longer and have channel lengths on the order 
of millimetres. Consequently, multi-scale methods must be 
employed, whereby regions modelled by atomistic methods 
are coupled to a macroscopic description of the flow.

The selection of a particular multi-scale method is 
dependent on the nature of the flow problem under consid-
eration (Hadjiconstantinou 2005). The most popular multi-
scale method is the domain decomposition (DD) approach, 
which requires non-equilibrium regions (modelled by an 
atomistic/particle method) and equilibrium regions (mod-
elled by a hydrodynamic approach) to be demarcated. Infor-
mation exchange then takes place, typically via an overlap 
region, to enable a coupled hybrid solution. However, DD 
methods are inappropriate for high-aspect ratio internal 

micro-flows, where flow rarefaction effects can occur along 
the entire channel length. Alternatively, the heterogeneous 
multi-scale method (HMM) (Weinan et al. 2003, 2009; Ren 
and Weinan 2005) places a continuum-fluid solver grid over 
the whole domain, and microscopic simulations dispersed 
at the nodes of the computational grid provide the missing 
information. This approach is more suited for rheological 
flows where constitutive relations and boundary informa-
tion do not exist. The HMM is, in fact, less accurate and less 
efficient for internal micro-flow applications because micro-
scopic simulations have a minimum size, and the HMM is 
only accurate and efficient if that is much smaller than the 
smallest characteristic scale of the geometry.

A recent extension of the HMM approach is the inter-
nal-flow multi-scale method (IMM) (Borg et al. 2013a, b, 
2015; Patronis et al. 2013; Patronis and Lockerby 2014). 
Like HMM, the IMM covers a flow domain heterogene-
ously with a distribution of subdomains along the stream-
wise flow direction. However, instead of these subdomains 
representing a point in the macro domain, like in HMM, the 
subdomains in IMM represent a two-dimensional cross-sec-
tional ‘slice’ of the internal flow. This heterogeneous domain 
representation allows scale separation (between molecular 
and hydrodynamic scales) to be exploited in the flow direc-
tion, while treating the physics fully in the cross flow. The 
micro-subdomains (i.e. the slices) interact indirectly with 
each other via constraints applied by the macroscopic con-
servation laws. The continuum formulation is based on mass 
conservation, and has no requirement of any constitutive 
models, since this is indirectly provided by the micro-sub-
domains. In the IMM, information exchange between the 
macro domain and micro-subdomains occurs in an iterative 
manner, until convergence is obtained. For transient flows 
which involve temporal scale separation, the unsteady IMM 
has been developed by Lockerby et al. (2013) in which infor-
mation exchange occurs at well-defined time intervals. The 
simulation of serial networks of high-aspect-ratio can also 
be carried out by a variant of the IMM method, as has been 
demonstrated by Borg et al. (2013b) and Stephenson et al. 
(2015) for junction components of nano-channel networks 
(for liquids).

In this paper, we propose a hybrid multi-scale method that 
can capture the flow mechanics at micro- and nano-scales. 
First, the applicability of the original IMM is extended to 
compute internal micro-flows with localised details using 
a finite difference (FD) scheme for non-uniform grids. The 
advantage of employing the non-uniform grid FD method 
is that the majority of the subdomains can be placed where 
the required detail is greatest (e.g. in a region of high den-
sity gradients), while keeping the number of subdomains 
elsewhere to a minimum; this greatly enhances the com-
putational efficiency of the scheme overall. We apply this 
scheme to compute the flow field in the HDI gap. We also 
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propose and implement a hybrid IMM-DD method which 
couples internal flow regions captured by the IMM (with 
the internal-flow geometry represented by heterogeneously-
positioned slices) to large external domains near the inflow 
and outflow of the channel (i.e. using domain decomposi-
tion). This scheme provides a framework to couple IMM to 
the DD method and thereby enhances the applicability of 
the IMM to model regions where no scale separation exists. 
Finally, our hybrid method is employed to capture entrance/
exit effects and localised heating effects due to HAMR in the 
vicinity of the HDI gap.

The paper is organised as follows. Section 2 deals with 
the methodology for the IMM based on a non-uniform grid 
finite-difference method to simulate internal micro-flows. 
Furthermore, a hybrid IMM-DD approach that couples IMM 
with domain decomposition, focussing on multi-scale flow 
modelling aspects is discussed. Section 3 presents computed 
results based on both of these approaches, i.e. for flow within 
the HDI gap as well as hybrid flow results encompassing 
both the external inflow and outflow regions.

2 � Numerical method and formulation

2.1 � IMM methodology for internal micro‑flows

The IMM approach is designed to exploit scale separation 
in high-aspect-ratio micro-flow channels between stream-
wise (along-channel) and transverse (cross-channel) scales. 
Although micro-scale flows are characterised by low-speed 
flows, significant compressibility is still known to occur for 
dilute gaseous flows as explained by Gad-el-Hak (2006). 
Significant density variations are often generated in micro-
geometries due to a combination of high viscous losses and 
long channel lengths. Examples of such compressibility 
effects can be noted in previous works (Patronis and Lock-
erby 2014).

The channel geometry is represented by a series of 
micro-subdomain DSMC solvers that are distributed along 
the stream-wise flow direction as illustrated in Fig. 1 for 
the slider bearing geometry. These DSMC subdomains 
treat the physics fully in the cross-flow direction and inter-
act indirectly with each other via constraints applied by a 
one-dimensional macroscopic mass conservation model 
constructed along the flow-direction. In the IMM, each 
subdomain state is predicted iteratively such that all sub-
domains collectively satisfy the macroscopic mass conser-
vation, subject to the correct boundary condition imposi-
tion at the inflow and outflow of the channel geometry. The 
methodology for the DSMC subdomain simulations and the 
construction of the macroscopic mass conservation model 
is described next.

For carrying out the subdomain DSMC simulations, the 
local flow conditions (or equivalently the subdomain state) 
can be fully defined by: the gas density, �i , the tangential 
wall velocity, Uw , and the stream-wise pressure gradient, 
�i . All micro-subdomains have exactly parallel walls cover-
ing the full cross-section area of the channel at their local 
stream-wise location, x . A local parallel-flow assumption 
(valid for very low Reynolds number, gradually varying 
micro-channels where pressure differences along the stream-
wise length of a thin micro subdomain can be neglected) 
allows subdomain DSMC simulations to be carried out with 
periodic boundary conditions (in the x-direction). The peri-
odic simulations are enabled with the application of a cor-
rection body force that emulates the effect of the missing 
pressure gradient. The DSMC subdomain simulations are 
thus carried out with the aid of a body force based on the 
pressure gradient correction, �i , which for an ideal gas can 
be expressed as:

where �i can be expressed as

(1)Fs, i = −
�i

�i

Fig. 1   Schematic of the IMM 
configuration for the HDI gap 
(not to scale) with the slider at 
an angle � degrees. Subdomain 
locations (i = 1, 2,…, N) are 
indicated. Ambient pressure, P0, 
exists at the inflow (i.e. at sub-
domain, i = 1) and at the outflow 
(i.e. at subdomain, i = N)
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The computed mass flow rate, mi from the subdomain 
DSMC simulations is fed as input to a macroscopic mass con-
servation equation model for the entire geometry. The formula-
tion of the macroscopic mass conservation model is discussed 
next.

For the IMM iterative algorithm to be efficient, the varia-
tion of the mass flow rate to changes in �i and �i needs to be 
expressed in the form of a general mass conservation equa-
tion. For very low Reynolds number flows in gradually varying 
micro-channels, the velocity distribution, u(y), and hence the 
mass flow rate, mi , can be related to the sum of the fundamen-
tal individual flow components, i.e. Poiseuille, Couette and 
thermal creep flow components. Thermal creep effects can be 
ignored if there are no temperature variations along the chan-
nel walls and isothermal conditions can then be assumed. The 
Couette flow rate component is independent of the Knudsen 
number, provided both walls have the same temperature and 
accommodation coefficient. On the other hand, the exact form 
of Poiseuille flow rate component is not known apriori and 
needs to be expressed as a function of the pressure gradient 
correction, �i . In the absence of any external acceleration, the 
Poiseuille flow component can be set to be proportional to the 
net momentum flux introduced by the pressure-gradient cor-
rection. Thus, the total mass flow rate can be expressed as a 
function of the Couette flow and Poiseuille flow components 
as:

where Qwall, i is the volumetric Couette flow rate component 
that is solely due to wall motion and ki�i is the Poiseuille 
flow rate due to the pressure gradient. The Poiseuille flow 
rate component is only approximate and the constants of 
proportionality, ki , can be estimated from Eq. (3) at the 
beginning of the algorithm by performing either initial simu-
lations with arbitrary values of �i and �i or from combina-
tions of �i and �i which are previously known. In the present 
work, excellent estimates of ki has been obtained from the 
initial iteration simulations with initialisation and ambient 
pressure boundary condition values relevant to the HDI gap 
problem. As discussed in Borg et al. (2015), the accuracy 
of these initial simulations and the obtained ki values only 
determines the convergence characteristics of the method 
and does not affect the accuracy of the final IMM results. 
Equation (3) is then used to estimate the change in mass flow 
rate between successive iterations, n and n + 1:

To make the mass flow rates in each subdomain tend toward 
a single mean value, mn+1

i
 is replaced by M to obtain

(2)�i =
dp

dx

(3)mi = �iQwall, i − ki�i

(4)mn+1
i

− mn
i
= Qwall, i

(
�n+1
i

− �n
i

)
+ ki

(
�n
i
− �n+1

i

)

(5)M − Qwall, i

(
�n+1
i

− �n
i

)
+ ki

(
�n+1
i

− �n
i

)
− mn

i
= 0

Based on the equation of state for an ideal gas, Eq. (2) 
for �i can be re-written as

where R is the specific gas constant and T is the gas tempera-
ture. This allows Eq. (5) to be expressed as:

Equation (7) represents the one-dimensional macro-
scopic mass conservation equation that needs to be solved 
iteratively. The solution of this macroscopic equation then 
provides the subdomain system states, �

i
 and �

i
 , that is 

necessary for carrying out the DSMC micro-simulations 
to generate the mass flow rates, mi , for the next IMM 
iteration.

Thus, at each IMM iteration, the system of Eq. (7) for 
all subdomains need to be solved, subject to the imposition 
of pressure boundary conditions at the inflow and outflow 
of the channel to compute the unknowns, �in+1 and M . In 
the IMM configuration for the slider bearing, ambient 
pressure conditions (i.e. P0 = 1 atm) exist and are imposed 
at the first and last subdomains. Accordingly, for a total of 
N subdomains, we have N equations and N + 1 unknowns 
(i.e. N unknown density values, �n+1

i
 , at the subdomain 

locations and the target mass flow rate, M , which is an 
output of the IMM algorithm). The additional equation 
that is needed is obtained through the equation of state 
from the known (i.e. ambient) pressure boundary condition 
specified at the inflow or outflow.

At each iteration, the resulting system of equations 
(Eqs. 7, 8) for all subdomains can be solved using either 
a matrix inversion technique (e.g. LU decomposition) or 
an iterative method (e.g. Newton–Raphson). In this work, 
we have followed the Newton–Raphson iterative technique 
to obtain the solutions. Successively updated estimates of 
�i , mi , and �i are obtained at each IMM iteration until 
macroscopic mass conservation is attained, at which the 
mass flow rate in each of the subdomains must be equal:

2.1.1 � IMM algorithm

A schematic illustration of the IMM procedure is shown in 
Fig. 2. The various steps involved in the IMM algorithm 
are also summarised below:

(6)�i = RT
d�

dx

|
|
|
|

n+1

i

(7)
M − Qwall, i

(
�n+1
i

− �n
i

)
+ kiRT

(
d�

dx

|
|
|
|

n+1

i

−
d�

dx

|
|
|
|

n

i

)

− mn
i
= 0

(8)Pi = �iRT

(9)mi = M, for i = 1, 2,… ,N;
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1.	 Pre-simulation setup. Carry out initial simulations to ini-
tialise all the subdomain states and get estimates of ki for 
each subdomain based on Eq. (3). The initial iteration 
is based on setting density states in all subdomains to a 
constant value subject to the correct pressure boundary 
condition imposition at the inflow and outflow.

2.	 For the first iteration, n = 1 , carry out all micro-subdo-
main DSMC simulations with initial values of �n

i
 and �n

i
 . 

Extract the individual mass flow rate measurements, mn

i
 , 

from each subdomain simulation.
3.	 Use the current values of �n

i
 , �n

i
 and mn

i
 to collectively 

solve the set of simultaneous equations (i.e. Equations 7, 
8) using a suitable a matrix-inversion method or an iter-
ative technique like the Newton–Raphson method.

4.	 Using updated values of pressure, �n+1
i

 and �n+1

i
 , 

obtained from step 3, carry out the sub domain simula-
tions at n + 1 to get a new estimate of the mass flow rate 
mn+1

i
.

5.	 Repeat from (2) to get successively better updated val-
ues of system states at each subdomain location and an 
improved estimate of the mass flux, until macroscopic 
mass conservation is attained (Eq. 9). The final IMM 
solution can now be obtained by extracting hydrody-
namic variables like pressure, density, velocity, etc. from 
the DSMC subdomain simulations.

2.1.2 � IMM numerical considerations

Two important aspects that need to be taken into considera-
tion for the IMM are the choices for the spatial distribution 
of subdomains and the discrete representation of the density 
gradient derivative term. These choices are dependent on 
the problem being considered. The discrete representation 

of density in previous works (Patronis et al. 2013; Patronis 
and Lockerby 2014) was provided by the spectral colloca-
tion scheme based on Fourier polynomials. Pseudo-spectral 
methods, although accurate, require nodes to be distributed 
carefully, i.e. nodes cannot be arbitrarily spaced. Subdo-
mains typically need to be placed on Chebyshev nodes, as 
otherwise these result in undesirable oscillations at the limits 
of the intervals due to Runge’s phenomenon. In this work, 
the discrete representation of the density gradient derivative 
term in Eqs. (6) and (7) is enabled through a non-uniform 
grid finite difference method. The advantage of employ-
ing the non-uniform grid FD method is the flexibility that 
it provides with respect to the distribution of subdomain 
locations. Particularly, for the slider bearing application con-
sidered here, typical pressure profiles are characterised by a 
peak pressure and correspondingly large pressure gradient 
in a very small region towards the exit, while in the rest of 
the slider bearing only relatively small pressure gradients 
exist. Placing the majority of subdomains in the vicinity of 
relatively large density gradient regions (while keeping the 
number of subdomains elsewhere to a minimum) not only 
ensures optimal distribution of subdomains, but also greatly 
enhances the computational efficiency of the scheme as the 
total number of subdomains can be minimised.

The non-uniform grid FD scheme (Fornberg 1988, 1998; 
Singh et al. 2009) used in this work is derived based on dif-
ferentiating Lagrange’s interpolation polynomial scheme. 
Elegant and stable algorithms for obtaining the weights in 
FD formulas for arbitrary grids can be found in Fornberg’s 
work (1998), which derives simple recursions for calculating 
the weights of FD formulas for any order of derivative on 
one-dimensional grids with unequal spacing. As an example, 
for the first-order derivative involving the density gradient 
in Eq. (7), second-order accurate formulae for the central, 
forward and backward differencing terms based on three grid 
points, as shown in Fig. 3, can be expressed respectively as.

(10)

f �(x0) =
−(2dx1 + dx2)

dx1(dx1 + dx2)
f0 +

(dx1 + dx2)

dx1dx2
f1 −

dx1

dx2(dx1 + dx2)
f2

(11)

f �(x1) =
−dx2

dx1(dx1 + dx2)
f0 −

(dx1 − dx2)

dx1dx2
f1 +

dx1

dx2(dx1 + dx2)
f2

Fig. 2   A schematic illustration of the IMM

1x 2x0x

1dx 2dx

Fig. 3   Schematic of a finite-difference one-dimensional non-uni-
formly spaced grid
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2.2 � Hybrid IMM‑DD methodology

The non-uniform-FD IMM described in Sect. 2.1 is capa-
ble of simulating only internal micro-flows. In this work, 
we propose an IMM-DD hybrid that is capable of coupling 
internal flows modelled by IMM to domain decomposition 
type external regions outside the channel. For the slider 
bearing application considered in this study, the proposed 
hybrid method enables multi-scale modelling to couple 
rarefied internal flow regions within the HDI gap to con-
tinuum flow outside the HDI region. The coupled model 
makes it possible to capture entrance and exit effects 
and study their impact on the HDI flow field. The hybrid 
method can also simulate localised heating effects due to 
instances like HAMR near the exit of the HDI gap, where 
no obvious degree of scale separation exists.

A schematic of the IMM-DD hybrid configuration is 
shown in Fig. 4. The hybrid HDI configuration consists 
of additional inflow and outflow regions of lengths L1 and 
L2 , respectively, in addition to the slider bearing configura-
tion of length, L . In this approach, there are several IMM 
micro-subdomains representing the internal flow within 
the HDI gap (referred to as internal subdomains). As in the 
IMM described in Sect. 2.1, the internal subdomains (i = 2, 
3… N − 1) are periodic with parallel walls and can be non-
uniformly distributed based on an irregularly-spaced finite 
difference method. Additionally, there are two extra sub-
domains (shaded regions in Fig. 4), encompassing regions 
near the inflow and outflow. The two additional domains 

(12)

f �(x2) =
dx2

dx1(dx1 + dx2)
f0 −

(dx1 + dx2)

dx1dx2
f1 +

(dx1 + 2dx2)

dx2(dx1 + dx2)
f2

(referred to as the external subdomains) are much larger 
and extend across a small internal flow region as shown in 
Fig. 4. The first external subdomain, i = 1 , extends until 
station S1, while the second subdomain, i = N  , extends 
from station SN−1.

Our hybrid algorithm is an iterative scheme by which the 
internal subdomains are coupled to the external subdomains 
by essentially enforcing mass conservation to the pressure 
drop in the external subdomains and to the pressure gra-
dient in the internal subdomains. Each of the subdomains 
(both internal and external) needs to have two stations over 
which the pressure difference/gradient can be defined. For 
the internal subdomains, the mass flow rate is related to the 
sum of the Couette and Poiseuille flow rates, as in Eq. (3). 
Equation (7) is then used to estimate the change in mass 
flow rate between successive iterations for the internal sub-
domains based on the non-uniform grid FD method detailed 
in Sect. 2.1. The major difference with respect to the original 
IMM is in the placement of these subdomains relative to the 
stations at which the pressure is defined and solved. Sub-
domains at which mass conservation equations are solved 
do not coincide with the pressure stations. Instead, they are 
staggered with respect to the pressure stations (S1, S2,…, 
SN−1) as shown in Fig. 4, such that the pressure gradient 
across each internal subdomain can be defined. Accordingly, 
there are N − 1 stations (i.e. stations at which pressure is 
unknown and needs to be solved) for a total of N subdo-
mains, as illustrated in Fig. 4. The correction body force 
representing the pressure gradient at each of the internal 
subdomain locations is now defined in terms of the pressure 
at these non-coincident pressure stations.

For the two external sections, a different set of mass 
balance equations are formed at stations, S1 and SN−1, by 

Fig. 4   Schematic of the hybrid 
IMM-DD HDI configura-
tion encompassing additional 
regions near the inflow and 
outflow (not to scale). There are 
a total of N subdomains, i.e. two 
external and N − 2 internal. The 
location of both internal (i = 2, 
3, …, N − 1) and external (i = 1 
and i = N) sections are indicated 
with the shaded regions denot-
ing the external subdomains. 
The relative position of the 
pressure stations (S1, S2… SN−1) 
is also shown
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relating the respective pressure drop over these two extra 
regions to the mass flow rates in each of them. Consequently, 
the mass balance equations at stations S1 and SN−1 can be 
expressed respectively as Eqs. (13) and (14) given below

The constants of proportionality, ki , in Eqs. (13) and (14) 
can be estimated at the beginning of the algorithm either 
from pre-simulations or based on pressure solutions from the 
Reynolds gas lubrication equation for a faster convergence. 
The change in mass flow rate between successive iterations 
for the two external subdomains can now be expressed as

where M = mn+1
i

 to enable the mass flow rates in each sub-
domain to tend to a single macroscopic value. Equations (7), 
(15) and (16) represent the one-dimensional macroscopic 
mass conservation model for the hybrid IMM-DD that needs 
to be solved in conjunction with the DSMC subdomain 
simulations, at each iteration. The DSMC simulations pro-
vide the mass flow rates, mn

i
 at the subdomain locations, the 

methodology of which is described next.
The internal DSMC subdomain periodic simulations are 

carried out based on a correctional body force representing 
an effective pressure gradient, which is evaluated based on 
the non-uniform grid FD method detailed in Sect. 2.1. The 
modelling of external subdomains, however, needs care-
ful consideration, as they are non-periodic with significant 
pressure gradients existing along the subdomains. Therefore, 
they cannot be simulated using an effective body force as 
in the case of the internal subdomains. We employ DSMC 
pressure boundary conditions to model the subsonic inflow 
and outflow of these special regions. Ambient pressure con-
ditions, i.e. p = P0 exist and are, therefore, imposed along 
the external boundaries of the external subdomains (denoted 
by dotted lines in Fig. 4). The IMM pressure solution at 
station S1 is imposed at the exit (outflow) of the first exter-
nal subdomain, i = 1 . Similarly, the IMM pressure solution 
obtained at station SN is imposed at the inlet (inflow) of the 
second external subdomain, i = N . At these subsonic DSMC 
inflow and outflow boundaries, particles enter the domain 
from outside, the properties of which need to be determined 
appropriately. To fix the pressure boundary conditions, we 
have followed the subsonic characteristic boundary condi-
tions (Wang and Li 2004), based on which, mainly the pres-
sure is imposed, while other macroscopic flow properties at 
the boundaries are derived from the interior flow solution.

(13)mi = �iQwall, i + ki
(
P1 − P0

)

(14)mi = �iQwall, i + ki
(
P0 − PN−1

)

(15)M − Qwall, i

(
�n+1

i
− �n

i

)
− ki

(
Pn+1
i

− Pn
i

)
− mn

i
= 0,

(16)M − Qwall, i

(
�n+1

i
− �n

i

)
+ ki

(
Pn+1
i

− Pn
i

)
− mn

i
= 0,

The system of equations (i.e. Equation 7 for the internal 
subdomains and Eqs. (15) and (16) for the external sub-
domains) is collectively solved using an iterative method 
(e.g. Newton–Raphson) to get new updated values of pres-
sure at each station. For a total of N subdomains, including 
both internal and external regions, we have N equations 
and N unknowns (i.e. N − 1 unknown pressure values at 
the stations and the target mass flow rate, M , which is 
an output of the IMM algorithm). Successively updated 
values of �i , mi , �i , and Δp are obtained at each iteration 
until mass conservation is attained.

2.3 � Hybrid IMM‑DD algorithm

The steps involved in the hybrid IMM-DD are summarised 
below:

1.	 Initial setup. As in all IMM based methods, an initial 
iteration is carried out for initialisation of all the subdo-
main states and to get estimates of ki for each subdomain 
based on Eqs. (7), (15) and (16). The initial iteration is 
based on setting density states in all subdomains to an 
arbitrary value subject to the correct boundary condition 
imposition at the inflow and outflow.

2.	 For the current iteration, n , use the pressure values at 
each station to simulate all the subdomains. Carry out 
all internal periodic subdomain DSMC simulations with 
values of Pn

i
 and �n

i
 estimated from the pressure stations 

based on the non-uniform grid FD method. The external 
subdomains are simulated with DSMC pressure bound-
ary conditions using the pressure solution, Pn

i
 , at stations 

S1 and SN−1 and ambient pressure P0 at the other external 
boundaries. Obtain the individual mass flow rate meas-
urements, mn

i
 , from each subdomain simulation.

3.	 Use the current values of Pn

i
 , �n

i
 and mn

i
 to collectively 

solve the set of simultaneous equations (i.e. Equations 7, 
15 and 16) using a suitable iterative technique like the 
Newton–Raphson method.

4.	 Obtain updated values of pressure, pn+1
i

 , at each of the 
stations and an overall mass flow rate prediction, M . 
The updated pressure solution at stations S1 and SN−1, 
effectively couples the internal flow to the external flow 
by providing the necessary boundary condition to solve 
the external subdomains.

5.	 Repeat from (2) to get successively better updated values 
of pressure at each station and an improved estimate of 
the mass flux, until macroscopic mass conservation is 
attained (i.e. the mass flow rates in each subdomain are 
equal to M).
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3 � Results and discussion

In this section, we apply the IMM and discuss the com-
puted results for various HDI configurations. Before focus-
sing on detailed validation of the IMM, we initially test 
and compare the accuracy of non-uniform-FD IMM solu-
tions to corresponding IMM results from an evenly spaced 
finite-difference grid and the spectral collocation scheme 
(Patronis and Lockerby 2014). Comparisons have been 
done for a slider configuration of length L = 5 μm, flying 
height H0 = 50 nm and disk wall velocity Uw = 25m/s . 
For this particular test case, we have employed a second-
order slip solver for estimating the mass flow rate from the 
micro-subdomains. Ten subdomains have been employed 
for all cases. Comparisons of the pressure profiles com-
puted by the three methods are shown in Fig. 5a. Excellent 
agreement is observed between the pressure profiles com-
puted by all three methods. The convergence of the mean 
mass flow rate as a function of the IMM iteration number 
is shown in Fig. 5b. Error bars for the mean mass flow rate 
computed by the three methods are shown and the mean 
mass flow rate is computed as the average of the mass 
flow rate measurements from all the subdomains. The error 
bar is based on E = s∕

√
N  where s is the standard devia-

tion and N  is the total number of subdomains. Our results 
demonstrate that accurate results can be achieved using the 
non-uniform grid FD method, with the additional advan-
tage and flexibility of clustering relatively more subdo-
mains in regions of large pressure gradients (e.g. towards 
the exit region) for the same total number of subdomains.

Next, we focus on detailed validation of the IMM to 
compute flow in the vicinity of the HDI region. First, we 

discuss the non-uniform grid FD IMM validation results 
for the slider bearing flow within the HDI region, i.e. with-
out considering flow regions outside the slider. This will 
be followed by validation of the hybrid IMM-DD solutions 
that couple internal HDI regions to additional regions out-
side the slider. In all cases, the IMM results have been val-
idated against full-scale DSMC simulation results for the 
same flow configuration. All DSMC simulations (both full-
scale DSMC as well as IMM subdomain atomistic solu-
tions) have been carried out using the dsmcFoam + code 
(White et al. 2017). The dsmcFoam + code operates within 
the framework of the open source CFD code, OpenFOAM 
(2014), and has been validated for a wide range of bench-
mark test cases (John et al. 2016; Palharini et al. 2015; 
Scanlon et al. 2010; White et al. 2017). To ensure accuracy 
of both our subdomain and full DSMC simulations, we 
have followed the established guidelines with respect to 
the cell size, time step, and particle numbers (Alexander 
et al. 1998; Hadjiconstantinou 2000; Hadjiconstantinou 
et al. 2003). The cell sizes in our study are defined to be 
much smaller than one-third of the mean free path, and 
an average of at least 50 particles has been considered in 
each cell. The time step for the DSMC simulations is taken 
to be five times smaller than Δxmin

/(
Vmp + Uw

)
 , where 

Δxmin is the smallest cell dimension, Vmp is the most prob-
able molecular velocity given by Vmp =

√
2RT∞ , R is the 

gas constant, T∞ is the reference temperature, and Uw is 
the wall velocity.

3.1 � IMM slider bearing results

We consider a slider bearing region of length, L = 5 
μm, pitch angle, � = 0.01 rad and disk wall velocity, 
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Fig. 5   IMM solutions for a pressure profile and b mean mass flow rate convergence computed by the different methods considered
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Uw = 25 m/s . Four different cases of flying height, H0 , are 
considered: 50 nm, 15 nm, 5 nm and 3 nm. The computed 
IMM solutions for pressure at different stream-wise loca-
tions are compared with full-scale DSMC solutions in Fig. 6. 
The lower the flying height, the higher the peak pressure and 
higher loading capacity of the slider bearing. Correspond-
ingly, the number of subdomains employed to capture the 
pressure gradient near the exit also varies depending on the 
flying height considered. The number of subdomains con-
sidered varies from N = 6 for the H0 = 50 nmcase to N = 10 
for the case with H0 = 3 nm . Excellent agreement can be 
observed between the full DSMC results and the IMM solu-
tions for all cases considered.

Next, we compare the computed wall shear stress values 
on both top (slider) and bottom (disk) walls. Shear stress 
gives important information about the forces acting on the 
walls. The wall shear stress has been computed based on 
the time-averaged tangential momentum exchange between 
the wall and the colliding molecules per unit time and 
area (Bird 1994). Comparison of the computed wall shear 
stress values between the full DSMC simulation and the 
IMM solutions for different cases of flying height is shown 
in Fig. 7. The wall shear stress, �w in these plots is non-
dimensionalised with respect to the parameter, �0 , where 
�0 = �Uw∕L , � , being the viscosity of the gas given by 
� = 2.125 × 10−5Pa s at a reference temperature T = 273 K . 
Peak values of wall shear stress are observed towards the 
exit of the slider bearing where the peak pressure is also 
located. In general, for all cases of flying height consid-
ered, the IMM solutions compare very well with the exact 
solutions, except at the exit of the channel (where the last 
subdomain is placed) where a discrepancy can be noted for 
the cases involving very small flying heights. This can be 
attributed to the fact that the peak pressure, which is several 

times higher than the ambient pressure, is also very close to 
the exit for these cases. This makes ambient pressure bound-
ary condition imposition at the outflow imprecise for the full 
DSMC simulation. The IMM on the other hand fixes the 
ambient conditions at the exit more exactly and hence the 
discrepancy between the two approaches.

Finally, we compare the computed IMM velocity profiles 
across the channel height, at selected stream-wise locations 
along the channel. Validation is shown for three selected 
cases of H0 in Fig. 8. It is to be noted that the subdomain 
(stream-wise) locations in Fig. 8 varies for the different cases 
considered, since the total number of subdomains varies 
from N = 6 for the H0 = 50 nm case to N = 10 for the case 
with H0 = 3nm . Good agreement can be observed for all 
three cases at the different sections of the channel consid-
ered. A discrepancy can be noted at the exit, particularly 
for the H0 = 3 nm case. Again, this can be attributed to the 
imprecise ambient outflow boundary condition imposi-
tion for the full DSMC simulation, since the peak pressure 
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location is very close to the channel exit for this case. This 
leads to minor discrepancies in the pressure drop at the exit 
of the channel when compared to the IMM which fixes the 
ambient conditions at the outflow more exactly.

3.2 � Hybrid IMM‑DD results

Validation of the hybrid IMM-DD method has been demon-
strated for four selected HDI configurations. The IMM-DD 
HDI configuration for the results discussed in this section 
follows the schematic shown in Fig. 4. Only selected results 
are shown for the sake of brevity. First, we test our hybrid 
method on the slider configuration of dimensions L = 5 μm, 
H0 = 50 nm, � = 0.01 rad and Uw = 25 m/s . For this test 
case, we consider a total of ten subdomains. The dimen-
sions of the external subdomains (i.e. L1, H1, L2 and H2 ) are 
conservatively chosen such that their external boundaries 
are located sufficiently far away from the inflow and out-
flow regions of the internal micro-flow domain. Accordingly, 
the external subdomain, i = 1 , has dimensions L1 = 1.5 μm, 
H2 = 1μm and also includes a small internal flow region 
of length, l1 = 0.5 μm, until station S1 as shown in Fig. 4. 
Similarly, the external subdomain, i = N  , has dimensions 
L1 = 1.5 μm, H2 = 1 μm and also includes a small internal 
flow region of length, l2 = 0.5 μm, until station SN−1. The 
internal subdomains are distributed non-uniformly between 
the external subdomains. The computed pressure profile 
from the IMM-DD solutions are validated against full-scale 
DSMC results and the comparison is shown in Fig. 9a. Good 
agreement between the solutions can be noted, with the pres-
sure rise near the slider entrance region and pressure drop 
near the exit of the slider well captured by the hybrid IMM 
solutions. The mean mass flow rate convergence as a func-
tion of the IMM iteration number for this case is shown in 
Fig. 9b, which converges to a constant value very quickly. 
Minor differences can be noted between the mass flow rates 
predicted by the full-scale DSMC and IMM-DD methods. 
However, the maximum error in the mass flow rate predicted 
by the IMM-DD method is consistently less than five percent 
from iteration number 2.

Additional validations for the hybrid IMM-DD method 
have also been carried out for exactly the same HDI region 
configuration as above, but with different flying heights, 
H0 = 25 nm and H0 = 15 nm . The results for the pressure 
solution are shown in Fig. 10 and very good agreement can 
be observed between the IMM and the exact solutions, com-
puted by full-scale DSMC, for both cases.

The next generation HDD’s require a flying height of the 
order of a few nanometers and modelling instances like par-
ticle–surface interaction, asperity, localised heat generation 
due to HAMR, etc. will play a key role in determining accu-
rate flow field conditions near the read/write head region. 
DSMC can be employed for a detailed investigation in any 
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such small selected region of interest to capture the true 
physics, while the rest of the slider bearing region can be 
modeled by the IMM. To demonstrate this coupling capa-
bility, we now consider an IMM-DD hybrid simulation of a 
slider configuration involving localised heating that is repre-
sentative of HAMR. For this case, the localised heating pre-
vents the use of the IMM throughout the gap. A total of six 
subdomains have been considered for this case. The external 
subdomain, i = 1 , extends until station S1 and has dimen-
sions, L1 = 1 μm, l1 = 0.5 μm, and H2 = 1 μm, as shown in 
Fig. 4. Similarly, the external subdomain, i = N  , extends 
until station SN−1 and has dimensions, L2 = 1 μm, l2 = 1 μm 
and H2 = 1 μm. The slider bearing configuration considered 
here has dimensions L = 5 μm, H0 = 25 nm, � = 0.01 rad 
and Uw = 25 m/s . To mimic the HAMR heating effects, a 

higher wall temperature of Tw = 773K is imposed on the 
bottom wall in a very small region of length 50 nm , near to 
the exit of the slider. A uniform wall temperature distribu-
tion has been assumed in the hot spot region for simplicity. 
Elsewhere, a constant temperature of Tw = 273 K is con-
sidered on both upper and lower walls. The distribution of 
the imposed wall temperature boundary profile on the disk 
and the relative location of the hot spot are shown in Fig. 11.

The predicted pressure profile by the IMM-DD method 
is compared against full DSMC solutions in Fig.  12. 
The computed baseline pressure profile for the same 

(a) (b)

-0.25 0.0 0.25 0.5 0.75 1.0 1.25

x/L

0.9

1.0

1.1

1.2

1.3

1.4
p/

P 0

Full-DSMC
IMM-DD

Fig. 9   Plots showing a validation of hybrid IMM-DD pressure profile with full-scale DSMC solution and b IMM-DD mass flow rate conver-
gence. The error bars for the mean mass flow rate are also shown. The slider bearing region is located between, 0 < x∕L < 1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

x/L

1.0

1.25

1.5

1.75

2.0

2.25

2.5

2.75

3.0

p/
P 0

IMM-DD (H0=25nm)
Full-DSMC (H0=25nm)
IMM-DD (H0=15nm)
Full-DSMC (H0=15nm)

Fig. 10   Validation of the hybrid IMM-DD pressure profile with 
full DSMC solutions for HDI configurations with H

0
= 25 nm and 

H
0
= 15 nm

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

x/L

200

300

400

500

600

700

800

900
T w

 (K
)

Wall temperature profile

T=273K

T=773K

Fig. 11   Wall temperature profile imposed on the disk (bottom wall) 
for simulating the localised heated spot associated with HAMR. The 
slider bearing region falls in the range 0 < x∕L < 1 . The external sub-
domain, i = 1 , is located in the region − 0.2 < x∕L < 0.1 , whereas the 
external subdomain, i = N , is located in the region 0.8 < x∕L < 1.2 . 
The heated region lies completely within the external subdomain, 
i = N , between 0.94 < x∕L < 0.95



	 Microfluidics and Nanofluidics (2018) 22:106

1 3

106  Page 12 of 14

configuration without any localised heating is also shown. 
It can be clearly observed that HAMR significantly alters 
the pressure profile with a higher peak pressure, leading 
to enhanced loading capacity of the slider bearing. Good 
agreement between the hybrid results and full-scale atom-
istic solution is obtained. The pressure spike due to the 
hot spot is well captured by the hybrid method.

We have also computed the flow velocity and wall 
shear stress profiles along the disk surface represented by 
the bottom wall. Comparisons between the hybrid IMM-
DD solutions and full-scale DSMC solutions for both 
these parameters are shown in Fig. 13. The wall shear 
stress, �w , in Fig. 13b is nondimensionalised with respect 
to the parameter, �0 , where �0 = �Uw∕L . The hybrid solu-
tions match closely with the exact solutions for both flow 
velocity and wall shear stress. Minor discrepancies can 
be noted at the entrance location (inflow) of the external 
subdomain. However, these are noted to be only local to 
the boundary. This can be attributed to the numerical arte-
facts from the pressure boundary conditions at the cou-
pled region. Therefore, some considerations need to be 
kept in mind while selecting the boundary of the external 
subdomain and imposing the pressure boundary condi-
tion. It is recommended not to place the coupled boundary 
region too close to the pressure spike. Additionally, for 
the pressure boundary condition to be more exact and to 
minimise the related error, it is recommended to impose 
the boundary condition from volume reservoirs (Tysanner 
and Garcia 2005) rather than from surface reservoirs as 
is done typically.

3.3 � IMM computational savings

The computational savings provided by the IMM mainly arises 
from two aspects. First, IMM requires significantly less cells 
and particles when compared to a full-scale DSMC solution. 
Second, the flow development time associated with a full-scale 
DSMC solution is substantially longer than the corresponding 
time needed for the IMM subdomains. An estimate on the 
computational savings, S , can be obtained using

where Ncell is the number of cells, Pcell , is the number of par-
ticles per cell, Td is the number of time steps it takes for flow 
development (i.e. to reach steady state), Tav is the sampling 

(14)S =

[
NcellPcell

(
Td + Tav

)]
Full[

NcellPcell

(
Td + Tav

)]
IMM

× Nit
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period for time-averaging and Nit is the number of IMM 
iterations required. For consistency, the same number of par-
ticles per cell and sampling period are considered for both 
IMM and full-scale DSMC simulations to estimate S . For all 
IMM slider bearing simulations reported in Sect. 3.1, IMM 
is about 15–20 times faster than a full-scale DSMC solu-
tion. On the other hand, the IMM-DD simulations reported 
in Sect. 3.2 are only about 2–3 times faster than full-scale 
DSMC. For the hybrid simulations, the computational sav-
ings predominantly comes from the reduced flow develop-
ment time, as the subdomains reach steady state quickly 
compared to a full-scale solution. However, it is important 
to note that, while we have considered only representative 
slider lengths of 5 microns for validation purposes, realistic 
sliders have lengths of the order of a few millimetres. For 
such realistic slider bearing geometries, the estimated com-
putational savings from the IMM will be at least two orders 
of magnitude.

4 � Conclusions

A hybrid internal multi-scale method that is capable of mod-
elling multi-scale flow in micro- and nano-devices has been 
presented. In particular, our model provides a framework to 
couple internal micro-flow regions modelled by the IMM 
approach to external flow regions modelled by a domain 
decomposition method. We have applied our hybrid IMM-
DD approach to compute the flow field in the vicinity of the 
head-disk interface gap region in a hard disk drive enclosure. 
The internal flow regions within the HDI gap are modelled 
by the IMM based on a non-uniform grid finite-difference 
method to capture the strongly varying pressure gradient. 
The proposed hybrid method is then employed to couple 
internal micro-flows to the flow outside the HDI gap. In 
particular, cases involving localised heating effects in the 
HDI gap, where no obvious degree of scale separation exists, 
even within the HDI gap, can be modelled by our hybrid 
method. In all cases considered, the hybrid solutions are in 
good agreement with the full-scale DSMC solutions. Addi-
tionally, the IMM is significantly faster than full DSMC 
solutions by about 15–20 times for the slider bearing simu-
lations considered, whereas for the hybrid slider simulations 
the IMM is about 2–3 times faster. It is to be noted that for 
realistic HDI geometries, whose lengths are in the millimeter 
range, the estimated computational savings from the IMM 
will be at least two orders of magnitude.

To summarize, we have developed a novel hybrid IMM-
DD multi-scale method that is capable of coupling the IMM 
to the domain decomposition method and applied it to the 
HDI gap problem. Although this work has focused on a 
particular application to demonstrate the capability of our 
method, the proposed hybrid approach can be easily applied 

to simulate similar scale-separated multi-scale problems in 
other micro- and nano-devices. By suitably selecting the 
IMM subdomains and domain decomposition regions in a 
given problem, the hybrid method is capable of simulating 
very long micro-channels that can also have additional com-
plexities like localised heating effects, asperities, additional 
inflow/outflow regions, etc. with substantial computational 
savings over a full-scale molecular solution.
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