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UNIFYING MARKOV PROPERTIES FOR GRAPHICAL MODELS

BY STEFFEN LAURITZEN AND KAYVAN SADEGHI1

University of Copenhagen and University of Cambridge

Several types of graphs with different conditional independence interpre-
tations—also known as Markov properties—have been proposed and used in
graphical models. In this paper, we unify these Markov properties by intro-
ducing a class of graphs with four types of edges—lines, arrows, arcs and
dotted lines—and a single separation criterion. We show that independence
structures defined by this class specialize to each of the previously defined
cases, when suitable subclasses of graphs are considered. In addition, we
define a pairwise Markov property for the subclass of chain mixed graphs,
which includes chain graphs with the LWF interpretation, as well as summary
graphs (and consequently ancestral graphs). We prove the equivalence of this
pairwise Markov property to the global Markov property for compositional
graphoid independence models.

1. Introduction. Graphical models provide a strong and clear formalism for
studying conditional independence relations that arise in different statistical con-
texts. Originally, graphs with a single type of edge were used; see, for example,
[3] for undirected graphs (originating from statistical physics [11]), and [13, 40]
for directed acyclic graphs (originating from genetics [43]).

With the introduction of chain graphs [18], and other types of graphs with edges
of several types [2, 23, 26, 39] as well as different interpretations of chain graphs
[1, 6], a plethora of Markov properties have emerged. These have been introduced
with different motivations: chain graphs as a unification of directed and undirected
graphs, the so-called AMP Markov property to describe dependence structures
among regression residuals, bidirected graphs to represent structures of marginal
independence and other mixed graphs to represent selection effects and incom-
plete observations in causal models. Despite the similarities among these, the lack
of a general theory as well as the use of different definitions and notation has un-
dermined the original conceptual simplicity of graphical models. This motivates a
unification of the corresponding Markov properties. In [29], we attempted this for
different types of mixed graphs, but failed to include chain graph Markov prop-
erties. Here, we follow an analogous approach using a single separation criterion,
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but using four types of edges: line, arrow, arc and dotted line. To the best of our
knowledge, this unifies most graphical independence models previously discussed
in the literature. One exception is Drton’s [6] type III chain graph Markov prop-
erty, which has several unfortunate properties and so far has not played any specific
role; we have chosen to avoid introducing a fifth type of edge to accommodate this
property; another exception is the reciprocal graphs of Koster [14], which allow
feedback cycles; other exceptions use graphs to describe conditional independence
in dynamical systems [5, 8], which we do not discuss here. Our unification includes
summary graphs—which include ancestral graphs as well as chain graphs with the
multivariate regression Markov property [2]—chain graphs with the LWF Markov
property [9, 18], and chain graphs with the AMP Markov property [1].

In addition to the unification of the (global) Markov property, we provide a uni-
fied pairwise Markov property. However, it seems technically complex to include
the pairwise Markov property for chain graphs with the AMP interpretation, and
hence we only discuss this for the subclass of graphs with three types of edges
where cycles of specific types are absent. Such graphs were called chain mixed
graphs (CMGs) in [28] and its corresponding independence model unifies those
of summary graphs (and ancestral graphs) as well as chain graphs with the LWF
Markov property. For CMGs, we first discuss the notion of maximality and show
that every missing edge in a maximal CMG corresponds to an independence state-
ment, thus forming a potential base for specifying pairwise Markov properties.
For CMGs, we prove the equivalence of pairwise and global Markov properties
for abstract independence models which are compositional graphoids.

The structure of the paper is as follows: In the next section, we define graphs
with four types of edges and provide basic graph theoretical definitions. In Sec-
tion 3, we discuss general independence models and compositional graphoids,
provide a single separation criterion for such graphs, and show that the induced
independence models are compositional graphoids. Further we demonstrate how
the various independence models discussed in the literature are represented within
this unification. In Section 4, we define the notion of maximal graphs, provide
conditions under which a CMG is maximal and show that any CMG can be mod-
ified to become maximal without changing its independence model. In Section 5,
we provide a pairwise Markov property for CMGs, and prove that for composi-
tional graphoids, the pairwise Markov property is equivalent to the global Markov
property. Finally, we conclude the paper with a discussion in Section 6.

2. Graph terminology.

2.1. Graphs. A graph G is a triple consisting of a node set or vertex set V ,
an edge set E, and a relation that with each edge associates two nodes (not nec-
essarily distinct), called its endpoints. When nodes i and j are the endpoints of
an edge, these are adjacent and we write i ∼ j . We say the edge is between its
two endpoints. We usually refer to a graph as an ordered pair G = (V ,E). Graphs
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G1 = (V1,E1) and G2 = (V2,E2) are called equal if (V1,E1) = (V2,E2). In this
case, we write G1 = G2.

The graphs that we use are labeled graphs, that is, every node is considered a
different object. Hence, for example, the graph i j k is not equal to the
graph j i k.

In addition, in this paper, we use graphs with four types of edges denoted by
arrows, arcs (solid lines with two-headed arrows), lines (solid lines) and dotted
lines; as will be seen in Section 3, we shall use dotted lines to represent chain
graphs with the AMP Markov property. Henceforth, by ‘graph’, we mean a graph
with these four possible types of edges. We do not distinguish between i j

and j i, between i≺ �j and j ≺ �i, or between i ····· j and j ····· i, but we
do distinguish between j �i and i �j .

A loop is an edge with endpoints being identical. In this paper, we are only
considering graphs that do not contain loops. Multiple edges are edges sharing
the same pair of endpoints. A simple graph has neither loops nor multiple edges.
Graphs we are considering in this paper may generally contain multiple edges,
even of the same type. However, we shall emphasize that for all purposes in the
present paper, multiple edges of the same type are redundant, and hence at most
one edge of every type is necessary to represent the objects we discuss.

We say that i is a neighbor of j if they are endpoints of a line; if there is an
arrow from i to j , i is a parent of j and j is a child of i. We also say that i is
a spouse of j if they are endpoints of an arc, and i is a partner of j if they are
endpoints of a dotted line. We use the notation ne(j), pa(j), sp(j) and pt(j) for
the set of all neighbours, parents, spouses and partners of j , respectively. More
generally, for a set of nodes A we let ne(A) = ⋃

j∈A ne(j) \ A and similarly for
pa(A), sp(A) and pt(A).

A subgraph of a graph G1 is a graph G2 such that V (G2) ⊆ V (G1) and each
edge present in G2 also occurs in G1 and has the same type there. An induced
subgraph by a subset A of the node set is a subgraph that contains all and only
nodes in A and all edges between two nodes in A.

A walk ω is a list ω = 〈i0, e1, i1, . . . , en, in〉 of nodes and edges such that for
1 ≤ m ≤ n, the edge em has endpoints im−1 and im. We allow a walk to consist
of a single node i0 = in. If the graph is simple, then a walk can be determined
uniquely by a sequence of nodes. Also, a nontrivial walk is always determined
by its edges, so we may write ω = 〈e1, . . . , en〉 without ambiguity. Throughout
this paper, however, we often use only node sequences to describe walks even in
graphs with multiple edges, when it is apparent from the context or the type of
the walk which edges are involved. The first and the last nodes of a walk are its
endpoints. All other nodes are inner nodes of the walk. We say a walk is between
its endpoints. A cycle is a walk with at least two edges and no repeated node except
i0 = in. A path is a walk with no repeated node.

A subwalk of a walk ω = 〈i0, e1, i1, . . . , en, in〉 is a walk that is a subsequence
〈ir , er+1, ir+1, . . . , ep, ip〉 of ω between two occurrences of nodes (ir , ip , 0 ≤ r ≤
p ≤ n). If a subwalk forms a path, then it is also a subpath of ω.
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In this paper, we need different types of walks as defined below. Consider a
walk ω = 〈i = i0, i1, . . . , in = j〉. We say that:

• ω is undirected if it only consists of solid lines;
• ω is directed from i to j if all edges iq iq+1, 0 ≤ q ≤ n − 1, are arrows pointing

from iq to iq+1;
• ω is semi-directed from i to j if it has at least one arrow, no arcs and every

arrow iq iq+1 is pointing from iq to iq+1;
• ω is anterior from i to j if it is semi-directed from i to j or if it is composed of

lines and dotted lines.

Thus a directed walk is also semi-directed and a semi-directed walk is also an
anterior walk. If there is a directed walk from i to j (j 
= i), then i is an ancestor
of j . We denote the set of ancestors of j by an(j). If there is an anterior walk from
i to j (j 
= i), then we also say that i is anterior of j . We use the notation ant(j)

for the set of all anteriors of j . For a set A, we define ant(A) = ⋃
i∈A ant(i) \ A.

We also use the notation An(A) and Ant(A) for the set of reflexive ancestors and
anteriors of A so that An(A) = A ∪ an(A) and Ant(A) = A ∪ ant(A). In addition,
we define a set A to be anterior if ant(i) ⊆ A for all i ∈ A; in other words, A is
anterior if ant(A) =∅.

In fact, we are only interested in these walks when we discuss graphs without
dotted lines. For example, consider the following walk (path) in such a graph:

i j k �l �m n �o≺ �p.

Here, it holds that there is an undirected walk between i and k, and hence i ∈
ant(k), but there is no semi-directed walk from i to k. In addition, we have that
k ∈ an(m) and i ∈ ant(o), while there is a semi-directed walk from i to o. There is
also no anterior walk from i to p.

Notice that, unlike most places in the literature (e.g., [26]), we use walks in-
stead of paths to define ancestors and anteriors. Using walks instead of paths is
immaterial for this purpose as the following lemma shows.

LEMMA 1. There is a directed or anterior walk from i to j if and only if there
is a directed or anterior path from i to j , respectively.

PROOF. If there is a path, there is a walk as a path is also a walk. Conversely,
assume there is a directed or anterior walk from i to j . If i = j , then we are done
by definition. Otherwise, start from i and move on the walk towards j . Consider
the first place where a node k is repeated on the walk. The walk from k to k forms a
cycle. If we remove this cycle from the walk, the resulting walk remains directed;
similarly, the walk resulting from an anterior walk remains anterior. Successively
removing all cycles along the walk in this way implies the result. �

A section ρ of a walk is a maximal subwalk consisting only of solid lines, mean-
ing that there is no other subwalk that only consists of solid lines and includes ρ.
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FIG. 1. (a) A graph with four types of edges. (b) A graph that is not a CMG as
〈h �p q h〉 is a semi-directed cycle.

A walk decomposes uniquely into sections; sections may also be single nodes. The
section is an inner section on the walk if all nodes on the section are inner nodes
on the walk and an endpoint section if it contains an endpoint of the walk. A sec-
tion ρ on a walk ω is called a collider section if one of the four following walks
is a subwalk of ω: u �ρ≺ v, u≺ �ρ≺ v, u≺ �ρ≺ �v, u �ρ ····· v

and u≺ �ρ ····· v, that is, a section ρ is a collider if two arrowheads meet at ρ

or an arrowhead meets a dotted line. All other sections on ω are called noncollider
sections; these are sections that are an endpoint of ω or the following sections:
u≺ ρ �v, u≺ ρ≺ �v, u≺ ρ ····· v, u �ρ �v and u ·····ρ ····· v.
We may speak of collider or noncollider sections (or nodes) without mentioning
the relevant walk when this is apparent from the context. Notice that a section may
be a collider on one part of the walk and a noncollider on another. For example,
in Figure 1(a), the section 〈h,q〉 is a collider on the walk 〈l, h, q,p〉. It is also a
collider on 〈k, q,h,p〉 via the edge h≺ �p, but a noncollider on 〈k, q,h,p〉 via
the edge h �p. Notice also that 〈k〉 is a noncollider on 〈j, k, q〉.

A tripath is a path with three distinct nodes. Note that [27] used the term V-
configuration for such a path. If the inner node on a tripath is a collider, we shall
also say that the tripath itself is a collider or noncollider.

2.2. Subclasses of graphs. Most graphs discussed in the literature are sub-
classes of the graphs considered here. In addition, the global Markov property
defined in the next section specializes to the independence structures previously
discussed. Exceptions include MC graphs [15] and ribbonless graphs [27]. How-
ever, any independence structure represented by an MC graph or a ribbonless graph
can also be represented by a summary graph or an ancestral graph [29], which are
also covered in this paper.

Although we do not set any constraints on the class of graphs with four types of
edges for the purpose of defining a global Markov property in Section 3, the most
general class of graphs for which we explicitly define a pairwise Markov property
in Section 5 is the class of chain mixed graphs (CMGs) [28]. CMGs are graphs
without dotted lines and semi-directed cycles, hence reciprocal graphs as in [14]
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are not CMGs. CMGs may have multiple edges of all types except a combination
of arrows and lines or arrows in opposite directions as such combinations would
constitute semi-directed cycles. The graph in Figure 1(a) is an example of graph
with four types of edges, and the graph in Figure 1(b) is not a CMG because of the
semi-directed cycle 〈h �p q h〉.

It is helpful to classify subclasses of graphs into three categories: basic graphs,
chain graphs and mixed graphs, as briefly described below.

Basic graphs. These are graphs that only contain one type of edge; they in-
clude undirected graphs (UGs), containing only lines; bidirected graphs (BGs),
containing only bidirected edges; dotted line graphs (DGs), containing only dot-
ted lines; and directed acyclic graphs (DAGs), containing only arrows without any
directed cycle. Clearly, a graph without arrows has no semi-directed cycles, and a
semi-directed cycle in a graph with only arrows is a directed cycle. Note that [2,
7, 12, 38] use the terms concentration graphs and covariance graphs for UGs and
BGs, referring to their independence interpretation associated with covariance and
concentration matrices for Gaussian graphical models. DGs have not been studied
specifically; as we shall see, any independence structure associated with a DG is
Markov equivalent to the corresponding UG, where dotted lines are replaced by
lines. DAGs have in particular been useful to describe causal Markov relations;
see, for example, [10, 13, 17, 22, 31].

Chain graphs. A chain graph (CG) is a graph with the two following proper-
ties: (1) if we remove all arrows, all connected components of the resulting graph—
called chain components—contain one type of edge only; (2) if we replace every
chain component by a node then the resulting graph is a DAG. DAGs, UGs, DGs
and BGs are all instances of chain graphs. For a DAG, all chain components are
singletons, and for a chain graph without arrows, the chain components are simply
the connected components of the graph.

If all chain components contain lines, the chain graph is an undirected chain
graph (UCG) (here associated with the LWF Markov property); if all contain arcs,
it is a bidirected chain graph (BCG) (here associated with the multivariate regres-
sion chain graph Markov property); and if all contain dotted lines, it is a dotted line
chain graph (DCG) (here associated with the AMP Markov property). For exam-
ple, in Figure 2(a) the graph is a chain graph with chain components τ1 = {l, j, k},
τ2 = {h,q} and τ3 = {p}, but in Figure 2(c) the graph is not a chain graph because
of the semi-directed cycle 〈h, k, q,h〉.

Regression graphs [42] are chain graphs consisting of lines and arcs (although
dashed undirected edges have previously been used instead of arcs in the litera-
ture), where there is no arrowhead pointing to nodes that are endpoints of lines.

Mixed graphs. Marginalization and conditioning in DCGs (studied in [23])
lead to marginal AMP graphs (MAMPs); in our formulation, where we use dotted
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FIG. 2. (a) An undirected chain graph. (b) A chain graph with chain components of different types.
(c) A graph that is not a chain graph as 〈h, k, q,h〉 is semi-directed cycle in this graph.

lines in place of full lines, MAMPs are graphs without solid lines that satisfy three
additional conditions:

1. G has no quasi-directed cycles in the sense it has no walk 〈i = i0, i1, . . . ,

in = i〉 containing at least one arrow and every arrow iq iq+1 is pointing from iq to
iq+1;

2. G has no cycles composed of dotted lines and one arc;
3. If i ····· j ····· k and j ≺ �l for some l, then i ····· k.

Graphs discussed here also contain different types of mixed graphs, a term previ-
ously used to denote graphs with lines, arrows and arcs. These were introduced to
describe independence structures obtained by marginalization and conditioning in
DAG independence models; see, for example, [27] for a general discussion of this
issue. Examples are summary graphs (SGs) [37], ancestral graphs (AGs) [26] and
acyclic directed mixed graphs (ADMGs) [25, 32]. Summary graphs are CMGs
that have no arrowhead pointing to nodes that are endpoints of lines. Ancestral
graphs satisfy in addition that there are no arcs with one endpoint being an ances-
tor of the other endpoint. Note that in many papers about summary graphs, dashed
undirected edges have been used in place of bidirected edges.

ADMGs are summary graphs without lines. Alternative ADMGs (AADMGs)
were defined in [24], where arcs in ADMGs were replaced by dotted lines with
our notation, although lines were used in the original definition.

CMGs are also mixed graphs, and originally defined in [28] in order to describe
independence structures obtained by marginalization and conditioning in chain
graph independence models. Anterial graphs (AnGs) were also defined in [28] for
the same purpose, and they are CMGs in which an endpoint of an arc cannot be an
anterior of the other endpoint.

The diagram in Figure 3 illustrates the hierarchy of subclasses of graphs with
four types of edges. Below we shall provide a unified separation criterion for all
graphs with four types of edges, and thus the associated independence models
share the same hierarchy. The diagram is to be read transitively in the sense that,
for example, BGs are also AGs, since the class of BGs form a subclass of BCGs,
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FIG. 3. The hierarchy of graphs with four types of edges and their independence models.

which again form a subclass of AGs; thus we omit the corresponding arrow from
AG to BG.

The dashed arrow from DCG to UG indicates that although UGs are not DCGs,
their associated independence models contain all independence models given by
UGs and similarly for the dashed arrow from UCG to DG. The dotted arrow from
SG to AG indicates that although AG is a subclass of SG, their associated indepen-
dence models are the same. The dotted link between UG and DG indicates that the
associated independence models are the same. These facts will be demonstrated in
the next section.

3. Graphical independence models. Graphs are used to encode indepen-
dence structures for graphical models; in this section we shall demonstrate how
this can be done.

3.1. Independence models and compositional graphoids. An independence
model J over a finite set V is a set of triples 〈A,B |C〉 (called independence
statements), where A, B and C are disjoint subsets of V ; C may be empty, but
〈∅,B |C〉 and 〈A,∅ |C〉 are always included in J . The independence statement
〈A,B |C〉 is read as “A is independent of B given C”. Independence models may
have a probabilistic interpretation (see Section 3.4 for details) but this need not
necessarily be the case. Similarly, not all independence models can be easily rep-
resented by graphs. For further discussion on general independence models, see
[35].

An independence model J over a set V is a semi-graphoid if it satisfies the four
following properties for disjoint subsets A, B , C and D of V :
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(S1) 〈A,B |C〉 ∈ J if and only if 〈B,A |C〉 ∈ J (symmetry);
(S2) if 〈A,B ∪ D |C〉 ∈ J , then 〈A,B |C〉 ∈ J and 〈A,D |C〉 ∈ J (decom-

position);
(S3) if 〈A,B ∪ D |C〉 ∈ J , then 〈A,B |C ∪ D〉 ∈ J and 〈A,D |C ∪ B〉 ∈ J

(weak union);
(S4) 〈A,B |C ∪ D〉 ∈ J and 〈A,D |C〉 ∈ J if and only if 〈A,B ∪ D |C〉 ∈ J

(contraction).

A semi-graphoid for which the reverse implication of the weak union property
holds is said to be a graphoid; that is, it also satisfies

(S5) if 〈A,B |C ∪ D〉 ∈ J and 〈A,D |C ∪ B〉 ∈ J then 〈A,B ∪ D |C〉 ∈ J
(intersection).

Furthermore, a graphoid or semi-graphoid for which the reverse implication of the
decomposition property holds is said to be compositional, that is, it also satisfies

(S6) if 〈A,B |C〉 ∈ J and 〈A,D |C〉 ∈ J then 〈A,B ∪ D |C〉 ∈ J (composi-
tion).

3.2. Independence models induced by graphs. The notion of separation is fun-
damental for using graphs to represent models of independence. For a simple, undi-
rected graph, separation has a direct intuitive meaning, so that a set A of nodes is
separated from a set B by a set C if all walks from A to B intersect C. Notice that
simple separation in an undirected graph will trivially satisfy all of the properties
(S1)–(S6) above, and hence compositional graphoids are abstractions of indepen-
dence models given by separation in undirected graphs. For more general graphs,
separation may be more subtle, to be elaborated below.

We say that a walk ω in a graph is connecting given C if all collider sections
of ω intersect C and all noncollider sections are disjoint from C. For pairwise
disjoint subsets 〈A,B,C〉, we say that A and B are separated by C if there are no
connecting walks between A and B given C, and we use the notation A⊥B |C.
The set C is called an (A,B)-separator.

The notion of separation above is a generalization of the c-separation for UCGs
as defined in [34, 36]. The idea of using walks to simplify the separation theory
was proposed by [15], who showed that, for DAGs, this notion of separation was
identical to d-separation [22].

For example, in the graph of Figure 4, j ⊥h | {k, l} and j ⊥h | {k,p} do not hold.
The former can be seen by looking at the connecting walk 〈j, k, l, r, q, h〉, where
the only node k and the node l of the collider sections 〈k〉 and 〈l, r, q〉 are in the
potential separator set {k, l}. The latter can be seen by looking at the connecting
walk 〈j, k, l,p, l, r, q,h〉, where the noncollider sections 〈l〉 and 〈l, r, q〉 are out-
side {k,p}, but collider sections (nodes) 〈k〉 and 〈p〉 are inside {k,p}. However,
for example, j ⊥h | l and j ⊥h |k since, in the former case, collider section 〈k〉 is
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FIG. 4. Illustration of separation in a graph G; it holds that j 
⊥h | {k, l} and j 
⊥h | {k,p}, but
j ⊥h | l and j ⊥h |k.

blocking all the walks and, in the latter case, one of the collider sections 〈l, r, q〉
or 〈p〉 is blocking any walk.

A graph G induces an independence model J (G) by separation, letting
〈A,B |C〉 ∈ J (G) ⇐⇒ A⊥B |C. It turns out that any independence model de-
fined in this way shares the six fundamental properties of undirected graph sepa-
ration. More precisely, we have the following.

THEOREM 1. For any graph G, the independence model J (G) is a composi-
tional graphoid.

PROOF. Let G = (V ,E), and consider disjoint subsets A, B , C and D of V .
We verify each of the six properties separately.

(1) Symmetry: If A⊥B |C, then B ⊥A |C: If there is no connecting walk be-
tween A and B given C, then there is no connecting walk between B and A

given C.
(2) Decomposition: If A⊥ (B ∪D) |C, then A⊥D |C: If there is no connecting

walk between A and B ∪ D given C, then there is a forteriori no connecting walk
between A and D ⊆ (B ∪ D) given C.

(3) Weak union: If A⊥ (B ∪D) |C, then A⊥B | (C ∪D): Using decomposition
(2) yields A⊥D |C and A⊥B |C. Suppose, for contradiction, that there exists a
connecting walk ω between A and B given C ∪D. If there is no collider section on
ω, then there is a connecting walk between A and B given C, a contradiction. On
ω, all collider sections must have a node in (C ∪ D). If all collider sections have
a node in C, then there is a connecting walk between A and B given C, again a
contradiction. Hence consider first the collider section ρ nearest A on ω that only
has nodes in D on ω; next, consider the closest node i to A on ρ that is in D. The
subwalk between A and i then contradicts A⊥B ∪ D |C.

(4) Contraction: If A⊥B |C and A⊥D | (B ∪ C), then A⊥ (B ∪ D) |C: Sup-
pose, for contradiction, that there exists a connecting walk between A and B ∪ D

given C. Consider a shortest walk (i.e., a walk with fewest number of edges) of
this type and call it ω. The walk ω is either between A and B or between A and D.
The walk ω being between A and B contradicts A⊥B |C. Therefore, ω is be-
tween A and D. In addition, since all collider sections on ω have a node in C and
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A⊥D | (B ∪ C), a noncollider section of ω must exist that has a node in B ∪ C

and, therefore, in B . This contradicts the fact that ω is a shortest connecting walk
between A and B ∪ D given C.

(5) Intersection: If A⊥B | (C ∪D) and A⊥D | (C ∪B), then A⊥ (B ∪D) |C:
Suppose, for contradiction, that there exists a connecting walk between A and
B ∪ D given C. Consider a shortest walk of this type and call it ω. The walk ω is
either between A and B or between A and D. Because of symmetry between B and
D in the formulation, it is enough to suppose that ω is between A and B . Since all
collider sections on ω have a node in C and A⊥B | (C ∪D), a noncollider section
of ω must exist that has a node in D ∪ C and, therefore, in D. This contradicts the
fact that ω is a shortest connecting walk between A and B ∪ D given C.

(6) Composition: If A⊥B |C and A⊥D |C, then A⊥ (B ∪ D) |C: Suppose,
for contradiction, that there exist connecting walks between A and B ∪D given C.
Consider a walk of this type and call it ω. The walk ω is either between A and B

or between A and D. Because of symmetry between B and D in the formula it is
enough to suppose that ω is between A and B . But this contradicts A⊥B |C. �

This theorem implies that we can focus on establishing conditional indepen-
dence for pairs of nodes, formulated in the corollary below.

COROLLARY 1. For a graph G and disjoint subsets of nodes A, B and C, it
holds that A⊥B |C if and only if i ⊥ j |C for every pair of nodes i ∈ A and j ∈ B .

PROOF. The result follows from the fact that ⊥ satisfies decomposition and
composition. �

3.3. Relation to other separation criteria. Four different types of indepen-
dence models have previously been associated with chain graphs. These are known
as the LWF Markov property, defined by [18] and later studied by, for example,
[9, 36]; the AMP Markov property, defined and studied by [1], and the multivari-
ate regression (MR) Markov property, introduced by [2] and studied, for example,
by [20]; in addition, Drton [6] briefly considered a type III chain graph Markov
property which we are not further considering here.

Traditionally, these have been formulated using undirected chain graphs but
with different separation criteria. In contrast, here we use a single notion of sepa-
ration and the different independence models appear by varying the type of chain
graph. In particular, the LWF Markov property corresponds to UCGs, the MR
Markov property to BCGs and the AMP Markov property to DCGs, as we shall
see below.

Table 1 gives an overview of different types of colliders used in the various
independence models associated with chain graphs.

For summary graphs and their subclasses, [29] showed that the unifying sep-
aration concept was that of m-separation, defined as follows. A path π is m-
connecting given C if all collider nodes on π intersect An(C) and all non-collider
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TABLE 1
Colliders for different chain graph independence models

MR: � ◦ ≺ � ◦ ≺ � ≺ � ◦ ≺ �
AMP: � ◦ ≺ � ◦ ·····
LWF: � ◦ · · · ◦ ≺

nodes on π are disjoint from C. Notice that m-separation considers nodes, but the
fact that there is no arrowhead pointing to a node that is endpoint of a line in a
summary graph implies that every collider section of any walk consists of a single
node. For pairwise disjoint subsets 〈A,B,C〉, A and B are m-separated by C if
there are no m-connecting paths between A and B given C, and we use the nota-
tion A⊥m B |C to indicate this. The following lemma establishes that for summary
graphs (and all subclasses of these), m-separation is equivalent to the separation
we have defined here. The idea is similar to that employed in [15].

LEMMA 2. Suppose that G is a summary graph. Then

A⊥B |C ⇐⇒ A⊥m B |C.

PROOF. We need to show that for i, j /∈ C, there is a connecting walk between
i and j if and only if there is an m-connecting path between i and j given C. If
there is an m-connecting path π between i and j , then there exists a connecting
walk between i and j by taking π and add the possible directed path from a collider
node k on π to c ∈ C and its reverse from c to k.

Thus suppose that there is a connecting walk ω between i and j . Since there are
no arrowheads pointing to nodes that are endpoints of lines, all collider sections
on ω are single nodes; and hence we can talk of collider nodes instead of sections.
Consider the walk between i and j obtained from ω by replacing any subwalk
of type 〈l, ρ′, l〉 (for a subwalk ρ′) by a single node subwalk 〈l〉. First of all, it
is clear that the resulting walk is a path. Denote this path by π . We show that an
m-connecting path can be constructed from π :

It is not possible that a node that occurs (at least once) as a collider on ω and
occurs also as a member of a noncollider section on π : If k is a collider node on
ω, then it is in C. This means that there is an arrowhead at k on all tripaths with
inner node k on ω. Hence, regardless of which two edges of ω with endpoint k are
on π , the corresponding tripath remains collider.

Therefore, all noncollider nodes on π are outside C. If all collider nodes are
in C, then we are done. Thus, suppose that there is a collider node k (on collider
tripath 〈k0, k, k1〉) on π that is not in C. This means that, on ω, k is always within
a noncollider section. Consider an edge kr0 on ω that is a part of the subwalk
〈k0, k, r0〉 of ω, and notice that this edge is not on π . The edge kr0 is not a line as
otherwise there is an arrowhead pointing to an endpoint of a line. As the edge kr0
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itself has no arrowhead at k, it must be an arrow from k to r0. Following through ω

from r0, inductively, we have three cases: (1) There exists a directed cycle, which
is impossible. (2) k is an ancestor of a collider node r : We have that r ∈ C, and
hence k is an ancestor of C. (3) k is an ancestor of i or j : Without loss of generality,
assume that k ∈ an(j). In this case, we modify π by replacing the subwalk between
k and j by a directed path from k to j . Notice that no node on this path is in C.
This completes the proof. �

For MAMPs, [23] provides a generalization of the p-separation [19] for AMP
chain graphs. In the language and notation of this paper, it is defined a follows:
A path π is z-connecting given C (z is our notation) for MAMPs if every collider
node on π is in An(C) and every noncollider node k is outside C unless there is a
subpath of π , i ····· k ····· j such that sp(k) 
= ∅ or pa(k) \ C 
= ∅. We say that A

and B are z-separated given C, and write A⊥ zB |C, if there is no z-connecting
path between A and B given C.

LEMMA 3. Suppose that G is a MAMP. Then

A⊥B |C ⇐⇒ A⊥ zB |C.

PROOF. We need to show that for i, j /∈ C, there is a connecting walk between
i and j if and only if there is a z-connecting path between i and j given C. If there
is a z-connecting path π between i and j , we may construct a connecting walk
between i and j by modifying π as follows: (1) for a collider node k ∈ an(C), add a
directed path from k to c ∈ C and its reverse from c to k; (2) for a noncollider node
k ∈ C within i ····· k ····· j in π (see the definition of z-separation), we distinguish
two cases: if sp(k) 
= ∅ then one has i ····· j by the definition of MAMP and one
can shorten the tripath i ····· k ····· j on π ; if sp(k) = ∅ but l ∈ pa(k) \ C exists
then add the kl edge and its reverse to π .

Thus suppose that there is a connecting walk ω between i and j . Since there
are no lines, all sections on ω are single nodes; and hence we can talk of collider
and noncollider nodes instead of sections. Similar to Lemma 2, consider the walk
between i and j obtained from ω, and whenever there is a node l with repeated
occurrence in ω, replace the cycle from l to l in ω by a single occurrence of l.
The resulting walk is a path, denoted by π . We show that z-connecting path can
be constructed from π :

The only case where a node k is a collider node on ω and it turns into a non-
collider node on π is when k is the inner node of the tripath h ····· k ····· l on π .
Therefore, all noncollider nodes on π are outside C unless this mentioned case
occurs. However, in this case either sp(k) 
= ∅ or pa(k) \ C 
= ∅, which ensures
that the condition of the definition of a z-connecting path is still satisfied.

If all collider nodes are in C, then we are done. Thus suppose that there is a
collider node k (on collider tripath 〈k0, k, k1〉) on π that is not in C. This means
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that, on ω, k is always a noncollider node. There is an arrowhead at k on at least
one of the k0k or the kk1 edges. Without loss of generality, assume that it is the
k0k edge. Consider an edge kr0 on ω that is a part of the subwalk 〈k0, k, r0〉 of ω,
and notice that this edge is not on π . As the edge kr0 itself has no arrowhead at
k and is not a dotted line, it must be an arrow from k to r0. Following through ω

from r0, inductively, we have three cases: (1) There exists a directed cycle, which
is impossible. (2) k is an ancestor of a collider node r : We have that r ∈ C, and
hence k is an ancestor of C. (3) k is an ancestor of i or j : Without loss of generality,
assume that k ∈ an(j). In this case, we modify π by replacing the subwalk between
k and j by a directed path from k to j . Notice that no node on this path is in C.
This completes the proof. �

We are now ready to show that our concept of separation unifies the indepen-
dence models discussed.

THEOREM 2. Independence models generated by separation in graphs with
four types of edges are identical to the independence models associated with the
subclasses in Figure 3.

PROOF. It is shown in [29] that m-separation, as defined above, unifies inde-
pendence models for SGs and subclasses thereof and by Lemma 2 m-separation is
equivalent to our separation. The separation criterion in [28] for CMGs is identical
to the separation given here when there are no dotted lines in the graph. Hence, the
independence models generated by our separation criterion unifies independence
models for all the subclasses of CMGs. Lemma 3 shows that, dotted lines replac-
ing lines in Peña’s separation criterion, it becomes identical to ours. For AADMGs,
Criterion 2 defined as the global Markov property in [24] is trivially a special case
of the separation defined here. Therefore, our criterion unifies independence mod-
els in all subclasses of graphs. �

Notice that most of the associated classes of independence models presented
in the diagram of Figure 3 are distinct; exceptions are AGs and SGs, which are
alternative representations of the same class of independence models, and the same
holds for DGs and UGs. In addition, it can be seen from Table 1 that, for every type
of chain graph, one different type of symmetric edge is needed since each of them
forms different colliders; hence, the unification for the general class of graphs with
four types of edges is not achieved by graphs with three types of edges.

3.4. Probabilistic independence models and the global Markov property.
Consider a set V and a collection of random variables (Xα)α∈V with state spaces
Xα , α ∈ V and joint distribution P . We let XA = (Xv)v∈A, etc. for each subset A

of V . For disjoint subsets A, B and C of V , we use the short notation A ⊥⊥ B |C
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to denote that XA is conditionally independent of XB given XC [4, 16], that is,
that for any measurable � ⊆XA and P -almost all xB and xC ,

P(XA ∈ � |XB = xB,XC = xC) = P(XA ∈ � |XC = xC).

We can now induce an independence model J (P ) by letting

〈A,B |C〉 ∈ J (P ) if and only if A ⊥⊥ B |C w.r.t. P .

We note that for a probabilistic independence model J (P ), the marginal inde-
pendence model to a set D = V \ M is the independence model generated by the
marginal distribution. More formally, we define the marginal independence model
over a subset of the node set M as follows:

α(J ,M) = {〈A,B |C〉 : 〈A,B |C〉 ∈ J and (A ∪ B ∪ C) ∩ M =∅
}
,

which is defined over V \ M .

LEMMA 4. Let J (P ) be a probabilistic independence model; its marginal
independence model is the independence model generated by the marginal distri-
bution, that is, for D = V \ M we have α(J (P ),M) = J (PD).

PROOF. This is immediate. �

For a graph G = (V ,E), an independence model J defined over V satisfies the
global Markov property w.r.t. a graph G, if for disjoint subsets A, B and C of V it
holds that

A⊥B |C =⇒ 〈A,B |C〉 ∈ J .

If J (P ) satisfies the global Markov property w.r.t. a graph G, we also say that P

is Markov w.r.t. G. We say that an independence model J is probabilistic if there
is a distribution P such that J = J (P ). We then also say that P is faithful to J . If
P is faithful to J (G) for a graph G then we also say that P is faithful to G. Thus,
if P is faithful to G it is also Markov w.r.t. G.

Probabilistic independence models are always semi-graphoids [22], whereas the
converse is not necessarily true; see [33]. If, for example, P has strictly positive
density, the induced independence model is always a graphoid; see, for example,
Proposition 3.1 in [16]. If the distribution P is a regular multivariate Gaussian
distribution, J (P ) is a compositional graphoid; for example, see [35].

Probabilistic independence models with positive densities are not in general
compositional; this only holds for special types of multivariate distributions such
as, for example, Gaussian distributions and the symmetric binary distributions used
in [41]. However, the following statement implies that it is not uncommon for a
probabilistic independence model to satisfy composition.

PROPOSITION 1. If there is a graph G to which P is faithful, then J (P ) is a
compositional graphoid.

PROOF. The result follows from Theorem 1 since then J (P ) = J (G). �
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FIG. 5. A nonmaximal CMG.

4. Maximality for graphs. A graph G is called maximal if adding an edge
between any two nonadjacent nodes in G changes the independence model J (G).
Notice that in [29] the nonadjacency condition was incorrectly omitted.

Conditions 2 and 3, which MAMPs satisfy (provided in Section 2.2) ensure
that MAMPs are maximal; see [23]. However, graphs are not maximal in general.
For example, there exist nonmaximal ancestral and summary graphs [26, 29]; see
also Figure 5 for an example of a graph that is neither a summary graph (hence
it is not ancestral) nor maximal: this CMG induces no independence statements
of the form j ⊥ l |C for any choice of C: if we condition on k or p or both, the
path 〈j, k,p, l〉 is connecting since k p is a collider section; conditioning on
q makes the walk 〈j, k,p, q,p, l〉 a connecting walk, and if we do not condition
on anything, the walk 〈j, q,p, l〉 is connecting.

The notion of maximality is important for pairwise Markov properties, to be
discussed in the next section. For a nonmaximal ancestral or summary graph, one
can obtain a maximal ancestral or summary graph with the same induced inde-
pendence model by adding edges to the original graph [26, 29]. As we shall show
below, this is also true for general CMGs, but it is not generally the case for graphs
containing dotted lines or directed cycles. Figure 6 displays two small nonmaxi-
mizeable graphs, where the graph in (a) contains a directed cycle.

For example, in the directed graph of Figure 6(a), in order to make the graph
maximal, one must connect h and k, and similarly l and j . Now notice that in
the original graph it holds that h⊥ l and h⊥ l | {j, k}. However, after introducing
new hk and lj edges, regardless of what type of edge we add, one of h⊥ l or
h⊥ l | {j, k} does not hold.

To characterise maximal CMGs, we need the following notion: A walk ω is a
primitive inducing walk between i and j (i 
= j ) if and only if it is an ij edge or
ω = 〈i, q1, q2, . . . , qp, j 〉 where for every n, 1 ≤ n ≤ p, it holds that:

(i) all inner sections of ω are colliders;

FIG. 6. Two nonmaximal graphs that cannot be modified to be maximal by adding edges without
changing the independence model.
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(ii) endpoint sections of ω are single elements;
(iii) qn ∈ Ant({i, j}).

This definition is an extension of the notion of a primitive inducing path as defined
for ancestral graphs in [26]. For example, in Figure 5, 〈j, k,p, l〉 is a primitive
inducing walk. Next, we need the following lemmas.

LEMMA 5. In a CMG, inner nodes of a walk ω between i and j that are on a
noncollider section are either in ant(i) ∪ ant(j) or anteriors of a collider section
on ω.

PROOF. Let k = im be an inner node of ω and on a noncollider section on a
walk ω = 〈i = i0, i1, . . . , in = j〉 in a CMG G. Then from at least one side (say
from im−1), there is no arrowhead on ω pointing to the section containing k. By
moving towards i on the path as long as ip , 1 ≤ p ≤ m − 1, is on a noncollider
section on the walk, we obtain that k ∈ ant(ip−1). This implies that if no ip is on a
collider section then k ∈ ant(i). �

LEMMA 6. For nodes i and j in a CMG that are not connected by any primi-
tive inducing walks (and hence i � j ), it holds that i ⊥ j | ant({i, j}).

PROOF. Suppose that there is a connecting walk � between i and j given
ant({i, j}).

If i or j are on a noncollider inner section ρ on � , then ρ is contained in {i, j}
since otherwise any other node in ρ would be in ant({i, j}), which is impossible.
Then ρ contains either only i or only j since ij is not an edge in the graph. Thus,
ρ is either single i or single j . In such a case, remove the cycle between i and i

(or between j and j ), which is a subwalk of � . Repeat this process until there are
no such noncollider sections. Denote the resulting walk by ω. We shall show that
ω is primitive inducing:

(i) If, for contradiction, there is a node k on an inner noncollider section of ω

then, by Lemma 5, k is either in ant(i) ∪ ant(j) or it is an anterior of nodes of a
collider section on ω, but since ω is connecting given ant({i, j}), collider sections
intersect ant({i, j}), and hence are in ant({i, j}) themselves. (Hence, k /∈ {i, j}.)
Now, k ∈ ant({i, j}) contradicts the fact that ω is connecting given ant({i, j}).

(ii) Unless ω is a line, endpoint sections of ω are single elements since they are
noncollider on ω and, if not single elements, their members, excluding i or j , are
in ant({i, j}), which is impossible.

(iii) This condition is clear since all inner nodes are in collider sections and
consequently (except for possibly i or j ) in ant(i) ∪ ant(j). �

LEMMA 7. The only primitive inducing walk between i and j without arrow-
heads at its endpoints (i.e., i and j ) is the line ij .
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PROOF. Consider such a walk ω: Suppose, for contradiction, that there are
other nodes other than i, j on ω, and assume that q1 is the node adjacent to the
endpoint i on ω (i.e., there is i �q1). Notice that q1 
= j since otherwise i �j ,
j �qp , for some p, and qp ∈ Ant({i, j}) lead to a contradiction.

Then the lack of semi-directed cycles implies that q1 ∈ ant(j), and hence there
is another node q2 on ω. Similarly, for qp adjacent to j on ω, qp ∈ ant(i). But we
may then construct a semi-directed cycle by taking the iq1 edge, the anterior path
from q1 to j , the jqp edge, and the anterior path from qp back to i, a contradiction.

�

Next, we say that two walks ω1 and ω2 (including edges) between i and j

are endpoint-identical if there is an arrowhead pointing to the endpoint section
containing i in ω1 if and only if there is an arrowhead pointing to the endpoint
section containing i in ω2 and similarly for j . For example, the paths i �j ,
i k �l≺ �j , and i �k≺ �l j are all endpoint-identical as they
have an arrowhead pointing to the section containing j but no arrowhead point-
ing to the section containing i on the paths, but they are not endpoint-identical to
i k≺ �j . We then have the following.

LEMMA 8. Let G be a CMG with the node set V . If there is a primitive in-
ducing walk ω between i and j in G, and C ⊆ V \ {i, j}, then a connecting walk
between i and j given C exists which is endpoint identical to ω.

PROOF. We denote the sections of the primitive inducing walk ω by 〈i =
τ0, τ1, . . . , τs−1, τs = j〉 and note that if a section τ intersects ant(A) for any set
A, it holds that τ ⊆ ant(A). By Lemma 7, it is enough to consider two cases:

Case 1. There is an arrowhead at j and no arrowhead at i on ω: First notice
that the edge iq1 is an arrow from i to q1. We construct an endpoint-identical
connecting walk � given C between i and j . We start from i and move towards
j on ω via iq1 where q1 ∈ τ1. As long as along � , a section τn, 1 ≤ n ≤ s − 1,
intersects Ant(C), we do the following: If τn∩C 
= ∅, then we let � move to τn+1.
If τn ∩ C = ∅, but τn ⊆ ant(C) then we let � move from τn to C via an anterior
path and back to τn by reversing this path, subsequently continuing to τn+1 using
the corresponding edge from ω.

So suppose that possibly � reaches a section τm not intersecting Ant(C). Note
that τm cannot only contain i since otherwise it intersects Ant(C) (through τ1). If
τm only contains j , then we already have a connecting walk. Hence, the only case
that is left is when there is a k ∈ τm \ {i, j} such that k ∈ ant({i, j}). If k ∈ ant(i),
then notice that k is an anterior of C through i and τ1, which is impossible. Thus
k ∈ ant(j) with no nodes on the anterior path in C. We can now complete � by
letting it move to j via this anterior path.

Notice that � is endpoint-identical to ω since both have an arrowhead at j and
no arrowhead at i.
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Case 2. There is an arrowhead at j and an arrowhead at i on ω: We follow the
same method as in Case 1 to construct � . The only difference is that k ∈ τm \{i, j}
can be in ant(i) without being an anterior of C. (In fact, k and i may be on the same
section on ω.) In this case, we entirely replace the already constructed part of �

by the reverse of the anterior path from k to i (which is from i to k), and let �

proceed to τm+1.
Again it is clear that the constructed � and ω have an arrowhead at j . If k and

i are not in the same section or are not connected by an undirected path, then it is
clear that there is an arrowhead at i, which is a single-node section on � . If k and
i are in the same section or are connected by an undirected path, then there is an
arrowhead at the endpoint section of � that contains i. �

Next, in Theorem 3 we give a necessary and sufficient condition for a CMG to
be maximal. The analogous result for ancestral graphs was proved in Theorem 4.2
of [26].

THEOREM 3. A CMG G is maximal if and only if G does not contain any
primitive inducing walks between nonadjacent nodes.

PROOF. (⇒) Let ω = 〈i = i0, i1, . . . , in = j〉 be a primitive inducing walk
between nonadjacent nodes i and j . By Lemma 8, there is therefore an endpoint-
identical connecting walk ω′ between i and j given any choice of C; thus, there
is clearly no separation of form i ⊥ j |C. Let us add an endpoint-identical ij edge
to G. If a separation A⊥B |C′ is destroyed, then the edge ij is a part of the
connecting walk ω′′ given C′ between A and B . Now by replacing ij by ω′ on ω′′,
we clearly obtain a walk in G that is connecting given C′. This implies that adding
ij does not change J (G); hence, G is not maximal.

(⇐) By letting C = ant({i, j}) for every nonadjacent pair of nodes i and j and
using Lemma 6, we conclude that for every missing edge there is an independence
statement in J (G). This implies that G is maximal. �

It now follows that for maximal graphs, every missing edge corresponds to a
pairwise conditional independence statement in J (G).

COROLLARY 2. A CMG G is maximal if and only if every missing edge in G

corresponds to a pairwise conditional independence statement in J (G).

PROOF. (⇐) is clear. (⇒) follows from Theorem 3 and Lemma 6. �

Also, we have the following corollary.

COROLLARY 3. If G is a nonmaximal CMG, then it can be made maximal by
adding edges without changing its independence model.
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PROOF. We begin with a nonmaximal CMG G, and show that we can “close”
all the primitive inducing walks in order to obtain a maximal graph with the same
induced independence model. For every primitive inducing walk ω between i and
j where i � j in G, add an ij edge that is endpoint-identical to ω if an edge of the
same type does not already exist.

First, we show that the resulting graph is a CMG: It is enough to show that an
added edge does not generate a semi-directed cycle. By Lemma 7, the added edge
is either an arrow or an arc. Since arcs are not on a semi-directed cycle, adding an
arc would not generate a semi-directed cycle. Thus, suppose that the added edge
is an arrow from i to j . Notice that the adjacent node q1 to i on the primitive
inducing walk is in ant(j) and the iq1 edge is an arrow from i to q1. Hence, if, for
contradiction, the added ij arrow generates a semi-directed cycle, a semi-directed
cycle already existed in the original graph, where ij is replaced by the anterior
walk that consists of the iq1 arrow and the anterior walk from q1 to j . This is a
contradiction.

Now, since the resulting graph does not contain any primitive inducing walks
between nonadjacent nodes, it is maximal. In addition, by Lemma 8, there is a
connecting walk between i and j , which is endpoint-identical to the primitive in-
ducing walk. One can replace the endpoint-identical ij edge to this walk in any
connecting walk in G that contains ω as a subwalk. �

For example, in Figure 5, 〈j, k,p, l〉 was a primitive inducing walk; hence this
graph was not maximal. We may then add the edge l �j and it becomes maxi-
mal.

5. Pairwise Markov properties for chain mixed graphs.

5.1. A pairwise Markov property. It is possible to consider a general pair-
wise Markov property for specific subclasses of graphs with four types of edges
(that actually have the four types) by including the results of [23, 24], which de-
fine pairwise Markov properties for marginal AMP chain graphs and alternative
ADMGs and show the equivalence of pairwise and global Markov properties for
such graphs. However, such a unification would be technically complex. Hence,
we henceforth focus on CMGs; thus, the considerations here concerning pairwise
Markov properties do not cover AMP chain graphs.

A pairwise Markov property provides independence statements for non-
adjacent pairs of nodes in the graph. For maximal graphs, any nonadjacent nodes i

and j are independent given some set C, but a pairwise Markov property yields a
specific choice of S = S(i, j) for every nonadjacent pair i, j . The choice we pro-
vide here for any CMG immediately extends the choice in [29]. We show that for a
maximal CMG, this pairwise Markov property is equivalent to the global Markov
property for compositional graphoid independence models; in other words, the
pairwise statements combined with the compositional graphoid axioms generate
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the full independence model. The maximality is critical for the pairwise statements
to hold, as discussed above.

An independence model J defined over V satisfies the pairwise Markov prop-
erty (P) w.r.t. a CMG G if for every pair of nodes i and j with i � j it holds
that

(P) : 〈
i, j | ant

({i, j})〉 ∈ J .

The pairwise Markov property simplifies for specific subclasses of graphs. For
connected UGs, we have ant({i, j}) = V \ {i, j}, and hence the standard pairwise
Markov property appears; and for BGs we have ant({i, j}) = ∅, so the property is
identical to pairwise independence of nonadjacent nodes. For SGs and AGs (which
include DAGs), a semi-direction preserving path is of the form ◦ · · · ◦ ◦

�· · · ◦ �, hence the anterior path [and consequently (P)] specializes to those
in [29] and [26], respectively.

Strictly speaking, the unification only contains “connected” UGs. It is not pos-
sible to extend the unification to all UGs and at the same time keep the pairwise
Markov properties defined in the literature for other classes under any unified pair-
wise Markov property: In principle, it is fine to add nodes that are not in the con-
nected component(s) of i and j to the conditioning set in any pairwise Markov
property. However, although the well-known pairwise Markov property for UGs
contains all such nodes, the known pairwise Markov properties for other classes
do not.

5.2. Equivalence of pairwise and global Markov properties. Before establish-
ing the main result of this section, we need several lemmas. We shall need to con-
sider marginalization of independence models and use that it preserves the com-
positional graphoid property, shown in Lemma 8 of [29].

LEMMA 9. Let J be a compositional graphoid over a set V and M a sub-
set of V . It then holds that the marginal independence model α(J ,M) is also a
compositional graphoid.

Moreover, we have the following.

LEMMA 10. Let J = J (G) be the independence model induced by a CMG
G and M ⊆ V . If D = V \ M is an anterior set, the marginal model is determined
by the induced subgraph G[D]:

α
(
J (G),M

) = J
(
G[D]).

PROOF. We need to show that for {i, j} ∪ C ⊆ D we have that i ⊥ j |C if
and only if this is true in the induced subgraph G[D]. Clearly, if a connecting
walk between i and j runs entirely within D it also connects in G. Assume for
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contradiction that there is a connecting walk which has a node k outside D and
consider an excursion on the walk that leaves D at i∗, reaches k and reenters into D

at j∗. Since the walk is connecting, there are no collider sections on this excursion,
and thus it follows from Lemma 5 that k is either anterior to i∗ or to j∗, which
contradicts the fact that D is an anterior set. �

The following important lemma and its corollary imply that for any non-
adjacent pair i � j in a maximal CMG we can always find an (i, j)-separator
C with C ⊆ ant({i, j}).

LEMMA 11. For a pair of distinct nodes i and j and a subset of the node
set C in a maximal CMG, if i ⊥ j |C for C \ ant({i, j}) 
= ∅, then there is a node
l /∈ ant({i, j}) in C such that i ⊥ j |C \ {l}.

PROOF. Let l′ ∈ C \ant({i, j}) be arbitrary. If there is an l′′ ∈ C \ant({i, j}) so
that l′ ∈ ant(l′′) but l′′ /∈ ant(l′), then replace l′ by l′′, and repeat this process until
it terminates, which is ensured by the transitivity of semi-directed walks and the
lack of semi-directed cycles in the CMG. Call the final node l. Thus, if l ∈ ant(l̃)
for l̃ ∈ C \ ant({i, j}) then we also have that l̃ ∈ ant(l). The lack of semi-directed
cycles implies that this is equivalent to l and l̃ being connected by lines.

We now claim that i ⊥ j |C \ {l}. Suppose, for contradiction, that there is a
connecting walk ω between i and j given C \ {l}. If l is not on ω, then ω is also
connecting given C. In addition, we have that l is on a non-collider section ρ

on ω. There is no arrowhead at ρ from at least one side of the section, say from
the i side. We move towards i on ω and denote the corresponding subwalk of ω

by ω′ = 〈l = l0, l1, . . . , lm = i〉. As long as lp , 1 ≤ p ≤ m − 1, is on a noncollider
section on ω′, we obtain that there is a semi-directed walk from l to lp . This implies
that if no lp is on a collider section then there is an anterior walk from l to i, which
is impossible.

Therefore, by moving towards i from l, we first reach an l̃ on ω′ that lies on a
collider section and is in C \{l}. Transitivity of anterior walks and the fact that there
is no anterior walk from l to i or j now imply that there is no anterior walk from
l̃ to i or j . The construction of l implies that l and l̃ are on the same section, and
hence l is not on a noncollider section on ω, a contradiction. Hence, we conclude
that i ⊥ j |C \ {l}. �

COROLLARY 4. For a pair of nodes i and j and a subset C of the node set in
a maximal CMG, if i ⊥ j |C, then i ⊥ j |C ∩ ant({i, j}).

PROOF. Lemma 11 implies that we can repeatedly remove single nodes in
C \ ant({i, j}) and preserve separation to obtain that i ⊥ j |C ∩ ant({i, j}). This
concludes the proof. �
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A direct implication of Lemma 6 and Theorem 3 establishes that the induced
independence model J (G) for a maximal CMG G satisfies the pairwise Markov
property (P).

PROPOSITION 2. If i � j are nonadjacent nodes in a maximal CMG G, it
holds that i ⊥ j | ant({i, j}).

Finally, we are ready to show the main result of this section.

THEOREM 4. Let G be a maximal CMG. If an independence model J over the
node set of G is a compositional graphoid, then J satisfies the pairwise Markov
property (P) w.r.t. G if and only if it satisfies the global Markov property w.r.t. G.

PROOF. That the global Markov property implies the pairwise property (P)
follows directly from Proposition 2.

Now suppose that J satisfies the pairwise Markov property (P) and composi-
tional graphoid axioms. For subsets A, B and C of the node set of G, we must
show that A⊥B |C implies 〈A,B |C〉 ∈ J . Since the separation satisfies decom-
position and J satisfies composition, it is sufficient to show this when A and B

are singletons, that is, that i ⊥ j |C implies 〈i, j |C〉 ∈ J .
We establish the result in two main parts. In part I, we consider the case with

C ⊆ ant({i, j}) and in part II we consider the general case.
Part I. Suppose that C ⊆ ant({i, j}). We use induction on the number of nodes of

the graph. The induction base for a graph with two nodes is trivial. Thus, suppose
that the conclusion holds for all graphs with fewer than n nodes and assume that
G has n nodes.

Suppose there is an anterior set D such that M = V \ D 
= ∅ and {i} ∪ {j} ∪
C ⊆ D. The marginal independence model α(J ,M) clearly also satisfies the pair-
wise Markov property w.r.t. G[D], and hence the inductive assumption together
with Lemmas 9 and 10 yields 〈{i}, {j} |C〉 ∈ J .

So suppose that this is not the case, and hence V = Ant({i, j}). We establish the
conclusion by reverse induction on |C|: For the base, we have C = V \ {i, j} =
ant({i, j}) and the result follows directly from the pairwise Markov property.

For the inductive step, consider a node h /∈ C. We want to show that there
are not simultaneously connecting walks between h and i and h and j : Sup-
pose, for contradiction, there are connecting walks ω1 = 〈i, i1, . . . , in, h〉 and
ω2 = 〈h, jm, jm−1, . . . , j0 = j〉 given C. If, on the walk 〈ω1,ω2〉, the node h is
on a noncollider section then so is h on both ω1 and ω2, and hence i and j are con-
nected given C, a contradiction. Thus, we need only consider the case where h is
on a collider section on 〈ω1,ω2〉. However, we know that h ∈ ant(i) or h ∈ ant(j).
Because of symmetry between i and j suppose that h ∈ ant(j), and denote the
anterior path from h to j by ω3. Notice that the section containing h on ω1 is non-
collider, and hence all members are outside C. Now, if no node on ω3 is in C then



2274 S. LAURITZEN AND K. SADEGHI

〈ω1,ω3〉 is a connecting walk between i and j a contradiction; and if there is a
node k on ω3 is in C then 〈ω1,ω4,ω

r
4,ω2〉 is a connecting walk between i and j ,

where ω4 is the subwalk of ω3 between h and k and ωr
4 is ω4 in reverse direction, a

contradiction again. We conclude that, given C, h is not connected to both i and j .
By symmetry, suppose that i ⊥h |C. We also have that i ⊥ j |C. Since J (G)

is a compositional graphoid (Theorem 1) the composition property gives that
i ⊥{j,h} |C. By weak union for ⊥ , we obtain i ⊥ j | {h} ∪ C and i ⊥h | {j} ∪ C.
By the induction hypothesis, we obtain 〈i, j | {h}∪C〉 ∈ J and 〈i, h | {j}∪C〉 ∈ J .
By intersection, we get 〈i, {j,h} |C〉 ∈ J . By decomposition, we finally obtain
〈i, j |C〉 ∈ J .

Part II. We now prove the result in the general case by induction on |C|. The
base, that is, the case that |C| = 0, follows from part I. To prove the inductive step,
we can assume that C � ant({i, j}), since otherwise part I implies the result.

By Lemma 11, since C � ant({i, j}), there is a node l ∈ C such that i ⊥ j |C \
{l}. We now have that either i ⊥ l |C \ {l} or j ⊥ l |C \ {l} since otherwise there is a
connecting walk between i and j given C \ {l} in the case that l is on a noncollider
section or given C in the case that l is on a collider section. Because of symmetry,
suppose that i ⊥ l |C \ {l}. By the induction hypothesis, we have 〈i, j |C \ {l}〉 ∈ J
and 〈i, l |C \ {l}〉 ∈ J . By the composition property, we get 〈i, {j, l} |C \ {l}〉 ∈ J .
The weak union property implies 〈i, j |C〉 ∈ J . �

If we specialize Theorem 4 to the most common case of probabilistic indepen-
dence models, we get the following.

COROLLARY 5. Let G be a maximal CMG. A probabilistic independence
model that satisfies the intersection and composition axioms satisfies the pairwise
Markov property (P) w.r.t. G if and only if it satisfies the global Markov property
w.r.t. G.

The theorem states that the intersection and composition properties are suffi-
cient for equivalence of pairwise and global Markov properties. Notice that they
are also necessary since, for example, for the simple subclass of DAGs they are
also necessary; see Section 6.3 of [29].

5.3. Alternative pairwise Markov properties. There are typically many other
valid choices of the separating sets C(i, j) defining the pairwise Markov proper-
ties; see, for example, [23]. In general, a pairwise Markov property (P*) has the
form

(P*) : i � j ⇒ 〈
i, j |C(i, j)

〉 ∈ J ,

where C(i, j) is an (i, j)-separator in G for every (i, j). The question then is
what are the possible choices of such separator systems which would ensure that
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these separations form a ‘basis’ for the independence model J in the sense that
all conditional independences in J can be derived from (P*) using the composi-
tional graphoid axioms. The example below shows that not all choices of separator
systems are possible.

EXAMPLE 1. Consider the independence model J over V = {1,2,3,4,5}
containing the statements

〈1,3 |2〉, 〈1,4 |3〉, 〈1,5 |4〉, 〈2,4 |1,3,5〉, 〈2,5 |3〉, 〈3,5 |1,2,4〉
as well as their symmetric counterparts and all independence statements of the
form 〈A,∅ |B〉 or 〈∅,A |B〉. This independence model is easily seen to sat-
isfy the compositional graphoid axioms. In addition, if we let G be the graph
1 2 3 4 5, each of the conditioning sets for statements of the
form 〈i, j |C(i, j)〉 in J are indeed (i, j)-separators in G. Thus, J satisfies (P*)
w.r.t. the graph G, but clearly it does not satisfy the global Markov property
w.r.t. G.

Note that the independence model in Example 1 may not be probabilistically
representable. It is unclear to us whether the pairwise statements in (P*) for any
system C(i, j) of (i, j)-separators in an undirected graph, say, is sufficient to gen-
erate all independence statements of the form 〈A,B |C〉 for a probabilistic com-
positional graphoid. The standard probabilistic counterexamples [21] involving the
pairwise Markov properties are not compositional graphoids, hence are not coun-
terexamples in this context.

For the subclass of regression graphs, four different pairwise Markov properties
were defined in [30], which are all equivalent to the global Markov property and
to each other under compositional graphoid axioms.

6. Summary and conclusion. In this paper, we used a similar approach to
that of [29] to unify Markov properties for most classes of graphs in the litera-
ture of graphical models. The general idea is that for any of the three standard
interpretations of the chain graph Markov property, (LWF, AMP and multivariate
regression), we use one type of edge in the unifying class of graphs and then use
a single separation criterion which is a natural generalization of c-separation as
defined in [36].

Unifying an equivalent pairwise Markov property seems very technical when
including the AMP chain graphs, hence we restricted ourselves to prove the equiv-
alence of pairwise and global Markov properties for the class of maximal CMGs,
which includes connected chain graphs with the LWF interpretation as well as
maximal summary graphs (and consequently maximal ancestral graphs). In order
to include the class of AMP chain graphs or its generalizations for the unification
of the pairwise Markov property, excluding certain “directed cycles” from the class
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of graphs with four types of edges (similar to the exclusion of semi-directed cycles
in mixed graphs) is necessary.

It was seen in this paper that, under compositional graphoid axioms, the system
of pairwise independence statements constituting the pairwise Markov property,
can act as a generating class for all independence statements given by the global
Markov property. Typically, there are many other systems of pairwise statements
that may act as a generating class for the global Markov property. The point given
here is that there is a unified choice of these statements for the case of CMGs.

The two important independence models are induced by graphs and probabil-
ity distributions. Establishing the pairwise Markov property for the independence
model induced by graphs suffices for establishing the global Markov property as
it is always a compositional graphoid. This is not always the case for the inde-
pendence model induced by any probability distribution as the intersection and
composition properties may not hold for such distributions.
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ers for careful, detailed and helpful comments.
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