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One sentence summary: 

Patient iPSC-based models indicate Src/c-Abl inhibitors as anti-ALS therapeutics. 
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Abstract 

Amyotrophic lateral sclerosis (ALS), a fatal motor neuron (MN) disease causing progressive 

MN death, still has no effective therapeutics. Here we developed a phenotypic screen to 

reposition existing drugs with a readout of MN survival using ALS patient induced 

pluripotent stem cells (iPSCs) with mutations in Cu/Zn superoxide dismutase 1 (mutant 

SOD1). Results of the screen showed that over half of the hit drugs were included in the 

Src/c-Abl-associated signaling pathway. Src/c-Abl inhibitors increased the survival rate of 

ALS MNs, and a knock-down approach rescued ALS MNs. One of these drugs improved 

impaired autophagy, reduced misfolded SOD1 protein, and attenuated the energy shortage 

with altered mitochondria-relevant gene expression as detected by single-cell transcriptome 

analysis of ALS MNs. This drug was also effective for other genetic types of iPSC-derived 

MNs including mutant TAR DNA-binding protein 43 kDa (TDP-43), C9orf72 repeat 

expansion-associated familial ALS, and sporadic ALS. Furthermore, the Src/c-Abl inhibitor 

extended the survival period of mutant SOD1-associated ALS model mice. Therefore, our 

chemical-biology approach with iPSC-based drug repositioning could identify both 

candidate drugs and a converged molecular pathway for ALS therapeutics.  
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Introduction 

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes 

progressive loss of motor neurons (MNs) [1, 2]. The disease progression is fast and there is 

no radical treatment. Most cases are classified as sporadic ALS (SALS), while about 10% 

are familial (FALS). Approximately 25% of the FALS cases are associated with mutations in 

Cu/Zn superoxide dismutase 1 (mutant SOD1) [3]. Although mutant SOD1 transgenic mice 

recapitulate ALS phenotypes [4] and have been used for preclinical study of ALS drug 

development, only a limited number of compounds have been tested. Thus, we developed a 

phenotypic screening assay for testing a number of compounds with a readout of ALS MN 

survival. In previous studies of ALS, many kinds of causative genes were discovered and 

multiple molecular pathological hypotheses were proposed. However, it is clear that MN 

death is an undisputed common phenotype in the heterogeneous disease ALS [1, 2]. After the 

discovery of iPSC technology, many screening platforms targeting ALS have been developed 

[5-11]. In this study, we introduced transcription factors using the piggyBac vector system 

[12] to generate disease MNs with scale merit and simplicity for MN generation. In the 

phenotypic assay, since it was deemed useful to accelerate therapeutic development, we 

repositioned existing drugs [13] and found that several Src/c-Abl inhibitors attenuated ALS 

MN degeneration.  

    Src and c-Abl are ubiquitous non-receptor tyrosine kinases (RTKs) that were identified 

as the mammalian homologs of the oncogene products of Rous sarcoma virus and Abelson 

murine leukemia virus, respectively. Activation of Src, which is associated with cell 

proliferation, angiogenesis, apoptosis and invasion, has been observed in cancers, and it is 
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considered a target of cancer therapy [14]. Bcr-Abl fusion protein, one of the oncogenic forms 

of c-Abl fusion kinase, is known to cause chronic myelogenous leukemia (CML) and 

Philadelphia chromosome-positive adult acute lymphoblastic leukemia (Ph+ALL), and c-Abl 

inhibitors were developed as anti-CML drugs [15]. Src/c-Abl is associated with various 

cellular functions [16, 17], and several studies have shown the involvement of Src family 

proteins and c-Abl in neurodegenerative diseases [18-24].  

    In the present study, we repositioned existing drugs using mutant SOD1-mediated ALS 

iPSCs and identified multiple anti-Src/c-Abl cancer drugs, investigated the mechanism of 

Src/Abl inhibitors in ALS MNs, and demonstrated that Src/Abl inhibition attenuated MN 

death with a reduction of misfolded protein accumulations. These drugs were also effective 

for other genetic forms of ALS patient MNs and for ALS model mice, indicating that the 

Src/c-Abl pathway could be viewed as a converged therapeutic target of ALS MNs. 

    

Results 

    To screen many compounds with MN vulnerability as a readout phenotype using patient 

iPSCs, we required large-scale maturation-aligned MNs. We developed MN differentiation 

methods by transducing 3 transcription factors, LIM homeobox protein 3 (Lhx3), neurogenin 

2 (Ngn2), and ISL LIM homeobox 1 (Isl1). These factors were reported to induce mature 

spinal MNs from neural precursor cells using adenovirus vectors [25]. A polycistronic vector 

containing Lhx3, Ngn2, and Isl1 under control of the tetracycline operator was introduced 

into iPSCs (fig. S1A-D and table S1 and S2) using the piggyBac vector, and vector-

introduced clones were established as stable iPSC clones after neomycin selection. After 
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doxycycline treatment, MNs were generated from iPSCs within 7 days (Fig. 1A). The 

generated MNs showed MN markers (Fig. 1B and C) and functional property (Fig. 1D-F and 

fig. S2A-C).  

To establish an ALS MN phenotypic screening system, we generated iPSCs from ALS 

patients with a mutation of L144FVX in SOD1 gene (ALS1) (fig. S1A-D) and corrected the 

mutation in the established iPSCs using CRISPR-Cas9 to generate isogenic control 

(corrected ALS1) (fig. S2D-F). We differentiated iPSCs into MNs using transcription factors, 

and a MN marker, HB9-positive cells were 62.3±2.3% in control, 63.4±1.3% in corrected 

ALS1-1, and 60.3±2.8% in ALS1 (Fig. 1G and fig. S2G). In the generated MNs, we 

observed accumulations of misfolded SOD1 protein (Fig. 1H and I and fig. S2H and I), which 

plays a pathological role in mutant SOD1-associated ALS [26, 27]. Furthermore, we found 

vulnerability in ALS MNs compared with control MNs including mutation-corrected 

isogenic control (Fig. 1J and K). 

Using this cellular model, we set up compound screening with a readout of the survival 

of ALS MNs. iPSCs were differentiated to MNs for 7 days, and chemical compounds were 

added for another 7 days following evaluation of the surviving MNs by high-content analysis 

using immunostaining of βⅢ-tubulin, since nearly 100% of βⅢ-tubulin-positive neurons 

expressed HB9 (Fig. 2A and fig. S2J and K). Assay performance was determined by 

calculating the Z’ factor (Z’ factor = 0.42 ± 0.30 (mean ± SD)). For positive control assays, 

cells were treated with 50 µM kenpaullone, which was identified as a candidate drug for ALS 

[28], and we confirmed its positive effect; in negative control assays, the cells were treated 

with vehicle (DMSO). We conducted through-put screening of 1,416 compounds that 
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included existing drugs both on the market and undergoing clinical trials. The results of the 

screening are shown in Fig. 2B. Hit compounds were defined as over 3 standard deviations 

(3SD) from negative controls, and 27 compounds were identified as hits (hit ratio 1.7%) 

(table S3). Representative figures showing the neuroprotective effect of hit drugs are shown 

in Fig. 2C. We were able to confirm dose-dependency of the protective effect of some hit 

drugs (Fig. 2D).  

Fourteen of the 27 hits were included in the Src/c-Abl-associated pathway (Fig. 2E). 

Thus, we focused on Src/c-Abl as a common target of these hit drugs in ALS MNs. We re-

evaluated other Src/c-Abl inhibitors in non-hit drugs, and confirmed that they also presented 

a protective effect, although with lesser efficacy compared with hit drugs (fig. S3A). 

Furthermore, knock-down of Src or c-Abl promoted the survival of MNs (Fig. 2F), and the 

knock-down effects were cancelled by siRNA-resistant forms of Src or c-Abl overexpression 

(fig. S3B and C). These results demonstrated Src and c-Abl as therapeutic targets of ALS 

MNs. Among Src/c-Abl inhibitors of the hit drugs, we focused on drugs that have direct 

inhibitory activity for Src/c-Abl, such as bosutinib and dasatinib. Bosutinib presented dose-

dependency on MN protection without the bell-shaped responses observed with dasatinib, 

and the protective effect was exhibited at lower dose compared with other hit drugs in vitro. 

From these results, we selected bosutinib for further investigation. 

We investigated the protein level and phosphorylation of Src/c-Abl in ALS MNs. 

Phosphorylation of Src/c-Abl was increased in mutant SOD1 MN culture compared with 

control, and treatment with bosutinib decreased phosphorylation as detected by western blot 

analysis (Fig. 2G and H). Typical immunocytochemistry figures of phosphorylated Src (p-
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Src)/phosphorylated c-Abl (p-c-Abl) are presented in Fig 2I. Using ELISA, we also 

confirmed that phosphorylation of Src/c-Abl was increased in mutant SOD1 MN culture 

compared with control, and treatment with bosutinib decreased them (Fig. 2J). Next, we 

evaluated the protein level and phosphorylation of Src/c-Abl in other types of cells. ALS 

astrocytes generated from iPSCs (fig. S3D) and ALS iPSCs exhibited increased 

phosphorylation of Src without increased phosphorylation of c-Abl (fig. S3E-H).  

To analyze the protective mechanism of bosutinib on ALS MNs, we investigated 

misfolded protein degradation. We found that p62 levels were elevated in ALS MNs, which 

were then reduced by bosutinib treatment, and the change of the LC3-II/LC3-I ratio, 

suggestive but not definitively pointing to an autophagic effect, in ALS MNs was also 

attenuated by bosutinib treatment (Fig. 3A-C). To confirm whether the autophagy process 

was associated with ALS MNs, we investigated the effect of the inhibition of mTOR. The 

mTOR inhibitor rapamycin, which is known to promote autophagy, and mTOR siRNA 

increased MN survival (Fig. 3D and E), suggesting that autophagy was impaired in ALS 

MNs. Then, to investigate whether the protective effect of bosutinib is associated with the 

autophagy pathway, we added autophagy inhibitors, LY294002 and chloroquine, to MNs 

with bosutinib treatment. These autophagy inhibitors partially blocked the protective effect 

of bosutinib (Fig. 3F). Thus, our data suggested that the protective effect of bosutinib was 

associated with the promotion of autophagy. Furthermore, we found that bosutinib treatment 

reduced the misfolded SOD1 protein levels in ALS MNs by western blotting (Fig. 3G) and 

ELISA (Fig. 3H) without decreasing SOD1 mRNA expression levels (Fig. 3I). ALS MN 

culture also presented a decreasing ATP level, and bosutinib had an attenuating effect on the 
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shortage of intracellular ATP (Fig. 3J). These data suggested that bosutinib promoted the 

degradation of misfolded SOD1 protein and improved cellular energy shortage. To further 

explore the molecular background of ALS MNs, transcriptome analysis was performed using 

single-cell RNA sequencing (table S4 and S5). We conducted Gene Set Enrichment Analysis 

(GSEA) to reveal the biological significance of differentially expressed genes between 

control and ALS MNs. We found that the increase in mRNA expressions was associated with 

TCA cycle and respiratory electron transport in ALS MNs, indicating compensation for 

energy shortage (Fig. 3K). After treatment with bosutinib, the mRNA expressions associated 

with TCA cycle and respiratory electron transport were decreased in ALS MNs (fig. S4).  

Furthermore, we evaluated the effects of Src/c-Abl inhibitor on other genetic types of 

familial ALS MNs including mutant TDP-43-, C9orf72 repeat expansion-associated familial 

ALS, and on sporadic ALS. Diagnosis of familial ALS was confirmed by genotype (Fig. 

S1A), and sporadic ALS was examined by re-sequencing using patient fibroblasts (table S2). 

TDP-43 inclusions were observed in spinal MNs of a SALS patient (SALS1) by postmortem 

pathological analysis. MNs were generated from each iPSC (Fig. 4A), and treatment with 

bosutinib increased surviving MNs in the different types of familial ALS and a part of 

sporadic ALS (Fig. 4B). Treatment with bosutinib decreased accumulations of abnormal 

proteins in MNs of familial and sporadic ALS (fig. S5A-C).  

    To analyze whether Src/c-Abl inhibitor is effective in vivo, we administered bosutinib 

to mutant SOD1 transgenic (Tg) mice, a known model for mutant SOD1-asssociated ALS. 

To investigate the effect of Src/c-Abl inhibitor on MN degeneration in vivo, the same as our 

in vitro ALS model, treatment with bosutinib (5mg/kg/day) by intraperitoneal injection was 
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started at age of 8 weeks, and was continued until 13 weeks. Bosutinib delayed disease onset 

(Fig. 4C) and extended the survival period of mutant SOD1 Tg mice (Fig. 4D). Src/c-Abl 

were inhibited (fig. S5D), and misfolded SOD1 proteins in spinal cord were decreased in 

bosutinib-treated mutant SOD1 Tg mice compared with vehicle treatment (Fig. 4E). The 

number of MNs was significantly higher in bosutinib-treated mutant SOD1 Tg mice 

compared with vehicle treatment (Fig. 4F and G). These results indicated that Src/c-Abl 

inhibition protected MNs from misfolded SOD1-mediated neurodegeneration in vivo. These 

data were compatible with previous reports of nilotinib/bosutinib treatment attenuating 

misfolded TDP-43 protein levels in other ALS model mice [29], and that treatment with 

another Src/c-Abl inhibitor, dasatinib, also prolonged the survival period of mutant SOD1 Tg 

mice [24].  

Finally, we investigated the postmortem spinal cord tissue of ALS patients. 

Immunoreactivity of phosphorylated Src was increased in the remaining MNs of ALS spinal 

cords (fig. S6A, table S6) as well as that of phosphorylated c-Abl [24], although the trend 

toward increased phosphorylation of Src in whole ALS spinal cords was not significant (fig. 

S6B). Since phosphorylation of Src was increased in ALS patient iPSC-derived MNs, these 

results suggest that phosphorylation of Src may occur at early stage in ALS, and that patient 

iPSCs would be useful to analyze ALS patient MNs at early stage before clinical onset. 

 

Discussion 

    We developed a phenotypic screen assay with a readout of MN survival using familial 

ALS patient iPSCs with mutation in SOD1. Using this assay, we showed that Src/c-Abl 



Imamura et al. 

12 
 

inhibitors and the knock-down approach of Src/c-Abl rescued ALS MNs. Further analysis 

revealed that these drugs promoted autophagy, reduced misfolded SOD1 protein levels, and 

restored the energy shortage in ALS MNs. Furthermore, treatment with the Src/c-Abl 

inhibitors rescued other genetic types of ALS MNs including mutant TDP-43-, C9orf72 

expansion mediated-familial ALS, and sporadic ALS MNs. Finally, we found that the Src/c-

Abl inhibitor prolonged the survival period in ALS model mice. 

    Mutations in SOD1 cause its protein-conformational changes, misfolding, and 

aggregation that are specifically localized in pathologically affected lesions in animal models 

and human ALS patients [30]. We showed that Src/c-Abl inhibitors reduced misfolded SOD1 

level in ALS MNs. As a mechanism for the reduction of misfolded SOD1, we explored 

proteolysis, observing that Src/c-Abl inhibitors promoted autophagy, which was supported 

by previous reports of enhancement of autophagy by Src/c-Abl inhibitors [31, 32]. It was 

demonstrated that misfolded SOD1 induces ER stress, mitochondrial dysfunction [7], and 

changes in membrane property [33]. We observed ATP shortage in ALS MNs, speculating 

that misfolded mutant protein provoked ER stress and/or altered the membrane property of 

hyperexcitability as previously demonstrated [34, 35], and/or caused mitochondrial 

dysfunction and finally decreased ATP levels (Fig. 3J). Increased gene categories and their 

reversion by Src/c-Abl inhibition of the TCA cycle and respiratory electron transport 

explored by our single ALS MN analysis indicated a compensated response against ATP 

shortage of ALS MNs. A computational model of MN degeneration showed ATP shortage 

with mitochondrial involvement [36]. We supposed that Src/c-Abl inhibitors restored ATP by 

autophagy with decreasing misfolded proteins. Furthermore, ATP binding to Src/c-Abl is 
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required for its own activation, and Src/c-Abl inhibitors blocked ATP binding [37] and may 

have contributed to the increases in ATP levels. Although it remains unclear why 

phosphorylated Src/c-Abl is increased in ALS MNs, as shown both in this study and in a 

previous report of postmortem ALS patients MNs [24], we speculated that a RTK-mediated 

mechanism might be associated with Src/c-Abl activation in ALS MNs. The signal activation 

mechanism, promoted by oligomerized proteins in ALS MNs, may share a mechanism with 

cancer signaling such as BCR-Abl or EML4-ALK [38]. BCR or EML4 in oncoproteins is 

dimerized, leading to activation of Abl or ALK and to induction of cell proliferation in 

dividing cells. In contrast, misfolded proteins associated with RTK may be oligomerized, 

leading to activation of Src/c-Abl and to induction of neurodegeneration in non-dividing cells, 

ALS MNs. c-Abl activation is known to result in neurodegeneration of adult mouse neurons 

[20] and apoptotic response [39]. 

ALS is a heterogeneous disease, as its various disease phenotypes it has in common 

are derived from multiple causes including different gene mutations. It is a certainty that 

multiple molecular mechanisms are involved in the cause of ALS, but these mechanisms 

remain unknown [2]. Although this heterogeneity of ALS may complicate the identification 

of prospective therapeutics, the analysis of patient iPSCs from multiple types of ALS should 

be useful for solving this issue. Our data showed that Src/c-Abl inhibition was effective not 

only in mutant SOD1 but also in mutant TDP-43 and C9orf72-repeat expansion-associated 

familial ALS and a part of sporadic ALS MNs. It was reported that TDP-43 formed oligomers 

that exhibited reduced DNA binding capability and neurotoxicity [40]. C9orf72-repeat 

expansion formed toxic RNA foci and accumulations of dipeptide repeat protein, which is 
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produced via repeat-associated non-ATG translation and causes cytotoxicity [10]. Sporadic 

ALS is characterized by accumulations of inclusions consisting of TDP-43 in MNs [41], 

which was also observed in postmortem tissues of the sporadic ALS patient in this study. We 

observed that these abnormal, misfolded proteins, which contribute to ALS pathogenesis, 

were decreased by Src/c-Abl inhibitor, and speculated that a common pathway for neuronal 

death such as the apoptotic pathway would be suppressed by Src/c-Abl inhibitors. Both 

studies of mutant SOD1 Tg mice with dasatinib and TDP-43 Tg mice with nilotinib/bosutinib 

showed attenuation of ALS phenotypes, supporting our data [24, 29]. 

In our screening, the Z’ factor was below 0.5, suggesting the assay might not meet a 

requirement for prevailing standards of compound screening. This score may stem from the 

fact that the screening takes 7 days to observe cell death without any additional toxins, and 

this longer than usual period might cause variance of deviations in the assay. Although we 

confirmed the effect of both Src and c-Abl in siRNA experiments, many kinase inhibitors are 

not truly selective for a single kinase [42]. The possibility that the efficacy of the drugs on 

MNs was associated with common off-target effects can also not be ruled out, although we 

evaluated the protective effects of multiple drugs on MNs, which all had different structures 

from each other. Furthermore, we also considered that Src and c-Abl may have interacted 

with each other in the pathway of MN death. Further study would be needed to identify more 

specific targets between the Src family, including c-Src, Lck, and Lyn [43], and c-Abl.  

Since the results of our iPSC study targeted MN survival, we administered one of the 

hit drugs to ALS model mice from the time point of the beginning of MN death, before 

clinical onset, to the time point of glial cell involvement. The proper dose of bosutinib for 
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mouse experiments could be determined based on the dose of clinical use in humans. 

Furthermore, the bosutinib dose in this study was used in a previous study [29]. We found 

that bosutinib delayed the onset of disease and elongated the survival period of mutant SOD1 

Tg mice significantly, although the actual improvement of survival of mutant SOD1 Tg mice 

was modest. These in vivo results confirmed the in vitro data, but also suggested that this 

drug treatment was not ready for clinical translation. It may be important to examine other 

doses of bosutinib or other Src/c-Abl inhibitors, such as those showing efficient permeability 

of the blood-brain barrier, in future studies. Although ALS model mice are useful for 

evaluating new therapeutics, studies of them might not always predict human responses in 

clinical trials [44]. It may be important to combine the results of ALS patient iPSCs and ALS 

model mice simultaneously.  

    This study indicated that a chemical-biology approach with iPSC-based phenotypic 

screening of existing drugs identified both a converged molecular target and candidate drugs 

for ALS. We are hopeful that iPSC-based drug repositioning will hasten therapeutic 

development for ALS. 

 

Materials and Methods 

Study design 

The objective of our study was to identify a candidate drug or a target for ALS treatment. 

Through-put drug screening was performed using cellular phenotype of ALS MNs generated 

from patient iPSCs following disease modeling of ALS. Among hit drugs, candidate targets 

for ALS treatment were focused upon and validated using multiple ALS iPSC clones. This 
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study was extended to ALS model mice to analyze the effects in vivo. Generation and use 

of human iPSCs was approved by the Ethics Committees of the respective departments 

including Kyoto University. All methods were performed in accordance with approved 

guidelines. Formal informed consent was obtained from all subjects. All mice analyzed in 

this study were cared for, the procedures were performed in accordance with the Kyoto 

University Animal Institutional Guidelines, and all experiments were approved by the CiRA 

Animal Experiment Committee. Human postmortem samples with written informed consent 

were obtained from the Department of Medicine and Graduate Schools of Medicine, Kyoto 

University, Jichi Medical University, and Kansai Medical University.  

 

Generation of iPSCs 

iPSCs were generated from skin fibroblasts, peripheral blood mononuclear cells (PBMCs) or 

immortalized B-lymphocytes using retrovirus (Sox2, Klf4, Oct3/4, and c-Myc), sendaivirus 

(Sox2, Klf4, Oct3/4, and c-Myc) or episomal vectors (Sox2, Klf4, Oct3/4, L-Myc, Lin28, 

and p53-shRNA) as reported previously [45-47], and were cultured on an SNL feeder layer 

with human iPSC medium (primate embryonic stem cell medium; ReproCELL, Yokohama, 

Japan) supplemented with 4 ng/ml basic FGF (Wako Chemicals, Osaka, Japan) and 

penicillin/streptomycin.  

 

Supplementary materials 

#. Supplemental materials and methods 

#. fig. S1- S6 
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Figure Legends 

Fig. 1. Generation of MNs using transcription factors and modeling ALS-MNs 

A. Protocol for MN generation. Scale bars, 10 µm.  

B. Generated MNs present spinal MN markers HB9, ChAT, and SMI-32. Scale bars, 10 µm.   

C. Real-time PCR analysis shows increase in mRNA levels of HB9 and ChAT on Day 7 (each 

group represents mean ± SEM, n = 3; Student t-test, *p<0.05).   

D. Co-cultures with human myoblasts, Hu5/E18. Neurites of MNs co-localized with α-

bungarotoxin-labeled acetylcholine receptors. Scale bar, 10 µm.   

E. Action potentials from current clamp recordings.   

F. Functional neurotransmitter receptors on generated MNs evaluated by electrophysiological 

analysis. Addition of 500 µM glutamate, 500 µM kainate, or 500 µM GABA induced inward 

currents during voltage clamp recordings. 

G. The percentage of HB9-positive cells on Day 7 (each group represents mean ± SEM, n = 

3).  

H. Modeling ALS MNs. Misfolded SOD1 protein accumulated in MNs with mutant SOD1 

gene. Scale bars, 10 µm.  

I. Accumulations of misfolded SOD1 protein were shown in mutant SOD1 ALS MN culture 

using immunoprecipitation assay.  

J,K. MN survival assay. Numbers of MNs on Day 7 and on Day 14 were counted by high-

content analysis, and the ratio of surviving MNs (Day 14/Day 7 (%)) is shown. The surviving 

ratio was decreased in mutant SOD1 (L144FVX) compared with control and mutation-

corrected clone (each group represents mean ± SEM, n = 6; one-way ANOVA, p<0.05, 
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*p<0.05). Scale bars, 10 µm.  

 

Fig. 2. Phenotypic screening using ALS MNs and identification of therapeutic targets 

A. Overview of screening flow for ALS MN survival assay.  

B. Through-put screening using MNs with mutant SOD1 gene (L144FVX). 1,416 

compounds consisting of existing drugs and clinical trial-testing drugs were screened. Scatter 

plots show screening results and the highlighted compounds shown in Fig. 2D.  

C. Representative figures of assay results. Treatment with bosutinib increased MN survival. 

Scale bar, 100 µm.  

D. Hit drugs showed dose-dependent effects (each group represents mean ± SEM, n = 6; one-

way ANOVA, p<0.05, *p<0.05). 

E. Targets of hit drugs. 14 of 27 hit drugs were included in receptor tyrosine kinase (RTK) 

and Src/c-Abl-associated signaling pathways. PKC; protein kinase C. 

F. Knock-down of Src or c-Abl increased the survival rate of mutant SOD1 ALS MNs (ALS1) 

(each group represents mean ± SEM, n = 6; one-way ANOVA, p<0.05, *p<0.05). 

G,H. Phosphorylation of Src/c-Abl was increased in mutant SOD1 ALS MNs, and bosutinib 

inhibited this phosphorylation according to western blot analysis (each group represents 

mean ± SEM, n = 3; two-way ANOVA, p<0.05, *p<0.05).  

I. Typical figures of immunocytostaining of p-Src/p-c-Abl in MNs. Scale bars, 10 µm. 

J. Increase of phosphorylation of Src/c-Abl was inhibited by treatment with bosutinib 

according to ELISAs (each group represents mean ± SEM, n = 3; two-way ANOVA, p<0.05, 

*p<0.05). bos; bosutinib. 
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Fig. 3. Mechanistic analysis of neuroprotective effects of Src/c-Abl inhibitors on mutant 

SOD1 ALS MNs 

A,B. Bosutinib treatment decreased the amount of p62, which was increased in mutant SOD1 

MN culture, and attenuated the ratio of LC3-II/LC3-I (each group represents mean ± SEM, 

n = 3; two-way ANOVA; p<0.05, *p<0.05).  

C. Increase of p62 was exhibited in mutant SOD1 ALS MNs by ELISAs, and bosutinib 

treatment decreased the amount of p62 (each group represents mean ± SEM, n = 3; two-way 

ANOVA; p<0.05, *p<0.05).  

D. Rapamycin increased survival rate of mutant SOD1 ALS MNs (ALS1) (each group 

represents mean ± SEM, n = 6; one-way ANOVA, p<0.05, *p<0.05). 

E. Knock-down of mTOR increased survival rate of mutant SOD1 ALS MNs (ALS1) (each 

group represents mean ± SEM, n = 6; Student t-test, p<0.05).  

F. Autophagy inhibitors, LY294002 and chloroquine, decreased the protective effect of 

bosutinib on MN survival assay (each group represents mean ± SEM, n = 6; two-way 

ANOVA, p<0.05, *p<0.05). 

G, H. Immunoprecipitation analysis (G) and ELISA (H) showed that bosutinib treatment 

decreased the misfolded SOD1 protein level, which was elevated in mutant SOD1 MN 

culture.  

I. Bosutinib treatment did not decrease SOD1 mRNA expression level. 

J. Intracellular ATP level was decreased in mutant SOD1 MN culture. Bosutinib partially 

attenuated the ATP shortage (each group represents mean ± SEM, n = 6, Two-way ANOVA; 
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p<0.05, *p<0.05). 

K. Gene Set Enrichment Analysis of single-cell RNA sequencing showed up-regulation for 

genes in TCA cycle and respiratory electron transport (control 1; n = 10, control 2; n = 11, 

ALS1; n = 23, ALS3; n = 21). bos; bosutinib. 

 

Fig. 4. Effect of Src/c-Abl inhibitor on iPSC-derived MNs with different genotypes and 

on ALS model mice 

A. iPSC-derived MNs of each clone on Day 7. Scale bars, 100 µm.  

B. Bosutinib increased MN survival of mutant TDP-43-, and C9orf72-repeat expansion-

mediated familial ALS and from a part of sporadic ALS (each group represents mean ± SEM, 

n = 6; one-way ANOVA, p<0.05; post hoc test, p<0.05). 

C. Kaplan-Meier analysis showed that bosutinib delayed disease onset of mutant SOD1 Tg 

mice (bosutinib; 123.2±9.1 days, vehicle; 112.4±14.4 days, mean ± SD, log-rank test, 

p=0.0021, n = 26 per group). 

D. Kaplan-Meier analysis showed that bosutinib extended the survival time of mutant SOD1 

Tg mice (bosutinib; 164.1±9.4 days, vehicle; 156.3±8.5 days, mean ± SD, log rank test, 

p=0.0019, n = 26 per group). 

E. Misfolded SOD1 protein in spinal cord at 12 weeks of age was evaluated by ELISA. 

Bosutinib decreased the misfolded SOD1 accumulations in spinal cord (each group 

represents mean ± SEM, non-transgenic littermates (non-Tg); n = 3, Tg treated with vehicle; 

n = 3, Tg treated with bosutinib; n = 3, one-way ANOVA, p<0.05; post hoc test, p<0.05). 

F. Typical image of Cresyl violet-stained section of ventral horn from the lumbar spinal cord 
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at the late symptomatic stage. Scale bars, 50 µm.  

G. The number of MNs on one side of the lumbar spinal cord was quantified (each group 

represents mean ± SEM, non-Tg; n = 4, Tg treated with vehicle; n = 5, Tg treated with 

bosutinib; n = 5, one-way ANOVA; p<0.05, *p<0.05). bos; bosutinib. 
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Thr Leu Ser Ile Thr Lys

Thr Leu Ser Ile Thr Lys

siRNA-resistant form of wild-type c-Abl
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Fig. S4

Gene set enrichment:
TCA cycle and respiratory electron transport
Down regulated in mSOD1 Up regulated in mSOD1
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Fig. S5
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