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1. Introduction 

Measurement errors often occur in many of the variables used in the social and medical sciences. 

These may arise from unreliable measuring instruments, or, for example, short term fluctuations 

over time. It is reasonably well known that a failure to deal with measurement errors can lead to 

biased inferences when the intention is to model data using the ‘true’ but unknown values. Fuller 

(1987) provides a comprehensive account and there is a more recent literature (Carroll et al. 2006; 

Clayton, 1992; Skrondal and Rabe-Hesketh, 2004, Gustafson, 2004; Richardson and Gilks, 1993) that 

includes Bayesian approaches. Buonaccorsi, (2010) provides a comprehensive review of non-

Bayesian methods. Muff et al. (2015) provide a useful overview as well as proposing a Bayesian 

model using a computationally fast Laplace transformation. 

Likewise, missing data values are endemic in observational data, and there is now a considerable 

literature (see for example, Carpenter and Kenward, 2013) on how to deal with these, especially 

when missingness is in predictor variables and is not completely random. The case where data 

contain both missing values and measurement errors, has received little attention, despite being 

quite common. The aim of the present paper is to propose an integrated Bayesian approach, using 

Markov Chain Monte Carlo (MCMC) estimation, to the modelling of such data, where the model for 

the missing data is viewed as a special case of the model for the measurement errors. Although in 

the example in this paper our approach focusses on generalised multilevel linear models, we 

indicate how our approach can easily be extended to model multivariate data, heteroscedatistic 

measurement errors, and models that include nonlinear and interaction terms. 

We begin by describing briefly data where there are both measurement errors and missing data and 

then outline the MCMC methodology required.  We then carry out two simulations to illustrate the 

approach on normal response and binary response models, as well as a more detailed analysis of the 

effects of both missing data and measurement errors on the modelling of our example dataset. We 

end with a discussion in which we also describe various extensions to more complex data structures. 

2. Example dataset. The Longitudinal Study of Australian Youth 

Our procedures will be applied to the “Longitudinal Study of Australian Youth” (LSAY) dataset, a 

longitudinal study with up to 12 waves of data collection. This is a study that was designed to track 

the pathways of young Australians as they move from school to further study, work and other 

destinations. Data were collected on variables related to education, training, work, financial matters, 

health, social activities and attitudes as well as background family characteristics such as SES. A 

description of the variables is given by Cumming and Goldstein (2016). LSAY started in 1995 by 
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sampling Year 9 school students, with an average age 14.5 years, in Australian secondary schools and 

subsequently is following them up every year on a further 11 occasions (LSAY, 2013a). Cumming 

and Goldstein (2016) studied year 9 predictors of the probability of being in full time or part time 

education six years after the study start at wave 6 of data collection (a binary response), when the 

students had a modal age of 20.5 years. The sample suffers attrition of just under 50% over this 

period, in addition to item missing data. The number of pupils available for analysis, after excluding 

those students with no wave 6 information is 6901 and the data has a 2 level structure with the pupils 

each belonging to one of 296 schools.  

While Cumming et al. (2016) did account for attrition and missing data they did not allow for test 

score unreliability. Such unreliability is a general feature of educational tests and arises from several 

sources of variation including the choice (sampling) of test questions, conditions of test administration 

and short term fluctuations within students. Ecob and Goldstein (1983) provide a detailed discussion. 

We describe the specific model for these data in a later section but now build up the modelling 

approach in stages while referring to earlier published work for many of the algorithm details. 

3. Model specification 

In an ideal scenario where we have no measurement errors and missing data then we will fit a binary 

response model to our indicator of educational attendance at wave 6 and relate this response to 

various predictor variables whilst also factoring in the 2 level structure via school level random 

effects. Our final model of interst will therefore be of the form: 

𝑝𝑖𝑗~𝐵𝑖𝑛(1, 𝜋𝑖𝑗)  

𝑝𝑟𝑜𝑏𝑖𝑡(𝜋𝑖𝑗) = 𝛽0 + ∑ 𝛽𝑘𝑋𝑘𝑖𝑗 + 𝑢𝑗
𝑛
𝑘=1   

𝑢𝑗~𝑁(0, 𝜎𝑢
2)   

Here, we have deliberately chosen to use a probit link function as opposed to a logistic regression 

since our modelling approach, that incorporates measurement errors and missing data, will be 

adapted from an approach used for normal response models using latent variable approaches (see 

examples later). 

With this in mind we begin by considering a simpler example of how one can incorporate 

measurement errors in predictor variables into statistical models more generally by considering 

normal response models as the extension to other models will be straightforward. 

So consider the linear regression model:  

𝑌 = 𝑋𝛽 + 𝑒          (1) 
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𝑒~𝑁(0, 𝜎𝑒
2)  

In this scenario it makes sense to differentiate between the predictor variables that contain 

measurement variables which we will label 𝑋1 and those that do not, 𝑋2. Here we use capital letters 

to represent the true values and we have 𝑋 = [𝑋1 𝑋2 𝑍] where for complete generality we could 

include  𝑍 = 𝑓(𝑋1, 𝑋2), thus allowing for interactions between variables and non-linear effects. The 

model (1) is therefore a standard model that relates a normal response to the true values of a set of 

variables. As some of these true values are not available due to measurement errors we therefore 

also require notation for the observed predictors. Thus corresponding to the true values, 𝑋1, we 

denote by 𝑥1  the observed values of the variables with measurement error. Although the variables 

in 𝑍 will also not be observed, they are simply functions of the other true values and so thus we do 

not need a corresponding z for their observed equivalents. 

To complete the model we require therefore a measurement error distribution to relate 𝑥1  to 𝑋1 

and here we assume that information about the distribution of the measurement errors is available 

and in particular their variability is known. For continuous variables we assume therefore that the 

errors are jointly normally distributed with known variances. It is possible in the Bayesian framework 

to extend the modelling in practice to allow the measurement error variance to be unknown and use 

instead a prior distribution of possible values but in practice this doesn’t add much to the analysis 

and often one prefers to answer ‘what if’ questions in terms of the size of the measurement errors 

as a sensitivity analysis. For simplicity of exposition we begin with the case of a single variable having 

measurement error. We write the measurement error component of our full model as 

𝑥1 = 𝑋1 + 𝛾1               (2) 

(
𝑋1

𝛾1
) ~𝑁 (

𝜎𝑋1

2

0 𝜎𝛾
2 

)           

Where we assume independent normal distributions for both the true values (𝑋1) and the 

measurement errors (𝛾1) and also assume that the measurement errors are independent of the true 

values of all predictors. Such a formulation is known as ‘classical’ measurement error modelling 

which is generally the approach used with observational data (see for example, Muff et al., 2015).  

We can therefore use our two model components (1) and (2) to form the complete model for the 

data 

 𝑝(𝑌, 𝑥1, 𝑋1, 𝑋2) = 𝑝(𝑌|𝑥1, 𝑋1, 𝑋2)𝑝(𝑥1, 𝑋1, 𝑋2)  

Since 𝑥1 = 𝑋1 + 𝛾1 and we assume that  𝛾1 is independent of 𝑋1, 𝑋2 and𝑌 so that we can write the 

first term as 
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𝑝(𝑌|𝑥1, 𝑋1, 𝑋2) = 𝑝(𝑌|𝑋1, 𝑋2)  

We can also decompose the second term as 

𝑝(𝑥1, 𝑋1, 𝑋2) = 𝑝(𝑥1|𝑋1, 𝑋2)𝑝(𝑋1, 𝑋2) = 𝑝(𝑥1|𝑋1, 𝑋2)𝑝(𝑋1|𝑋2)𝑝(𝑋2)   

where again using the formula for 𝑥1 and assuming independence of 𝛾1 and 𝑋2 we have 

𝑝(𝑥1|𝑋1, 𝑋2) = 𝑝(𝑥1|𝑋1)  

So that we have 

𝑝(𝑌, 𝑥1, 𝑋1, 𝑋2) = 𝑝(𝑥1|𝑋1)𝑝(𝑋1|𝑋2)𝑝(𝑌|𝑋1, 𝑋2)𝑝(𝑋2)        

Since 𝑋2 are all known data we can drop the final term in the above function. 

The above expression corresponds to model (3a-3c) below: 

The three components can be written as the full model: 

𝑥1 = 𝑋1 + 𝛾1            (3a) 

𝑋1 = 𝑋2𝛼 + 𝛾2         (3b) 

𝑌 = 𝑋𝛽 + 𝑒          (3c) 

𝛾1~𝑁(0, σ𝛾1
2 ), 𝛾2~𝑁(0, σ𝛾2

2 ), 𝑒~𝑁(0, 𝜎𝑒
2),  

We shall consider generalisations of our simple model in later sections. 

As they stand (3a)-(3c) do not provide identifiability for the individual parameters. As is commonly 

done, the measurement error variance σ𝛾1
2 is therefore assumed known so that (σ𝛾2

2 , 𝜎𝑒
2, 𝛼, 𝛽) are the 

parameters to be estimated. In our example data analysis we carry out sensitivity analysis on the 

measurement error variances using some assumed values derived from existing research, since little 

information is available for the actual data themselves. To complete the Bayesian formulation 

uniform priors are included for each of these four sets of parameters.  In common with standard 

usage we define the reliability of the observed variable 𝑥1 as 𝑅 = 𝜎𝑋1

2 /𝜎𝑥1
2  . Here we calculate 𝜎𝑥1

2  

directly from the observed variable and then we can estimate 𝜎𝑋1

2 = 𝜎𝑥1
2 − σ𝛾1

2  in other words the 

variability in the observed response not explained by measurement error. 

We assume normality for purposes of exposition, but other distributional assumptions are possible 

with corresponding changes to the MCMC steps described. In particular we shall later deal with the 

binary case.  

For a multilevel model the only change is that (3c) will incorporate random effects. Thus, for a 

variance components model with a single random effect (3c) would become 
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𝑌 = 𝑋𝛽 + 𝑢 + 𝑒,    𝑢~𝑁(0, 𝜎𝑢
2)          (3d) 

and extra steps to sample the 𝑢, 𝜎𝑢
2 are inserted (Goldstein, 2011). 

In some cases the distribution of the measurement errors may depend on other variables, some of 

which may be in the model of interest. Denoting these by 𝑋4 and assuming that they are measured 

without error, the term  σ𝛾1
2  becomes σ𝛾1

2 𝐷 where 𝐷 is a known (𝑛 × 𝑛) diagonal scaling matrix with 

𝑛 the sample size. For example, if the measurement error variance is different for males and 

females, say  𝜎𝑒𝑚
2  , 𝜎𝑒𝑓

2    then if sample record j is for a male the j-th element of D would be 𝜎𝑒𝑚
2   and 

if female, 𝜎𝑒𝑓
2  . 

 

4. MCMC estimation for a continuous predictor 

Consider first the step in our algorithm where we propose a new true value, say 𝑋1𝑖, for record 𝑖, 

where for simplicity we assume that random effects are already incorporated in the response The 

joint log posterior from (3a), (3b) and (3c) is thus proportional to the sum of the following 

components: 

−
0.5(𝑥1𝑖−𝑋1𝑖)2

σ𝛾1
2 ,     −

0.5(𝑋1𝑖−𝑋2𝑖
𝑇 𝛼)

2

σ𝛾2
2 ,    −

0.5(𝑦𝑖̃)2

𝜎𝑒
2           

where 𝑦𝑖̃ = 𝑦𝑖 − 𝑋𝑖𝛽 .  

When sampling a new value of 𝑋1𝑖 we use a Metropolis step and for a proposal distribution we 

suggest a form of independence sampler 

  𝑝(𝑋1𝑖|𝑥1𝑖)~𝑁(𝑥1𝑖𝑅, 𝑅(1 − 𝑅)𝜎𝑥1
2 )      (4) 

where R is the reliability defined above.  Model (3) is similar to the formulation by Richardson and 

Gilks (1993) where they have a ‘gold standard validation’ sample that provides the information 

associated with (3a). 

For the case where we have more than 1 variable with measurement error we can propose the set 

of values defined using (3) for each variable separately or look at the joint proposal distribution: 

𝑓(𝑿1|𝑥1)~𝑀𝑉𝑁(𝑿1Ω𝑥1
−1Ω𝑋1

, Ω𝑋1
− Ω𝑋1

Ω𝑥1
−1Ω𝑋1

)  

 where Ω𝑥1
, Ω𝑋1

 are respectively the covariance matrices for the observed and true values (the 

multivariate analogues of 𝜎𝑥1
2  and 𝜎𝑋1

2  respectively). Other MCMC steps for the model of interest  

(MOI) (3c) are standard conjugate Gibbs sampling steps as are the steps for the parameters in (3b) as 

conditional on deriving the true predictor values the model is a standard linear model. 
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In fact this model, with 𝛼 = 0 in (3b) i.e. the model with measurement errors being unrelated to 

other predictors, is essentially the existing implementation of Goldstein et al. (2008) based upon 

Browne et al. (2001). Here however they use a Gibbs rather than Metropolis step for the 𝑋1𝑖. We 

note, however, that the use of such a simplified formulation is only really appropriate in the case 

when 𝑋1 and 𝑋2 are orthogonal.  

Where the model of interest is a generalised linear model with the response as a binary, multi-

category or count we can use a latent normal model for (3c) (For MCMC implementations for such 

models without measurement errors see Goldstein et al, 2009 for categorical responses and 

Goldstein and Kounali, 2009 for count models). In these cases an extra sampling step is inserted that 

samples one or more assumed underlying standard normal variates for each of the observed 

discrete values. 

5. Misclassification  errors 

We have demonstrated in section 4 a MCMC algorithm for estimating the true value of a continuous 

predictor that is measured with error. We next consider binary predictor variables where errors are 

often described as misclassifications rather than measurement errors. We will then discuss briefly 

the extension to multicategory predictors.  

Consider the case where a new observed predictor variable 𝑋3 is binary with corresponding true 

value 𝑥3. We now rewrite model (3) as  

𝑝(𝑥3 = 𝑎|𝑋3 = 𝑏) = 𝑝𝑎𝑏 ,      for 𝑎, 𝑏 = (0,1)          (5a) 

𝑋3 = 𝑓(𝑋2𝛼)         (5b) 

𝑌 = 𝑋𝛽 + 𝑒,  𝑒~𝑁(0, 𝜎𝑒
2)       (5c) 

We shall choose f as the probit function for convenience to obtain a conditional normal distribution 

that therefore implies full multivariate normality, so that we can use the steps described in Section 

4. We assume that all four of the 𝑝𝑎𝑏 are known fixed values, although again sensitivity analyses for 

different values can be carried out. Here we now have 𝑋 = [𝑋3 𝑋2 𝑍3] where for complete 

generality, for example in order to fit interactions, we include  𝑍3 = 𝑓(𝑋3, 𝑋2) and 𝑋2 are the 

variables that do not contain measurement errors as before. 

The probit function can be written as 𝑝(𝑋3𝑖 = 1) = ∫ 𝜙(𝑡)𝑑𝑡 = ∫ 𝜙(𝑡)𝑑𝑡 
𝑋2𝑖𝛼

−∞
 

∞

−𝑋2𝑖𝛼
where 𝜙(𝑡) is 

the standard normal distribution. We first sample, therefore, a set of latent normal variables, 𝑋3𝑖
∗ , 

according to the current values of 𝑋3𝑖, for example, for a value of 1 we sample from the upper tail of 
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this standard normal distribution and for value 0, the lower tail. Thus, we can now rewrite (5b) as 

the normal linear model 

  𝑋3𝑖
∗ = 𝑋2𝑖𝛼 + 𝛾2𝑖         (5d) 

so that we can update the 𝛼 parameters in a standard MCMC step as for continuous predictors.   We 

also note that here the 𝛾2𝑖~𝑁(0,1), which is fixed by the  probit function, and so we do not have a 

variance parameter to estimate. 

To update the 𝑋3𝑖,  we carry out a Metropolis step so that if the existing value is 𝑋3𝑖 = 0 we propose 

a new value 𝑋3𝑖  =1 and vice versa. The joint likelihood contains the same component for (5c) as 

before in (3c). For (5a) with observed value 𝑥3 = 𝑎 and proposed true value 𝑋3 = 𝑏 , the component 

is simply  𝑝𝑎𝑏. For (5b) for proposed true value b, we evaluate the probit function at current 

parameter values (𝛼), using (5d).  

This can be readily extended to ordered categories and also unordered categories, using appropriate 

latent normal transformations (see Goldstein et al., 2009).  

6. Measurement errors and misclassification errors 

For the case where there are both measurement errors and binary misclassification errors we 

assume that these are independent of each other. It will also often be reasonable in applications to 

assume that the binary misclassification errors are mutually independent, as in the exposition below. 

If we denote the misclassification error variables by the true values 𝑋3, the joint distribution can now 

be written as 

𝑝(𝑌, 𝑥1, 𝑋1, 𝑋2, 𝑥3, 𝑋3) = 𝑝(𝑌|𝑋1, 𝑋2, 𝑋3)𝑝(𝑥1|𝑋1)𝑝(𝑥3|𝑋3)𝑝(𝑋1|𝑋2, 𝑋3)𝑝(𝑋3|𝑋2)𝑝(𝑋2)   (6)  

Thus, when updating 𝑋1 we use the equivalent to (3), namely 

𝑥1 = 𝑋1 + 𝛾1            (7a) 

𝑋1 = 𝑋2𝛼2 + 𝑋3𝛼3 + 𝛾2       (7b) 

𝑌 = 𝑋𝛽 + 𝑒          (7c) 

When updating each variable in  𝑋3 we now have four components for the likelihood, (7b) and (7c) 

above and additionally: 

𝑝(𝑥3 = 𝑎|𝑋3 = 𝑏) = 𝑝𝑎𝑏 ,      𝑓𝑜𝑟 𝑎, 𝑏 ∈ (0,1)          (7d)  

𝑋3 = 𝑓(𝑋2
𝑇𝛼4)         (7e) 
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In (7e), for convenience, we may use a probit function for 𝑋3, with assumed known values for the 

𝑝𝑎𝑏.  We note that the decomposition (6) implies no dependence of 𝑋3 on 𝑋1. Where the 

missclassification errors are not independent (7d) could be extended to incorporate the joint 

distribution of several binary variables. 

7. Incorporating missing data values 

Goldstein, Carpenter and Browne (2014) present a Bayesian MCMC algorithm for fitting models with 

missing covariate data values that extends the traditional joint modelling approach based upon 

multiple imputation. We can write a simple model with missing data on covariates as follows: 

𝑌 = 𝑋𝛽 + 𝑒          (8a) 

𝑋1 = 𝑋𝟐𝛼 + 𝛾2          (8b) 

Here 𝑋1 now consists of those variables within X that have missing values and 𝑋2 those that don’t. In 

the update step for the missing data, for each record where there are missing values we propose a 

new set 𝑋1 using a proposal distribution based on 𝑓(𝑋1|𝑋2) and then perform a Metropolis step. 

Thus the only real difference from the measurement error case is that, as seen in equation (3a), 

there is an additional component in the posterior for 𝑋1 as we have an observed value 𝑥1. Where we 

have both variables with measurement errors and missing values,   𝑋1can include all variables that 

either have measurement errors or missing values, or both. Where a variable with measurement 

errors has missing data values these are updated in the step for updating the missing values. 

Formally, for a predictor variable with missing values, say 𝑊𝑗 ∈ (𝑋), we note that  

𝑓(𝑋) = 𝑓(𝑊|𝑋−𝑊)𝑓(𝑋−𝑊)       (9) 

and we have the additional step for the missing value conditional on the current true values. 

The missing values are updated based upon the updated true values, using (8a) & (8b), and when 

updating a variable’s true values, any imputed (true) missing values for this variable will be ignored. 

This is conveniently carried out by using the current (imputed) value in both the numerator and 

denominator of the Metropolis ratio so that it has no effect on the acceptance probability. In the 

simulations and example below, we first carry out, for each data record, a Metropolis step jointly for 

all the variables with measurement errors. Once the sampling for the true values has taken place the 

next step carries out imputation where there are missing values, one variable and one record at a 

time, conditioning on the current true values. This uses the algorithm described in Goldstein et al. 

(2014). 
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In what follows we assume (Rubin, 1987) that data are missing completely at random (MCAR), or 

missing at random (MAR). By MAR is meant that it is randomly missing at least conditionally on all 

the observed values, that is  the covariates and 𝑌, where the latter conditioning is implicit since the 

full likelihood (6) contains the response as well as the covariates For missing not at random (MNAR) 

we may be able to additionally condition on auxiliary variables, not in the model of interest, by 

incorporating them in (8b).  

8. Simulations 

The first simulation study illustrates a normal response model with a mixture of continuous 

measurement errors and misclassification errors. 

Each simulated dataset was generated as follows: 

𝑋0 = 1,     (
𝑋1

𝑍
𝑋3

) ~𝑁 [0, (
1 0.5 0.5

0.5 1 0.5
0.5 0.5 1

)] ,    𝑋2 = {
0 𝑖𝑓 𝑍 < 0
1 𝑖𝑓 𝑍 ≥ 0

}     (10) 

𝑥1 = 𝑁(𝑋1, 0.25), 𝑝01 = 𝑝10 = 0.2 to create 𝑥2 independently from  𝑋2  

The simulation model is 

 𝑌~𝑁(𝜇, 1),    𝜇 = 𝑋0 + 𝑋1 + 𝑋2 + 𝑋3      (11) 

We fit the measurement error model described in (7a)-(7c) and (8a)-8(d) where the model of 

interest is 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝑒𝑖       (12) 

A sample of 1000 such records is generated. 

A burn in of 250 iterations followed by 250 stored iterations was used with 100 simulated datasets.  

The results are as follows in Table 1. 

(Table 1 here) 

We see that biases are induced for all the predictors, including those without errors if we do not 

adjust for measurement error but including the measurement errors and misclassifications in the 

model removes these biases. 

The second simulation study will consider the case of a binary response and includes both 

continuous measurement errors and data missing completely at random (MCAR). Each simulated 

dataset was generated as before, but with no misclassification errors: 
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𝑋0 = 1,     (
𝑋1

𝑍
𝑋3

) ~𝑁 [0, (
1 0.5 0.5

0.5 1 0.5
0.5 0.5 1

)] ,    𝑋2 = {
0 𝑖𝑓 𝑍 < 0
1 𝑖𝑓 𝑍 ≥ 0

}    

𝑥1 = 𝑁(𝑋1, 0.25)  

For 𝑋1and 𝑋2 twenty percent of values were randomly assigned to be missing, so that on average 

36% of records had at least one missing value. 

The simulation model, omitting subscripts, is  

𝑌~𝑁(𝜇, 1),    𝜇 = 𝑋0 + 𝑋1 + 𝑋2 + 𝑋3        (13) 

For a binary response, the observed response 𝑌𝑜𝑏𝑠 is defined as 

𝑌𝑜𝑏𝑠 = 1 𝑖𝑓 𝑌 > 0,        𝑌𝑜𝑏𝑠 = 0 𝑖𝑓 𝑌 ≤ 0  

We fit the measurement error model described in (7a)-(7c) and (9b)-(9c) where the model of interest 

is now 

𝐸(𝑌𝑜𝑏𝑠,𝑖) = 𝜋𝑖,    𝑝𝑟𝑜𝑏𝑖𝑡(𝜋𝑖) =  𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖       (14) 

Where we have  𝐸(𝜋𝑖) = 0.74  

The number of simulated datasets is 200 and three sample sizes are used; 500, 1000 and 4000. The 

estimates are given in Table 2, along with the estimates resulting from making no adjustment for 

measurement error where there is no missing data.  

 (Table 2 here) 

We see that biases are induced for all the predictors if we do not adjust for measurement error, with 

no missing data, with a large average downward bias of 7% for a sample size of 1000. The 

percentage bias of our procedure, averaged over the four fixed parameters, is 10.3% for a sample 

size of 500, 2.7% for a sample size of 1000 and 1.7% for a sample size of 4000. We see, therefore, 

that where we have both missing data and measurement errors there will remain biases for small 

samples. Further research into this would be welcome. 

9. An example using student participation in higher education 

We now return to the data that we described in section 3. Cumming and Goldstein (2016) analyse this 

dataset but considered only the case of missing data and ignored possible measurement errors, using 

the algorithm described by Goldstein et al. (2014) to obtain efficient parameter estimates. The first 

two columns of results in Table 3 replicate these analyses, pooling the two categories of non-

Government school (Catholic, Private) that were treated separately by Cumming and Goldstein (2016) 

but in fact showed only a small and non-significant difference and so have been combined in our 
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analysis.. The level 2 units are the year 9 schools, and Table 3 lists the predictor variables with full 

details given by Cumming and Goldstein (2016). Note that the scale of the SES measures has been 

divided by 100 and the test scores divided by 10 to provide more significant figures for the coefficient 

estimates. 

The specific model of interest is a 2-level model with a simple random effect at the school level, and 

is given by 

𝑝𝑖𝑗~𝑏𝑖𝑛(1, 𝜋𝑖𝑗)  

𝑦𝑖𝑗 = 𝑝𝑟𝑜𝑏𝑖𝑡(𝜋𝑖𝑗) = 𝛽0 + ∑ 𝛽𝑘𝑋𝑘𝑖𝑗 + 𝑢𝑗 + 𝑒𝑖𝑗
8
𝑘=1   

 

𝑢𝑗~𝑁(0, 𝜎𝑢
2),    𝑒𝑖𝑗~𝑁(0,1)        (15) 

where for clarity we now utilise the standard double subscript notation for a 2-level model. With 

𝑥1, 𝑋1, 𝑋2 defined as in (3a)-(3c). Thus, in terms of our model 𝑋1 are the year 9 test scores having 

measurement errors and 𝑋2 consists of the remaining predictors without measurement errors. The 

model contains no discrete covariates with misclassification errors. 

The year 9 test scores are each made up 20 binary items, but there appears to be no information about 

the associated reliabilities. We have therefore carried out a sensitivity analysis using values of 0.8 and 

0.7 to study the effect of making adjustments for measurement errors. These values are typical of 

those found in educational test scores (see for example Feinstein et al. 2015, pp 351-358). The 

correlation between the observed test scores at year 9 is approximately 0.5 and where the true 

correlation is zero this becomes the correlation between the measurement errors, and can be treated as 

an upper bound, and we use this value in our analysis. We have also fitted the model assuming a 

correlation of 0.25 between the measurement errors. The parameter estimates and their standard errors 

are very similar, as are the standard errors, so that the choice of correlation value is not crucial.  

In the final two columns of Table 3 we show the results of adjusting for these reliabilities. We note 

first, that the principal gain in efficiency lies in moving from a complete case analysis to one that uses 

the full sample with missing data and in fact the additional adjustment for measurement errors 

generally increases the standard error estimates.. The actual parameter estimates, apart from Socio 

Economic Status (SES), do not change very much here. There is little change in any of the parameter 

estimates, except as expected, for the test score coefficients but also for SES, when moving from a 

model with a reliability of 0.8 to one of 0.7. For the SES of the mother this is reduced considerably 

moving from the complete case analysis to that assuming a reliability of 0.7 and adjusting for missing 

values, where the estimate is no longer statistically significant at 5%. Interestingly, the estimates for 

the other covariates associated with the response, appear relatively unaffected by either adjusting for 

missingness or measurement error. The sensitivity of SES effects to measurement error adjustment is 
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also found in other studies (Feinstein et al., 2015, Goldstein, 1979) and generally reduces the effects 

associated with SES. It is worth pointing out that these SES effects are conditional on year 9 test 

scores and these are themselves associated with SES. Since we do not have good estimates for the 

reliabilities, we cannot be very precise about the ‘true’ effects for SES. Further analyses exploring 

these data are currently under consideration. It does seem reasonable, however, ,to conclude that the 

coefficients for the remaining variables other than the test scores, are relatively unaffected by our 

adjustments.  

(Table 3 here) 

In Cumming and Goldstein (2016) it was concluded that the principal effect of adjusting for missing 

data was a gain in efficiency, with a small increase in the estimate of the difference between 

Government and non-Government schools, so that there were no important policy implications.  

Adjusting additionally for measurement error, however, shows a marked reduction in the SES effects 

and this would seem to have more important implications for policy. As the debate in Feinstein et al. 

(2015) shows, in the UK the effect of SES on children’s performance is a source of policy 

discussions. For example, if SES is found to be less ‘important’ as a result of improved modelling that 

takes account of measurement error, this would seem to have important implications for resource 

allocation policies. In our example and also in the data used in Feinstein et al. (2015) there were no 

good estimates of the sizes of measurement error variances and this suggests that more effort should 

routinely be  devoted to obtaining good estimates for these.  

10.  Discussion 

There has long been an awareness of the importance of taking account of measurement errors in 

observed data, but this is not a feature that is generally available in many software packages. One 

reason for this may be the complexity associated with available adjustment procedures, typically 

moment based ones. There has also been an awareness of the need to deal with missing data values, 

with rather more software available. In the present paper we have presented a fully Bayesian MCMC 

algorithm, currently using routines written in Matlab (Matlab 2007b), and to be incorporated into 

the StatJR software (Charlton et al., 2013), that allows adjustments for both measurement errors 

and missing data. We demonstrate through simulations how our procedures remove biases 

associated with a failure to account for measurement errors and also how we can simultaneously 

adjust for measurement errors and missing data. We also describe how it can be used for quite 

general model structures, including multilevel generalised linear models.  A note of caution is 

needed where we have both measurement errors and missing data where our simulations show that 

with small sample sizes positive biases may be induced in the parameter estimates. We also, in our 

example, point to the substantive importance of adjusting for measurement errors, where the low 
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reliability of some predictor variables can have large effects on the resulting estimates, at least in 

the case of educational data, and we would surmise in other areas too.   

There are a number of relatively straightforward extensions to the models proposed. 

In addition to the implicit latent normal transformations for non-normal variables, we may wish to 

formulate the additive measurement error component of the joint model (3a) in terms of a 

transformed variable. Thus, for example, if the measurement error was multiplicative, we could then 

express (3a) in additive form by writing (3a-3c) as 

 𝑥1 = 𝑋1𝑒𝛾1 ,       log (𝑥1) = log (𝑋1) + 𝛾1       (16a) 

𝑋1 = 𝑋2𝛼 + 𝛾2         (16b) 

𝑌 = 𝑋𝛽 + 𝑒          (16c) 

𝛾1~𝑁(0, σ𝛾1
2 ), 𝛾2~𝑁(0, σ𝛾2

2 ), 𝑒~𝑁(0, 𝜎𝑒
2) 

where σ𝛾1
2  is assumed known or derived from a known value of the variance of 𝑒𝛾1 . The formulation 

(16a) may be useful for skewed data such as income where a transformation may also help to ensure 

normality. We may also wish to use transformed values of 𝑋1 in (16b) or (16c) or both. We could also 

choose, for example, a gamma distribution for 𝛾1 with corresponding modifications to the likelihood 

and this would be a useful area for further research.  

As in the case of jointly modelling variables with missing values we also can introduce auxiliary 

variables, say 𝑋3, into (3b) to give 

𝑋1 = 𝑋2𝛼2 + 𝑋3𝛼3 + 𝛾2        (17) 

This allows us to deal with the case where, for example, 𝑋1 depends on such auxiliary variables that 

are not in the model of interest, whereas the 𝑋2 are in the model of interest (see also Muff and 

Keller, 2015). 

As we showed in our example multilevel models, including those with cross classifications and 

multiple memberships, are readily incorporated by the addition of the relevant random effects into 

the model of interest (3c), together with the corresponding parameter sampling steps. In fact the 

example application in section 8 includes random effects.  

 For multivariate models (3c) becomes a multivariate model that is updated accordingly. Goldstein 

(2011, chapter 6) discusses the steps involved. Structural equation models can also be incorporated 

(Goldstein, 2011, chapter 8). 
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Finally, in our example we illustrate the implications of properly allowing for measurement errors. 

We also highlight the issue of providing good estimates for the distribution of measurement errors, 

notably the variance. Often, such estimates are known only very approximately and one possibility is 

to use an informative prior (which we have not investigated here) or as we have done in our 

example, carried out a sensitivity analysis over a plausible range of values. This highlights those 

parameter estimates that were relatively unaffected by our adjustment procedures. Ecob and 

Goldstein (1983) explore a number of approaches to the estimation of measurement error 

distributions, and this is an important area for further work. 
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Tables 

Table 1. Measurement error simulation. 100 simulated datasets from model (12). Between - 

simulation standard errors in brackets. Reliability =0.8.Burn in =250, iterations=250. Sample size 

1000. 

Estimate (true value) No adjustment Adjusted for measurement and 
misclassification errors 

𝛽0 (1.0)  0.95 (0.01) 1.00 (0.01) 

𝛽1 (1.0)  0.74 (0.01) 1.01 (0.01) 

𝛽2 (1.0)  1.12 (0.01) 0.99 (0.01) 

𝛽3 (1.0)  1.11 (0.01) 1.00 (0.01) 

𝜎𝑒
2  (1.0)  1.16 (0.02) 0.99 (0.02) 
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Table 2. Measurement error simulation. 200 simulated datasets from model (14). Between - 

simulation standard errors in brackets. Reliability =0.8. Burn in =500, iterations=500. Sample 

sizes denoted by N. 

Estimate 
(generating 
value) 

Measurement 
error, but with no 
adjustment and 
no missing data. 
N=1000 

Adjusted for 
measurement  
errors and 
missing data. 
N=500 

Adjusted for 
measurement  errors and 
missing data. N=1000 

Adjusted for 
measurement  errors 
and missing data. 
N=4000 

𝛽0 (1.0)  0.868 (0.006) 1.116 (0.011) 
1.047 (0.010) 1.025 (0.006) 

𝛽1 (1.0)  0.690 (0.004) 1.147 (0.014) 
1.033 (0.012) 1.014 (0.007) 

𝛽2 (1.0)  1.109 (0.010) 1.060 (0.013) 
1.002 (0.014) 1.006 (0.009) 

𝛽3 (1.0)  1.033 (0.005) 1.087 (0.008) 
1.037 (0.009) 1.022 (0.005) 

𝜎𝑒
2  (1.0)  1 1 1 1 
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Table 3. LSAY data; prediction of the probability of HE participation adjusting for measurement 

error (ME) with different reliabilities (R) in Maths and Reading scores, and missing data. Probit 

link.  Burn in = 500, iterations = 1000. Standard errors in brackets. Sample size = 6901, complete 

cases = 3407. 

Estimate Complete cases, 

no ME adjustment 

Adjusting for missing 

data only 

Adjusting for missing 

data and ME (R=0.8) 

Adjusting for missing 

data and ME (R=0.7) 

Intercept -0.946 (0.091)  -1.010   (0.066) -1.197 (0.073) -1.311 (0.080) 

Female (male) 0.055 (0.050) 0.051   (0.036) 0.061 (0.037) 0.057 (0.037) 

Non-Government school 0.202 (0.055) 0.221    (0.049) 0.217 (0.046) 0.219 (0.047) 

Maths score year 9 0.499 (0.062) 0.504   (0.046)  0.654 (0.060) 0.753 (0.068) 

Reading score year 9 0.235 (0.061) 0.275    (0.044) 0.339 (0.051) 0.390 (0.065) 

Non-Australia country of 

birth of mother (Australia) 

0.186 (0.059) 0.183    (0.041) 0.183 (0.042) 0.180 (0.044) 

Home language not 

English (English) 

0.412 (0.114) 0.452    (0.072) 0.469 (0.078) 0.485 (0.076) 

SES ANU3 score father 0.487 (0.106) 0.438 (0.096) 0.366 (0.106) 0.286 (0.105) 

SES ANU3 score mother 0.271 (0.136)  0.185 (0.120) 0.128 (0.112) 0.088 (0.122) 

Level 2 variance 0.036 (0.015) 0.038 (0.009) 0.036 (0.011) 0.39 (0.010) 

 


