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The focus of this work is on three-dimensional
nonlinear flexural–gravity waves, propagating at the
interface between a fluid and an ice sheet. The ice
sheet is modelled using the special Cosserat theory of
hyperelastic shells satisfying Kirchhoff’s hypothesis,
presented in (Plotnikov & Toland. 2011 Phil. Trans.
R. Soc. A 369, 2942–2956 (doi:10.1098/rsta.2011.0104)).
The fluid is assumed inviscid and incompressible,
and the flow irrotational. A numerical method based
on boundary integral equation techniques is used to
compute solitary waves and forced waves to Euler’s
equations.

This article is part of the theme issue ‘Modelling of
sea-ice phenomena’.

1. Introduction
In this paper, we consider an incompressible and
inviscid fluid covered by an ice sheet. Under certain
conditions, the floating ice sheets can be modelled
as an elastic medium, and their interaction with
the fluid makes the resulting hydroelastic problem
mathematically challenging [1]. A renewed interest in
waves generated by moving loads on top of floating
ice sheets has been sparked in the last 40 years by a
series of experiments in cold regions (e.g. [2–6]), where
ice roads and runways are used during the winter.
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More recently, the displacement of ice cover generated by moving vehicles has been measured
using radar satellites [7]. Waves under ice cover can be generated by other events, such as a
landslide-generated tsunami [8].

There are a variety of models for an ice sheet floating on top of a body of water, starting with
the linear model used by Greenhill [9] or the Kirchhoff–Love plate model [10], another popular
model used in past decades. In this work, the model for the ice sheet uses the special Cosserat
theory for thin hyperelastic shells, satisfying Kirchhoff’s hypothesis, described in detail in [11].

Most of the analytical and numerical studies of nonlinear flexural–gravity waves (or
hydroelastic waves) concentrate on two-dimensional problems. Weakly nonlinear models, such
as the nonlinear Schrödinger equation or the fifth-order Korteweg–de Vries equation, have been
derived to analyse flexural–gravity waves [12,13]. The existence of solitary flexural–gravity
waves has been studied using central manifold theory [14,15] or variational techniques [16].
Also, the existence of travelling flexural–gravity waves was proved using critical points of a
Lagrangian [17], while the well-posedness of the initial-value problem was investigated using
the vortex-sheet method [18].

Steady and unsteady solitary waves have been investigated numerically in a variety of
configurations by a number of authors, using boundary integral methods and high-order spectral
methods [19,20], using conformal mapping techniques [21–23]. Travelling waves and generalized
solitary waves have also been computed using different numerical methods such as the Galerkin-
type method [10], series expansions [24] or conformal mapping techniques [25] and other
non-local methods [26,27].

In most cases, the elastic shell is assumed to be without mass, but very recently theoretical
and numerical works have been published that consider the case of heavy hydroelastic waves
[28–30]. Other related two-dimensional problems include the study of internal waves under an
ice sheet [31], the hydraulic falls under an elastic sheet [32] and the wave attenuation of solitary
waves in a fragmented ice sheet [33].

There are fewer three-dimensional studies of flexural–gravity waves, owing to the complexity
of the problem. Linearized problem patterns of flexural–gravity waves generated by moving
loads have been presented by Davys et al. [34] by investigating the dispersion relation. Linear
deflections generated by a rectangular load on an ice sheet have been computed using Fourier
transforms [35].

Solitary waves in three dimensions have also been studied by deriving a Benney–Roskes–
Davey–Stewartson model for a fluid of arbitrary depth covered by an elastic sheet and
considering small-amplitude waves [36]. This model predicts that in an infinite depth case there
are no small-amplitude solitary waves, but they exist for shallow water. In shallow water, a
three-dimensional generalization of the fifth-order Korteweg–de Vries equation was derived [37],
which admits solitary waves as solutions. More recently, fully localized three-dimensional solitary
waves have been computed in a quintic Hamiltonian model derived from the full nonlinear Euler
equations [38].

The focus of this work is on waves generated by moving pressures and on fully localized
solitary flexural–gravity waves. These are computed in three dimensions for water of finite or
infinite depth, using the nonlinear model formulated in Plotnikov & Toland [11] for the ice
sheet. Recently, a Hamiltonian reformulation of the governing equations was presented [39].
The boundary integral method used to perform the computations was previously derived for
gravity waves [40,41] and later extended for gravity–capillary waves [42,43]. Waves generated
by a moving load on a nonlinear fluid–linear elastic plate configuration have been computed
using a boundary integral method [44] and solitary waves have been found [45]. Very recently,
the method was modified to compute small-amplitude solutions for Kelvin-wake patterns using
Krylov methods, with a preconditioner based on the linearization [46].

The layout of this paper is follows. The next section includes a description of the problem
and its reformulation, with the following section describing the numerical method used.
The numerical results section follows, including sample wave profiles. The paper ends with
conclusions and discussions of the results.
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2. Formulation
The Euler equations describing an incompressible, inviscid, irrotational fluid with velocity
potential Φ(x, y, z, t) and variable surface ζ (x, y, t) under a sheet of ice in three dimensions are
given by

∇2Φ = 0 (x, y) ∈ R, −h < z < ζ (x, y, t),

ζt + Φxζx + Φyζy = Φz on z = ζ (x, y, t),

ρΦt + ρ

2
(Φ2

x + Φ2
y + Φ2

z ) + ρgζ + DPflex + p(x, y, z, t) = 0 on z = ζ (x, y, t)

and Φz = 0 for z = −h,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)
where ρ is the density of the water, D is the flexural rigidity of ice, g is gravitational acceleration,
h is the depth of the water (which could be taken to be infinite), p(x, y, z, t) is an external pressure
exerted on the ice and Pflex is a term describing the effect of the ice on the surface of water. The
schematic for the domain of interest is shown in figure 1, where the Cartesian coordinates Oxyz
are defined such that the z-axis is oriented vertically upward and the waves propagate along the
x-axis.

The term describing the effects due to the presence of ice is modelled using the Cosserat theory
of hyperelastic shells [11]. It assumes that the ice is a thin elastic plate with constant thickness, the
ice bends with the water waves and it cannot break. The model neglects friction between the ice
and the water. The coefficient for flexural rigidity for ice D is given by

D = Ed3

12(1 − ν2)
,

where E is Young’s modulus (i.e. the modulus of elasticity), ν is the Poisson ratio describing the
effects of transverse strain relative to axial strain and d is thickness of the ice.

After some algebra, we can express Pflex in Cartesian coordinates as

Pflex = 2√
a

[

∂x

(
1 + ζ 2

y√
a

∂xH

)

− ∂x

(
ζxζy√

a
∂yH

)
− ∂y

(
ζxζy√

a
∂xH

)
+ ∂y

(
1 + ζ 2

x√
a

∂yH

)]

+ 4H3 − 4KH,

(2.2)

where H is the mean curvature and K is the Gauss curvature of the ice–water interface, given by

H = 1
2a3/2 [(1 + ζ 2

y )ζxx − 2ζxyζxζy + (1 + ζ 2
x )ζyy]

K = 1
a2 [ζxxζyy − ζ 2

xy]

and a = 1 + ζ 2
x + ζ 2

y .

It is worth noting that in previous works on three-dimensional flexural–gravity waves [44,45] a
linear model was used for the ice sheet, where Pflex has a much simpler form as

Pflex = Plin = ∇4ζ = ζxxxxx + 2ζxxyy + ζyyyy.

We analyse the linearization of the nonlinear system (2.1) and look for plane wave solutions of

the form ei(k1x+k2y−ωt) and k =
√

k2
1 + k2

2. The linear dispersion relationship between the frequency
ω and the wavenumbers k1 and k2 is then

ω2 =
(

gk + Dk5

ρ

)

tanh(kh). (2.3)
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Figure 1. A schematic representing the domain for (2.1).
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Figure 2. Plots of the phase speed c(k) in (2.4) using the physical parameters from the experiments described in [6] ((a) infinite
depth, D= 1.6 × 109 Nm) and in [3] ((b) finite depth, h= 6.8m, D= 2.35 × 105 Nm).

If we only consider two-dimensional waves moving in the x-direction with wavenumber k, then
we can further define a phase speed

c2 = ω2

k2 =
(

g
k

+ Dk3

ρ

)

tanh(kh). (2.4)

It can be shown that c always has a minimum cmin at a finite wavenumber k = kmin > 0 for all the
values of the physical parameters. At this critical speed, the group and phase speeds are equal.
For h → ∞, the minimum phase speed cmin is

c2
min = 4

3

(
3Dg3

ρ

)1/4

. (2.5)

There are very different wave patterns expected when we consider a pressure travelling at a
speed U above or below this critical speed cmin from (2.5). In figure 2a, we show (2.4) for infinite
depth and in figure 2b we show (2.4) for finite depth. For U < cmin, the disturbance due to the
moving pressure approaches a uniform flow at infinity as there is no k for which U = c(k), hence no

 on October 9, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


5

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170345

.........................................................

3.0

2.5

2.0

1.5F

1.0

0.5

0 0.5 1.0 1.5 2.0 2.5 3.0
h

Figure 3. Critical values of F versus h from which solitary branches of solutions are expected to bifurcate.

waves are generated in the far field. However, for U > cmin, there are two wavenumbers for which
U = c(k) and a more complicated pattern emerges. This analysis generalizes to three dimensions
and, in this work, we focus on the case of U < cmin and we will look for symmetric solutions in x
and y.

Since we restrict our focus to solitary and forced waves, travelling with speed U, it is
convenient to use a reference frame moving with the wave by setting x → x − Ut and considering
steady-state solutions. We non-dimensionalize the problem using this speed U as the unit of
velocity and introduce a unit of length L. This allows us to rewrite the Bernoulli condition at
the surface (the third equation in (2.1)) in terms of the non-dimensional parameters, using

F = gL
U2 . (2.6)

We introduce β = D/ρU2L3 and for convenience L = 3
√

D/ρU2, which will set β = 1. The non-
dimensional depth is defined as ĥ = h/L, dropping the hat for ease from now on. As mentioned
above, there is always a minimum of the dispersion relation, whatever the values of physical
parameters. In figure 3, we plot the curve in the F–h plane, which corresponds to this minimum.

To solve equations (2.1), we use a boundary integral equations method (e.g. [40,42–45]), using
Green’s functions. We now review the main aspects of the numerical scheme. We note that, for
Laplace’s equation (the first equation in (2.1)) in three-dimensional free space, Green’s function
in infinite depth for the points P = (x, y, z) and P∗ = (x∗, y∗, z∗) is

G(P, P∗) = 1
4π

1
[(x − x∗)2 + (y − y∗) + (z − z∗)2]

. (2.7)

We use Green’s second identity, which states
∫∫∫

V
( f)g − g)f ) dV =

∫∫

S

(
f
∂g
∂n

− g
∂f
∂n

)
dS, (2.8)

where we can set g = G(P, P∗) and f = Φ − x, which satisfies Laplace’s equation. After the proper
substitutions and some manipulation, we obtain

1
2

(Φ(P∗) − x∗) =
∫∫

S

[
(Φ(P) − x)

∂G(P, P∗)
∂n

− G(P, P∗)
∂(Φ(P) − x)

∂n

]
dS, (2.9)

where n is the normal to the ice–water interface S pointing into the fluid, and P∗ is a point from S.
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We define

φ(x, y) = Φ(x, y, ζ (x, y)), (2.10)

which allows us to rewrite the Laplace equation as well as some of the boundary conditions in
terms of a surface integral.

The final form of equations to solve for flexural–gravity waves in infinite depth is

1
2

(1 + ζ 2
x )φ2

y + (1 + ζ 2
y )φ2

x − 2ζxζyφxφy

1 + ζ 2
x + ζ 2

y
+ Fζ + p(x, y) + Pflex = 1

2
(2.11)

and
∫∞

−∞

∫∞

−∞
[(φ − φ∗ − x + x∗)K1(x, y, x∗, y∗, ζ , ζ ∗) + ζxK2(x, y, x∗, y∗, ζ , ζ ∗)] dx dy = 2π (φ∗ − x∗),

(2.12)

where

K1(x, y, x∗, y∗, ζ , ζ ∗) = 1
b(x, y, x∗, y∗, ζ , ζ ∗)3/2 (ζ − ζ ∗ − (x − x∗)ζx − (y − y∗)ζy) (2.13)

and

K2(x, y, x∗, y∗, ζ , ζ ∗) = 1
b(x, y, x∗, y∗, ζ , ζ ∗)1/2 , (2.14)

with

b(x, y, x∗, y∗, ζ , ζ ∗) = (x − x∗)2 + (y − y∗)2 + (ζ − ζ ∗)2.

We use the notation ζ = ζ (x, y), ζ ∗ = ζ (x∗, y∗) and φ∗ = φ(x∗, y∗).
Symmetry in the y-direction with ζ (x, y) = ζ (x, −y) and φ(x, y) = φ(x, −y) implies that we can

solve the set of equations (2.11) and (2.12) on half of the domain. We use the method of images to
account for the symmetry, which introduces two extra terms in each kernel

K̄1(x, y, x∗, y∗, ζ , ζ ∗) = K1(x, y, x∗, y∗, ζ , ζ ∗) + K1(x, −y, x∗, y∗, ζ , ζ ∗) and

K̄2(x, y, x∗, y∗, ζ , ζ ∗) = K2(x, y, x∗, y∗, ζ , ζ ∗) + K2(x, −y, x∗, y∗, ζ , ζ ∗).

Part of the integral in (2.12) is singular [10] and we remove the singularity by noting that
∫∫

ζxK2dx dy =
∫∫

[K2ζx − ζ ∗
x S2] dx dy + ζ ∗

x

∫∫
S2dx dy, (2.15)

where

S2 = 1
√

(1 + ζ ∗2
x )(x − x∗)2 + 2ζ ∗

x ζ ∗
y (x − x∗)(y − y∗) + (1 + ζ ∗2

y )(y − y∗)2
. (2.16)

The last term in (2.15) can be computed analytically since it is of the form
∫

(1/z) dz = ln z.
Moreover, if we consider a fully symmetric solution in x and y, then

ζ (x, y) = ζ (−x, y) = ζ (x, −y) = ζ (−x, −y)

and

φ(x, y) = −φ(−x, y) = φ(x, −y) = −φ(−x, −y),

this additional symmetry in x will also introduce two more terms to each kernel. This implies
that, using Green’s function approach, we will have four terms in each kernel due to the method
of images. We can thus reduce the computational cost by only integrating over a quarter of the
domain. For water of finite depth h, we also need to account for the image across the bottom at
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z = −h (for more details on the approach for finite depth, see [42]). Thus, the equation (2.12) for
water of finite depth becomes

2π (φ(x∗, y∗) − x∗) = I1 + I2 + I3 + I4, (2.17)

where

I1 =
∫∞

0

∫∞

0
([φ − φ∗ − x + x∗]K̄1(x, y, x∗, y∗, ζ , ζ ∗)

+ [−φ − φ∗ + x + x∗]K̄1(−x, y, x∗, y∗, ζ , ζ ∗)) dx dy, (2.18)

I2 =
∫∞

0

∫∞

0
(ζxK̄2(x, y, x∗, y∗, ζ , ζ ∗) + ζxK̄2(−x, y, x∗, y∗, ζ , ζ ∗)) dx dy, (2.19)

I3 =
∫∞

0

∫∞

0

(
[φ − x]K̄1(x, y, x∗, y∗, ζ , ζ ∗ − 2h) + [−φ + x]K̄1(−x, y, x∗, y∗, ζ , ζ ∗ − 2h)

)
dx dy

(2.20)

and I4 =
∫∞

0

∫∞

0
(ζxK̄2(x, y, x∗, y∗, ζ , ζ ∗ − 2h) + ζxK̄2(−x, y, x∗, y∗, ζ , ζ ∗ − 2h)) dx dy, (2.21)

where, as before, I2 is singular.

3. Numerical method
The equations given by (2.11) and (2.17) with the integrals shown in (2.18)–(2.21) are discretized
by setting xi and yj to be equally spaced points such that i = 1, . . . , N and j = 1, . . . , M. Let the
vector of unknowns be φx(i,j) and ζx(i,j) such that

u = [φx(1,1), . . . , φx(N,1), . . . , φx(N,M), ζx(1,1), . . . , ζx(N,M)]
T. (3.1)

We evaluate the equations at points (xi+1/2, yj) and use finite differences for the derivatives. This
gives 2(N − 2)M equations. We obtain 2M equations from symmetry about the y-axis and 2M more
equations from decay at the boundaries. To obtain ζ and φ, we use a trapezoid rule. Derivatives
are computed using central difference, second-order accurate schemes, except at the border where
one-sided schemes are needed. This gives 2NM equations, which can be written as

G(u) = 0. (3.2)

To solve the system, we use Newton’s method [46,47], which is summarized as

(i) set up an initial guess u0

(ii) until convergence
(a) solve J(un)δn = −G(un)
(b) set un+1 = un + δn

(c) test for convergence and repeat steps if not converged.

This method relies on an initial guess u0 and the Jacobian matrix J. To compute non-trivial solitary
waves (ones that are non-zero), we need a good initial guess in order for the numerical method
to converge. However, since the set of equations is complicated and very nonlinear, there is
no analytical expression for it. In order to obtain solitary waves, the numerical procedure is
to compute a branch of forced waves, reduce the forcing, and use that as an initial guess. The
particular form of the forcing pressure is not important. The main requirement is that it has a
bounded support. Here we choose

p(x, y) =
{

p0e1/(x2−L2
0)e1/(y2−L2

0) for |x| < L0 and |y| < L0

0 otherwise,
(3.3)

and, for convenience, we choose L0 = 1 and p0 to be small, positive or negative. To obtain fully
nonlinear waves, we use a continuation method. We start with a small amplitude, using the
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Figure 4. Bifurcation branches for forced (dashed) and solitary (solid) waves in infinite depth. (Online version in colour.)
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Figure 5. Bifurcation branches for forced (dashed) and solitary (solid) waves in finite depth with h= 1. (Online version
in colour.)

flat water as an initial guess with F > Fmin, where Fmin corresponds to the minimum of (2.4).
We use Newton’s method to compute the true solution for the chosen F, and then rescale to
use as an initial guess for a larger amplitude solution. This process is continued until we go
around a turning point in the bifurcation branch for the forced solutions. Then, decreasing p0, we
can compute non-trivial solutions to the unforced (free surface with p0 = 0) problem. We expect
bifurcation of solitary waves to start from a point on the curve shown in figure 3 corresponding
to the depth h considered, and solitary waves to exist for F > Fmin. Similar approaches were
used before for gravity–capillary waves for the two-dimensional problem [48] and for the
three-dimensional problem [42,43].

Another key component to Newton’s method is the Jacobian matrix J. Owing to the form of the
equations we are solving, (2.11) and (2.17), this Jacobian is hard to compute analytically. Therefore,
it is computed numerically via finite differences. For a three-dimensional problem, this matrix can
be quite large and it requires a lot of memory to store and also to compute its inverse. In particular,
due to the high degree of the nonlinearity from the flexural term (2.2) and the presence of the
double integral over the whole space, this Jacobian matrix contains at least two dense quadrants.
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Figure 6. Free surface bifurcation branches of solitary waveswith the dashed line representing infinite depth and the solid line
is h= 1. (Online version in colour.)

In general, there are two ways to reduce the computational requirements of Newton’s method.
One way is to compute an approximate inverse of the Jacobian and another way is to compute
an approximate Jacobian [47]. It is known that iterative solvers such as GMRES can compute
approximate inverses, but these require preconditioners to converge well. For this problem,
preconditioners can be found from previous steps along the bifurcation branch; however, they
require a lot of memory to store so this process is inefficient. It is faster to not update the Jacobian
at every step along the bifurcation branch, hence we use only an approximate Jacobian. However,
for this flexural–gravity wave problem with the nonlinear term due to the Cosserat model used,
having an inexact Jacobian was found to result in poor convergence.

4. Numerical results
In this section, we present the numerical results for forced and free surface waves. For what
follows, we use the doubly symmetric equations on a quarter of the domain with n = 80, m = 50,
)x = 0.5, )y = 0.8. The accuracy of the method was checked by varying )x and )y and the
number of points in each direction. The tolerance for convergence of Newton’s method was set
to 10−10. The forcing term (3.3) had p0 = 1 for depression waves and p0 = −1 for elevation waves
(unforced p0 = 0). Figures 4 and 5 summarize the computations using a continuation method with
a Newton iteration at every step. These figures show the bifurcation branches for both depression
and elevation waves with and without a forcing. Dashed lines show the forced waves, which were
used as a starting point for the computations of free solitary waves and computed for U < cmin,
and solid lines are the solitary waves without a forcing.

Figure 6 shows the comparison of the branches of solutions of solitary waves, normalized by
Fmin in each case. The dashed line is for infinite depth and the solid line is for h = 1. For infinite
depth, it can be shown that in non-dimensional units Fmin ≈ 0.4725 and for h = 1, Fmin ≈ 1.0272.
These are the values used to normalize the horizontal axis. If these solitary branches bifurcated
from Fmin, then they would be shown to originate from F̄ = 1 in figure 6. However, this is not the
case and the authors believe this is due to numerical errors introduced by truncation or a grid that
is too coarse. These numerical difficulties are related to the fact that the solitary waves become
more and more oscillatory and less localized as the bifurcation points are approached. Similar
difficulties have been encountered previously for gravity–capillary waves (e.g. [42]).

Figure 6 (taken together with figures 7–10) shows that solitary waves in finite depth have
a smaller free surface slope than those for infinite depth for a similar distance (in F) from the
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Figure 7. Solitary wave of depression in infinite depth with F ≈ 0.52 computed on a quarter of the domain with n= 80,
m= 50,)x = 0.5,)y = 0.8, but shown on the full domain.
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Figure 8. Solitary wave of elevation in infinite depth with F ≈ 0.53 computed on a quarter of the domain with n= 80,
m= 50,)x = 0.5,)y = 0.8, but shown on the full domain.

bifurcation point. This implies that the solitary waves’ existence requires smaller nonlinear effects
for finite depth than those required for infinite depth. This is numerical evidence that, for h = 1,
branches of solitary wave solutions bifurcate from zero amplitude, a conclusion that cannot be
drawn for waves in infinite depth. This agrees with asymptotic results [36] that suggest that, for
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Figure 9. Solitary wave of depression for h= 1 with F ≈ 1.2 computed on a quarter of the domain with n= 80, m= 50,
)x = 0.5,)y = 0.8, but shown on the full domain.
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Figure 10. Solitary wave of elevation for h= 1 with F ≈ 1.2 computed on a quarter of the domain with n= 80, m= 50,
)x = 0.5,)y = 0.8, but shown on the full domain.

infinite depth, these branches do not bifurcate from zero amplitude, whereas in shallower water
they do.

It becomes difficult to follow the branches numerically for large-amplitude solutions. In
particular, the elevation branch may have turning points as in two dimensions [49], but more
grid points are needed for a good accuracy, and this become prohibitive computationally.
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Solitary waves are shown in figures 7 and 8 for infinite depth and figures 9 and 10 for h = 1.
The full wave profiles are shown on the left and the cross-sections on the right. As anticipated
from figure 6 with the infinite depth branches having higher amplitude, we see that, in the wave
profiles as well, infinite depth waves show more oscillations in the x-direction, but finite depth
waves are less compact in the y-direction. On the elevation branches, the elevation of the wave
at the centre point (x, y) = (0, 0) becomes smaller in magnitude than the depressions which are
adjacent to it, similar to the gravity–capillary wave problem [42].

5. Conclusion and discussion
In this work, we employ the boundary integral equations method [40,45] to compute three-
dimensional solitary flexural–gravity waves for water of finite and infinite depth, covered by
an ice sheet, using the model presented by Plotnikov & Toland [11]. This model is very nonlinear
with a high number of derivatives, as shown in (2.2), and therefore is numerically difficult to
implement. In this case, the usual numerical aids such as iterative methods for matrix inversions
and use of inexact Jacobians have not proved to be successful. However, working on a quarter of
the domain and using the full symmetry, we are still able to compute the branches of forced and
unforced solutions shown in figures 4–6. Sample figures of the wave profiles are also provided,
allowing for comparison of solutions in infinite and finite depth as well as depression and
elevation waves. These waves are similar to solutions for gravity–capillary waves [43].

One issue is still left to resolve, and that is the asymptotic predictions for the start of the
bifurcation branch. It was shown in [36] that flexural–gravity solitary waves in infinite depth
bifurcate from a finite-amplitude solution. However, numerically this is difficult to prove. Owing
to computational cost, there is a limit to how well these waves can be resolved, resulting in
numerical errors due to truncation close to the start of the bifurcation branches, as shown in
figure 6, where the branches do not begin at the predicted values of F. In shallow water, such
as here with h = 1, the numerical results suggest that the branch starts from zero amplitude,
as predicted by the weakly nonlinear model [36]. There has already been work on using high-
performance computing techniques to improve the accuracy of similar computations [46], but
more methods need to be developed for nonlinear regimes with higher order derivatives such as
the model used for flexural–gravity waves.

It is worth noting that some large-amplitude solutions calculated here may become unphysical,
as the strain of the ice plate may be higher than the yield strain of ice. In this case, the elastic
model for the sheet will become unrealistic and different models should be used (see [32] for a
more detailed discussion).
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41. Părău EI, Vanden-Broeck J-M. 2002 Nonlinear two-and three-dimensional free surface flows
due to moving disturbances. Eur. J. Mech.-B/Fluids 21, 643–656. (doi:10.1016/S0997-7546(02)
01212-8)
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