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Abstract

Background: Optimism regarding prospects for elatimy HIV by expanding
antiretroviral treatment has been emboldened it par projections from several
mathematical modeling studies. Drawing from a deda¢mpirical assessment of rates of
progression through the entire HIV care cascadequeatify for the first time the extent
to which models may overestimate health benefttsfpolicy changes when they fail to
incorporate a realistic understanding of the cascad

Setting: Rural KwaZulu-Natal, South Africa

Methods: We estimated rates of progression thratghes of the HIV treatment cascade
using data from a longitudinal population-based Hurveillance system in rural
KwaZulu-Natal. Incorporating empirical estimates anmathematical model of HIV
progression, infection transmission, and care, stinated life expectancy and secondary
infections averted under a range of treatment sagalscenarios reflecting expanding
treatment eligibility thresholds. We compared thesults to those implied by the
conventional assumptions that have been commonlgtad by existing models.

Results: Survival gains from expanding the treatnedigibility threshold from CD4 350
to 500 cellsiL and from 500 cellgil to treating everyone irrespective of their CD4
count may be overestimated by 3.60 and 3.79 timesodels that fail to capture realities
of the care cascade. HIV infections averted froigimg the threshold from CD4 200 to
350, 350 to 500, and 500 celit/to treating everyone may be overestimated by,1.10

2.65, and 1.18 times.



Conclusion: Models using conventional assumptiobgut cascade progression may
substantially overestimate health benefits. As enmntation of treatment scale-up
proceeds, it is important to assess the effecteaiired scale-up efforts in a way that

incorporates empirical realities of how people mtweugh the HIV cascade.

Keywords: cascade, longitudinal, treatment as preéwe, empirical

Introduction

Ambitious global targets have been established ringban end to the HIV/AIDS
epidemic. The Sustainable Development Goals andtited Nations General Assembly
endorsed the goal to end the AIDS epidemic by 2(3P). The Joint United Nations
Programme on HIV/AIDS (UNAIDS) continues to urgeuotries to adopt a “Fast-Track”
approach toward this goal, operationalized in goftargets known as 90-90-90: 90
percent of people living with HIV knowing their HI¥tatus, 90 percent of those with
known status being on antiretroviral treatment (AR@nd 90 percent of those on
treatment ‘with suppressed viral loads (3). While 80-90-90 framework has been
prominent in policy discussions around ending Alii&re remain substantial gaps in the

avallability of evidence on attainment of the tasggcross countries (4).

Optimism regarding prospects for eliminating HI\érsts in part from positive research
findings regarding the efficacy of treatment asvprgion (TasP) (5) and immediate
initiation of ART upon diagnosis, known as ‘tesdaneat’ (6). Several mathematical

models were constructed to estimate the potengaltih impacts of TasP. However,



models often assume treatment uptake (7-9), coediaf)0), and adherence rates (6,7,11)
that are higher than what would be expected in Iigl without specifying how these
high rates will be achieved nor including costst tledlect the additional activities and
interventions that might be needed. In contragh&conventional assumptions in many
modeling studies, empirical studies have producexkednresults for TasP (12-15),
reporting relatively poor or inconsistent resudis linkage to care (12) and retention (13).
Mathematical models often are instrumental in imfimg strategic directions towards
ambitious elimination targets. As implementationti@atment scale-up continues, it is
important to assess costs and effects of requicadesip efforts in a way that
incorporates empirical realities of how people mtdweugh the HIV care cascade (16).
This is crucial both in terms of setting realiggi@ectations and making feasible plans for
what can be achieved at a certain cost, and farsfog on specific aspects of the cascade
that require a suite of interventions that collesly comprise a scale-up strategy. While
some of the existing literature have discussedriportance of reflecting the treatment
cascade in HIV modeling, to date, no one has diietine extent to which the results
change when models do not incorporate a realistierstanding of the cascade. Drawing
from a detailed empirical assessment of rates ofjpession through the HIV care
cascade from an individual-level longitudinal dathis paper aims to measure the
potential discrepancies between model projectionts the health benefits that may be

realized in real life.



M ethods

This study is composed of two parts: a longitudidata analysis from an empirical
cascade of care, and the construction of two modeks that reflects the structure of the
empirical cascade as well as the leakages anddelagceiving care, and another that
reflects the conventional assumptions observedulslighed models. We compared the
health benefits derived from the two models undéfergnt treatment eligibility

thresholds, and estimated the incremental healtbflie of increasing the threshold.

Sudy site and population

The Africa Health Research Institute (AHRI), lochie KwaZulu-Natal, South Africa,
has maintained an HIV-focused health and demogcaphveillance system in the region
since 2003, including individual HIV testing, anhb@usehold survey data, and clinical
records. This region has a very high prevalenceHbf and poor socioeconomic
indicators (17). Rates of reaching subsequent stalgihe cascade were obtained through
individually-linked longitudinal analysis (18) with the same population, avoiding
concerns ‘of double-counting the recurring patieats a separate individual and
misclassifying deaths or those that sought carettar locations as lost to follow up

(LFU) (19). Detailed description of the data souscavailable elsewhere (17,18).

We identified 7,707 patients with records of fikdtV-positive test results, which is
recorded in the surveillance data and does naatefhe time of infection nor when they
first learn their positive status, and followedrthéhrough their subsequent interactions

with the health system. All dates in which patiestsessed care, including whether they



are aware of their positive status, enrolled in-ART care, and initiated ART, are
recorded. Individuals were considered eligible ART if they had a CD4 count that met
the eligibility criteria, which varied over time.h& eligibility threshold was CD4 count
<200 cellspiL up to July 2011, and the threshold was raised td €aunt<350 cellsjiL
afterwards during the study period. Every six menire-ART patients were scheduled
to return to care to determine eligibility, andipats on ART were scheduled for follow-
ups. If they did not return on expected dates,thElJ dates as well as return dates (if
they return) were documented. Approximately halthe# sample (n=3,533) had records
of their CD4 count before or at the time of beiitkéd to pre-ART care. Everyone was
censored in January 2014. Detailed definitions athehealth state and its associated

activities are in Appendix S1, http:/links.lww.cé@Al/B221.

Satistical analysis

First, on analyzing the empirical data, we estimai®e varying monthly probabilities of
transition between cascade stages. Seven trarssitivere estimated: (1) from
undiagnosed to diagnosed; (2) from diagnosed tketinto pre-ART care; (3) from
retained in pre-ART care to LFU; (4) from LFU frgone-ART to returning to pre-ART
care; (5) from pre-ART care to receiving ART; (6)rh retained in ART to LFU; and (7)
from LFU from ART to resumed ART. Viral suppressiamas not routinely measured
during the study period, so we were not able téuhe this step as a model stage. For
steps between being undiagnosed to diagnosed agdadied to linked to pre-ART care,
we applied Kaplan-Meier non-parametric survivallgsia on the full dataset (n=7,707),

pooled across CD4 levels, to derive the monthiyditeon probabilities. For steps



between being linked and lost to follow from ARTyen the different rates in which
people with different CD4 counts initiate and adhty ART (20), we estimated CD4-
specific monthly transition probability using KapidMeier non-parametric survival
analysis, stratifying the dataset by CD4 cell coaintime of linkage to pre-ART care.
Detailed explanations of the methods applied foivdeg monthly transition probabilities

for each transition are in Table S1, http://linksvi.com/QAI/B221.

Model design

We developed two discrete-time Markov models, oeecting the structure of the

empirical cascade data (the “cascade” model) amdhan reflecting the conventional

assumptions typical of existing models (the “cortimral” model), to compare the

differences in the estimated health benefits betwle two models. The empirically-

based cascade model includes 25 mutually excliseaéh states, representing four CD4
count stages, four cascade stages, two lost-towellp stages, and death (as an
‘absorbing’ state, in modeling parlance) (Figurg. M/e applied the sets of transition
probabilities along the treatment cascade descridiede. Model parameters related to
the natural progression of and recovery from tlsease and mortality were derived from

published literature, listed in Appendix S2, hiijpks.lww.com/QAI/B221.

<Insert Figure 1a here>



In comparison to the empirically-based cascade imdlde conventional model reflects
more optimistic assumptions that have been typiadeveral existing models. In this
conventional model, the cohort advances througitrtrent stages with minimal leakages
and time delays in being linked to care (7,8,10yyFe 1b). Nine health states were
constructed, representing different CD4 count Sagreatment stages, and death. The
transition probabilities were derived from publidhgerature (7,8,10). For example, once
their CD4 count drops below the eligibility criterithey are immediately initiated on
treatment, and throughout their lifetime experieno@ rates of dropouts (only 1.5
percent drop out every year) (7). Those who drdpreturn to treatment at the same rate

as the treatment naive patients.

<Insert Figure 1b here>

Both models started with a hypothetical cohort &¥ ldatients with CD4 counts greater
than 500 cellglL, and modeled the transitions the cohort faceaglkhe cascade. We
used a transition cycle length of one month. Taiemsompatibility between the models,
we standardized the proportion of people beingelthko care at 86% within four years
after their first positive HIV test starting fronmd lowest CD4 level, consistent with

levels.in the empirical dataset (18).

The main health outcomes of interest were HIV sialyimeasured as life expectancy,
and HIV transmission, summarized in terms of thenglative number of secondary

infections transmitted per infected person. In orereflect variation in transmission



risks that depend on different types of sexual bskavior, we derived two different
measures of secondary transmission, correspondingetial monogamy and random
mixing among sero-discordant partnerships. In lo#thes, the measures represent the
number of secondary infections that would occur déach infected case in a fully
susceptible population caused by this cohort (wiscknown as the basic reproduction
numberR,). To compute secondary infections for the seriahagamy model, we used
the approximation developed by Hollingsworth andeagues. (21), which accounts for
transmission hazards at successive stages of inriecates of partner change, and the
duration of each health stage. To compute second&gtions for the random mixing
model we multiplied the stage-specific transmisgiaes by the duration of each health
stage. Details on the transmission calculations previded in Appendix S3,
http://links.lww.com/QAI/B221.  For both mortalitgnd secondary transmission under
the two scenarios, we estimated the distributiothe$e outcomes across different stages

of the cascade.

Finally, we compared the incremental benefits gbagding treatment eligibility from
CD4 count 200 to 350, 350 to 500, and 500 gqéllsto treating everyone. The
comparisons reflect both the retrospective expeedenf broadening eligibility and the
prospective expectation of broadening the eligypifurther in the movement toward a

universal test and treat approach.
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We conducted one-way sensitivity analyses on afistamnt transition probabilities to
examine the robustness of our results. In additwe, applied cascade transition
probabilities from a published paper that were \aeti from a real-life study and
compared our results to this new model.(22) Aluhssare presented in Appendix S4,

http://links.lww.com/QAI/B221.

Role of the funding source

The funders had no role in the design of the aiglysterpretation of the results, or the
decision to submit for publication. The correspagdauthor had final responsibility for

the decision to submit for publication.

Results

Empirical measures of transitions in the care cascade

Among the overall sample, 55% of those being diagddransitioned to pre-ART care
within four years of their first positive HIV tesBefore July 2011 when treatment
eligibility threshold in South Africa was CD4 20@lis/iuL, among those with a CD4

record (n=1,947), 53, 73, 70, and 81% of peoplér @D4 of less than 200, 200-350,
350-500, and above 500 were LFU from pre-ART cAraong those with CD4 less than
200 cellspL and were linked to pre-ART (n=1,248), 82% in@dtART, and no one with

a higher CD4 count initiated ART. Among those windiated ART (n=1,024), 28%

were LFU during the study period. Between July 28t&d January 2014 when treatment

11



eligibility threshold was CD4 350 celjd/, among those with a CD4 record (n=379), 31,
44, 35, and 37% of people with CD4 of less than, 200-350, 350-500, and above 500
were LFU from pre-ART care. Among those with CD4sleghan 200 and 200-350
cellspiL, 73% (n=119) and 71% (n=77) of initiated ART, asthong them, 8 and 17%

were LFU from ART, respectively (Table 1).

<|nsert Table 1 here>

Estimated life expectancy in empirical cascade model and conventional model

Under the empirical cascade model, life expectdoncya cohort of HIV patients with
CD4 greater than 500 celld/ was estimated to be 16.9, 20.7, 23.9, and 24aésyender
the treatment eligibility criteria of CD4 count 20850, 500 cellgiL and treating all
individuals with HIV, respectively. In comparisolife expectancy estimates under the
conventional model given the four eligibility thredds were 17.9, 22.0, 33.6, and 36.3
years (Figure 2a). In looking at the distributiohnoortality by cascade stages, in the
empirical model, the majority of deaths occur befpre-ART care, since more than half
of the population stay in this stage without eveing linked to pre-ART care or initiating
ART (Figure 3a). Expansions of treatment eligigilead to increases in the proportion of
deaths occurring during treatment, reflecting risksleath from causes other than AIDS.
Changes in the eligibility threshold have a morenpunced effect on the distribution of
mortality in the conventional model, from 10% ofaties occurring in treated patients

with eligibility at CD4 200 cellg/L to 82% when everyone is treated irrespective D#C
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<Insert Figure 2a-c here>

<Insert Figure 3a-b here>

Estimated infections averted by treatment in empirical cascade model and conventional
model

The numbers of estimated secondary infections itndtexi by each source infection were
higher in the empirical cascade model than in theventional model for both behavioral
scenarios. Under the random mixing scenario, thereld be an estimated 2.14, 2.09,
1.84, and 1.29 secondary infections per case uheefour treatment eligibility criteria,
respectively (Figure 2b). The majority of transross would occur before the person is
linked to pre-ART, and the proportion would deceeasth higher treatment thresholds
(Figure 3b). In comparison, the number of secondaBctions per case would be 1.74,
1.68, 1.14, and 0.46 in the four different eligiyil criteria, respectively, in the
conventional model. Nearly all transmissions oaghen patients are undiagnosed under
most treatment thresholds. When treatment is aaile everyone irrespective of CD4
count, 31% of transmissions occur among people Rt Aecause the time spent being
on treatment is much longer than not being on rmeat, compared to less inclusive
treatment threshold scenarios. Under the serialogemy scenario, the numbers of
secondary infections per case were estimated 4 1.53, 1.40, and 0.92 in the empirical
cascade model, and 1.27, 1.26, 0.92, and 0.35eircohventional model, respectively

(Figure 2c).
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<Insert Figure 3a-b here>

Incremental benefits from expanding treatment eligibility

Considering the benefits in moving from one eliliifpicriterion to the next, we estimated
smaller health benefits with each expansion oftineat eligibility in the empirical
cascade model compared to the conventional moefédcting the impact of the cascade
(Table 2), and the differences were especially puoced as more inclusive eligibility
criteria were adopted. In the empirical cascadeehadising the eligibility criteria from
CD4 count 200 to 350 celldl increased population life expectancy by 45.9 mo(38
years) and reduced the average number of new imfisctaused by an individual by 0.04
(2.0%) and 0.01 (0.7%) for the two behavioral scesarespectively. The conventional
model suggests slightly greater health benefitsh viliis expansion of eligibility,
producing an increase in life expectancy by 49.mtm® (4.1 years) and a reduction in
secondary infections by 0.06 (3.5%) and 0.01 (0.8%%)he two behavioral scenarios,
respectively. In comparison, increasing the treatrtiereshold from CD4 500 celjd/ to
treating everyone would add only 8.7 months (0.argke of life expectancy in the
empirical cascade model, compared to 32.9 montfisyéars) in the conventional model,
and to reduce secondary infections by 0.54 (29.3%J 0.48 (34.3%) under both
behavioral scenarios, compared to 0.68 (59.6%)Gbd (62.0%) in the conventional

model.
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Comparing the two models in relative terms, theveotional model produces estimated
increases in health outcomes (both life years gaarel transmissions averted) that are
slightly greater, at 1.08 to 1.38 times, than thosthe empirical cascade model under an
eligibility expansion from CD4 count 200 to 350Is4iL, 2.09 to 3.60 times higher with
a change from 350 to 500 cellt/ and 1.18 to 3.79 times higher with the expangiom

500 cellsfiL to treating everyone.

<|nsert Table 2 here>

Discussion

In this study, we compared the expected health fienffom expansion of ART
treatment eligibility under two different models,ne that reflects conventional
assumptions found in a number of prior models aradteer that reflects the structure and
empirical observations of a cascade of care. The finding of this study was that
conventional models that do not account for thaykehnd leakages in the continuum of
HIV care may be substantially overestimating thaltfie benefits gained from these

policy changes, by up to nearly four-fold.

The current World Health Organization guidelineammmends ART to be initiated in
everyone living with HIV at any CD4 count (23), aeddence on the incremental health
benefits or cost-effectiveness of expanding frone dreatment eligibility criterion to
another are needed to make decisions. Overestimatibealth benefits associated with

expansion of eligibility may lead to unrealistiqpextations that can be counterproductive:

15



on a more general level, if overly optimistic prains guide resource allocation and
program planning, some programs may seem costtiefedue to higher predicted
benefits or lower predicted program costs, evemghan reality they may not be, and
may contribute to adoption of sub-optimal decisiansl policies. Finally, our findings
also emphasize the need for effective interventimnicrease HIV testing and ART

linkage, retention and adherence to realize thenm® of HIV treatment-as-prevention.

Many conventional models implicitly assume that thgets of achieving high linkage,
high retention, and minimal delays can be achievgdout additional resources (6—10).
For example, by applying a HIV testing rate of @ gent (7), the models assume that no
additional investments for outreach programs aexleé to increase testing rates from
baseline, which is often much lower than 90 perckntight of the specific findings in
our study, of potential for substantial bias, wggast that models should either reflect
the leakages and delays in the treatment cascaldieh wvill reduce the estimated
incremental health benefits, or assign costs thataasociated with programs that have
demonstrated effectiveness in increasing of teg@Ag, linkage (25), and adherence rates

(26,27), which will increase costs.

Our study has several limitations. First, therel@nés to the generalizability of the
specific numerical findings from the AHRI to othsattings, including its high HIV
prevalence observed in a rural sub-Saharan Afpogrulation. Others have estimated the
potential impact of TasP and/or raising treatmireggholds in other context (10,28). For

example, the SEARCH trial in rural Kenya and Ugaadaieved a significant
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improvement in linking individuals with HIV to caend high levels of retention in care
through a resource-intensive HIV test-and-treattsgy (14,29,30). As data accumulate
on the HIV treatment cascade in a range of settiwgsexpect that the general finding in
this paper, on overestimation of health benefita(aerestimation of resources required)
attributed to changes in treatment eligibility, nmmeybroadly applicable. Second, we
created a model using empirical data for both deitgland to avoid modelling
assumptions. Estimates of the effects of the treatroascade on HIV incidence and
mortality are approximations based on a cohortyaislwhich confines our results to
two summary outcomes of benefit, whereas more stipaied models allow for more
detailed characterizations of the dynamics of enghepidemics and estimation of a
broader range of outcomes. However, we have dasidp@eanalysis such that the
conventional model reflects commonly applied asgionp used in published literature.
For example, the estimated percentage reductiossdondary transmission from
increasing eligibility from CD4 350 to 500 celi/ and to treating everyone irrespective
of their CD4 count are comparable to those in guidslished models (6-8). We
intentionally created a simplistic model with satiforward computations to devise
heuristics regarding the potential magnitude otads effects on HIV transmission and
mortality. We did not account for the heterogeneitgexual behaviors in the population,
including possibly different sexual mixing behagdry CD4 counts, as well as
background scale ups of programs such as PrEPdutary medical male circumcision,
all of which may impact our estimates. Third, tise of a Markov model assumes that
the probability of moving between states in the elabbes not depend on the states a

patient may have experienced before entering th&,svhich is a limitation here, as it is
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in many other models. Those who were linked toAdR3- care longer may be more

likely to be adherent when they receive ART, oisththat were LFU at some point may
have a higher probability of becoming lost agaimufh, to ensure comparability
between the models, we applied a constant trangiite from being undiagnosed to
diagnosed, based on empirical estimates. Thikesylnot reflective of reality, however
we cannot determine whether this assumption ovasnder-estimates the results. Fifth,
empirical estimates on the transition rates fohbighreshold scenarios are not available
because they were not implemented during the stedpd. Our assumptions of how the
transition rates would change were based on emape&timates of hazard ratios between
two lower threshold scenarios. However, it is uaclehich direction we are biased
towards: we may be underestimating the transit@esrsince people may be getting
linked to care much faster with-more inclusive #in@ds, or overestimating since people
are in general healthier and may be lost to folilgppamore frequently. Finally, we
acknowledge that accurate estimation of both costishealth effects are critical in
generating a cost-effectiveness study to answpeaifsc policy question. Due to lack of
data we do not explore how the cost of implemenitliiig care programs is impacted by

the treatment cascade.

The need for modeling studies to inform decisiagarding alternative policy scenarios
will persist as the global public health commurdontinues to advance towards goals for
HIV elimination. This paper aims to facilitate tdecision making by highlighting the

importance of capturing the empirical realitiestioé care cascade in HIV models and
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guantifying the magnitude of overestimation of tledlenefits from policy changes when

analyses do not include an accurate accountinthése factors.
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Figure 1a-b. Schematic view of the mathematical eteod

Arrows indicate transitions between states. Arrdiagt exit a state but do not point to

another state represent mortality.

Figure 1a. Empirical cascade model

Figure 1b. Conventional model

Figure 2a-c. Comparison of health benefits underctnventional and empirical cascade

models, by treatment eligibility
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2a. Life expectancy
2b. Secondary transmission under random mixingasoe

2c. Secondary transmission under serial monogagyasio

Figure 3a-b. Distribution of mortality and secondalV transmission (random mixing)
by cascade stages

Figure 3a. Mortality

Undx: undiagnosed, Dx: diagnosed, ART: antiret@viherapy, LE: life expectancy,
LFU: lost to follow up.

conventional all/500/350/200: the . conventional modeth treatment threshold of
treating everyone, CD4 count 500, 350, 200 gélls/

cascade all/500/350/200: the empirical cascade hvattetreatment threshold of treating
everyone, CD4 count 500, 350, 200 cells/

Figure 3b. Secondary HIV transmission (random ngxin

Undx: undiagnosed, Dx: diagnosed, ART: antiret@viherapy, LE: life expectancy,
LFU: lost to follow up.

conventional all/500/350/200: the conventional moudéth treatment threshold of
treating everyone, CD4 count 500, 350, 200 qslls/

cascade all/500/350/200: the empirical cascade hvattetreatment threshold of treating

everyone, CD4 count 500, 350, 200 cells/
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Table 1. Descriptive statistics of the HIV care cascade

Proportion of people who transitioned to the next
stage among those who reached the previous stage

Observed CD4 350- | CD4 200-
time | 00> 500 350 €D <200
period " calsul | cells/ul W
; Jan 2004
Diagnosed - pre-  Jan £ 04
ART 2014
AT 050 | an
- (o) 0, 0, 0
treatment threshold ul 81% 70% 73% 53 %
CD4<200cellgul | 20
Pre-ART - lossto
follow up under Aug 0 . ; .
treatment threshold 2011- 37 % 35% 44 % 31%
CD4 <350 cellguL* | Y2014
iaion, onder | 2012004
1 _ 0 o 0 0
treatment threshold l 0% 0% 0% 82 %
CD4<200cellgul | 2O
PreART = ART
initiation, under Aug
’ 2011- 0% 0% 71% 73 %
treatment threshold T 2014
CD4 <350 cells/uL
ART care - lossto
follow up under :]%Tﬂzom 0 0% 006 25 %
treatment threshold 0 0 0 0
CD4<200cellgul | 2O
ART care = lossto
follow up under Aug 0 . . .
treatment threshold A 0% 0% 17 % 8%
CD4 <350 cellglyl— | 12014

ART: antiretroviral treatment




Table 2. Incremental benefits of changing treatment eligibility

Increment Incremental Incremental
a benefit | Ratio of b : Ratio of . Ratio of
. enefit of . benefit of .
of incremental dicibilit incremental dicibilit incremental
digibility | benefits, QLI henefits, IO | penefits,

: change from : change from ;
change conventional CD4 350 to conventional CD4 500 to conventional
from CD4 | to cascade 500 to cascade treat all to cascade
200 to 350

Gaininlife Conventiona | 49.5 138.8 32.9

expectancy

(months) Cascade 459 1.08 386 3.60 87 3.79
HIV infections Conventiona | 0.06 0.53 0.68

averted (random

mixing) Cascade 0.04 1.38 0.26 2.09 0.54 1.26
HIV infections Conventiona | 0.01 0.34 0.57

averted (serid

monogamy) Cascade 0.01 1.10 0.13 2.65 0.48 1.18
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Figure 1b
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Figure 2c
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