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Recovery after stroke: not so proportional
after all?

Thomas M. H. Hope,1 Karl Friston,1 Cathy J. Price,1 Alex P. Leff,2,3 Pia Rotshtein4 and
Howard Bowman4,5

The proportional recovery rule asserts that most stroke survivors recover a fixed proportion of lost function. To the extent that this is true,

recovery from stroke can be predicted accurately from baseline measures of acute post-stroke impairment alone. Reports that baseline

scores explain more than 80%, and sometimes more than 90%, of the variance in the patients’ recoveries, are rapidly accumulating. Here,

we show that these headline effect sizes are likely inflated. The key effects in this literature are typically expressed as, or reducible to,

correlation coefficients between baseline scores and recovery (outcome scores minus baseline scores). Using formal analyses and simulations,

we show that these correlations will be extreme when outcomes are significantly less variable than baselines, which they often will be in

practice regardless of the real relationship between outcomes and baselines. We show that these effect sizes are likely to be over-optimistic

in every empirical study that we found that reported enough information for us to make the judgement, and argue that the same is likely to

be true in other studies as well. The implication is that recovery after stroke may not be as proportional as recent studies suggest.
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Introduction
Clinicians and researchers have long known stroke patients’

initial symptom severity is related to their longer term out-

comes (Jongbloed, 1986). Recent studies have suggested that

this relationship is stronger than previously thought: that

most patients recover a fixed proportion of lost function.

Studies supporting this ‘proportional recovery rule’ are rap-

idly accumulating (Stinear, 2017): in five studies since 2015

(Byblow et al., 2015; Feng et al., 2015; Winters et al., 2015;

Buch et al., 2016; Stinear et al., 2017), researchers used the

Fugl-Meyer scale to assess patients’ upper limb motor

impairment within 2 weeks of stroke onset (‘baselines’),

and then again either 3 or 6 months post-stroke (‘out-

comes’). The results were consistent with earlier observations

(Prabhakaran et al., 2008; Zarahn et al., 2011) that most

patients recovered �70% of lost function. Taken together,

these studies report highly consistent recovery in over 500

patients, across different countries with different approaches

to rehabilitation, regardless of the patients’ ages at stroke

onset, stroke type, sex, or therapy dose (Stinear, 2017).

And there is increasing evidence that the rule also captures

recovery from post-stroke impairments of lower limb function

(Smith et al., 2017), attention (Marchi et al., 2017; Winters
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et al., 2017), and language (Lazar et al., 2010; Marchi et al.,

2017), and may even apply generally across cognitive do-

mains (Ramsey et al., 2017). Even rats appear to recover

proportionally after stroke (Jeffers et al., 2018).

Strikingly, many of these studies report that the baseline

scores predict 80–90%, or more, of the variance in empir-

ical recovery. When predicting behavioural responses in

humans, these effect sizes are unprecedented. Recently,

Winters and colleagues (2015) reported that recovery pre-

dicted from baseline scores explained 94% of the variance

in the empirical recovery of 146 stroke patients. Like many

related reports (Stinear, 2017), this study also reported a

group of (n = 65) ‘non-fitters’, who did not make the pre-

dicted recovery. But if non-fitters can be distinguished at

the acute stage, as this and other studies suggest (Stinear,

2017), the implication is that we can predict most patients’

recovery near-perfectly, given baseline scores alone. Stroke

researchers are used to thinking of recovery as a complex,

multi-factorial process (Nelson et al., 2016). If the propor-

tional recovery rule is as powerful as it seems, post-stroke

recovery is simpler and more consistent than previously

thought.

In what follows, we argue that the empirical support for

proportional recovery is weaker than it seems. These results

are typically expressed as, or reducible to, correlations be-

tween baselines and recovery (outcomes minus baselines).

These analyses pose well known challenges that have been

discussed by statisticians for decades (Lord, 1956; Oldham,

1962; Cronbach and Furby, 1970; Hayes, 1988; Tu et al.,

2005). Much of this discussion is focused on problems

induced by measurement noise, and measurement noise

was also the focus of the only prior application of that

discussion to the proportional recovery rule (Krakauer

and Marshall, 2015). Here, we argue that empirical studies

of proportional recovery after stroke are likely confounded

entirely regardless of measurement noise.

Our argument is that: (i) correlations between baselines

and recovery are spurious when they are stronger than cor-

relations between baselines and outcomes; (ii) this is likely

when outcomes are less variable than baselines; which

(iii) will often happen in practice, whether or not recovery

is proportional. This argument follows from a formal ana-

lysis of correlations between baselines and recovery, which

we introduce below and illustrate with examples. Armed

with that analysis, we then re-examine the empirical sup-

port for the proportional recovery rule.

The relationships between
baselines, outcomes, and
recovery
For the sake of brevity, we define ‘baselines’ = X,

‘outcomes’ = Y, and ‘change’ (recovery) = �: i.e. Y�X.

The ‘correlation between baselines and outcomes’ is

r(X,Y), and the ‘correlation between baselines and

change’ is r(X,�). Finally, we define the ‘variability ratio’

as the ratio of the standard deviation (�) of Y to the stand-

ard deviation of X: �Y/�X.

X and Y are construed as lists of scores, with each entry

being the performance of a single patient at the specified

time point. We assume that higher scores imply better per-

formance, so r(X,�) will be negative if recovery is propor-

tional (to lost function). One can equally substitute ‘lost

function’ (e.g. maximum score minus actual score), for

‘baseline score’, but while this makes r(X,�) positive if re-

covery is proportional, it is otherwise equivalent.

Strong correlations imply the
potential for accurate predictions

Strong correlations between any two variables typically imply

that we can use either variable to predict the other. Out-of-

sample predictions should tend toward the least-squares line

defined by the original (in-sample) correlation. Some empir-

ical studies use this logic to derive ‘predicted recovery’ (p�)

from the least-squares line for r(X,�), reporting r(p�,�) in-

stead of r(X,�) (Winters et al., 2015; Marchi et al., 2017).

Since the magnitudes of r(X,�) and r(p�,�) are the same by

definition (see Fig. 1 and Supplementary material, proposition

8 in Appendix A), the preference for either expression over

the other is arguably cosmetic.

Nevertheless, the correlation between predicted and empir-

ical data is a common measure of predictive accuracy: the

stronger the correlation, the better the predictions. Very

strong correlations are unusual when predicting behavioural

performance in humans—both because behaviour itself is com-

plex, and because of measurement noise in behavioural assess-

ment. Once r(p�,�)4�0.95, for example (Winters et al.,

2015), this prognostic problem has seemingly been ‘solved’

more accurately than many might have thought possible.

r(X,�) is spurious when
(non-trivially) stronger than r(X,Y)

Recovery is precisely the difference between baselines and

outcomes. When r(X,�) is strong, implying that we can pre-

dict recovery accurately given baselines, it is tempting to

assume that we can also predict outcomes equally accurately,

by simply adding predicted recovery to baselines. More for-

mally, the assumption is that r(X + p�,Y)� r(p�,�). This

assumption is wrong.

In fact, r(X + p�,Y)� r(X,Y) (see Fig. 1 and

Supplementary material, proposition 8 in Appendix A).

When recovery is predicted from baselines, the correlation

between ‘baselines plus predicted recovery’ and outcomes,

is never stronger than the correlation between baselines and

outcomes. When r(X,�) is (substantially) stronger than

r(X,Y), r(X,�) is ‘spurious’, because it encourages an

over-optimistic impression of how predictable outcomes

are, given baselines.
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The canonical example of spurious
r(X,�)

The canonical example of spurious r(X,�) is when X and Y

are independent random variables with the same variance:

�Y/�X�1 and r(X,Y)� 0, but r(X,�)��0.71 (Oldham,

1962). This r(X,�) suggests that we can predict recovery

relatively well, but we cannot use ‘predicted recovery’ to

predict outcomes equally well (Fig. 1).

Krakauer and Marshall (2015) recently argued that this

scenario has little relevance to (most) empirical studies of re-

covery after stroke. This is because: (i) spurious r(X,�) only

emerge here when r(X,Y) is weak; and (ii) empirical r(X,Y)

are usually strong, because X and Y are dependent, repeated

measurements from the same patients. If spurious r(X,�) only

or mainly emerged when �Y/�X� 1 and r(X,Y)�0, they

might indeed be irrelevant in practice. Unfortunately, spurious

r(X,�) also emerge in another scenario, which is very

common in studies of recovery after stroke.

Spurious r(X,�) are likely when pY/pX

is small

For any X and Y, it can be shown that:

rðX;�Þ ¼
�Y :rðX;YÞ � �Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
Y þ �

2
X � 2:�X:�Y :rðX;YÞ

q ð1Þ

A formal proof of Equation 1 is provided in the

Supplementary material, Appendix A [proposition 4 and the-

orem 1; also see (Oldham, 1962)]; its consequence is that

r(X,�) is a function of r(X,Y) and �Y/�X. To illustrate that

function, we performed a series of simulations (Supplementary

material, Appendix B) in which r(X,Y) and �Y/�X were varied

independently. Figure 2 illustrates the results: a surface relat-

ing r(X,�) to r(X,Y) and �Y/�X. Figure 3 shows example

recovery data at six points of interest on that surface.
Point A corresponds to the canonical example of spuri-

ous r(X,�), introduced in the last section: i.e. �Y/�X� 1

and r(X,Y)�0, but r(X,�)��0.71 (Fig. 3A). At Point B,

�Y/�X� 1 and r(X,Y) is strong, so recovery is approxi-

mately constant (Fig. 3B) and r(X,�)�0, consistent with

the view that strong r(X,Y) curtail spurious r(X,�)

(Krakauer and Marshall, 2015). However, the situation is

more complex when �Y/�X is more skewed.

When �Y/�X is large, Y contributes more variance to

Y�X (�), and r(X,�)� r(X,Y); this is Regime 1. Points

C and D illustrate the convergence (Fig. 3C and D). By

contrast, when �Y/�X is small, X contributes more variance

to Y�X, and r(X,�)� r(X, �X): i.e. �1 (Supplementary

material, Appendix A, theorem 2); this is Regime 2, where

the confound emerges. Point E, near Regime 2, corresponds

to data in which all patients recover proportionally

(� = 70% of lost function; Fig. 2E). Here, �Y/�X is already

small enough (0.3) to be dangerous: after randomly shuf-

fling Y, r(X,Y)� 0, but r(X,�) is almost unaffected (Point

F, and Fig. 3F). In other words, if even the proportional

recovery rule is approximately right, empirical data may

enter territory, on the surface in Fig. 2, where over-opti-

mistic r(X,�) are likely.

pY/pX may be small, whether or not
recovery is proportional

Proportional recovery implies small �Y/�X, but small �Y/�X

does not imply proportional recovery; for example,

Figure 1 A canonical example of spurious r(X, �). Baselines scores are uncorrelated with outcomes (A), but baseline scores appear to be

strongly correlated with recovery (B). That correlation can be used to derive predicted recovery, which is strongly correlated with empirical

recovery (C), but predicted outcomes, derived from that predicted recovery, are still uncorrelated with empirical outcomes (D).
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constant recovery with ceiling effects will produce the same

result. To illustrate this, we ran 1000 simulations in which:

(i) 1000 baseline scores are drawn randomly with uniform

probability from the range 0–65 (i.e. impaired on the 66-

point Fugl-Meyer upper-extremity scale); (ii) outcome

scores were calculated as the baseline scores plus half the

scale’s range (33); and (iii) outcome scores greater than 66

were set to 66 (i.e. a hard ceiling). Mean r(X,Y) and r(X,�)

were calculated both before and after shuffling the out-

comes data for each simulation. After shuffling,

r(X,Y)�0 and r(X,�) = �0.88: ceiling effects make �Y/�X

small enough to encourage spurious r(X,�). And just as

importantly, before shuffling, r(X,Y) = 0.89 and

r(X,�) = �0.90: even when r(X,�) is not spurious [because

r(X,Y) is similarly strong], we cannot conclude that recov-

ery is really proportional.

Re-examining the empirical
literature on proportional
recovery
The relationships between r(X,Y), r(X,�) and �Y/�X merit

a re-examination of the empirical support for the

proportional recovery rule. In the only study we found,

which reports individuals’ behavioural data, Zarahn and

colleagues (2011) consider 30 patients’ recoveries from

hemiparesis after stroke. Across the whole sample,

r(X,Y) = 0.80 and r(X,�) = �0.49; after removing seven

non-fitters: r(X,Y) = 0.75 and r(X,�) = �0.95. Removing

the non-fitters increases the apparent predictability of re-

covery but reduces the predictability of outcomes (and re-

duces �Y/�X from 0.88 to 0.36). Notably, the residuals for

both correlations are identical (Fig. 4), and in fact this is

always true (Supplementary material, proposition 9 in

Appendix A,). r(X,�) has the same errors as r(X,Y), but

a larger effect size: r(X,�) is over-optimistic.

We can also use Equation 1 to reinterpret studies that do

not report individual patient data. One example is the first

study to report proportional recovery from aphasia after

stroke (Lazar et al., 2010). Here, r(X,�)��0.9 and

�Y/�X� 0.48; Equation 1 implies that r(X,Y) was either

�0.78 or zero. Similarly, in the recent study of propor-

tional recovery in rats (Jeffers et al., 2018), �Y/�X�0.8,

and r(X,�)��0.71; by Equation 1 r(X,Y) was either

much stronger (40.95) or considerably weaker (�0.29)

than r(X,�). In both cases, r(X,�) tells us less than ex-

pected about how predictable outcomes really were, given

baselines.

Several recent studies report interquartile ranges, rather

than standard deviations, for their fitter patients’ baselines

and outcomes. Accepting some room for error, we can also

estimate �Y/�X from those interquartile ranges. In one case

(Winters et al., 2015), r(X,�) = �0.97 and �Y/�X = 0.158,

while in another (Veerbeek et al., 2018), �Y/�X = 0.438 and

r(X,�)��0.88. In both cases, Equation 1 implies that

r(X,�) would be at least as strong as that reported, regard-

less of r(X,Y): these reported r(X,�) do not tell us how

predictable outcomes actually were, given baseline scores.

Many studies in this literature only relate baselines to

recovery through multivariable models (Buch et al., 2016;

Marchi et al., 2017; Winters et al., 2017); in these studies,

we cannot demonstrate confounds directly with Equation

1. Nevertheless, these studies are also probably con-

founded, because any inflation in one variable’s effect size

will inflate the multivariable model’s effect size as well. As

discussed in the previous section, empirical studies of re-

covery after stroke should tend to encourage small �Y/�X,

whether or not recovery is proportional. Consequently, the

null hypothesis will rarely be that r(X,�)�0. For example,

in the only multivariable modelling study, which reports

IQRs for its fitter-patients’ baselines and outcomes

(Stinear et al., 2017), �Y/�X�0.48, which implies that

the weakest r(X,�) was �0.88, for any positive value of

r(X,Y).

Finally, while r(X,�) can be misleading if it is extreme

relative to r(X,Y), the reverse is also true. One study in this

literature, which uses outcomes as the dependent variable

rather than recovery (Feng et al., 2015), reports that

r(X,Y)� 0.8 and �Y/�X = 1.2 in their ‘combined’ group of

76 patients. By Equation 1, r(X,�) = �0.05: i.e. recovery

Figure 2 The relationship between r(X,Y), r(X,�) and

pY/pX. Note that the x-axis is log-transformed to ensure symmetry

around 1; when X and Y are equally variable, log(�Y/�X) = 0.

Supplementary material, proposition 7 in Appendix A, provides a

justification for unambiguously using a ratio of standard deviations in

this figure, rather than �Y and �X as separate axes. The two major

regimes of Equation 1 are also marked in red. In Regime 1, Y is more

variable than X, so contributes more variance to �, and

r(X,�)� r(X,Y). In Regime 2, X is more variable than Y, so X con-

tributes more variance to �, and r(X,�)� r(X,�X) (i.e. �1). The

transition between the two regimes, when the variability ratio is not

dramatically skewed either way, also allows for spurious r(X,�). For

the purposes of illustration, the figure also highlights six points of

interest on the surface, marked A–F; examples of simulated recovery

data corresponding to these points are provided in Fig. 3.
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was uncorrelated with baseline scores. These authors only

reported proportional recovery in a subsample of their pa-

tients (but not the information we need to re-examine that

claim), but their full sample seems better described by con-

stant recovery (as in Fig. 3B).

Discussion
The proportional recovery rule is striking because it implies

that recovery is simple and consistent across patients (non-

fitters notwithstanding), and because that implication ap-

pears to be justified by strong empirical results (Stinear,

2017). We contend that the empirical support for the rule

is weaker than it seems.

In summary, our argument is that r(X,�) is spurious

when stronger than r(X,Y), and that the conditions that

encourage spurious r(X,�) will be common in empirical

studies of recovery after stroke, whether or not recovery

is really proportional. Many empirical r(X,�) in this litera-

ture appear to be spurious in this sense. And in any case,

strong r(X,�) are insufficient evidence for proportional re-

covery even if they are not spurious [because r(X,Y) is

similarly strong].

The only previous discussion of the risk of spurious

r(X,�), in analyses of recovery after stroke (Krakauer and

Figure 3 Exemplar points on the surface in Fig. 2. Simulated recovery data, corresponding to the points A–F marked on the surface in Fig.

1. (A) Baselines and outcomes are entirely independent [r(X,Y) = 0], yet r(X,�) is relatively strong; this is the canonical example of mathematical

coupling, first introduced by Oldham (1962). (B) Recovery is constant with minimal noise, so baselines and outcomes are equally variable (�Y/

�X� 1) and recovery is unrelated to baseline scores (r(X, �)� 0). (C and D) Outcomes are more variable than baselines (�Y/�X� 5), and r(X,�)

converges to r(X,Y). (E) Recovery is 70% of lost function, so outcomes are less variable than baselines (�Y/�X� 0.3); even with shuffled outcomes

data (F) baselines and recovery still appear to be strongly correlated.

Recovery after stroke BRAIN 2019: 142; 15–22 | 19

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article-abstract/142/1/15/5233860 by U

C
L (U

niversity C
ollege London) user on 06 M

arch 2019



Marshall, 2015), concluded that this risk is small provided

the tools used to measure post-stroke impairment are reli-

able: i.e. so long as measurement noise is minimal.

Crucially, our analysis applies entirely regardless of

measurement noise. We contend that the risk of spurious

r(X,�) is significant, if there are ceiling effects on the scale

used to measure post-stroke impairment, and if most pa-

tients improve between baseline and subsequent assess-

ments. These criteria will usually be met in practice,

because every practical measurement of post-stroke impair-

ment employs a finite scale, and because non-fitters, who

do not make the predicted recovery, are removed prior to

calculating r(X,�).

We are not suggesting that there is anything wrong with

the practice of distinguishing fitters from non-fitters. Indeed,

our results prove that this work may be valid regardless of

our other concerns. Non-fitters do not recover as predicted;

by definition, they contribute the largest, negative residuals

to r(X,�). Since the residuals for r(X,Y) and r(X,�) are

identical (Fig. 4 and Supplementary material, proposition 9

in Appendix A), the same patients will be placed in the same

subgroups regardless of which correlation is used, and bio-

markers that distinguish those subgroups at the acute stage

[i.e. avoid the circularity of relying on observed recovery

(Stinear, 2017)], will be equally accurate regardless of our

other concerns. However, extreme r(X,�) for patients

classified as fitters, will naturally encourage the assumption

that those fitters’ outcomes are largely determined by initial

symptom severity. If this assumption is true, therapeutic

interventions must be largely ineffective (or at least redun-

dant) for these patients. Our analysis suggests that this as-

sumption is wrong.

Nevertheless, we are not claiming that the proportional

recovery rule is wrong. Our analysis suggests that empirical

studies to date do not demonstrate that the rule holds, or

how well, but we could only confirm that r(X,�) was over-

optimistic in one study, which reported individual patient

data. And while we have also shown that extreme r(X,�)

and r(X,Y) can result from non-proportional (constant) re-

covery, this is simply one plausible alternative hypothesis

about how patients recover.

Quite how to interpret empirical recovery with confi-

dence in this domain remains an open question: we

have articulated a problem here, hoping that recognition

of the problem will motivate work to solve it. But we

can make some recommendations for future studies in the

field.

First, these studies should report r(X,�), r(X,Y), and

�Y/�X, for those patients deemed to recover proportionally.

Despite our concerns about r(X,�), we do learn something

when r(X,Y) is strong, but r(X,�) is weak, as in Feng and

colleagues’ (2015) results discussed above, which appeared

Figure 4 r(X,Y) and r(X,�) have the same residuals. Left: Least squares linear fits for analyses relating baselines to (top) outcomes and

(bottom) recovery, using the fitters’ data reported by Zarahn et al. (2011). Middle: Plots of residuals relative to each least squares line, against the

fitted values in each case. Right: A scatter plot of the residuals from the model relating baselines to change, against the residuals from the model

relating baselines to outcomes: the two sets of residuals are the same.

20 | BRAIN 2019: 142; 15–22 T. M. H. Hope et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article-abstract/142/1/15/5233860 by U

C
L (U

niversity C
ollege London) user on 06 M

arch 2019

https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy302#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy302#supplementary-data


to be better explained by constant recovery than by pro-

portional recovery.

Second, future studies should consider explicitly testing

the hypothesis that recovery depends on baseline scores

(Oldham, 1962; Hayes, 1988; Tu et al., 2005; Tu and

Gilthorpe, 2007; Chiolero et al., 2013). These tests sens-

ibly acknowledge that the null hypothesis is rarely

r(X,�)� 0 in these analyses. However, they do not ad-

dress the proper measurement and interpretation of

effect sizes, which is our primary concern here; somewhat

paradoxically, this means that they may be less useful in

larger samples than in smaller samples (Friston, 2012;

Lorca-Puls et al., 2018).

Those hypothesis tests will also all be confounded by

ceiling effects. We recommend that future studies should

measure the impact of such effects, perhaps by reporting

the shapes of the distributions of X and Y (greater asym-

metry implying more prominent ceiling effects). Future

studies should also attempt to minimize ceiling effects.

One approach might be to remove patients whose out-

comes are at ceiling: though certainly inefficient, this

does at least remove the spurious r(X,�) in our simula-

tions of constant recovery (see above). However, it may be

difficult to determine which patients to remove in practice;

the Fugl-Meyer scale, for example, imposes item-level ceil-

ing effects, which could distort �Y/�X well below the max-

imum score. A better, though also more complex

alternative, may be to use assessment tools expressly de-

signed to minimize ceiling effects, or to add such tools to

those currently in use.

More generally, we may need to replace correlations

with alternative methods, which can provide less

ambiguous evidence for the proportional recovery rule.

One principled alternative might use Bayesian model com-

parison to adjudicate between different forward or genera-

tive models of the data at hand: i.e. using the empirical

data to quantify evidence for or against competing hypoth-

eses about the nature of recovery, which may or may

not be conserved across patients. We hope that this

paper will encourage work to develop such methods, de-

livering better evidence for (or against) the proportional

recovery rule.
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