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Abstract: 
A Gene Regulatory Network (GRN) is a collection of interactions between molecular regulators and their targets in cells governing gene 
expression level. Omics data explosion generated from high-throughput genomic assays such as microarray and RNA-Seq technologies 
and the emergence of a number of pre-processing methods demands suitable guidelines to determine the impact of transcript data 
platforms and normalization procedures on describing associations in GRNs. In this study exploiting publically available microarray and 
RNA-Seq datasets and a gold standard of transcriptional interactions in Arabidopsis, we performed a comparison between six GRNs 
derived by RNA-Seq and microarray data and different normalization procedures. As a result we observed that compared algorithms were 
highly data-specific and Networks reconstructed by RNA-Seq data revealed a considerable accuracy against corresponding networks 
captured by microarrays. Topological analysis showed that GRNs inferred from two platforms were similar in several of topological 
features although we observed more connectivity in RNA-Seq derived genes network. Taken together transcriptional regulatory networks 
obtained by Robust Multiarray Averaging (RMA) and Variance-Stabilizing Transformed (VST) normalized data demonstrated predicting 
higher rate of true edges over the rest of methods used in this comparison. 
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Background: 
Nowadays data mining approaches is a prominent strategy for 
extracting meaningful information from a growing wealth of 
biological data such as gene expression profiles [1] and elucidating 
high-fidelity regulatory interactions from transcriptome data is one 
of the most important applications of computational systems 
biology. Gene interactions in complex networks lead to cell 
metabolism thereby understanding functional molecular 
mechanisms obtained by these interactions is essential for gaining 
some insights into cellular functions, predicting downstream 
events and ideally manipulating the process based on desired 
goals. A Gene Regulatory Network (GRN) is a graph 
representation of biological units in which nodes represent genes 
while the edges are the interaction between them [2]. Causality of 
regulatory process explicated by identifying and understanding the 
GRNs has remained as a problem in molecular biology and various 
methodologies have been proposed to address this issue [3]. 
Generally, tools designed for recovering these interactions rely on 
similarity matrices indirectly measured by correlation matrices or 
mutual information [4]. These matrices usually include many 
indirect links that should be identified and removed for increasing 

the reliability of GRN inference algorithms hence several 
sophisticated approaches attempted to remove indirect interactions 
and detect the causal relationships between gene pairs [5, 6]. 
Gaussian Graphical Models (GGM) is one of these approaches that 
rely on partial correlation and supposes two genes directly related 
if their expression values remain dependent after removing the 
effects of all other variables [5]. Because of linearity assumption 
between molecular measurements in Gaussian graphical models 
also drawback in case of thousands of genes in relation to very 
small number of samples, another methodologies were developed 
to cope with these problems. For example information-theoretic 
approaches such as CLR [7] and ARACNE [8] have been 
successfully applied for reconstructing GRNs [9]. In these 
approaches first a pair-wise mutual information (MI) matrix is 
being calculated between all possible pairs of genes. Afterward this 
matrix is being manipulated for identifying regulatory interactions 
between nodes [3]. However connectivity between nodes does not 
mean the causal relationships. Furthermore GRNs based on mutual 
information are time consuming for several thousand genes and 
some of MI estimators are biased thereby algorithms introduced by 
[4 & 10] attempted to tackle these fundamental problems and 
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remove overestimated regulation dependencies. While the 
aforementioned approaches reconstruct GRNs based on bilateral 
relationships, regression-based methods extract one-to-many 
interactions between nodes from measurement of gene expression 
[11]. In this context GENIE3  infers GRNs by decomposing of 
network recovery procedure to p steps where p is the number of 
genes and each step is consisting of identifying genes that regulates 
a given target gene [6]. 
 
GRNs are mostly inferred by transcriptomics profiles such as 
microarrays and RNA-Seq that microarrays has been used 
intensively [12]. Rapid advances in Next Generation Sequencing 
(NGS) techniques has deviated the massive emplyment of 
microarrays as the main expression data platform to RNA-Seq 
because of fast improvement of its depth and quality [13]. In 
addition to a lower sensitivity because of unavoidable noise 
coming from the nature of microarrays, RNA-Seq offers several 
advantages over microarrays [12, 14].  RNA-Seq techniques do not 
depend on genomic pre-knowledge for transcriptome analysis and 
can be utilized for model and non-model organisms [15]. While 
microarrays can cover only the characterized parts of genome, 
RNA-Seq is able to identify about whole of the transcripts [16]. 
Finally detecting the novel transcripts and variant splicing are 
other capabilities of RNA-Seq [17, 18]. 
 
Biases in sequencing for example variable sequencing depths and 
nucleotide decomposition such as GC content and different 
primers demands normalization strategies to correct several biases 
in library preparation and any error due to uniformed sampling 
[19]. On the other hand, non-specific signals produced by non-
perfect match probes or background signals originated from non-
similarity between sequences in microarrays are the reasons of 
arising normalization procedures like RMA and GCRMA to correct 
the noises and accurately quantification of gene expression. Briefly, 
expression datasets obtained by microarrays or RNA-Seq contain 
numerous biases which inhibit accurate quantification of gene 
expression level, therefore various normalization procedures are 
used as an essential step in transcriptome analysis [20, 21, 22]. 
 
The aim of this study is determining whether microarrays or RNA-
Seq including different normalization procedures can recover a 
more accurate GRN in Arabidopsis thaliana. In this regard we 
employed six state-of-the art unsupervised algorithms considering 
their ability in recognition and removing indirect links between 
genes as well as the most popular methods of gene expression data 
normalization. 
 
Methodology: 
Used datasets and pre-processing 
In RNA-Seq part of this study we downloaded 60 Arabidopsis 
thaliana Illumina based experiments SRA files from Sequence Read 
Archive (SRA) database of NCBI (Table 1). Collected files were 
converted to standard FASTQ format using sratoolkit.2.5.2 [23]. 

The FASTQ files were filtered for any adapter contamination or 
low quality reads by cutadapt-1.8.3 [24]. Here using Q-score ≥ 40 
options, we only kept high quality reads corresponding to a 
sequencing error probability of 0.0001%. Obviously shorter reads 
have a greater chance to map accidentally in multiple positions on 
reference genome; therefore we filtered out reads shorter than 15 
nucleotides to reduce any multi-mapping errors. We then 
performed the quality check of FASTQ files using FastQC program 
[25]. Afterward we downloaded Ensembl source of A.thaliana 
TAIR10 from iGenomes database [26] as reference genome on 
which the reads passed from cutadapt filters were aligned within 
TopHat v2.1.0 with default parameters [27]. Finally the BAM files 
output of TopHat was used as input for featurcounts-1.5.0 [28] to 
provide the raw counts file. Ultimately raw counts were 
normalized with three normalization methods; R package edgeR 
[29] was used to provide RPKM (Reads Per Kilo-base of gene 
model per Million mapped reads) values [30]. We used R package 
DESeq2 to normalize the raw counts into Variance-Stabilizing 
Transformation (VST) and regularized logarithm (rlog) values. we 
as well downloaded 139 raw CEL files from NCBI Gene Expression 
Omnibus (GEO) database [31] and normalized them with four 
microarray pre-processing procedures; Affymetrix’s MicroArray 
Suite (MAS5) [32], Robust Multiarray Averaging (RMA) [33], 
GeneChip RMA (GCRMA) [34] and Variance Stabilizing 
Normalization (VSN) [35]. All of the used normalization 
procedures can be obtained by Bioconductor packages. We checked 
the quality of downloaded CEL data files using Robin software 
[36]. The microarray and RNA-Seq samples covered a wide range 
of Arabidopsis tissues, ages and treatments and we could consider 
them as analogous samples. Getting together we provided four 
files from each of microarrays and RNA-Seq datasets as input for 
GRN inference algorithms and subsequent statistical analysis.  
 
GRN inference methodologies 
In this study for reconstructing GRNs, we utilized six algorithms 
considering their ability in recognition and removing of indirect 
links between genes; matlab implementation of Global Silencing by 
[10] and Network Deconvolution by [4], Graphical Gaussian 
Models (GGM) by (37) using GeneNet R package and R 
implementation of GEne Network Inference with Ensemble of 
Trees (GENIE3) by [6]. We used the Algorithm for the 
Reconstruction of Accurate Cellular Networks (ARACNE) and 
Context Likelihood of Relatedness (CLR) using spearman estimator 
and drawing ROC curves embedded in minet R package [8].  
 
Evaluation statistics  
To assess the impact of two platforms and normalization methods 
on GRN discovery and proposing the better ones, we drew the 
ROC curve that plots true positive rate versus the false positive 
rate. We also computed the below statistics using minet R package; 
(1) AUPR: The area under the PR curve and higher values higher 
true positive rate; (2) AUROC: The area under the ROC curve that 
the values larger than 0.5 showing a higher true positive rate. 
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Furthermore, based on the below formula we computed an overall 
score to evaluate the prediction of microarray and RNA-Seq 
platforms and different normalization procedures separately so 
that the larger values the better performances. 
 
AUROCscore =	
  i=1nAUROCi1n, 
 
AUROCscore =	
  i=1nAUPRi1n, 
 
Overall Score = 	
  AUROCscore+AUROCscore	
  	
  2 
 
Results  
Microarray-based networks versus networks derived from RNA-
Seq 
We utilized a relatively large amount of transcriptomics data 
gathered with microarray and RNA-Seq techniques. Our reasons 
for selecting and exploiting these datasets are that: I) these data 
cover multiple tissues, ages and experimental conditions in 
Arabidopsis and II) the predictions can be compared to a gold 
standard list consist of 4775 experimentally validated gene 
regulatory interactions in Arabidopsis obtained from AGRIS 
database [38] (supplementary file 2 – available with authors). This 
list was used to construct a reference network required for validate 
function in R package minet to assess the prediction accuracy of 
networks resulted by different algorithms and normalization 
methods. Microarray and RNA-Seq samples were selected as 
analogous as possible respect to tissue, age and experimental 
conditions and we used the intersection between expression profile 
of 32550 and 20922 genes from RNA-Seq and microarray data and 
4775 gene interactions in gold set list respectively. The result was 
2857 genes that were common between microarray, RNA-Seq data 
and gold standard and we used the expression values of these 
genes for recovering GRNs. In order to overviewing of datasets, we 
drew bar plots of log2 transformed RNA-Seq raw counts (to 
remove the impact of zero values) using R package DESeq2 and 
microarrays using R package limma (Figure 1). ARACNE 
algorithm is already sparse then we used whole of its inferred 
interactions against 3521 edges of reference network. About the 
other algorithms, we tested the first 10000 highly ranked edges and 
resulted networks were compared with reference network derived 
from gold standard. In order to quantifying the prediction accuracy 
of compared algorithms, we computed the area under the ROC 
curves (AUROCs) and the area under PR (precision-recall) curves 
(AUPRs) by R package minet summarized in Tables 1 and 2. In the 
next step we assessed the performance of each of normalization 
procedures for all of GRNs and each algorithm over each of 
platforms by averaging geometric mean of corresponding AUROCs 
and AUPRs in terms of AUROCscores and AUPRscores [39]. 
Overall Score is arithmetic mean of AUROCscores and AUPRscores 
that ranks the compared methods such that methods with larger 
Overall Score perform better. As the last step of assessment 
procedure we computed a total AUROC for each platform, 
algorithm and normalization method by taking intersection 

between networks (see Tables 1, 2 and the last row of Table 3). We 
intersected the networks inferred by all of the algorithms from each 
platform and as expected we observed the robustness of RNA-Seq 
data in generating networks with higher performances than ones 
by microarrays (Table 3 entities presented in bold) moreover as 
illustrated in Fig.1 in term of ROC (receiver operating 
characteristic) curves, RNA-Seq derived GRNs are more overlap 
with gold standard in comparison to microarray derived networks. 
 

 
Figure 1: ROC curves of GRNs obtained by RNA-Seq data versus 
corresponding networks derived by Microarrays. Green=RNA-Seq, 
Red=Microarray, FP rate= false positive rate, TP rate= true positive. 
Evidently from the figure, GRNs derived by RNA-Seq data 
contained more true positive compared to corresponding networks 
from microarray data.  
 
Networks derived from different pre-processing methods 
Our results revealed that in microarray data the assessment values 
were closer than ones from RNA-Seq. regarding overall scores in 
microarrays, GCRMA and RMA and in RNA-Seq VST and RPKM 
were better suited (see Tables 1 and 2). Greater overall scores 
derived by Quantile-based normalization procedures (RMA and 
GCRMA) is an evident of more possibility of predicting true edges 
from these normalization methods especially in larger datasets that 
is inconsistent with results of a study by [40] declaring that co-
expression networks inferred by MAS5-normalized expression 
values are more accurate. Although co-expression networks can be 
considered as the simplest kinds of GRNs that does not attempt to 
distinguish causal relationships from indirect interactions. 
Standard deviation obtained by AUROC curves in each of 
normalization methods was smaller in VST, rlog, VSN and RMA 
methods. Based on Total AUROC, in microarray data RMA and 
GCRMA and in RNA-Seq data RPKM and VST out-performed 
other normalization procedures. However, authors in [41] 
demonstrated that Correlation-based normalization procedures 
such as RMA and GCRMA specially the former one are not capable 
of predicting accurate correlation-based GRNs because of 
overestimating of pairwise correlation and they suggested that 
MAS5 is more faithful for reconstructing protein-protein 
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interaction networks by predicting less but more accurate 
correlations. RMA performed similar to MAS5 even though it is 
weak. RMA and GCRMA normalization procedures are based on 
quantile normalization and reached a good accuracy to reduce the 
variation between arrays. GCRMA has been a popular procedure 
used to convert raw microarray data into gene expression profiles 
and it was shown to outperform other normalization procedures in 
detecting differentially expressed genes [42]. In agreement, (43) 
found that a combination of RMA-normalized expression values 
and Bayesian algorithm can predict faithful genetic networks. They 
believed that the performance of MAS5 and RMA is depend on the 
inference algorithm so that MAS5 was more powerful in recovering 
physical interaction networks such as protein-protein interactions 
and significant binding motifs while transcriptional networks 
reconstructed by RMA-normalized data showed consistently better 
accuracy. Furthermore both RMA and especially GCRMA 
produced highly significant correlation measurements even in the 
randomized set although GCRMA introduced an extraordinary 
number of false positives and performed poorly versus RMA due 
to its background adjustment step (40). VST-normalized expression 
values with the smallest standard deviation respect to overall 
scores performed the best in predicting true edges while based on 
Total AUROC, outperformed by RPKM normalized values [40]. 
Demonstrated the similarity between VST-normalized RNA-Seq 
data and microarray data respect to inter-sample variation, 
correlation coefficient distribution and network topological 
architecture. VST and rlog are within DESeq2 Bioconductor 
package common for differential gene expression analysis and are 
based on a negative binomial distribution model with variance and 
mean linked by local regression [44]. VST and rlog ignoring the 
read length, are inter-sample normalization methods that give a 
scaling factor, which scale sample size for each sample. In this 
study concerning high divergent samples coming from a wide 
range of experimental backgrounds, VST was more efficient in 
inferring GRNs versus rlog.  
 
RPKM as a non-abundance estimation normalization method 
considering the sample size corrects the impact of gene length on 
gene counts and despite the failing in removing this bias on count 
number [45, 46], is still used in many practical fields. AUROC 
calculated from RPKM and raw counts data were closer to each 
other over the rlog and VST-normalized expression values [47] 
Revealed that the RPKM and raw count data perform similarly in 
defining low expressed genes as differentially expressed while in 
this study RPKM showed an obvious difference in detecting 
transcripts and following inferring regulatory relationships [48] 
showed that RPKM-normalized expression values enable to 
perform better in estimating Spearman correlation coefficient 
especially in datasets consist of read lengths of 35 nucleotides and 
more efficient when alignment accuracy was low and in a low rate 
of alignment of longer reads, RPKM revealed the least correlation. 
In this study the average of read length was 48 bp (supplementary 

file 1 – available with authors), regarding overall scores VST and 
regarding total AUROC RPKM performed better.  
 
Interaction between used datasets and algorithms: 
Random forest-based algorithm GENIE3, the best performer in 
DREAM4 and owning the high score in DREAM5, according to 
overall score statistic performed better in RNA-Seq data. This 
approach out-performed the other methods in a comparative study 
by [5] in microarray data. This arrangement in microarray data was 
ARACNE and CLR respectively. Critically about total AUROC and 
AUPR we should note that if used algorithms agree on an 
interaction (an edge between two genes) we can’t be ensure that 
this interaction is true than ones inferred by each of algorithms 
separately because may one algorithm correctly infers an 
interaction while others did not infer this edge correctly therefore 
by taking intersection between networks both edges will be 
disappeared causing a drop in sensitivity without any increase in 
prediction accuracy. Hence treating these metrics cautiously, the 
difference between overall scores and total AUROC and AUPR 
might be implied on utilizing more precise parameters in GRN 
assessment procedure than taking a union intersection between 
networks. However respect to overall score, GENIE3 was more 
compatible with RNA-Seq data while regarding total AUROC and 
AUPR this method did not show a significant power over GGM, 
network deconvolution and global silencing. Overall score 
introduced ARACNE preferably more powerful in recovering 
GRNs from microarray data than RNA-Seq meanwhile CLR with 
the highest total AUROC and AUPR outperformed ARACNE. The 
higher performance of ARACNE could be due to the large number 
of datasets used in this study where the minimum recommended 
number of microarray expression profiles is 100 for estimating 
reliable mutual information in ARACNE [8]. Indeed and 
concerning the less evaluated edges from ARACNE compared to 
the rest of compared algorithms, information-theoretic approaches 
especially CLR were more compatible with microarrays likely due 
to compatibility between correlation networks and correlation-
based normalization methods. In order to evaluation of networks 
topological properties, we calculated two different network 
centrality parameters [49] for ARACNE networks obtained by 8 
datasets from two platforms; mean node degree (number of 
connections) and betweenness centrality (as the percentage of times 
a node appears on the shortest path between all pairs of nodes in 
the network). We selected ARACNE because of pre-sparsity and 
checking all of the links without selecting a number of edges. 
Topological parameters were estimated using NetworkAnalyzer [50] 
Cytoscape plug-in. Results showed that global network properties 
was very similar between networks even though in RNA-Seq data 
GRNs tend to be associated with a higher network connectivity 
than genes in microarray-based networks (Supplementary file 3 – 
available with authors). These topological characteristics could 
discover critical genes in different diseases [51, 52]. Identifying the 
central nodes by these measures can provide promising essential 
genes so that genes with higher betweenness centrality and degree 
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likely to be a key regulator or modulator controlling a wide range 
of essential cellular functions in a specific process from which 
Arabidopsis embryonic-essential genes showed a higher degree than 
the rest of transcriptome [53]. However these parameters in our 
study were observed to be highly dataset specific. 
 
Discussion:  
The availability of Massive and complex genome-wide gene 
expression data produced by High-throughput technologies and 
existing various normalization methods, researchers are interested 
in choosing an efficient combination of expression profiling 
platforms and normalization procedures as a key step toward the 
reconstruction of genetic regulatory networks by which they are 
able to understand how genes are connected and operate within 
intricate biological networks. RNA-Seq as a relatively novel 
platform for gene expression profiling allows us to study 
transcriptome with more precise compared to microarrays. 
Detecting novel transcripts, isoforms and sequence variations such 
as single nucleotides variations (SNV) and mapping the boundaries 
of exons and introns and differential splicing are some of the 
capabilities of RNA-Seq technology while this transcriptome 
platform does not suffer from microarray specific bottlenecks such 
as background noises arise from cross or no-specific hybridization 
and incorrect annotation of probes [19]. The stated benefits in 
addition to providing for more sensitive detection of transcripts by 
RNA-Seq than microarrays are likely to be the reasons of the ability 
of this technology for detecting low expressed genes while 
microarrays fail to differentiate between very low expressed and 
Non-expressed genes [54]. The same was demonstrated by [55] that 
RNA-Seq datasets (FPKM-normalized) were more sensitive to 
detect the low abundance transcripts versus microarray (MAS5-
normalized) even though two technologies should not be 
considered as competitors and can overlap each other in 
transcriptome analysis. Their observations introduced the 
transcript abundance as substantial and highly statistically 
significant components of variations between two platforms that 
RNA-Seq appeared to be more sensitive for detecting this source of 
variation. Furthermore transcript GC content was the distinct 
characteristic of inter-sample variation in RNA-Seq data. Following 
the previously mentioned reasons, [56] declared two times more 
capacity of RNA-Seq data to predict GRNs over microarrays (RMA 
and Quantile-normalized data) although they noted that the GRNs 
in interaction levels of view are highly dataset-specific while 
functionally they are very similar. In their experiment CLR 
networks derived from Oligo gene expression dataset revealed the 
more fractions of cancer associated significant biological processes 
versus CLR captured by RNA-Seq data that is close to our results 
where CLR networks by microarray was more reliable. 
Accordingly for microarray derived GRNs, [39] using 
experimentally verified protein-protein interactions as gold 
standard revealed that microarray data (MAS5-normalized) was 
more suitable for exploring regulatory structures although RNA-
Seq data was able to analyze more dynamic range networks from 

entire of transcriptome [46] has demonstrated that although RNA-
Seq data is more efficient in detecting low intensity expressed gene 
which microarray is unable to detect their expression easily, RNA-
Seq is significantly more transcript abundance-dependent than that 
from microarrays across multiple normalization methods. Based on 
their findings, microarray may show systematic biases in low 
abundance transcripts, possibly due to the cross hybridization. 
These findings may be statistically relevant with the better 
performance of VST-normalized data to correct the high variance 
introduced by low abundance transcripts. Comparing to RNA-Seq 
data microarray was able to identify the higher percentage of 
differentially expressed genes where [52] did not consider this 
characteristic due to microarray power to limit the false discovery 
rate. The same with previous researches as it is evident from Table 
2, networks derived by RNA-Seq data allowed to predict the higher 
percentage of true positive rates subsequently the more accurate 
regulatory relationships where one reason might be the capability 
of RNA-Seq technology in accurate measurement of the dynamic 
range of low and highly expressed genes [57] and giving a better 
resolution of relationship between genes. Challenging data storage, 
complex data analysis procedures and being more expensive than 
microarray are some barriers that by overcoming, RNA-Seq 
platform is expected to be a prominent alternative of microarray in 
transcriptome analysis [19]. Despite the expected advantages of 
RNA-Seq data for inferring GRN, we observed that our inferred 
GRNs were highly data specific even for well-known algorithms 
with high performance therefore using RNA-Seq platform and 
robust normalization methods although can’t be advised as a 
promising and general way to infer a more accurate GRN but 
obviously will increase the fidelity of GRN reconstruction.   
 
Conclusion: 
Our study was an attempt to describe the impact of gene 
expression platforms and normalization methods on inferring 
GRNs using a wide range of GRN inference algorithms and 
normalization procedures. Hence using publically available 
microarray and RNA-Seq datasets in Arabidopsis and a gold 
standard of transcriptional interactions between gene products as a 
reference for evaluation of predicted edges, we observed a higher 
prediction accuracy of RNA-Seq derived GRNs over microarray 
derived networks presumably due to the ability of RNA-Seq 
technique in detecting low expressed genes. Moreover RMA, 
GCRMA, VST and RPKM normalization methods performed better 
and regarding stability and dispersion, the AUROC values 
calculated from VSN and VST-normalized data especially in RNA-
Seq data with smaller standard deviation were in a closer range. 
Briefly, in our study used algorithms were highly data-specific and 
our reconstructed GRNs being transcriptional networks and 
considering evidences of introducing high rate of false positives by 
GCRMA-normalized data, we propose RMA as a more suitable 
microarray pre-processing procedure before inferring GRNs. 
However because of overestimating of pairwise correlation, we 
also should be cautious about data obtained by correlation-based 
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normalization procedures for inferring widely used and powerful 
correlation networks such as ARACNE and CLR. Respect to RNA-
Seq data, considering a high rate of variation between samples and 
mean read length less than 50 bp, VST and RPKM could be good 
options depend of the origin of samples, reads length and 
alignment rate.  
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Table 1: Statistics for comparison of the difference between microarray and RNA-Seq platforms for different normalization methods on 
inferring GRNs using microarrays datasets. We used three metrics based on ROC computed by R package minet. 
 

 
 

 
 
 
 
 
 
 

 
Table 2: Statistics for comparison of the difference between microarray and RNA-Seq platforms for different normalization methods on 
inferring GRNs using RNA-Seq datasets. We used three metrics based on ROC computed by R package minet 
 
 

 
 
 
 
 
 
 
 
 
 
 

Table 3: Overall Score, standard deviation, AUROC and AUPR of each algorithms over each platform and Total AUROC & AUPR for each 
platform presented in bold 
 

  RMA   GCRMA   MAS5   VSN   
Methods Number 

Of edges 
AU- 
PR 

AU- 
ROC 

Number 
Of edges 

AU- 
PR 

AU- 
ROC 

Number 
Of edges 

AU- 
PR 

AU- 
ROC 

Number 
Of edges 

AU- 
PR 

AU- 
ROC 

Total 
AU-ROC 

GGM 4079796 0.0012 0.392 4074085 0.0012 0.429 4079796 0.0008 0.397 4079796 0.0013 0.415 0.384 
ARACNE 6198 0.001 0.576 6143 0.0009 0.56 5947 0.0009 0.544 6195 0.0009 0.569 0.375 
CLR 1635287 0.0009 0.548 1668894 0.0006 0.311 1632241 0.0011 0.574 1621582 0.0008 0.45 0.471 
GENIE3 4079796 0.0008 0.456 4032070 0.0008 0.471 4079796 0.0008 0.531 4079796 0.0012 0.6 0.384 

Global Silencing 4082653 0.0007 0.385 4076940 0.0008 0.365 4082653 0.001 0.466 4082653 0.0008 0.441 0.384 
Network Deconvolution 4079796 0.0009 0.36 4074085 0.0009 0.365 4079796 0.0008 0.351 4079796 0.001 0.479 0.384 
Overall-scores  0.425   0.432   0.22   0.246   

sd (AUROC)  0.087   0.089   0.088   0.074   

Total AUROC  0.387   0.382   0.376   0.381   

  rlog   VST   RPKM   Raw counts 
Methods Number 

Of edges 
AU- 
PR 

AU- 
ROC 

Number 
Of edges 

AU- 
PR 

AU- 
ROC 

Number 
Of edges 

AU- 
PR 

AU- 
ROC 

Number 
Of edges 

AU- 
PR 

AU- 
ROC 

Total 
AU-ROC 

GGM 4079796 0.0009 0.511 4079796 0.0016 0.606 4079796 0.0006 0.554 4079796 0.0004 0.549 0.643 

ARACNE 6539 0.0018 0.629 6492 0.0016 0.623 6320 0.0016 0.617 5272 0.0009 0.548 0.474 

CLR 1678481 0.0054 0.636 1651629 0.0033 0.629 1630702 0.0004 0.469 1630702 0.0008 0.45 0.601 
GENIE3 4079368 0.0013 0.605 4062138 0.0012 0.578 4064310 0.0016 0.627 4061552 0.0018 0.61 0.662 

Global Silencing 4082653 0.0021 0.625 4082652 0.0023 0.631 4082653 0.0009 0.529 4082653 0.0009    0.539 0.643 

Network De-convolution 4079796 0.0022 0.641 4079796 0.0004 0.531 4079796 0.0004 0.476 4079781 0.0004 0.451 0.643 
Overall-Score  0.141   0.299   0.271    0.13  
sd (AUROC)  0.049   0.039   0.067    0.062  
Total AUROC  0.621   0.651   0.654    0.579  

  Microarray    RNA-Seq   

Methods Overall 
Score 

Sd 
 (AUROC) 

AU- 
ROC 

AU- 
PR 

Overall 
Score 

sd  
(AUROC) 

AU- 
ROC 

AU- 
PR 

GGM 0.205 0.017 0.383  0.0006 0.277 0.039 0.643 0.0020 

ARACNE 0.281 0.013 0.374 0.0001 0.302 0.038 0.474 0.0004 

CLR 0.229 0.119 0.470 0.0003 0.272 0.096 0.601 0.0012 

GENIE3 0.256 0.039 0.383 0.0006 0.303 0.02 0.641 0.0020 
Global Silencing 0.207 0.047 0.383 0.0006 0.29 0.054 0.643 0.0020 
Network Deconvolution 0.193 0.06 0.383 0.0006 0.26 0.071 0.643 0.0020 
Total AUROC & AUPR   0.374 0.0001   0.474 0.0004 


