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A B S T R A C T

Wind-driven rain (WDR) is rain given a horizontal velocity component by wind and falling obliquely. It is a
prominent environmental risk to built heritage, as it contributes to the damage of porous building materials
and building element failure. While predicted climate trends are well-established, how they will specifically
manifest in future WDR is uncertain. This paper combines UKCP09 Weather Generator predictions with a
probabilistic process to create hourly time series of climate parameters under a high-emissions scenario
for 2070–2099 at eight UK sites. Exposure to WDR at these sites for baseline and future periods is calcu-
lated from semi-empirical models based on long-term hourly meteorological data using ISO 15927-3:2009.
Towards the end of the twenty-first century, it is predicted that rain spells will have higher volumes, i.e.
a higher quantity of water will impact façades, across all 8 sites. Although the average number of spells is
predicted to remain constant, they will be shorter with longer of periods of time between them and more
intense with wind-driven rain occurring for a greater proportion of hours within them. It is likely that in
this scenario building element failure – such as moisture ingress through cracks and gutter over-spill – will
occur more frequently. There will be higher rates of moisture cycling and enhanced deep-seated wetting.
These predicted changes require new metrics for wind-driven rain to be developed, so that future impacts
can be managed effectively and efficiently.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The IPCC was virtually certain1 in 2013 that the troposphere has
warmed since the mid-20th century and had high confidence2 that
global precipitation patterns have changed – trends that are likely to
continue over the twenty-first century (IPCC, 2013). These changes
pose threats to natural and built heritage (Cassar, 2005), especially in
the United Kingdom where more intense and frequent precipitation
events are very likely.3

The presence and movement of water contributes to the weath-
ering and deterioration of porous materials and other aspects of
building performance. Traditional building materials such as stone
and mortar, as well as concrete, are affected by many weathering
processes in which water is implicated, such as chemical weathering
(Charola and Ware, 2002), freeze-thaw weathering (Hall, 1999), salt
weathering (Doehne, 2002) and biological weathering (Crispim and
Gaylarde, 2005; Warscheid and Braams, 2000).

Wind-driven rain (WDR) or driving rain is rain given a horizon-
tal velocity component by the wind and falling obliquely (Blocken
and Carmeliet, 2004). WDR represents the main moisture source and
cause of deterioration on most building façades (Erkal et al., 2012),
as it is implicated in both long-term deep-set wetting (McCabe et al.,
2013; Smith et al., 2011) and short-term risks of building element
failure (e.g. rain penetration through edges of doors or windows (ISO,
2009), and additionally junctions and gaps).

Wind-driven rain exposure can be assessed in many ways. To
evaluate local and microscale conditions omni-directional gauges
and wall-mounted pressure plates have been used since the 1930s
(Lacy, 1951), more recently in combination with numerical simula-
tions of computational fluid dynamics, e.g. Briggen et al. (2009) and
Pettersson et al. (2016). To determine regional characteristics, semi-
empirical models of WDR have been developed. These are indices
or relationships representing the volume of WDR exposure over a
specific time period based on values of wind speed and direction
and precipitation. As these variables are frequently measured by
meteorological monitoring stations, WDR can be estimated for loca-
tions where this data is available. The aforementioned measurement,
modelling, and semi-empirical techniques evaluate exposure to
WDR. The susceptibility of building components to ingress can be
assessed experimentally (e.g. BSI, 1970, 2001) or by using coupled
heat and moisture transport differential equations models (e.g. WUFI
Nik et al., 2015).

Wind-driven rain in the UK is expected to increase gradually
over the twenty-first century, based on predicted increases of annual
precipitation and days with intense rainfall (Brimblecombe, 2014;
Holmes, 2015) under various emission scenarios. This raises doubt
about the applicability and relevance to future conditions of cur-
rent metrics and exposure maps to future conditions. In 2011 BRE
Scotland advised that the present climate had not changed enough
from the exposure reference maps published in 1992 (BSI, 1992)
based on conditions in 1959–1991 to warrant an update (Reid and
Garvin, 2011); practical experience suggests that changes in build-
ing performance during this century are already noticeable (Stelfox,
2018) compared to the twentieth century. While work has been done
on site-level intervention techniques for increasing the resilience
of traditional masonry (Laycock and Wood, 2014), little to date has
evaluated how the characteristics of WDR might change during the
twenty-first century.

The potential impact of climate change on cultural heritage is a
growing academic concern (Fatorić and Seekamp, 2017), of inter-
est for practical assessments undertaken at the site-specific level

1 99–100% probability.
2 Defined as high agreement based on robust evidence.
3 90–100% probability.

(Historic Environment Scotland, 2018). Using models or predictions
is a crucial component of a robust moisture risk assessment, and
should be considered as a tool for exploring possible risk (May and
Sanders, 2017).

Semi-empirical evaluations of future WDR risk have been under-
taken for Nordic regions including Sweden (Nik and Sasic Kalagasidis,
2014; Nik, 2017) and Finland (Pakkala et al., 2016). These studies
have applied ISO 15927 or similar formulae (e.g. ASHRAE, 2009)
to generated hourly data for future weather conditions. However,
these studies have used ‘morphing’ (scaling) or unspecified processes
to produce the future hourly time series (Nik, 2017 and Pakkala
et al., 2016 respectively) which might not reflect the future tempo-
ral variation of WDR exposure. Nik and Sasic Kalagasidis (2014) have
presented evaluations of future climate as annual means, which are
generally more indicative annual variability and not of long-term
climate changes. They have also presented a single future scenario,
whereas the use of at least 100 different projected scenarios is advis-
able to robustly characterise future conditions. This type of analysis
has not yet been undertaken for the UK, which will experience
climate changes distinct from the aforementioned regions.

This paper assesses a predicted future scenario of wind-driven
rain and risk to built heritage for eight locations in the UK in
2070–2099, based on generated time series of climate conditions
from the UKCP09 weather generator (UK Climate Projections, 2012)
and a probabilistic process of producing hourly time series (Eames
et al., 2011a,b). The changing characteristics of wind-driven rain are
assessed with standard indices and novel metrics based on addi-
tional attributes of wind-driven rain spells that emphasise temporal
variability. A discussion of the implications of these changes for built
heritage follows, considering building element failure, biological
growth, near-surface cycling and deep-seated wetting.

2. Methods

2.1. Assessment technique selection

The main methods to assess the amount and intensity of wind-
driven rain are measurements (Ge et al., 2017; Tang et al., 2004),
semi-empirical models (ASHRAE, 2009; ISO, 2009; Straube and
Burnett, 2000) and numerical methods (Choi, 1993); measurements
are commonly used to verify the semi-empirical approaches and
numerical simulations (Blocken and Carmeliet, 2007; Kubilay et al.,
2015). Measurements and numerical methods – especially if the for-
mer incorporates computational fluid dynamics, e.g. Briggen et al.
(2009) – can be costly, resource-intensive, and applied to a spe-
cific scenario of limited spatial scale. Semi-empirical models are
based on climatic data from meteorological monitoring stations, and
can incorporate the anthropogenic and natural context by apply-
ing factors, which are being continually improved (Ge et al., 2018).
This facilitates comparisons between locations for which data is
available, without requiring WDR-specific instrumentation at each
site. Exposure maps based on semi-empirical models are commonly
used in building assessment and design practice. For these reasons, a
semi-empirical model was selected for this study.

2.2. The ISO model

ISO 15927 includes two driving rain indices that should be calcu-
lated from at least 10 years (and preferably 20 or 30) of continuous
hourly data:

• annual index IA: should be used for “considering the aver-
age moisture content of exposed building material or when
assessing the likely growth of mosses and lichens” [BSI, 1992,
p. 4]
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• spell index IS: “ defined in terms of rain penetration through
masonry, which requires a prolonged input of water”[ISO,
2009, p. 12]

It is important to note that neither of these directly reflects
rain penetration through building elements (e.g. window frames,
junctions, cracks, etc.. . . ), which are dependent on short but intense
WDR [ISO, 2009, p. v].

The volume of wind-driven rain that would hit a square metre in
a 1 h period is calculated from4:

I =
2
9

vr8/9 cos(D − h)
[
L m−2

]
(1)

from average hourly wind speed v (m s−1), hourly precipitation r
(mm), and hourly mean wind direction D◦ for a specific wall orien-
tation h◦. These hourly exposures are used to calculate the indices in
ISO 15927, and referred to as volumes hereafter.

The annual index IA is calculated by the SI/N for all hours in
which cos(D − h) > 0, i.e. when the wind is blowing against the wall;
N is the number of years of data available. This is referred to as an
airfield index in ISO 15927 as it represents WDR that would occur at
a height of 10 m above ground level in the middle of an airfield with
no other obstructions. According to ISO 15927, this is calculated as:

IA =
∑ 2

9 vr8/9 cos(D − h)
N

[
L m−2

]
(2)

where the summation is taken over all the hours in which there is
active WDR, i.e. cos(D − h) ≥ 0, and N is the number of years the
summation is taken over.

A spell-specific index IS
′ is calculated for an individual spell SI

for all hours in which cos(D − h) > 0 within that spell, also in
L m−2. Spells are separated by periods of at least 96 h for which
vr8/9 cos(D − h) � 0, i.e. in which there is no WDR impacting a spe-
cific wall orientation. This is representative of airfield conditions, as
described above for the annual index. See Fig. 1 for an example of
a rain spell, as defined in ISO 15927. Experimental work by Caton
at the UK Meteorological Office showed that up to 96 consecutive
hours with no driving rain are necessary before evaporative losses
will exceed water ingress from rain exposure (Prior, 1985); 96 h is
also sufficient to bridge the gap between succeeding depressions in
a weather sequence in the UK (Prior, 1983). In contrast to current
standards, Caton distinguished between spells using periods of �96 h
without ‘appreciable’ driving rain, for which an approximate value
of one tenth of the expected index for a once in three year spell for
each orientation (Prior, 1985). 96 h is arguably an arbitrary delim-
iter between spells. It does not imply that 96 h is sufficient for all
moisture ingress to exit the building envelope.

The spell index IS is defined as the 66th percentile of all spells’
IS

′ in ISO 15927. Using percentiles to represent extreme events is
dependent on their frequency of occurrence. Instead this was calcu-
lated from an Annual Maxima Series approach using ‘return periods’
and the Gumbel distribution (Pérez-Bella et al., 2012, 2013). The ben-
efit of this approach is that it is less affected by extreme random
weather phenomena and can be applied to sets of event occurrence
that have different frequencies of occurrence, e.g. sites and orien-
tations that experience different average quantities of spells per
year.

The calculation-based approach of ISO 15927 has the advantage
over BS 8104 that WDR may be assessed at any location or time

4 Alternative units of the analogous mm h−1 are sometimes used. This has not been
employed to avoid confusion between the vertical rainfall (precipitation) and the
calculated WDR exposure.

t /h

I/L
 m

−2
 h

−1

94 h* *

* 96 h or more to next spell

Spell

Fig. 1. An example of a driving rain spell, as defined in ISO 15927-3:2009.

for which appropriate data or predictions are available. However,
the indices do not reflect other characteristics of the annual or spell
behaviour, including:

• spell duration
• fraction of hours for which there was active wind-driven rain

within a spell (the ‘active fraction’)
• the length of time between sequential spells (inter-spell

period)

Some of these additional properties have been discussed for
rain spells across the United States (Underwood and Meentemeyer,
1998), but have not been explored for the UK. It should also be
noted that output from the semi-empirical model in Eq. (1) does
not reflect localised microclimates, such as those common in urban
environments. The context of building façade can have a significant
impact on the level of exposure, which can be explored with CFD.

2.3. Meteorological data

2.3.1. Baseline period data
As discussed in Section 2.2, long-term hourly data is required to

calculate WDR indices. A baseline reference period of 1961–1990
was used, as this closely resembles the period of observations used
to formulate BS 8104 (1959–1991) (BSI, 1992) and 1960 is also a fre-
quently used comparison basis for climate projections by the IPCC
IPCC (2013). Similarly, 1961–1990 is the basis for the UK Climate
Impacts Programme (UKCIP) and the 2009 UK Climate Projections
(UKCP09) Weather Generator tool (see Section 2.3.2).

2.3.2. Creation of future probabilistic design weather years
To assess future WDR characteristics, the most recent 2009 UK

Climate Projections (UKCP09) have been used to create probabilis-
tic meteorological conditions (DEFRA, 2009) for 2070–2099 under
an A1 high emissions scenario. This scenario was selected from
the IPCC Special Report on Emissions Scenarios (Nakićenović and
Swart, 2000): it characterises a scenario of high fossil fuel use with
rapid economic growth and introduction of new and more efficient
technologies [Murphy et al., 2009, pp. 134–135].

UKCP09 includes a Weather Generator that is a stochastic rainfall
model (Wilks and Wilby, 1999) to produce artificial time series under
various emission scenarios – other weather variables are then gen-
erated according to the precipitation and inter-variable relationships
on the previous day. These relationships contribute to maintaining
the consistency between and within each variable (Jones et al., 2009).
The Weather Generator creates hundreds or thousands of future 30-
year statistically equivalent time series representative of predicted
behaviour. The time series represent future characteristics but would
not be expected to reflect actual measurements over their respec-
tive time horizons. Using 100 or more Weather Generator outputs
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allows a range of plausible scenarios to be explored that represent
the probability distribution.

The Weather Generator provides generated time series for a base-
line period (1961–1990) and the future scenario (2070–2099) for
5 km × 5 km grid cells over the UK. The daily time series contain the
following variables, among others:

• precipitation, mm
• maximum temperature, ◦ C
• minimum temperature, ◦ C
• sunshine fraction
• vapour pressure, Pa
• potential evapotranspiration (PET), mm day−1

Precipitation, maximum and minimum temperatures, vapour
pressure, and radiation parameters are produced at the hourly res-
olution using simple disaggregation rules from the estimated daily
parameters [Jones et al., 2009, p. 31].

Using ISO 15927, hourly time series of wind direction, wind
speed, and precipitation are required to evaluate WDR indices. The
output from the UKCP09 Weather Generator has been adapted to
produce the necessary hourly time series required as input to build-
ing simulation software (Du et al., 2012; Mylona, 2012; Watkins
et al., 2011). The limitations of the Weather Generator approach is
that not all variables required for simulation or calculation purposes
are created at the hourly resolution.

Eames et al. have developed a process using probabilistic models
to produce the necessary variables for WDR indices at an hourly res-
olution from the Weather Generator output (Eames et al., 2011a,b).
The generation process requires a reference hourly time series with
the relevant variables to use as a ‘training’ data set for the algorithms.
In this paper, measured data from the ‘Met Office Integrated Data
Archive System’ (MIDAS) Land and Marine Surface Stations Data
(1853–current) (NCAS British Atmospheric Data Centre, 2012) for
1961–1990 was used. This was selected so that it covered the same
years as the baseline period. The process can be summarised as:

1. Calculate average daily wind speed from PET (Ekström et al.,
2007)

2. Generate 24 h of hourly wind speeds: extract 24 h measure-
ments from the closest average daily wind speed occurring
during the same season (DJF, MAM, JJA, SON) in the reference
data set

3. Generate 24 h of hourly wind direction: every 6 h, generate
a random probabilistic wind direction from the correspond-
ing season and daily wind speed, linearly interpolate between
generated values

4. Linearly interpolate between any missing data in the time
series

Eames et al. showed this process to reproduce measured data
very well for a range of sites across the UK (Eames et al., 2011a,b).
This assumes that, in future, the relationships between rainfall vol-
ume and other weather variables remains consistent, i.e. greater
amounts or frequencies of precipitation will be reflected in pro-
portional increases in wind speeds. Wind directions in the UK are
dominated by the south-westerly jet streams: although they have
shown significant variability in the twentieth century, there is lit-
tle evidence to suggest a changing trend over the past few decades
(Jenkins, 2007).

This generation process has been validated against the CIBSE Test
Reference Years for Plymouth (C. I. for Buildings Services Engineers,
2017), 1983–2004 (Eames et al., 2011a). To assess its applicability
to the selected sites, the process was also applied to the ‘base-
line’ scenarios (1961–1990) outputted by the Weather Generator,

using the reference (training) data set from the 1961–1990 MIDAS
observations (NCAS British Atmospheric Data Centre, 2012) from a
nearby site.

2.4. Sites

The UK experiences a temperate oceanic climate (Peel et al.,
2007) with a strong influence from the south-westerly polar front jet
stream. This causes frequent fluctuations and unsettled weather is
typical. Its location between the Atlantic Ocean, continental Europe
and the Scandinavian Peninsula causes significant precipitation dif-
ferences between east and west, especially in coastal regions. Owing
to the differences in latitude and the impact of occasional continental
tropical air masses from the south, there can be significant thermal
differences between northern and southern regions.

Eight sites were selected for this study to represent the geo-
graphical variation of built heritage sites in the UK (Fig. 2). Site
selection was constrained by the need to have sites with 30 year
hourly wind and precipitation data in the MIDAS database (NCAS
British Atmospheric Data Centre, 2012). Due to this many of these
eight have previously been used as central nodes in maps of driving
rain (e.g. BSI, 1992; Prior, 1985) . The selected sites are represen-
tative of airfield conditions, i.e. unimpeded by urban canyons and
reduced wind and precipitation. It should be noted that there were
few locations with data that met the selection criteria in Northern

Fig. 2. Study sites, representing the variability of exposures to precipitation and wind
across the UK.
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Ireland. It is not suggested that the characteristics of the entire region
are characterised by the properties observed for Aldergrove. This is
important in the context of the strong winds typically experienced
on the west coast of Ireland.

3. Results

3.1. Model validation

Eames et al. (2011a,b) have validated that probabilistic genera-
tion processes can be used to produce realistic hourly data series. To
assess the applicability of this approach and estimate the error for
the selected UK sites, the frequency (occurrence) of different mete-
orological conditions in the generated baseline data (1961–1990)
were compared to the reference data for each site during the same
time period.

To assess how similar the generated baseline time series are to
the recorded meteorological conditions, the frequency (occurrence)
of relevant parameters divided into bins or discrete values is pre-
sented in Fig. 3. The parameters with their respective bin sizes
and/or discrete value ranges are presented in Table 1. In Fig. 3,
the black line 45◦ denotes a 1:1 ratio, while the red bold line is a
logarithmic-transformed least-means correlation weighted accord-
ing to frequency. How closely these lines lie to one another repre-
sents how well the generated data reproduces the characteristics of
the measured reference data.

Some variation between the two data sets is to be expected, as the
UKCP09 projections are provided at a resolution of 25 km × 25 km
regions. Even though the Weather Generator allows for the selection
of 5 km × 5 km, the climate predictions at this scale merely present
the calculations undertaken at the larger scale. What is important is
that the generated baseline data series have similar characteristics to
the recorded meteorological data, even if they are not identical.

The most important parameters for calculating driving rain
exposure with Eq. (1) are the hourly mean wind speed, hourly
precipitation, and predominant hourly wind direction. There is a very
good relationship between the generated and down-sampled time
series of hourly mean wind speeds and hourly precipitation. This is
to be expected for the latter, as these values are a direct output of the
Weather Generator. With regards to hourly wind speed, the strong
correlation (R2

weighted = 0.91) is the result of the probabilistic pro-
cesses employed by Eames et al., and agrees with their assessments
of reproducing wind speeds.

The generated daily precipitation is very similar to the measured
daily precipitation. This is similar to the hourly precipitation, as
the daily values are also a direct output of the Weather Generator
and therefore derived directly from the UK Climate Projections
from 2009. The discrepancy between modelled and measured data
for both hourly and daily wind speeds is partially explained by

Table 1
The parameters employed to calculate the frequency of different meteorological con-
ditions used in the comparison of the baseline generated time series and the recorded
meteorological data.

Parameter Time resolution Type Divisions, Interval

Wind direction Hourly Discrete 0◦ to 350◦ , 10◦

Wind speed Daily Bins 0 to 30 m s−1, 1 m s−1

Wind speed Hourly Bins 0 to 30 m s−1, 1 m s−1

Precipitation Daily Bins 0 to 50 mm h−1, 1 mm h−1

Precipitation Hourly Bins 0 to 30 mm h−1, 1 mm h−1

the limitations of calculating them using PET, since this value is
truncated at 0 (i.e. it cannot be negative) and is only generated to two
decimal places (Eames et al., 2011a).

The distributions of wind speeds and precipitation are loga-
rithmic, with low values much more common than high values.
Extremes of hourly precipitation are well-reproduced in the gen-
erated baseline data sets. This is represented by R2

weighted =
0.99, and negligible deviation from the 45◦ line (representing a
1:1 equivalency). In contrast, the probabilistic approach under-
represents extreme hourly wind speeds. This is represented by a
lower R2

weighted = 0.91, and many parameters bins/discrete values
deviating significantly from the diagonal 1:1 equivalency in Fig. 3. It
is important to note:

• these extreme high wind speed values occur very rarely, i.e. for
less than 100 h in 30 years

• in Eq. (1), an increase of 1 m s−1 in hourly wind speed for wind
speeds greater than 20 will, at most, modify the WDR exposure
by 5%

• The extremes of hourly wind speeds are more pronounced for
specific sites: for example, Plymouth (in dark gray points in
Fig. 3) consistently deviates further from the 1:1 equivalency,
than other sites, i.e. it is the site at which extreme hourly wind
speeds are most significantly under-represented

The hourly wind direction warrants discussion, as the wind direc-
tion distribution is more regular than the other parameters. The wind
directions generated by the Eames algorithm have a unique pattern
that can be described as a saw-tooth: alternating higher and lower
values for neighbouring wind directions. This is visible in Fig. 4 and
in the literature [Eames et al., 2011b, p. 131]. These differences are
most likely “due to the simplistic method used, where 1 h is not
dependent on the next and because the interpolation does not follow
the same probabilistic distribution’ [as the other variables]”[Eames
et al., 2011b, p. 130]. Despite the saw-tooth pattern, the overall
characteristics of site-specific wind directions are reproduced by the

Wind speedhourly
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2 = 0.91101
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 Wind directionhourly
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Aldergrove
Tiree
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Leeming
Heathrow
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Fig. 3. Comparison of the generated baseline time series (1960–1990) to the recorded meteorological data at sites within their respective prediction regions for eight UK sites.
The bin frequency of the wind speed and precipitation is compared (daily and hourly), as well as the hourly wind direction.
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Fig. 4. Comparison of the mean hourly wind speed distribution for the generated baseline time series (1961–1990) to the recorded meteorological data. 0◦ represents a wind
from the north.

probabilistic process. It is useful to note that a 10◦ difference in
wind direction will, on average, change the cosine component (and
therefore WDR exposure) of Eq. (1) by 11%.

3.2. Annual characteristics

The sites experienced varying annual WDR exposure during
1961–1990 (Table 2). In general, western coastal sites (Tiree,
Stornoway, Valley, Plymouth) have on average received more than
380 L m−2 of annual WDR exposure. In contrast, inland and eastern
sites in Britain (Kinloss, Leeming, and Heathrow) received less than
240 L m−2 of WDR annually. Aldergrove received an annual average
WDR exposure of 330 L m−2, which is significantly more than the
other inland sites. This likely represents the overall higher exposure
in Ireland due to weather systems arriving from the Atlantic Ocean
in the west.

The sites with higher baseline WDR volumes are also those that
are predicted to change most. This is most prominent in the WDR
exposure of western sites of Wales and Scotland: Valley and Tiree.
Sites that have had mid-level exposure of roughly 370 L m−2 (i.e.
Stornoway and Plymouth) are predicted to increase to the low 400s.

In contrast, the more inland and eastern sites (Kinloss, Heathrow and
Leeming) are not predicted to change very much.

The significant predicted changes in the annual WDR volumes cal-
culated from the data in Table 2 and shown in Table 3 are between
7.2% and 25% for specific sites, but this does not reflect seasonal
diversity.

It is generally accepted that, with future climate change, the
meteorological conditions within different seasons will change,
especially in winter (Hansen and Sato, 2016; Watts et al., 2015). This
will also manifest as changes in the characteristics of wind-driven
rain. To assess this, the calculated annual indices IA were separated in
Tables 2 and 3 into seasons based on calendar months: winter (DJF),
spring (MAM), summer (JJA), autumn (SON). This analysis demon-
strates that the predicted change in WDR exposure during different
seasons is not proportional to the annual average change (Fig. 5).
There are strong polarising contrasts apparent for the winter and
the summer, while the predicted changes in spring and autumn are
closely related to the annual predicted changes.

The severity of predicted seasonal change is not the same across
sites. For example, western coastal sites including Stornoway, Tiree,
and Valley are predicted to experience as much as a 40% increase

Table 2
Annual indices (IA , total exposure to wind-driven rain) during the baseline (1961–1990) and under the prediction scenario (2070–2099) at the eight sites for all wall orientations.

IA,baseline (1961–1990) IA,scenario (2070–2099)

Site Annual Winter Spring Summer Autumn Annual Winter Spring Summer Autumn

L m−2 L m−2 L m−2 L m−2 L m−2 L m−2 L m−2 L m−2 L m−2 L m−2

Aldergrove 330 ± 8.1 90 ± 3.1 70 ± 1.09 70 ± 1.5 90 ± 3.0 340 ± 9.0 110 ± 3.8 50 ± 1.4 50 ± 1.4 100 ± 3.4
Tiree 540 ± 7.1 180 ± 2.8 100 ± 0.64 80 ± 1.4 180 ± 3.0 680 ± 10 250 ± 4.6 80 ± 1.5 80 ± 1.5 220 ± 4.3
Kinloss 240 ± 6.5 60 ± 2.1 50 ± 1.1 60 ± 1.2 70 ± 2.4 270 ± 8.0 80 ± 2.8 50 ± 1.3 50 ± 1.3 90 ± 3.1
Leeming 210 ± 4.6 60 ± 1.6 50 ± 0.78 40 ± 0.93 60 ± 1.7 210 ± 4.8 60 ± 1.9 40 ± 0.93 40 ± 0.93 60 ± 1.7
Heathrow 200 ± 3.9 60 ± 1.2 50 ± 0.52 40 ± 0.91 60 ± 1.4 200 ± 4.2 70 ± 1.5 30 ± 0.96 30 ± 1.0 60 ± 1.6
Stornoway 390 ± 8.0 140 ± 2.8 80 ± 1.2 60 ± 1.7 110 ± 2.5 400 ± 8.7 170 ± 3.9 40 ± 1.5 40 ± 1.5 100 ± 2.7
Valley 520 ± 10 170 ± 4.7 110 ± 1.1 80 ± 0.84 160 ± 4.2 620 ± 13 220 ± 6.4 70 ± 0.93 70 ± 0.96 200 ± 5.5
Plymouth 380 ± 6.1 120 ± 2.1 70 ± 0.70 60 ± 1.3 120 ± 2.3 410 ± 6.9 150 ± 2.8 50 ± 1.3 50 ± 1.3 130 ± 2.8
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Table 3
Predicted change in the annual spell index IA (total wind-driven rain exposure) from
1961–1990 to 2070–2099 for all wall orientations. Italics indicate that the predicted
change are statistically insignificant within a 95% CI.

Site Annual % Winter % Spring % Summer % Autumn %

Aldergrove 5.8 ± 5.3 21 ± 7.4 2.7 ± 3.1 −18 ± 4.3 10 ± 6.8
Tiree 25. ± 3.2 40 ± 4.1 22 ± 2.1 −3.7 ± 3.5 24 ± 4.1
Kinloss 13 ± 6.1 24 ± 8.0 9.5 ± 4.4 −7.3 ± 4.6 23 ± 7.9
Leeming 0 ± 4.6 16 ± 6.2 1.3 ± 3.4 −18 ± 4.2 −2.3 ± 5.9
Heathrow 3.6 ± 4.1 23 ± 4.9 0.38 ± 2.4 −18 ± 4.8 1.8 ± 5.4
Stornoway 3.3 ± 4.3 25 ± 4.8 1.2 ± 3.1 −29 ± 5.5 −6.0 ± 4.8
Valley 18 ± 4.6 27 ± 6.4 14 ± 2.4 −10 ± 2.3 23 ± 5.9
Plymouth 7.2 ± 3.4 22 ± 4.0 5.3 ± 2.1 −22 ± 4.1 8.6 ± 4.2
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Fig. 5. The predicted changes in average exposures of wind-driven rain, presented for
annual behaviour and for individual seasons.

in WDR volume during the winter months. It is also predicted that
Stornoway could experience almost 30% less WDR in the sum-
mer months, and slightly lower than annual exposures during the
autumn.

3.3. Spell volumes

The volume of water hitting surfaces during wind-driven
rain spells is predominantly increasing. The intensity (or volume
hereafter) of WDR spells during the winter, spring, and autumn is
predicted to increase, while extreme events – such as the worst spell
likely to occur in a three year period IS– are predicted to increase by
greater amounts. For some sites, the summer months will have lower
WDR exposure with regards to both general and extreme behaviour.

At other sites, this change is insignificant. As established in BS 8104
and its preceding publications, façades facing the south-west will be
more exposed to WDR, as they are more frequently hit by prevailing
wind directions in the UK.

The worst spell likely to occur once every three years IS is pre-
dicted to increase by 22% and 59% at specific sites (Table 4). Similarly,
the mean exposure of spell-specific indices (IS,mean

′) is also predicted
to increase, but by between 4.8% and 27%. This means that while
larger differences are predicted in extreme events, the average WDR
exposure is also predicted to increase.

Section 3.2 established the importance of assessing WDR expo-
sures seasonally. This is also important for an assessment of the
predicted characteristics of WDR spells. Fig. 6 shows the volumes
of the mean and the worst spell likely to occur at each site once
every three years during different periods. When spells occurred
over the duration of two seasons, they were categorised to the
season in which most of the spell occurred. As established for the
annual behaviour, annual predicted changes in spell exposure are
not capturing the differences between seasons. Notably, summer
extreme events are predicted to become less intense, although this is
insignificant for some sites and/or wall orientations.

During the baseline period 1961–1990, the worst spell likely to
occur once every three years is likely to occur during the winter or
autumn months. For this reason, there is little difference between
these periods of time in Fig. 6. In contrast, the extreme spell volumes
occurring in spring and summer are significantly less severe.

As Fig. 6 demonstrates, there are significant differences in spell
volumes for different wall orientations during the baseline period.
However, the predicted changes in volume for each wall orienta-
tion are similar to those presented in Table 4. This means that all
façades of a building are predicted to see a similar percent change
in their exposure, which will be varying severity depending on the
established directional characteristics of WDR exposure.

Western sites have the highest baseline and predicted ‘once every
three year’ spells, but these sites also have much higher mean IS WDR
exposures than their eastern and inland counterparts. The extreme
event exposures (such as IS) and the mean WDR exposure are not
directly proportional. While there is a general relationship between
the two, the volume of the mean WDR exposure varies relative to the
‘once every three year’ exposure. The predicted changes as percent-
ages in the mean IS

′ and the ‘once every three year’ spell volumes are
much more similar, suggesting a common driving force that is likely
annual precipitation.

3.4. Spell durations and inter-spell characteristics

Shorter wind-driven rain spells are predicted to become more
common, with more time elapsing between them (Fig. 7). Spells less
than 10 h in duration were the most common type between 1961–
1990, and they are predicted to occur much more frequently in
the 2070–2099 scenario. For most locations, there is insignificant or

Table 4
Predicted percent change in exposures to wind-driven rain from 1961–1990 to 2070–2099, for all wall orientations.

Mean spell-specific index I′S,mean Once every three years spell IS

Annual Winter Spring Summer Autumn Annual Winter Spring Summer Autumn

Aldergrove 4.8 ± 1.9 23 ± 4.2 −3.2 ± 3.3 −21 ± 4.5 15 ± 4.4 23 ± 5.4 24 ± 7.9 5.5 ± 6.5 −7.7 ± 9.5 18 ± 7.8
Tiree 27 ± 4.1 44 ± 8.3 16 ± 5.1 −3.4 ± 5.0 46 ± 9.1 54 ± 8.5 55 ± 11.1 32 ± 8.9 2.0 ± 8.9 45 ± 10
Kinloss 13 ± 2.9 25 ± 4.6 10 ± 4.4 −10 ± 4.9 27 ± 6.8 29 ± 7.4 36 ± 11 21 ± 8.3 6.2 ± 8.8 25 ± 9.4
Leeming 4.8 ± 2.2 20 ± 4.9 3.4 ± 4.0 −12 ± 4.7 3.8 ± 4.4 11 ± 27 17 ± 29 9.0 ± 6.9 −7.1 ± 9.8 4.4 ± 8.2
Heathrow 13 ± 2.4 27 ± 4.7 3.1 ± 3.8 2.9 ± 6.5 11 ± 4.3 22 ± 5.2 27 ± 7.5 15 ± 8.0 11 ± 10 16 ± 8.3
Stornoway 8.0 ± 3.2 15 ± 5.1 1.5 ± 4.2 −18 ± 4.8 23 ± 6.7 30 ± 7.7 30 ± 9.4 8.4 ± 8.8 −13 ± 7.7 30 ± 8.5
Valley 13 ± 2.4 23 ± 4.8 7.6 ± 3.3 −10 ± 5.1 12 ± 5.0 24 ± 6.3 30 ± 9.1 21 ± 8.4 −2.4 ± 9.9 13 ± 8.4
Plymouth 14 ± 3.4 37 ± 7.3 3.8 ± 4.0 −12 ± 5.9 2.0 ± 4.2 25 ± 7.4 28 ± 9.7 22 ± 9.4 −1.1 ± 13 7.6 ± 7.9
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Fig. 6. The volumes of the mean and the worst spell likely to occur once every three years at each site during different periods, represented by the gray and black circles,
respectively. The whiskers indicate the predicted conditions in 2070–2099; unconnected points indicate change that was not significant within a 95% CI. The radial directions
indicate wall orientations, where North = 0◦ .

slightly negative change in the occurrence of spells of medium length
(lasting more than 10 h but less than 100 h). Longer spells (durations
greater than 100 h) are predicted to occur much less frequently.
Stornoway is unique in that mid-length spells (lasting more than 10 h
but less than 100 h) are predicted to become much more common.

By definition, the minimum spell duration is the resolution of
the meteorological measurements inputted into Eq. (1), i.e. 1 h. The

theoretical maximum duration for a rain spell (by the definition
in ISO 15927) is the duration of the input meteorological data. In
practice, rain spells very rarely extended beyond 1000 h. The few
outlying spells that exceed 1000 h have been removed from the
statistics presented herein – in general, they are found in regions
with higher annual precipitation where gaps of 96 h or more without
any WDR exposure are less common.
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Fig. 7. The frequency of wind-driven rain spells of different lengths at eight UK sites. The 12 ‘sub-axes’ within each polar plotting area represent wall orientations (North = 0◦). The 10 h bins are plotted as radial lines representing their
mid-point, e.g. 5, 15, . . . , 995 h. The perpendicular axis represents the spell duration, and the radial axis represents their frequency of occurrence. The main line of the radial axis is the frequency under the predicted scenario, while the
cross-line of the ‘t’ is the baseline. The colour scale shows the predicted percentage change of frequency for the spell duration bins: red for increase, blue for decrease (with gray representing no change). Green is used to show when the
change in occurrence was statistically insignificant.
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Fig. 7 shows the frequency in occurrence of spells of different
lengths, in which each polar plot represents one site. The twelve axes
within the polar plot represent wall orientations (see key in Fig. 7). At
all sites and wall orientations, the predicted change in occurrence of
spells longer than 500 h is predominantly statistically insignificant.
This is likely because they occur much less often than shorter spells.

There is little change predicted for the number of spells occurring
per year at each site and wall orientation (approximately 2–3 spells
per year, equivalent to less than 10%, at most, and insignificant for
3 of the sites). For the UK, a site and wall orientation, on average,
experiences 23 rain spells (as defined by ISO 15927) for 1961–1990
and not predicted to change over the twenty-first century. Natural
variation around this average is caused by two factors: annual pre-
cipitation and prevailing wind directions. For regions that experience
higher than average annual precipitation, there are less likely to be
periods of 96 h or longer without driving rain, so subsequent depres-
sions would be bridged into a single spell. Also, walls oriented to
be hit by prevailing UK wind patterns will less frequently meet the
aforementioned condition for dividing exposure into spells.

If rain spells are predicted to become shorter but occur with the
same annual frequency, it follows that there will be longer periods
of time between them. Table 5 presents two metrics for quantify-
ing this: the mean period of time elapsing between sequential WDR
spells, and the fraction of hours that were within rain spells on
average out of the total number of hours occurring in a one-year
period.

It can be observed that the inter-spell periods are increasing, on
average, by approximately 1 day, representing a 10–15% increase
in 2070–2099 upon 1961–1990. A concomitant decrease can be
observed in the number of hours within an annual period that are
within rain spells, as opposed to inter-spell periods.

3.5. Intra-spell characteristics

At all sites, regardless of spell length, the fraction of hours
within spells during which there is WDR exposure occurring, the ‘
active fraction’ is predicted to increase — except for long spells at
Plymouth, which are predicted to decrease negligibly. The most sig-
nificant increases in the active fraction are predicted to occur for the
mid-length spells (longer than 10 h but less than 100 h long).

Sections 3.3 and 3.4 present predicted increases in the volume
of rain spells and decreases in their duration. While these affect the
wind-driven rain exposure at the single-spell level, they do not con-
sider how the exposure might be distributed within an individual
WDR spell.

To assess this, it is interesting to consider the ‘active’ fraction,
defined as the number of hours within a rain spell during which
there is exposure to wind-driven rain for a given location and wall
orientation. Table 6 shows the active fraction at each site for short,
medium, and long WDR spells.

The active fractions for short spells are approximately 0.90,
while for medium and long spells they are about 0.30 and 0.15,
respectively. Longer spells have lower active fractions than their
shorter counterparts, as they are more likely to bridge between mul-
tiple weather depressions but have periods with no WDR within
them.

4. Discussion

Two points of discussion are necessary: a review of some of the
factors that impact the semi-empirical calculations of WDR and pre-
dictions of wind-driven rain (Section 4.1), and a consideration of the
implications of the predictions for cultural heritage and built infras-
tructure (Section 4.2). An important part of the latter is to highlight
aspects of wind-driven rain that are not captured by the current stan-
dard metrics – imperative to characterising future risk if they are
predicted to significantly change in frequency of occurrence and/or
severity.

4.1. Factors impacting calculations and predictions of wind-driven rain

The predictions in this paper are based on a multi-stage method.
Each of these stages has implicit assumptions, caveats, and/or
limitations.

4.1.1. Availability and applicability of meteorological data
ISO 15927 requires at least 10 years (and ideally 20–30 years)

of hourly meteorological data to account for annual variability of
wind-driven behaviour. As a reference time frame of 1961–1990 was
selected to be the same as the baseline provided by the UKCP09, sites
with data fulfilling the criteria were limited. The weather station
data used may not be representative of the grid used in UKCP09, and
will also not accurately reflect the microclimates created in urban
environments.

4.1.2. Limitations of the Weather Generator and the probabilistic
generation of future weather timeseries

A report on the UKCP09 Weather Generator specifies that the fit-
ted data “must be validated by the user” [Jones et al., 2009, p. 31].
Section 3.1 demonstrated the time series created from the Weather
Generator data did not simulate extremes of high wind speeds,
which is also an acknowledged attribute of the Weather Generator
Jones et al. (2009). It should also be considered that both the Weather
Generator and the Eames probabilistic process are learning methods
that lack a physical basis; therefore, any use of a training data set (e.g.
one from 1961–1990) assumes that certain relationships and charac-
teristics of the climate are also applicable for the future time periods
of interest. Finally, the Weather Generator is “based on two models
with time scales of one day to one month. The models are made to
follow the average seasonality. . . but variability on time scales longer

Table 5
Period of time elapsing between sequential wind-driven rain spells from 1961–1990 and 2070–2099, with changes. The mean fraction of hours within
rain spells represents the fraction of hours that were within rain spells on average out of the total number of hours occurring in a one-year period. All
changes are statistically significant within a 95% CI.

Mean inter-spell period Mean fraction of hours within rain spells

1961–1990 2070–2099 Change 1961–1990 2070–2099 Change
h h h – – %

Aldergrove 180 ± 0.49 200 ± 2.6 26 ± 3.1 0.51 ± 0.002 0.43 ± 0.01 −15 ± 2.1
Tiree 170 ± 0.46 180 ± 1.9 14 ± 2.4 0.60 ± 0.002 0.57 ± 0.01 −5.0 ± 2.3
Kinloss 200 ± 0.66 220 ± 2.5 21 ± 3.2 0.42 ± 0.002 0.36 ± 0.01 −14 ± 2.1
Leeming 210 ± 0.89 240 ± 3.9 30 ± 4.8 0.37 ± 0.003 0.31 ± 0.01 −15 ± 3.6
Heathrow 220 ± 0.67 260 ± 4.4 34 ± 5.1 0.31 ± 0.001 0.27 ± 0.01 −11 ± 3.1
Stornoway 160 ± 0.54 180 ± 1.6 16 ± 2.2 0.65 ± 0.002 0.58 ± 0.01 −11 ± 1.0
Valley 180 ± 0.52 210 ± 2.8 28 ± 3.4 0.44 ± 0.002 0.38 ± 0.01 −12 ± 2.3
Plymouth 200 ± 0.61 240 ± 4.6 34 ± 5.2 0.37 ± 0.002 0.34 ± 0.01 −9.0 ± 3.2
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Table 6
Mean fraction of hours within spell with wind-driven rain.

Short spells (less than 10 h) Mid-length spells (longer than 10 h but less
than 100 h)

Long spells (greater than 100 h)

1961–1990 2070–2099 Change Baseline 2070–2099 Change 1961–1990 2070–2099 Change
– – % – – % – – %

Aldergrove 0.89 ± 0.0016 0.92 ± 0.0026 3.3 ± 0.48 0.26±0.0013 0.28±0.0041 10 ± 2.1 0.13 ± 0.0003 0.14 ± 0.0013 4.9 ± 1.2
Tiree 0.87 ± 0.0019 0.92 ± 0.0032 5.3 ± 0.58 0.28±0.0012 0.31±0.0037 11 ± 1.8 0.14 ± 0.0003 0.15 ± 0.0011 5.2 ± 2.0
Kinloss 0.92 ± 0.0014 0.93 ± 0.0025 1.5 ± 0.42 0.22±0.0010 0.26±0.0036 20 ± 2.1 0.12 ± 0.0003 0.13 ± 0.0012 12 ± 1.3
Leeming 0.90 ± 0.0013 0.91 ± 0.0029 1.6 ± 0.47 0.24±0.0009 0.26±0.0036 11 ± 1.9 0.12 ± 0.0004 0.12 ± 0.0011 3.5 ± 1.2
Heathrow 0.89 ± 0.0012 0.92 ± 0.0030 3.3 ± 0.47 0.27±0.0009 0.29±0.0034 8.6 ± 1.6 0.13 ± 0.0004 0.13 ± 0.0012 3.4 ± 1.3
Stornoway 0.89 ± 0.0020 0.92 ± 0.0031 2.7 ± 0.56 0.25±0.0014 0.29±0.0036 19 ± 2.0 0.14 ± 0.0003 0.15 ± 0.0009 7.4 ± 0.91
Valley 0.89 ± 0.0013 0.92 ± 0.0025 3.6 ± 0.42 0.29±0.0012 0.32±0.0039 9.0 ± 1.7 0.14 ± 0.0003 0.14 ± 0.0012 3.2 ± 1.1
Plymouth 0.91 ± 0.0012 0.93 ± 0.0030 3.1 ± 0.46 0.32±0.0012 0.33±0.0049 5.0 ± 1.9 0.15 ± 0.0004 0.15 ± 0.0016 −1.7 ± 1.3

than a few weeks is not explicitly represented” [Jones et al., 2009,
p. 32]. As rain spells lasting longer than a few weeks rarely occur, the
effect of this on the accuracy of the predictions is minimal.

4.1.3. Applicability of ISO 15927-3:2009
The methods in this standard are not applicable for [ISO, 2009,

p. 1]: a) mountainous areas with sheer cliffs or deep gorges, b) areas
in which more than 25% of the annual rainfall comes from severe
convective storms, and c) areas and periods when a significant pro-
portion of precipitation is made up of snow or hail. Additional
guidance is provided for data quality: a) indices calculated from
inland stations are not representative of buildings in coastal locations
(i.e. situated less than 8 km from the sea), b) in mountainous terrain
calculated indices apply only to the immediate neighbourhood of the
station, c) in predominantly flat regions (i.e. with variations in alti-
tude less than 100 m), the calculated indices are valid up to 100 km
from the measurement station. In hilly regions, the limits to validity
are much less. It is not thought that any of the study sites should be
discounted for these reasons.

4.1.4. Cosine rule
The cosine rule is used in semi-empirical calculations of wind-

driven rain to incorporate the angle between the prevailing wind
direction and wall orientation. A comparison of the cosine rule and
numerical simulations of WDR exposure on building façades showed
that it tends to overestimate WDR exposure at higher angles, and is
not well-suited for “light to moderate horizontal rainfall intensities
and for the higher wind-speed values” [Blocken and Carmeliet, 2006,
p. 1188]. Despite these shortcomings, it remains the current standard
for incorporating wall orientation into semi-empirical evaluation of
WDR exposure.

4.1.5. Effect of droplet diameter
The wind-driven rain index assumes a rain-drop diameter of

1.2 mm, from which the coefficient in Eq. (1) by the inverse of the
terminal velocity V T = 4.5 m s−1. Depending on the type of precipita-
tion (e.g. drizzle, cloudbursts, etc.. . . ) the WDR coefficient can vary as
much as 50–200%, which can result in a halving or doubling the WDR
exposure within that hour as calculated herein Straube and Burnett
(1998). Future work is needed to explore whether information on the
predominant type of hourly rainfall can be extracted from meteoro-
logical metadata, such as weather codes used by the Met Office. From
this, a more accurate droplet diameter could be inferred, increasing
the accuracy of semi-empirical representations of WDR.

4.2. Implications for risks to cultural heritage and built infrastructure

Characterising the properties of wind-driven rain spells in the
future is an important component of understanding climate change

risk. Moreover, the potential effects on built heritage should be
inferred, to inform efficient and effective management of change.

The metrics used in current standards for assessing wind-driven
rain exposure in the UK are relevant to two types of impact:

1. Annual index IA: for assessing the average moisture content of
masonry BSI (1984) and when “assessing the likely growth of
messes and lichens” [BSI, 1992, p. 4]

2. Spell index IS: indicates the likelihood of rain penetration
through masonry and joints in other walling systems (ISO,
2009)

For both metrics, the risk is characterised by the volume of water
calculated to impact a standard surface area. When considering the
potential risks of wind-driven rain, it is proposed that there are three
important properties of rain spells: a) volume of the exposure, b) the
duration of the spell, and c) the active fraction – the fraction of hours
within a spell for which there is actively exposure to wind-driven
rain.

It is also important to consider run-off in considering the impli-
cations of these changes. The semi-empirical methods for calculating
WDR are only applicable up to the point where WDR conceptu-
ally impacts a surface. They do not suggest that all of this water
is absorbed by the surface, as some of it will likely run over the
surface. This has ramifications for the performance of building ele-
ments besides porous materials and will be discussed later in this
section.

It is useful to consider the four categories of activity related to
building performance presented in Table 7 and how these might
change under future scenarios: building element failure, biologi-
cal impacts, cycling, and deep-seated wetting. These activities are
directly related to the properties of WDR spells. While there are
many other mechanisms that can affect porous building materials
and the building envelope – such as salt crystallisation and freeze-
thaw effects – their relationships with WDR are more complex and
cannot be so easily summarised. Table 7 and the discussions that
follow demonstrate the necessity to consider additional characteris-
tics of WDR rain spells in order to categorise the range of potential
impacts on cultural heritage.

4.2.1. Applicability of current metrics
IA is a catch-all metric that ambiguously represents many differ-

ent kinds of impacts of wind-driven rain. The average annual wind-
driven rain exposure is reflective of all types of spells, regardless
of their duration and/or active fraction. By definition, it is weighted
more heavily towards spells.

IS is a metric for assessing the potential occurrence of water pen-
etration through masonry and joints. It is defined as the “worst spell
likely to occur once every three years”, represented by a percentile of
all spell exposures of the entire data set. By this definition, IS reflects
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spells in which high quantities of water impact a surface. In practice,
the spell that this percentile reflects is a spell of a very long duration,
as there are more hours in which wind exposure can occur. This does
not account for the relatively low active fraction that longer spells
(greater than 100 h in duration) typically have: between 10–15%.
Penetration through masonry units is more likely to occur during
shorter – but more intense – spells, when sequential exposures to
quantities of wind-driven rain exert pressures onto existing mois-
ture within porous building materials, driving them deeper into the
building envelope.

4.2.2. Building element failure
ISO 15927 acknowledges that the metrics defined within it do not

encompass all potential impacts of wind-driven rain: for example,
it specifies that building element failure, such as “rain penetration
around the edges of doors and windows or similar cracks in build-
ing façades. . . depends on shorter periods of heavy rain and strong
winds” [ISO, 2009, p. v]. The failure of building elements could also
be expanded to include the effects that follow on from overburdened
drainage and moisture management systems. This could be due to
insufficient maintenance and/or because the volume of WDR expo-
sure in a given time frame exceed their capacity. When the building
elements do not function properly, it can increase the amount of
water that runs over a façade, which is often localised to particular
areas of a construction.

Such instances are predicted to become more frequent, given that
shorter rain spells (less than 10 h) are predicted to become more
frequent and more intense. As these spells usually have WDR occur-
ring in most of the hours within their duration (i.e. a high active
fraction), there is little time for drainage systems and other build-
ing elements to shed water. Metrics are needed that can identify the
risks of wind-driven rain to building element failure.

4.2.3. Near-surface cycling
Within standards for wind-driven rain assessment, the period

between spells is defined as a minimum of 96 h as it is possible
that periods up to this length with no driving rain are necessary
before evaporative losses will exceed the ingress from rain exposure
(Prior, 1985). While this represents the extreme scenario (and is, to
a degree, arbitrary), surface evaporation is likely occurring within
spells during the hours in which there is not wind-driven rain expo-
sure – in addition to the inter-spell periods. Such movements of
vapour and liquid water can be considered as moisture cycling, both
at a micro-scale (within mm from the surface interface) and at the
bulk scale.

The distribution of active hours within spells has not been
assessed. Although the total fraction of active hours within spells
is predicted to increase, further work is needed to understand how
clustering or spreading of active hours within rain spells could lead
to higher rates of micro-cycling of moisture at the surface and near
the surface. Another important component of this analysis would be
to consider sub-hourly distributions of rainfall, which could further
support moisture micro-cycling.

It is predicted that longer periods of time will elapse between
spells, increasing, on average, by roughly one day across all eight
UK sites studied here. This could allow for more significant cycling
to occur between spells: for example, simple modelling of stone
masonry walls shows that 24 h of evaporative drying can mean
0–3 mm [L m−2 day−1] of potential evaporation (Hall et al., 2011).

4.2.4. Deep-seated wetting
Deep-seated wetting can be considered as a migration of moisture

to and from depth within a masonry construction (Smith et al., 2011).
Smith et al. have highlighted the polarising behaviour between the
wetness and dryness of winter and summer months that support
an increased potential for seasonal-dependent deep-seated wetting.
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This would be propagated by an increase of active hours within mid-
length and long spells, which could provide more opportunities for
moisture gradients to be forced deeper into masonry. In contrast,
longer spells are predicted to become less frequent, with longer peri-
ods of time between them. It is difficult to postulate which of these
effects might dominate, but future work could attempt to model the
potential evaporation and moisture ingress under various scenarios.

When it comes to assessing the potential for deep-seated wet-
ting using the current definition of the airfield annual index in ISO
15927 and BS 8104, these changes are being smoothed by an annual
average, which is predicted to be ‘net positive’ for most sites, as the
increases during winter months outweighs the decreases predicted
for the summer months. Future WDR exposure should be calculated
as seasonal indices, as these will more accurately capture the over-
all exposures to wind-driven rain. Annual and seasonal exposures
for the baseline and scenario time periods are presented in Table 2,
along with what these represent as percent changes (Table 3). The
polarisation of winter and summer volumes strongly suggests that
deep-seated wetting will likely become more serious and frequent
for western sites in Scotland and Wales.

5. Conclusion

This study has evaluated the projected characteristics of WDR
spells and exposure for eight UK sites towards the end of the twenty-
first century under a high-emissions scenario. It was shown that the
future UK climate is predicted to experience shorter wind-driven
rain spells with higher volumes of exposure in more concentrated
time periods, especially during winter and autumn months. These
increases will be more severe for western and coastal locations that
already experienced higher WDR exposure during the twentieth
century. The projected impact on building exposure are higher fre-
quency and severity of building element failure, near-surface cycling,
and deep-seated wetting.

Combining probabilistic hourly time series generation with semi-
empirical formulae of WDR exposure was a robust approach of
assessing future exposure. The results demonstrated that there will
not only be changes in the quantity of exposure to WDR, but also in
the temporal characteristics such as the length of WDR spells and the
distribution of exposure within them.
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