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Abstract

Quantum theory can be formulated using a small number of mathematical postulates. These

postulates describe how quantum systems interact and evolve as well as describing measure-

ments and probabilities of measurement outcomes. The measurement postulates are logically

independent from the other postulates, which are dynamical and compositional in nature. In

this thesis we study all theories which have the same dynamical and compositional postulates

as quantum theory but different measurement postulates. In the first part we introduce the

necessary tools for this task: the operational approach to physical theories (general probabilis-

tic theories) and the representation theory of the unitary group. Following this we introduce

a framework which is used to describe theories with modified measurement postulates and

we classify all possible alternative measurement postulates using representation theory. We

then study informational properties of single systems described by these theories and compare

them to quantum systems. Finally we study properties of bi-partite systems in these theories.

We show that all bi-partite systems in these theories violate two properties which are met by

quantum systems: purification and local tomography.
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Impact Statement

In recent years quantum technologies have seen an increase in investment from governments

worldwide. Technologies such as quantum key distribution [1, 2] have been implemented in

citywide networks [3, 4] and via satellites [5]. As we move towards forms of encryption which

rely on the validity of quantum theory for their security (as opposed to the supposed hardness

of certain mathematical problems) it becomes more important to understand the foundations

of the theory upon which our future communication security will be built. In this thesis we

study the informational consequences of making modifications to quantum theory. This allows

us to anticipate the potential impacts a change to our fundamental theory of physics will have

on quantum technologies.

The work in this thesis contains novel applications of group representation theory to the

study of general probabilistic theories [6–13]. These representation theoretic methods are used

to classify theories as well as study their informational properties. Although we only apply

these tools to a specific family of theories, these methods are general. As such the material in

this thesis supplements the toolkit of methods and techniques researchers working in this field

can use.

This work provides a wide family of non-classical systems, thus furthering our understanding

of the landscape of non-classical theories [7, 14–22]. Indeed despite the area of general proba-

bilistic theories having received a large amount of attention from the foundations of quantum

theory community there are relatively few examples of non-classical systems, especially if we

only consider the ones with valid composition rules. The family of systems put forward in this

work provide a large number of systems researchers in the field can use as examples.

An important aspect of this work is that it shows how to make consistent modifications to the
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measurement postulates of quantum theory for single and bi-partite systems. Previous attempts

to modify the Born rule were in general deemed unsuccessful and were not carried out in a

rigorous operational framework [23]. Modifying quantum theory is a topic which is of interest

to physicists working outside quantum foundations [24, 25]. The results of this work show that

by adopting a rigorous operational approach one can ensure that the modifications made to the

theory are consistent. This framework can be applied to not just describe modifications to the

measurements of quantum theory but also the dynamics and pure states. This work provides

guidance on how to make consistent modifications to quantum theory for researchers from other

backgrounds.
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Our life is an apprenticeship to the truth, that around every circle another can be

drawn; that there is no end in nature, but every end is a beginning; that there is

always another dawn risen on mid-noon, and under every deep a lower deep opens.

Ralph Waldo Emerson, Circles
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Chapter 1

Introduction

Quantum theory is defined in terms of a small number of concise mathematical postulates.

Although it is not necessarily obvious how these postulates relate to physical reality, or what

ontology (if any) they imply; it is clear that quantum theory is a powerful tool for making

predictions about nature. One can apply the minimal framework of quantum theory to make

predictions about a wide variety of physical phenomena.

One can also use quantum theory without reference to specific physical systems, as in quan-

tum information theory. Thus one sees that independently of whether one considers quantum

theory as describing nature, it is definitely a type of non-classical information theory, with its

own logic and associated probability theory. The existence of such a theory is not dependent

on nature, in the same manner that non-Euclidean geometry exists independently of the nature

of space-time. Whether or not one believes that the mathematical objects of a theory have

ontological significance, the theory itself can be studied and thought of as having some content.

Specifically we can study the structure of quantum theory, where structure is just the relations

between the parts of the theory.

The probabilistic part of quantum theory is described by the postulates which pertain to

measurement. The dynamical part of quantum theory is described by the postulates which

pertain to pure states, dynamics and composition. We will probe the independence of these

two parts by seeing whether there are any theories which have the same dynamical structure

as quantum theory but a different probabilistic structure.

The main aim of this thesis is to explore alternatives to the measurement postulates of
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quantum theory. We will show how we can classify all alternative measurement postulates for

single systems using group representation theory. Following this we study composition for these

alternative systems. An outcome of this thesis is to show that for single and bi-partite systems

it is possible to modify the measurement postulates in a consistent manner. In the context of

single and bi-partite systems the dynamical part of quantum theory is compatible with multiple

probabilistic structures. Moreover we study the informational properties of these systems and

see how they differ from quantum systems. The results in this thesis have implications for three

different areas of study in quantum foundations.

Modifying quantum theory

It is often claimed that one cannot make modifications to any one part of quantum theory

whilst preserving the rest and obtain a consistent theory. For instance it has been argued that

it is impossible to consistently modify the Born rule without leading to inconsistencies [23], a

statement in apparent contradiction with the finding of this thesis that there are single and

bi-partite systems with modified Born rules. However a key difference is that we modify all

the measurement postulates (including the association of outcomes with positive semi-definite

operators) rather than just the Born rule. An important example of a modification to quantum

theory is the attempt to introduce some modified (non-linear) dynamics [26] which has been

shown to lead to signalling and other inconsistencies [27–30]. The work in this thesis shows that

by working in a strict well defined operational framework one can make consistent modifications

to quantum theory, at least for single and bi-partite systems. The framework introduced in this

thesis can be used to describe modifications to the dynamics and pure states of quantum theory

as well as the measurements.

Derivations of the Born rule

In this work we classify all systems with modified Born rules and show that quantum theory

has some informational properties which none of these systems possess. We can single out,

or derive, the quantum measurement postulates from the dynamical postulates of quantum

theory and the requirement that one of these properties which is unique to quantum theory is

met. As such the results in this thesis supplement the many existing derivations of the Born
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rule, carried out within a variety of traditions and starting from a multitude of different sets of

assumptions [31–41].

Methods for studying GPTs and examples

Finally our work has applications to the field of general probabilistic theories (GPTs) which

provide a framework for the description of arbitrary operational theories. In this work we

develop representation theoretic tools which can be applied to arbitrary transitive GPTs. A

transitive GPT is one where all systems are transitive, i.e. all pure states are related by a

reversible transformation.

Another feature of this thesis is that we provide a number of examples of single and bi-

partite non-classical systems, allowing us to explore the landscape of non-classical theories

further. This adds to the list of non-classical systems and theories which have been studied

such as quantum theory over the field of real numbers [14–16] or quaternions [17], theories

based on Euclidean Jordan algebras [18], boxworld [7, 19–21], quartic quantum theory [22] and

density cubes [42].

Structure of the thesis

In Chapter 2 we introduce the operational approach to physical theories. A theory is operational

if, broadly speaking, it describes a set of experiments carried out in a laboratory. We show that

an operational theory has two mathematical structures: a convex structure which arises from

the possibility of carrying out probabilistic operations and a categorical structure which arises

from the possibility of composing physical devices [10, 43–46].

In Chapter 3 we present some basic definitions and results in the representation theory

of the symmetric group Sn and the special unitary group SU(d). This culminates in Schur-

Weyl duality which shows the intimate connection between the two groups. We show how

to use the Schur functor to generate irreducible representations of SU(d) and how to use the

Littlewood Richardson rule to decompose tensor products of representations of SU(d). This

chapter is intended solely as a quick introduction (or reminder) to the reader of the mathematical

background needed for the main parts of the thesis.
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In Chapter 4 we introduce a framework which will allow us to consistently describe modifica-

tions to the measurement postulates of quantum theory. We prove several theorems pertaining

to single systems with modified measurement postulates, the first of which states that every

alternative measurement postulate is in correspondence with a representation of SU(d). Follow-

ing this we find all representations of SU(d) which corresponds to an alternative measurement

postulate, providing us with a full classification to the measurement postulates. This chapter

mainly contains material from [47], as well as some material from [48].

In Chapter 5 we explore informational properties of the single systems classified in the pre-

vious chapter. We introduce several families of such C2 systems with alternative measurements

and examine whether they obey the properties of no-simultaneous encoding and bit-symmetry.

By studying how system Cd−1 embed in Cd systems we then show that all unrestricted Cd

systems (d ≥ 2) violate bit symmetry. This chapter is based on material from in [47].

In Chapter 6 we study bi-partite composition in these theories with modified measurement

postulates. We show that features of composition (such as the existence of joint local mea-

surements) impose constraints on the representations associated to bi-partite systems. Using

further representation theoretic features which distinguish locally tomographic systems from

holistic ones we show that all bi-partite systems with modified measurement postulates are

holistic. A bi-partite system is locally tomographic if local measurements are sufficient to fully

characterise bi-partite states. A system which is not locally tomographic is holistic. Following

this we prove that all bi-partite systems violate a weak version of the purification principle.

Material in this chapter is from [48].

Finally in Chapter 7 we discuss current work which extends the analysis in this thesis to tri-

partite systems and indicates that they are not compatible with associativity. We also discuss

how to use the tools developed in this thesis to study arbitrary transitive systems, and suggest

a family of systems which could be of interest.

Authorship disclaimer

All original work in this thesis was carried out under the supervision of Lluis Masanes, and the

two papers [47, 48] from which the material in this thesis is drawn are joint work with him.
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Some parts of the papers are used almost verbatim in this thesis, however this is only done

for parts which were written by me. Any parts of the papers written by Lluis have been fully

re-written before being included in the present document. Some contributions are Lluis’ alone:

Theorem 4 was proven by Lluis, as were Lemma 19 and Lemma 20.
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Chapter 2

The operational approach to

physical theories

A theory is operational if the physical quantities it describes are defined in terms of operations

and measurements which can be carried out [49]. Special relativity is a paradigmatic example

of such a theory, since basic concepts like simultaneity are defined in terms of light beams being

transmitted.

In this chapter we present a framework within which a certain class of operational theories

can be formulated, known as general probabilistic theories (GPTs). This framework can be used

to formulate any theory describing experiments formed of physical devices, which are embedded

in laboratories existing in the classical world of everyday experience. The presentation in this

chapter borrows from the operational probabilistic theories approach of [43].

The mathematical framework of GPTs finds its origins in work by Mackey [50] and Lud-

wig [51–53]. Further work by Mielnik [54, 55] and Davies and Lewis [56] developed an opera-

tional approach to quantum theory and more general theories. Pioneering work by Hardy [6]

re-kindled interest in the operational approach to axiomatisations of quantum theory, with an

emphasis on finite dimensional systems and composites inspired by quantum information the-

ory. This led to the development of the GPT framework as we now know it, which we outline

in this chapter based on [6–13, 43–46, 57, 58].
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2.1 Operational primitives

2.1.1 Experiments, physical devices and experimenters

The fundamental building block of any operational theory is an experiment. Broadly speaking

the aim of an operational theory is to adequately describe a collection of experiments, where

description here is just taken to mean predict the probabilities of outcomes of the experiments

in the theory.

An experiment consists of an arrangement of physical devices, some of which are preparation

devices (e.g. a laser), transformation devices (e.g. a beam splitter) and others which are

measurement devices (e.g. a photodetector). These devices have inputs and outputs which can

be connected to each other using wires. For instance one can connect the output of a laser to

the input of a beam splitter using optical fibre. In general input and outputs are of certain

types, and an output of a certain type will only be compatible with an input of the same type.

Device setting

Device output

Figure 2.1: Sketch of a preparation device

Device setting

Device outputDevice input

Figure 2.2: Sketch of a transformation device

Consider two devices which are matched up so that the output of one matches the input

of the other, for example a photon source whose output is connected (via some wire) to the

input of a photo-detector. It is often expedient to picture a system passing from the output of
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Device setting
Measurement outcome

indicator

Device input

Figure 2.3: Sketch of a measurement device

the first device, through the connecting wire, to the input of the second device. The defining

feature of a system is that it is associated to a wire connecting inputs and outputs of a given

type. We emphasize that a system is just an abstraction derived from the primitive notions of

devices and input/output types.

An experiment is an arrangement of preparation, transformation and measurement devices.

For simplicity we do not consider settings and measurement readouts as being inputs and

outputs in our definitions. We now define the different kinds of devices in terms of their inputs

and outputs.

Definition 1 (Device). A physical device has inputs and outputs of certain types.

i. A preparation device is a physical device without inputs.

ii. A transformation device is a physical device with inputs and outputs.

iii. A measurement device is a physical device without outputs.

Composition

In sequential composition preparation devices, transformation devices and measurement devices

are connected in such a manner that the output of a device enters the input of another device

of the same type.

In the laboratory one can take two physical devices and place them one next to the other.

This basic operational capacity of the experimenter is called parallel composition of devices.

Two devices composed in parallel form a valid physical device. For example one might place two

photon sources on a chip, and the chip remains a valid physical device (in this case a preparation
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device). Importantly there is no constraint on which kinds of device one can compose in this

manner.

We define a circuit as an assembly of devices composed according to the definitions above.

A closed circuit is one where there are no loose wires, i.e. which has no inputs and outputs.

The most basic example of a closed circuit is a preparation device composed in sequence with

a measurement device.

Definition 2 (Experimental setup). An experimental setup is a closed circuit of devices.

Subjectivity of the experimenter

Consider a photon source composed in sequence with a polariser (a preparation device composed

in sequence with a transformation device) placed on a single chip. It makes sense to consider

the two devices on the chip as a single preparation device. We have made an assumption

which is pre-operational, in the sense that it is about the experimenter’s subjective description

of physical devices, and not the devices themselves. This also applies to the case of devices

composed in parallel. A preparation device and a measurement device composed in parallel

and considered as a single device form a transformation device. In general any grouping of

devices can be considered as a single device, and the nature of this device can be determined

by its inputs and outputs. In the above example the preparation device composed in sequence

with a transformation device has no input and a single output, telling us that it is indeed a

preparation device.

Now it is clear that the subjective groupings of devices (which in a sense occurs “in the

experimenters mind”) should not influence the operational predictions of the theory. So two

descriptions of the same circuit, each considering different groupings of devices, should give the

same operational predictions.

Consider now three devices composed in parallel. One can consider the first two as a single

device (composed in parallel with the third) or the last two as a single device (composed in

parallel with the first). The pre-operational assumption that these groupings are equivalent

implies associativity of devices under parallel composition.
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2.1.2 Procedures

A physical device has settings, and the experimenter can choose various settings on the device.

For example, a choice of setting on a laser may be the strength of the laser field. The choice

of setting on the preparation device, followed by the use of the device according to that setting

is called a preparation procedure. Similarly for transformation procedures and measurement

procedures. A photon source which is used on a setting corresponding to outputting a photon

of energy 2 eV is a preparation procedure of a 2 eV photon. There is no prescription as to what

constitutes a setting, for instance the experimenter may wish to consider a preparation with a

coffee cup on the device as different from a preparation without the cup. A measurement device

has a classical output, or a pointer, which indicates which measurement outcome occurred.

Hence a measurement procedure will result in an outcome being recorded.

2.2 Categorical structure of experimental setups

Experiments are built out of devices of certain kinds which can be composed in certain ways.

An experimental setup is defined as a closed circuit of physical devices. Moreover the notion of

a device is fluid; whether the experimenter considers an assembly of devices in an experimental

setup as a single device or multiple ones does not change the experimental setup. In this section

we show how the operational considerations outlined previously lend a categorical structure to

circuits of devices. The content of this section is based on [12, 13, 43, 59].

2.2.1 Systems

The primitives of the operational approach are physical devices. Everything else is just ab-

straction. However we have shown that these abstractions are useful, in that we can describe

physical devices and procedures in terms of the types of their inputs and outputs. A wire,

connecting an output to an input of the same type, can be identified with an abstract system.

Hence a system corresponds to a type.

Types, and therefore systems, are just labels, and we consider the set of systems of a theory

to be a collection of labels A,B,C... There exists a trivial system I which represents “nothing”.

Two systems A and B compose to a third composite system A⊗B. Now from the consideration
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that one can arbitrarily group devices (and the wires that connect them) without affecting the

experimental setup it follows that parallel composition of systems is associative:

(A⊗ B)⊗ C = A⊗ (B⊗ C) . (2.1)

Moreover the trivial system obeys the following equality:

A⊗ I = I⊗ A = A . (2.2)

2.2.2 Devices

The operational primitives are devices which can be described in terms of inputs and outputs

of system types solely. A device which inputs a system A and outputs a system B is written as

DA→B. We now define the operation of sequential composition; two devices can be connected

in sequence to form a new device if their input and output types match:

D′B→C ◦DA→B = D′′A→C . (2.3)

Devices of any kind can be composed in parallel with devices of any kind, for instance a

preparation device can be composed in parallel with a measurement device. In order to define

a mathematical operation corresponding to a parallel composition of devices we need to be able

to describe all devices as the same kind of mathematical object. So far transformation devices

are of the type DA→B, however preparation devices have no input and measurement devices

have no output. By using the trivial system I a preparation device can be described as DI→A

and a measurement device as DA→I. Hence we can define an operation of parallel composition

which applies to all physical devices:

DA→B ⊗D′C→D = D′′A⊗C→B⊗D . (2.4)

We observe that one can also consider a whole closed circuit (i.e. experimental setup) as a

single device of the form DI→I. Two experimental setups can be composed in parallel, which will

have consequences when considering the probabilistic structure of experiments. We introduce

the notion of an identity device IA : A → A such that sequentially composing it to the left or

to the right leaves the device unchanged.

IA ◦DA→B = DA→B , (2.5)

DB→A ◦ IA = DB→A . (2.6)
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Equations (2.1), (2.5) and (2.6) entail that the set of systems and devices form a category

in which devices are morphisms and systems are objects. From the subjective choice of the

experimenter to divide the world into different groupings of devices we have:

(D1 ⊗D2) ◦ (D3 ⊗D4) = (D1 ◦D3)⊗ (D2 ◦D4) . (2.7)

We also assume that:

IA ⊗ IB = IA⊗B . (2.8)

These two equalities entail that the category is strict monoidal. Moreover we assume the

existence of some symmetry isomorphism:

σAB : A⊗ B ∼= B⊗ A , (2.9)

which implies that the category is a symmetric monoidal category [60]. This concludes our

treatment of devices and experimental setups.

2.3 Measurements and experimental runs

An experiment consists of more than just arranging some physical devices to form an experi-

mental setup. One needs to then run the experiment, and observe which measurement outcomes

occur. Given an experimental setup one carries out several experimental runs and collects the

statistics. In an experimental run one fixes the settings for each device.

Definition 3. An experimental run is an experimental setup, with associated procedures to each

device.

2.3.1 Experimental runs

By grouping the devices we can always describe an experimental setup as just being a prepara-

tion device, composed in sequence with a transformation device, which in turn is sequentially

composed with a measurement device. For an experimental run with a given preparation proce-

dure P, transformation procedure T and measurement procedure M, the experimentalist will

record the relative frequencies:

freq(oMi |P, T ,M) , (2.10)
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for all outcomes oMi in the measurement M.

Typically an experimenter will not be interested in a single configuration of settings (i.e.

procedures). She may wish to run the experiment when a particle is prepared in spin |↑〉, but

also in spin |↓〉. An experiment will consist of a set of experimental runs carried out with

different choices of settings. We assume that the experimenter runs the experiment with all

possible combinations of preparation, transformation and measurement procedures.

An experiment consists of an experimental setup E, a set P of preparation procedures, a set

T of transformation procedures, a set M of measurement procedures, a set O of outcomes as

well as a list F of relative frequencies of all outcomes oMi for all triples (P, T ,M) ∈ P×T×M.

Experiment = {E,P,T,M,O,F} . (2.11)

The next step is to associate probabilities, instead of frequencies, to outcomes of measure-

ments in experimental runs. This issue is philosophically thorny and we do not delve into it

here. The frequentist account of probabilities which is natural in this framework is commonly

assumed [6], though understood to be problematic [61]. A Bayesian account of probability is

also consistent with this approach [62].

In general if we absorb all the transformations into the preparation or measurement, and

allow for all procedures given the experimental setup, an experiment will be characterised by

the following probabilities:

{p(o|P) : o ∈ O,P ∈ P} . (2.12)

2.3.2 Measurements and probabilities

After an experimental run, the measurement device will record that an outcome occurred. In

general the occurrence of an outcome is not deterministic, and running an experiment multiple

times with a fixed set of settings (i.e. procedures) will not always lead to the same outcome

being registered. Measurement outcomes occur with certain probabilities. By definition the

probabilities of all outcomes {oMi } of a measurement M sum to one for all preparations:

∑
i

p(oMi |P) = 1, ∀P ∈ P , (2.13)

where P is the set of all preparations.
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An experimenter is free to group together a subset of the outcomes of a measurement, and

consider them as a single outcome. This is known as coarse-graining. By grouping all the

outcomes of a measurement into a single outcome it follows that there exists a measurement,

with a single outcome, which occurs with probability one for all states.

2.3.3 Separable experiment

P2 M2

P1 M1

Figure 2.4: Separable two system experiment.

Let us consider two experimental setups E1 = DP1
I→A ◦ DM1

A→I and E2 = DP2
I→B ◦ DM2

B→I

composed in parallel to form E1⊗E2. This composite of two experimental setup is itself a valid

experimental setup. Using equation (2.7) we can write the composite E1 ⊗E2 as:

(DP1
I→A ◦DM1

A→I)⊗ (DP2
I→B ◦DM2

B→I) = (DP1
I→A ⊗DP2

I→B) ◦ (DM1
A→I ⊗DM2

B→I) . (2.14)

Let us call the outcome sets of the two experiments OA and OB and the preparation procedure

sets PA and PB. Then the outcome set of the composite measurement device DP1
A→I ⊗DP2

A→I is

{OA×OB} and the preparation procedure set of the composite preparation device DM1
I→A⊗DM2

I→A

is {PA×PB}. The probabilities associated to the experimental setup as partitioned on the left

hand side of equation (2.14) are:

p(oA|PA)p(oB|PB), . (2.15)

with oA ∈ OA, oB ∈ OB, PA ∈ PA and PB ∈ PB. Dividing up the circuit as in the right hand
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side of equation (2.14) gives probabilities:

p(oA, oB|PA,PB) . (2.16)

The equivalence of the two ways of subjectively dividing the experimental setup implies the

following equality:

p(oA|PA)p(oB|PB) = p(oA, oB|PA,PB) . (2.17)

2.3.4 Probabilistic operations

One of the primitives of the operational approach is the existence of the classical world of

devices and laboratories. This feature is apparent in the fact that we consider devices to have

classical settings and to give classical readouts. In this classical world we also include sources

of randomness, such as flipping an unbiased (or biased) coin which can be used to create new

procedures. Given a preparation device with two settings the experimenter can flip a coin and

choose setting one if heads and two if tails (and then forget which occurred). This is a valid

preparation procedure. A set of preparations {Pi} sampled using a probability distribution

{pi} (where
∑

i pi = 1, pi > 0) forms an ensemble {pi,Pi}. Similarly one can form an ensemble

of transformations or measurements. We make the operational assumption that an ensemble of

procedures (of the same kind) is a valid procedure of that kind.

That is to say we re-define the sets P and T, M and O to contain all possible ensembles of

the elements in the initial sets. This implies that they are mixture space [63].

A mixture space is just a set, which is closed under the operation of taking mixtures. In

other words for any two elements c1, c2 ∈ C the element {(λ, c1), (1−λ, c2)} ∈ C with λ ∈ [0, 1].

Moreover the mixing operation obeys c = {(λ, c), (1 − λ, c)}. Convex sets are an example of

mixture spaces, but not all mixture spaces are convex sets. For detailed treatments of mixture

spaces and their relation to convex sets (though using some different terminology) we refer the

reader to [64, 65]. We now define structure preserving maps on these mixture spaces.

Definition 4. A mapM between two mixture spaces C and C′ is convex if it preserves mixtures:

M({(pi, ci)}i) = {(pi,M(ci))}i,∀ci ∈ C, pi ≥ 0,
∑
i

pi = 1 . (2.18)
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Two convex spaces are equivalent if there exists a bijective convex map between them. A

specific case of a convex map is a convex-linear map:

Definition 5. A map M between a convex space C and a vector space Rn is convex-linear if it

preserves convex combinations:

M({(pi, ci)}i) =
∑
i

piM(ci) . (2.19)

An ensemble can be prepared as follows. After sampling over a probability distribution over

n outcomes (using a device Mix), one prepares one of the n states conditioned on that outcome

(using a device Prep). We carry out an arbitrary operation on the preparation afterwards using

device Op. Then from the pre-operational assumption that subjective groupings of devices are

equivalent we have:

(Mix ◦Prep) ◦Op = Mix ◦ (Prep ◦Op) . (2.20)

If the operation carried out is a measurement then equation (2.20) implies that the probability

of obtaining an outcome o given an ensemble {(pi,Pi)}i obeys:

p(o|{(pi,Pi)}i) = {(pi, p(o|Pi))}i =
∑
i

pip(o|Pi) . (2.21)

∑
i pip(o|Pi) corresponds to the ensemble {(pi, p(o|Pi))}i since ensembles of probabilities are

obtained by standard addition. This entails that the outcomes probabilities are convex-linear

functions of the preparations.

If the operation carried out is a transformation T ∈ T on ensemble {(pi,Pi)}i equation

(2.20) implies:

{(pi,Pi)} ◦ T → {(pi,Pi ◦ T )} , (2.22)

hence the map T : P→ P is a convex map.

2.4 Structure of single systems and procedures

In the following we consider an experiment with a single system type which we colloquially call

a single system experiment. We observe however that a preparation of that single system may

involve other systems (for example in a preparation by steering) and similarly for transformation
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and measurements. Hence an experiment is considered as a single system experiment when we

consider a grouping such that the experimental setup is of the form DA→I ◦DA→A ◦DI→A.

We begin with the sets P, T, M and O which are mixture spaces. To each triple (P, T ,M)

we have an associated probability p(oMi |P, T ,M) for all outcomes in the measurement M.

From the point of view of the experimenter certain procedures will be equivalent. Two

preparation procedures P and P ′ are considered equivalent if

p(oMi |P, T ,M) = p(oMi |P ′, T ,M) , (2.23)

for all transformations T and all outcomes oMi of all measurements M. We write:

P ∼p P ′ . (2.24)

Two transformation procedures T and T ′ are equivalent if:

p(oMi |P, T ,M) = p(oMi |P, T ′,M) , (2.25)

for all preparations P and all outcomes oMi of all measurementsM. Here the preparations and

measurements should include all those obtained using an ancillary system [43]. We write:

T ∼t T ′ . (2.26)

Two measurements (necessarily with the same number of outcomes nM = nM′ = n ) M and

M′ are equivalent if:

p(oMi |P, T ,M) = p(oM
′

i |P, T ,M′), i ∈ {1, .., n} . (2.27)

for all preparations P and all transformations T . We write:

M∼mM′ . (2.28)

Two outcomes oMi and oM
′

j are equivalent if

p(oMi |P, T ,M) = p(oM
′

j |P, T ,M′) , (2.29)

for all preparations P and all transformations T . We write:

oMi ∼o oM
′

j . (2.30)

Two outcomes which occur in different measurements may be operationally equivalent. Hence

in the following we drop the M label for outcomes.
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Definition 6. A state is an equivalence class of indistinguishable preparations under ∼p.

The set of states S (known as the state space) retains the mixture space structure of P.

However it has an additional structure which we now explore. Since ensembles can be mixed it

follows that states can be mixed (since the equivalence relation ∼p preserves mixing). We call

ω{(pi,ωi)}i the state corresponding to the ensemble {(pi, ωi)}i. We observe that a state ω{(pi,ωi)}i

can in general be obtained from different mixtures: ω{(pi,ωi)}i = ω{(p′j ,ω′j)}j′ .

Definition 7. An effect is an equivalence class of indistinguishable outcomes under ∼o.

An effect is uniquely defined by its probability of occurrence for all preparations. Since the

equivalence class is taken under all outcomes with the same probability, and preparations which

give the same probability are mapped to the same state, we can define an effect as a function

on states o : S → [0, 1]

p(o|P) = o(ωP) . (2.31)

The effect o : S → [0, 1] is a convex-linear function on S:

o(ω{(pi,Pi)}i) = p(o|{(pi,Pi)}i) =
∑
i

pip(o|Pi) =
∑
i

pio(ωi) . (2.32)

We call E the set of all effects.

Unit effect

As a consequence of coarse graining of outcomes that there is an outcome which gives probability

one for all states. This is mapped to the unit effect under the equivalence relation ∼o. This

is written as u. The causality assumption [43] entails that the unit effect is unique. Causality

states that a preparation is independent of the choice of measurement procedure that follows

it.

2.4.1 Convexity of state space

For every ω1, ω2 ∈ S with ω1 6= ω2 it is the case that there exists an o ∈ E such that

o(ω1) 6= o(ω2). That is to say the set of effects separates the state space. We observe that this

is true by construction, as any two points in P which were indistinguishable under the effects

are mapped to the same state.
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Lemma 1. A separated convex space is isomorphic to a convex subset of a real linear space [63,

Proposition 1.2.1].

Proof. For any two effects o1 and o2 in E we define (o1 + o2)(ω) = o1(ω) + o2(ω) ∀ω ∈ S.

Similarly (αo)(ω) = αo(ω)∀ω ∈ S with α ∈ R. We call EL the linear space of all outcome

functions on S. Let us define the dual space EL∗ and for every ω ∈ S introduce ω̄ ∈ EL∗ such

that:

ω̄(o) = o(ω) ∀o ∈ EL . (2.33)

The map ¯ : ω 7→ ω̄ is convex-linear and bijective. Convex-linearity follows from:

∑
i

piω̄i(o) =
∑
i

pio(ωi) = o(ω{(pi,ωi)}i) = ω̄{(pi,ωi)}i(o) ∀o ∈ EL . (2.34)

Bijection follows from the fact that ω̄1(o) = ω̄2(o) implies o(ω1) = o(ω2), ∀o ∈ EL.

We call S̄ ∈ EL∗ the convex set with elements ω̄. Since it is affinely related to S we also call

it the state space. In this representation states are linear forms on the linear space of effects.

As a consequence of the above lemma, mixtures of states are given by weighted addition of

states:

ω̄{(pi,ωi)} =
∑
i

piω̄i . (2.35)

We have seen that transformations are convex maps. We denote the action of a transfor-

mation T on the states by T̄ : S̄ → S̄. The equality {(pi, ωi) ◦ T }i = {(pi, ωi)}i ◦ T implies:

∑
i

piT̄ (ω̄i) = T̄ (
∑

ipiω̄i) . (2.36)

Hence transformations are convex-linear maps on the state space. In the following we do

not distinguish between ω and ω̄ (since S and S̄ are isomorphic) and drop the ¯ notation for

embedded state spaces.

Affine span of S

A state space S is a convex set embedded in a linear space. As such there is a well defined

notion of addition and scalar multiplication on elements in S. Let us consider its affine span

Aff(S) given by all elements
∑

i αiωi, with ωi ∈ S, αi ∈ R and
∑

i αi = 1.
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Lemma 2. For a convex map M there is a unique affine extension of M to Aff(S) whose

restriction to S is the same as M [66].

Proof. See Appendix A.1.

Hence effects and transformations are affine maps on Aff(S).

Linear span of S

We have seen that one can embed S in a linear space V = EL∗. We have span(S) ∼= V . If we

extend the action of effects and transformations to span(S) these are linear maps.

Lemma 3. For every convex map M on S there is a unique linear extension of M to span(S)

whose restriction to S is the same as M.

Proof. See Appendix A.2.

Hence effects and transformations are linear maps on span(S).

Basis dependent description

It can be helpful for visualisation purposes to adopt a basis dependent description. We have a

finite dimensional real vector space V ∼= EL∗ within which S is an embedded convex set. From

the fact that measurement outcomes sum to one for all states it follows that u · ω = 1∀ω ∈ S.

In other words all states are normalised. That is to say S belongs to a hyperplane of vectors

v ∈ V given by u · v = 1 (this hyperplane is the affine hull of S). Let us therefore write an

arbitrary state as:

ω =

1

ω̂

 , (2.37)

where the basis is such that the first entry is u ·ω = 1. This clearly shows that the convex set S
of states belongs to the hyperplane u · v = 1. Moreover we also see that all affine combinations

also belong to this hyperplane, since they preserve the first entry. Now let us consider an affine

transformation on Aff(S). An arbitrary v ∈ Aff(S) is of the form:

v =

1

v̂

 . (2.38)
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An arbitrary affine transformation MAff : Aff(S)→ Aff(S) is necessarily of the form:

MAff(v) =

1 0

0 M

1

v̂

+

0

ĉ

 , (2.39)

where we have used the fact that an affine transformation V → V is of the form M~v + ~c [67,

Theorem 1.5.2] with M a linear transformation V → V . We re-write this as:

MAff(v) =

1 0

ĉ M

1

v̂

 , (2.40)

which can be seen to act linearly on span(S):

ML(v) =

1 0

ĉ M

 v , v ∈ span(S) . (2.41)

We see that to every system we can associate a state space S which can be embedded in

V ∼= EL∗. The action of the effects and transformations on this space is linear. Every system

of a given type is associated to a vector space V .

Cone of states

Let us assume the existence of sub-normalised states, i.e. states for which the unit effect

gives values less than 1. Specifically we assume that there exists a 0 state, corresponding

to the possibility that our preparation device fails completely, and that no outcomes of any

measurement is recorded for that state. This is naturally mapped to the 0 ∈ EL∗. Now from

convexity it follows that all convex combinations of this state and the set of normalised states are

allowed. They will form a cone, with base S and vertex 0. We do not expand on this treatment

of state spaces as cones, but refer the reader [68, 69] for a rigorous axiomatic approach. In

figure 2.5 we show the example of S as a circle embedded in R3, with corresponding affine hull

and cone of states.

2.5 Structure of multiple systems

From the notion of physical devices (preparation, transformation and measurement) and the

possible ways of composing them (sequential and parallel) we uncovered a categorical structure
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Figure 2.5: Here the circle corresponds to the convex set of normalised states. The cone

corresponds to the set of subnormalised states and the plane is the affine span of the circle.

The vertex of the cone is the 0 state. The whole three dimensional space corresponds to the

linear span of the circle.

to operational theories. Devices are naturally describable (in an abstracted manner) in terms

of inputs and outputs, which are of certain types. These types we identified with systems.

From the concepts of preparation procedures, transformation procedures and measurement

procedures we derived states, transformations and effects. These are mathematical abstractions

used to describe the physical procedures above. Each system type is associated to a vector space

with states being vectors, effects linear functionals and transformations linear maps between

vector spaces.

Hence the mathematical objects of an operational theory are states, transformations and

effects. These naturally inherit the categorical structure of devices, as we outline now. Systems

A,B,C... are associated to the real vector spaces VA, VB, VC... in which the state spaces, as

derived above, are embedded. The trivial system I is associated with VI ∼= R. The cone is

just [0, 1]. A transformation with an input of type A and an output of type B is a linear

map TA,B : VA → VB. A state is a linear map TI→A : VI → VA and an effect is a linear map

TA→I : VA → VI. These maps inherit the categorical structure of devices. This category is

vectR with objects as finite dimensional order vector spaces, and morphisms as positive linear
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maps [46]. Sequential composition obeys:

TA→B ◦ T ′B→C = T ′′A→C . (2.42)

Since the symbol ⊗ is already used to denote a tensor product of vector spaces, we choose to

denote the parallel composition product of linear maps by ?. Then the ? map is of the form:

? : TA→B × TC→D → T(A⊗C)→(B⊗D) . (2.43)

This map is linear in both arguments by the standard mixing argument.

The probabilistic nature of experiments will impose some properties on this map. From

equation (2.17) (probabilities factorise for a separable experiment), it follows that the ? map is

such that:

(ωI→A ? ωI→B) ◦ (eA→I ? eB→I) = (ωI→A ◦ eA→I)(ωI→B ◦ eB→I) . (2.44)

A consequence of this, and the uniqueness of the unit effect is that:

uA ? uB = uAB . (2.45)

We observe that the ? product allows us to compute reduced states, by applying the unit effect

to one subsystem and the identity map on the other. This concludes our treatment of general

probabilistic theories.

2.6 Comment on agent based approaches

The material in this chapter follows closely the standard general probabilistic theory/operational

probabilistic theory approach. Its focus is mainly on devices, as characterised by the types of

their inputs and outputs. In quantum theory the system type corresponds to the Hilbert space

dimension. However it is not clear that quantum theory should be thought of as having distinct

system types, since every system Cd has embedded within it systems Ci for 2 ≤ i < d. For

instance in an experimental setup one may have access to a system of very high dimension

and choose to only consider two degrees of freedom, and the resulting system is a qubit. This

approach to quantum theory, which is agent centred (as the agent can pick which degrees of

freedom to consider and which to ignore) is operational, but the framework used in this paper
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would require additional structure to describe it (embedding of sub-systems, for instance via a

subspace axiom [6, 9]). 1 The approach of focussing on the experimenter, and the degrees of

freedom she has access to, as a foundation for physical theories is explored in [70, 71].

1I thank Lluis Masanes for pointing this out to me.
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Chapter 3

Representation theory of Lie groups

This chapter is a review of the concepts from Lie group representation theory needed for this

thesis. We begin by laying the groundwork with some basic definitions. Following this we

study the symmetric group and its representations, showing how to construct irreducible rep-

resentations with the Young symmetrizer. We then study the representation theory of SU(d)

by considering irreducible representations of its Lie algebra su(d) and the decomposition of

these irreducible representations into weight spaces. We tie together the representations of

both groups with Schur-Weyl duality and the use of the Schur functor to generate irreducible

representations of SU(d). Finally we show how to obtain decompositions of tensor products of

representations of SU(d) via the Littlewood Richardson rule. This chapter uses material from

[72–80]. In this chapter we do not reproduce all proofs, but only ones which use techniques and

methods which are useful for this thesis. We illustrate the methods used with examples, and

refer the reader to the aforementioned references for full proofs and more examples.

3.1 Basic definitions

In this first section we introduce the basic definitions of group representation theory [74].

Definition 8 (Group). A group is a pair (G, ∗) where G is a set and ∗ : G×G→ G is a binary

operation satisfying the following axioms:

Closure: ∀ga, gb ∈ G, (ga ∗ gb) ∈ G.
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Associativity: ∀ga, gb, gc ∈ G, (ga ∗ gb) ∗ gc = ga ∗ (gb ∗ gc).

Identity element: ∃e ∈ G s.t. ∀ga ∈ G, e ∗ ga = ga ∗ e.

Inverse element: ∀g ∈ G, ∃g−1 ∈ G s.t. g−1 ∗ g = g ∗ g−1 = e.

The identity element e is unique, and for every element g ∈ G the inverse element g−1 is

unique. We call ι : G→ G the map that takes an element g to its inverse g−1.

Definition 9 (Subgroup). A subgroup (H, ∗) of a group (G, ∗) is a group where H is a subset

of G such that ∀ ha, hb ∈ H, (ha ∗ hb) ∈ H.

Definition 10 (Group homomorphism). A group homomorphism is a map φ : G→ H between

two groups (G, ∗G) and (H, ∗H) which preserves the group structure:

φ(ga ∗G gb) = φ(ga) ∗H φ(gb), ∀ga, gb ∈ G . (3.1)

Definition 11 (Direct product of groups). Given two groups (G, ∗G) and (H, ∗H), the direct

product (G×H, ∗G×H) is a group with group product obeying:

(g1, h1) ∗G×H (g2, h2) = (g1 ∗G g2, h1 ∗H h2) . (3.2)

Typically one may endow the group G with additional structure.

Definition 12 (Lie group). A Lie group is a group (G, ∗) such that the set G is a smooth

manifold and the maps ∗ : G×G→ G and ι : G→ G are smooth.

A Lie group homomorphism is a smooth homomorphism between Lie groups. When the

context is obvious we refer to a Lie group homomorphism as a homomorphism. In the following

we write G instead of (G, ∗) when referring to a group.

Definition 13 (Group representation). A group representation on a finite dimensional vector

space V is a group homomorphism ρ : G→ GL(V ).

The space V is called the carrier space, representation space or a G-module. Unless stated

otherwise the space V is always assumed to be complex (and finite dimensional). If G is Lie

group then the homomorphism is a Lie group homomorphism. The dual space V ∗ also carries

a natural representation ρ? : G→ GL(V ∗).
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Definition 14 (Dual representation). The dual representation ρ? of a representation ρ : G→
GL(V ) is given by:

ρ?(g)(fT ) = fT ◦ ρ(g−1), ∀f ∈ V ∗. (3.3)

This preserves the inner product 〈 , 〉 between V and V ∗.

Definition 15 (Unitary representation). A representation ρ of G on a complex vector space V

is unitary if V is equipped with a hermitian inner product 〈 , 〉 such that the group action is

preserved:

〈w, v〉 = 〈ρ?(g)w, ρ(g)v〉 ∀v, w ∈ V . (3.4)

Consider a representation ρ : G→ V of a finite group G. For an arbitrary Hermitian form

( , ) on V define the following:

〈w, v〉 =
1

|G|
∑
g∈G

(ρ?(g)w, ρ(g)v) . (3.5)

Under this product every element ρ(g) is unitary:

〈ρ?(h)w, ρ(h)v〉 =
1

|G|
∑
g∈G

(ρ?(h)ρ?(g)w, ρ(h)ρ(g)v) =
1

|G|
∑
g′∈G

(ρ?(g′)w, ρ(g′)v) = 〈w, v〉 . (3.6)

Hence every complex representation of a finite group G is equivalent to a unitary representation.

This is referred to as being unitarizable.

Now consider the dual representation again, which preserves the inner product 〈 , 〉 between

V and V ∗.

〈ρ?(g)f, ρ(g)v〉 = fTρ(g−1)ρ(g)v = (ρ(g−1)T f)Tρ(g)v . (3.7)

Now using the fact that ρ(g) is unitary we have that ρ(g−1)T = ρ∗(g) with ρ∗(g) the complex

conjugate matrix. Hence we see that the dual representation ρ? of ρ : G→ GL(V ) is isomorphic

to the complex conjugate representation ρ(g)∗ acting on V .

Definition 16 (G-linear map). A G-linear map φ between two representations ρ : G→ GL(V )

and π : G→ GL(W ) is a linear map φ : V →W , which commutes with the group action:

φ(ρ(g)v) = π(g)φ(v) . (3.8)
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This is also known as an intertwining operator, a G-equivariant map or a G-module homo-

morphism. The kernel, image and co-kernel of φ also carry representations of G. In the proof

of Schur’s lemma below we explicitly show that the kernel of a G-equivariant map carries a

representation of G.

Given two representations ρ : G→ GL(V ) and π : G→ GL(W ) then the space Hom(V,W )

of linear maps φ : V → W also carries a representation of G. To see this we need the identity

Hom(V,W ) = V ∗ ⊗W . Let us fix a basis 〈vi| of V ∗ and |wj〉 of W . Then an element φ ∈
Hom(V,W ) can be written as a matrix Mφ:

Mφ =
∑
ij

mij |wi〉〈vj | . (3.9)

The action of G on this element is:

Φ(g)(Mφ) =
∑
ij

mijπ(g)ρ?(g) |wi〉〈vj | =
∑
ij

mijπ(g) |wi〉〈vj | ρ(g−1) = π(g)Mφρ(g−1) . (3.10)

Φ is a representation acting on the linear space Hom(V,W ).

Definition 17 (Direct sum representation). Given two representations ρ : G → GL(V ) and

π : G → GL(W ) the direct sum V ⊕W carries a representation ρ ⊕ π of G. The action of G

on V ⊕W is given by:

(ρ⊕ π)(g)(v ⊕ w) = (ρ(g)v)⊕ (π(g)w) . (3.11)

Definition 18 (Tensor product representation). Given two representations ρ : G → GL(V )

and π : G→ GL(W ) the tensor product space V ⊗W carries a representation ρ⊗ π of G. The

action of G on V ⊗W is given by:

(ρ⊗ π)(g)(v ⊗ w) = (ρ(g)v)⊗ (π(g)w) . (3.12)

The symmetric powers and exterior powers of V also carry representations of G [74].

Definition 19 (Symmetric power). The nth symmetric power of a vector space V is given by

a universal symmetric multilinear map Sym : V × V × ...× V → SymnV .

Universality means that such a map is unique (up to isomorphism), symmetry means that

that it is unchanged under permutation of any of the factors:

Sym(vσ(1), ..., vσ(n)) = Sym(v1, ..., vn), ∀σ ∈ Sn . (3.13)
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SymnV can be embedded in the symmetric subspace of V ⊗n, which is the subspace spanned

by vectors which are invariant under permutation.

Definition 20 (Exterior power). The nth exterior power of a vector space V is given by a

universal alternating multilinear map ∧ : V × V × ...× V → ∧nV .

A map is alternating if it is 0 whenever two of the input vectors are equal. This entails

(when the field underlying the vector space is of characteristic zero):

∧ (vσ(1), ..., vσ(n)) = sgn(σ) ∧ (v1, ..., vn), ∀σ ∈ Sn . (3.14)

∧nV can be embedded in the anti-symmetric subspace of V ⊗n, which is the subspace spanned

by vectors which acquire a phase sgn(σ) when acted on by σ ∈ Sn.

Definition 21 (External tensor product). Given two representations ρ : G → GL(V ) and

π : H → GL(W ) the space V ⊗W carries a representation of (G ×H) known as the external

tensor product representation and denoted by ρ� π. It acts:

(ρ� π)(g, h)(v ⊗ w) = (ρ(g)⊗ π(h))(v ⊗ w) . (3.15)

Definition 22 (Irreducible representation). A representation ρ : G → GL(V ) is irreducible if

the only invariant subspaces of V under the action of G are the trivial subspace {0} and the

space V .

A representation which is not irreducible is reducible.

An important notion for this thesis is that of a restricted representation. Let us consider a

representation ρ : G→ GL(V ) and a subgroup H. Then consider the following elements:

ρ(h),∀h ∈ H . (3.16)

This group ρ(H) is the image of a representation of H which we write ρ|H : H → GL(V ) which

is general reducible:

ρ|H =
⊕
i

πi , (3.17)

where πi → GL(Vi) are irreducible representations of H. Now let us consider the case where the

subgroup is a product subgroup: H ∼= H1×H2 withH1 andH2 compact, then the representation
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decomposes as:

ρ|H =
⊕
i

π1
i � π2

i , (3.18)

where π1
i : H1 → GL(V 1

i ) and π2
1 : H2 → GL(V 2

i ) are irreducible representations of H1 and H2

respectively [81, Lemma 22.6].

We now introduce one of the most used results in representation theory, known as Schur’s

lemma:

Theorem 1 (Schur’s lemma). Given two irreducible representations ρ : G → GL(V ) and

π : G→ GL(W ) and a linear map φ : V →W which commutes with the group action then:

(1) Either φ is an isomorphism, or φ = 0.

(2) If V = W and ρ = π, then φ = λI for some λ ∈ C.

Proof. We follow the proof of [79, Proposition 4].

(1) Let us suppose φ 6= 0. Let V0 be its kernel, i.e. the subspace spanned by all v’s such that

φ(v) = 0. Now since φ is a G-linear map we have that for v ∈ V0: φ(ρ(g(v))) = π(g)(φ(v)) =

π(g)(0) = 0. φ(ρ(g)(v)) = 0 implies that ρ(g)(v) is in the kernel of φ. Since the space V0 is

mapped to itself under the action of G it carries a subrepresentation. Now since V is irreducible

and the map φ is non-zero, it must be the case that V0 is zero.

Let us now consider the image of φ. By a similar argument this is equal to the whole space

W . This shows that φ is an isomorphism.

(2) Now consider the case V = W and ρ = π, where once more V and W are finite

dimensional. The map φ is an invertible linear mapping over C and hence must have an

eigenvalue λ. Define φ′ = φ − λIV . Take an eigenvector v of the map φ: φ(v) = λv. By

construction v is in the kernel of φ′. φ′ is a G-linear map and hence its kernel carries a

representation, which is non-trivial since v ∈ ker(φ′). Since the representation ρ is irreducible

this must be the whole space V implying φ′ = 0. Therefore φ = λIV .

Consider a non-zero G equivariant map φ between two vector spaces V and W with V 6= W

which both carry reducible representations of G. Then the above tells us that the action of φ

on the irreducible subspaces of V is either 0 or an isomorphism. This implies that V and W

carry some irreducible representations of G in common.

52



Permutation cycle notation cycle type

{1,2,3} (1)(2)(3) [1,1,1]

{1,3,2} (1)(23) [2,1]

{2,1,3} (12)(3) [2,1]

{2,3,1} (123) [3]

{3,1,2} (132) [3]

{3,2,1} (13)(2) [2,1]

Table 3.1: In the left-hand column is written a permutation of {1, 2, 3} the middle column gives

that permutation in cycle notation. The right hand column gives the cycle structure of the

permutation.

3.2 The symmetric group Sn and its representations

There is a deep correspondence between representations of the special unitary group SU(d) and

the symmetric group Sn. In this section we review the representation theory of the symmetric

group.

3.2.1 The symmetric group Sn

Definition 23 (Sn). The group Sn consists of all permutations of n elements.

We adopt a cycle notation to label permutations, illustrated for S3 in table 3.1. We note

that there are in general multiple cycle notations for the same permutation. For example:

{1, 2, 3, 4} → {2, 3, 1, 4} . (3.19)

(123)(4) = (231)(4) = (4)(123) . (3.20)

To “read” a permutation in cycle notation, for example (132), one has that “the first element

is replaced by the third element, and the third element is replaced by the second element”.

Typically we will omit 1-cycles, so (1)(23) will be written as (23).

A permutation σ ∈ Sn can be described by a number of disjoint cycles. For example the

permutation σ = (12)(345) has two distinct cycles: a two cycle and a three cycle. This is its
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cycle type. We write [3, 2] for the cycle type of σ = (12)(345) since it contains a 3-cycle and a

2-cycle. Two permutations σ and σ′ which are related by conjugation: σ′ = τστ−1 are said to

belong to the same conjugacy class.

Lemma 4. Any two permutations in Sn in the same conjugacy class have the same cycle type.

Proof. The group Sn is the group of all bijective maps from the set {1, ..., n} to itself. For a

given σ ∈ Sn we consider its orbit on each element. We denote by ni an arbitrary element in

{1, ..., n}. The orbit of the first element is:

(1, σ(1), σ2(1), ...., σk(1)) , (3.21)

where k is some integer < n such that σk+1(1) = 1. The orbit of an arbitrary element is:

(ni, σ(ni), σ
2(ni), ...., σ

ki(ni)) , (3.22)

where ki is some integer < n such that σki+1(ni) = ni. In general there will be elements of Sn

which have the same orbits (up to ordering of elements in the orbit). Ignoring the repeated

orbits, the set of orbits of a given permutation σ can be written as:

{(1, σ(1), σ2(1), ...., σk(1)), (n1, σ(n1), σ2(n1), ...., σk1(n1))...(nm, σ(nm), σ2(nm), ...., σkm(nm))} .
(3.23)

This is just the cycle notation for the permutation σ. Now we show that the conjugation of σ by

an arbitrary τ retains the cycle structure of σ. Consider the following elements τ(1), τ(σ(1)),

τ(σ2(1)), ...., τ(σk(1)). These all belong to the same orbit under τστ−1 since τστ−1τ(σi(1)) =

τ(σi+1(1)). This holds true for every sequence τ(ni), τ(σ(ni)), ...., τ(σki(ni)). Hence every τ(ni)

generates a disjoint orbit under τστ−1 with the same number of elements as the orbit of ni

under σ. This implies that the cycle structure is the same.

In the case of S3 there are three possible conjugacy classes (cycle types):[1, 1, 1], [2, 1] and

[3]. For Sn the cycle types (conjugacy classes) are given by all possible partitions of n.

Definition 24 (Partition). A partition of a positive integer n is a list of positive integers

λ = [λ1, ...λk] with λ1 ≥ λ2 ≥ ... ≥ λk > 0, with
∑

i λi = n. λ ` n denotes that λ is a partition

of n.
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To each partition of n one can associate a Young diagram λ.

Definition 25 (Young diagram). A Young diagram is a finite collection of boxes organised in

left-justified rows, where the row size is weakly decreasing. The Young diagram associated to

the partition λ = [λ1, ...λk] has k rows with λi boxes on the ith row.

Example 1. The Young diagram corresponding to the partition [2, 1] is:

. (3.24)

Since each conjugacy class of Sn is in correspondence with a partition of n, it is the case

that each conjugacy class of Sn is in correspondence with a Young diagram.

Definition 26 (Young tableau). A Young tableau is a Young diagram where each box is filled

with a number from 1 to n, each number appearing exactly once.

There is an immediate equivalence between a permutation of n elements and a Young tableau

of size n.

Example 2. The permutation (1)(23) has Young tableau

2 3
1

. (3.25)

However we observe there can be multiple Young tableaux corresponding to the same per-

mutation. For instance (1)(23) = (1)(32) hence the tableau

3 2
1

, (3.26)

also labels the permutation (1)(23).

Definition 27. A standard Young tableau has increasing entries along each row and each

column.

By using standard Young tableaux we ensure that the correspondence between permutations

and Young tableaux is one-to-one.
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3.2.2 Irreducible representations of Sn

Before studying irreducible representations of Sn we introduce a reducible representation of

Sn defined on its group algebra.

Definition 28 (Group algebra). The group algebra C[G] of a finite group G is the complex

linear space spanned by the elements of G. For a |G| = n element group C[G] = {c1g1 + ... +

cngn|c1, ...cn ∈ C}.

The group algebra, which is a vector space, carries a natural action of the group G. Let us

call ρ the representation of G on C[G]:

ρ : G→ GL(C[G]) , (3.27)

with

ρ(gi)
∑
i

cigj =
∑
i

ci(gigj) . (3.28)

We see that we can easily construct a representation of a group by considering the group

action on the group algebra. This is called the regular representation. Its dimension is naturally

the order of the group, which for Sn is n! .

Theorem 2. The number of irreducible representations of a finite group G is equal to the

number of conjugacy classes of G [79, theorem 7].

Proof. See Appendix B

The above theorem implies that every irreducible representation of Sn is in correspondence

with a Young diagram (since these label conjugacy classes). We now show how to generate the

representation of Sn associated to the diagram λ.

3.2.3 Generating irreducible representations of Sn

A conjugacy class of Sn is labelled by a Young diagram λ and we have seen that every conjugacy

class corresponds to an irreducible representation of Sn. In the following we will use the

standard Young tableau associated to each Young diagram.

Given a tableau t ` n we call row group Rt the subgroup of Sn which permutes elements

within each row of t. Similarly the column group Ct is the subgroup of Sn which permutes

elements within each column of t.
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Example 3.

t = 1 2
3 4

. (3.29)

We have Rt = S{1,2} × S{3,4} and Ct = S{1,3} × S{2,4}. Here Ss just is the group of bijections

from s to itself.

Let us define two elements of C[Sn]:

at =
∑
σ∈Rt

σ , (3.30)

bt =
∑
σ∈Ct

sgn(σ)σ . (3.31)

Let us define the Young symmetrizer as:

ct = at · bt =
∑

σ∈Rtτ∈Ct

sgn(τ)στ . (3.32)

We write cλ for the Young symmetrizer arising from the standard tableau with Young diagram

λ.

Theorem 3. The image of cλ acting on CSn (by right multiplication) is the carrier space Sλ

of an irreducible representation of Sn. Every irreducible representation of Sn can be obtained

in this manner [74, Theorem 4.3].

We do not prove this theorem, but provide an example of how it is used to generate irre-

ducible representations of Sn.

Example 4. Let us construct the Young symmetrizer of λ = [2, 1] to find a subspace of C[S3]

which is acted on by the irreducible representation associated with λ. First we take the standard

tableau:

t = 1 2
3

. (3.33)

Rt = {(12), (1)(2)(3)} and Ct = {(13), (1)(2)(3)}. We call σI the identity transformation. The

Young symmetrizer is:

c[2,1] = σI + σ(12) − σ(13) − σ(12)σ(13) = σI + σ(12) − σ(13) − σ(132) . (3.34)
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Let us consider its action on C[S3], spanned by eI , e(12), e(13), e(23), e(123), e(132). We use the

notation eσ = σ to make clear that these form a basis of the carrier space C[S3]. Below we

compute the action of c[2,1] on these basis elements:

e(1) → c[2,1] , (3.35)

e(12) → e(12) + e1 − e(123) − e(23) = b , (3.36)

e(13) → e(13) + e(132) − e1 − e(12) = −c[2,1] , (3.37)

e(23) → e(23) + e(123) − e(132) − e(13) = d , (3.38)

e(123) → e(123) + e(23) − e(12) − e1 = b , (3.39)

e(132) → e(132) + e(13) − e(23) − e(123) = −d . (3.40)

We observe that b + d = c[2,1] hence the space is 2 dimensional. This representation is known

as the standard representation.

This concludes our treatment of the symmetric group. We have seen how to classify all

irreducible representations via the corresponding Young diagrams, and how to generate these

irreducible representations by applying the Young symmetrizer to the group algebra. We now

proceed to the special unitary group.

3.3 The special unitary group SU(d)

The main group of interest in this thesis is SU(d). In this section we will introduce the notion of a

Lie algebra, and show how to classify irreducible representations of SU(d) via the representations

of the corresponding Lie algebras.

Definition 29 (SU(d)). The Lie group SU(d) is the set of d × d unitary matrices with deter-

minant 1 under matrix multiplication.

SU(d) is a matrix Lie group since it can be realised as a closed subgroup of GLn(C). GLn(C)

is the group of n× n invertible matrices with complex entries. Closure in GLn(C) means that

for every sequence Am ∈ G the limit Am → A is either in G or A is not invertible [80]. Moreover

SU(d) is compact.

58



Definition 30 (Compactness for matrix Lie groups). A matrix Lie group G is compact if it is

closed in M(n;C) (the space of all n×n matrices over C) and bounded. Closure means that for

every sequence Am ∈ G the limit Am → A ∈ G. Boundedness implies that for all A ∈ G there

exists a constant C such that |Ajk| ≤ C, ∀ 1 ≤ j, k ≤ n [80, p. 16].

We observe that compactness requires closure of G as a subset of M(n;C) (and not just

GLn(C)). Many matrix Lie groups are not compact, such as SL(n;C), which is the subgroup of

GLn(C) of matrices with determinant 1. A key property of compact groups is that they possess

a left Haar measure. This allows us to establish the following proposition.

Proposition 1. If ρ is a representation of a compact group G on a finite dimensional V then

V admits a Hermitian inner product such that ρ is unitary [82, Proposition 4.6].

Proof. For an arbitrary Hermitian form ( , ) on V define the following:

〈w, v〉 =

∫
G

(ρ(g)w, ρ(g)v)dg (3.41)

Under this product every element ρ(g) is unitary:

〈ρ(h)w, ρ(h)v〉 =

∫
G

(ρ(h)ρ(g)w, ρ(h)ρ(g)v)dg =

∫
G

(ρ(g′)w, ρ(g′)v)dg′ = 〈w, v〉 . (3.42)

This entails that every finite dimensional representation of SU(d) is unitarizable.

We now introduce the definition of a Lie algebra for matrix Lie groups. We note that this is

not the most general definition of a Lie algebra since there are Lie groups which are not matrix

Lie groups.

Definition 31 (Lie algebra 1). The Lie algebra g of a matrix Lie group G is the set of all

matrices X such that eXt ∈ G for all t ∈ R [80, p.56].

g has a real vector space structure, since for any X1, X2 ∈ g any real linear combination of

the two is also in g. We observe that g can have a complex vector space structure if it is such

that for every X in g iX is also in g.

Definition 32 (Lie algebra 2). A finite dimensional real ( complex) Lie algebra g over R ( C)

is a real ( complex) vector space g together with a bilinear operator: [ , ] : g × g → g which is

anti-commutative and which obeys the Jacobi identity.
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A binary operation [ , ] : g × g → g satisfies the Jacobi identity if all X,Y and Z in g are

such that:

[X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0 . (3.43)

Definition 33 (Lie algebra representation). The representation π of a Lie algebra g on a

carrier space V is map π : g → gl(V ) with gl(V ) the space of linear maps V → V . This map

preserves the structure of the Lie algebra:

π([X,Y ]) = π(X)π(Y )− π(Y )π(X) . (3.44)

Proposition 2. Let G be a matrix Lie group with Lie algebra g and ρ a finite dimensional real

or complex representation of G acting on V . Then there exists a unique representation π of g

on V such that

ρ
(
eX
)

= eπ(X) , (3.45)

for all X ∈ G [80, Proposition 4.4].

The above proposition shows that we can study representation of matrix Lie groups by

studying the representations of the corresponding Lie algebras. The Lie algebra of SU(d) is

su(d) the space of d × d traceless anti-Hermitian matrices. We call the complexification of a

Lie algebra g the Lie algebra with elements X + iY with X,Y ∈ g. A representation of the

complexified Lie algebra gC is irreducible if and only if the representation of the corresponding

real Lie algebra g is irreducible [80, Proposition 4.6]. Hence we can study the representations

of su(d) by studying the representations of its complexification sl(d;C).

3.3.1 Lie Algebras and highest weight theory

In this section we study the irreducible representations of the algebra sl(d;C) which we refer

to as g. We follow the approach of [74].

Let us consider the maximal commuting subalgebra h of g (known as the Cartan subalgebra),
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this is a subspace of g which has dimension d− 1:

h =




a1

a2

. . .

ad

 |
∑
i

ai = 0


. (3.46)

Let us consider an arbitrary representation π : g → gl(V ). The action of h on V is given by

π(H)v, ∀H ∈ h. An eigenvector of h is a vector v ∈ V which is a simultaneous eigenvector of

all the elements in h:

π(H)v = α(H)v, ∀H ∈ h, v 6= 0 . (3.47)

The eigenvalue α(H) is defined for every H ∈ h; it is a function from h → R which is linear.

Hence α ∈ h?. We consider a basis given by a set of diagonal matrices {H1, ...,Hd−1}. α(H) is

fully determined by its values on the basis Hi:

π(Hi)v = α(Hi)v . (3.48)

By setting α(Hi) = α(i) we see that we can write the functional α in the dual basis: α =

(α(1), ..., α(d−1)). We call the eigenspace of an eigenvalue α the subspace spanned by all v ∈ V
satisfying (3.47). The carrier space V of any finite dimensional representation of g can be

decomposed as:

V =
⊕
α

Vα , (3.49)

with Vα an eigenspace with eigenvalue α and the sum ranges over a finite number of elements

in h?. This construction holds for all semi-simple Lie algebras.

The adjoint action

We now study the vector space sl(d;C) some more, by considering its action onto itself. The

representation of a Lie algebra π : g→ gl(g) is called the adjoint representation. The action of

an element π(X) of the group algebra on an element Y of the carrier space g is given by:

π(X)Y = [X,Y ] . (3.50)

Now we first determine the action π(H) of elements of the Cartan subalgebra on h:

π(H)H ′ = [H,H ′] = 0, ∀H ∈ h , ∀H ′ ∈ h . (3.51)
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Hence the (d − 1) dimensional subspace h is the 0 eigenspace of the action π(h) on g. There

are no other elements in g which belong to the 0 eigenspace of π(h). Let us label by gα the

non-zero eigenspaces of the action of h on g. We can decompose g:

g = h⊕
(⊕

α

gα

)
. (3.52)

We now study the subspaces gα. These are eigenspaces of the action π(h). We have for every

H ∈ h and every Xα ∈ gα

π(H)Xα = [H,Xα] = α(H)Xα . (3.53)

Let us determine the form of Xα. An arbitrary H ∈ h is of the form:

H =


a1

a2

. . .

ad

 ,
∑
i

ai = 0 . (3.54)

The adjoint action is given by:

π(H)Xα = [H,Xα] = HXα −XαH . (3.55)

Let us compute this component wise:

[H,Xα]ij =
∑
k

Hik(Xα)kj −
∑
k

(Xα)ikHkj = ai(Xα)ij − (Xα)ijaj . (3.56)

Setting π(H)Xα = α(H)Xα we obtain:

(ai − aj)(Xα)ij = α(H)(Xα)ij , ∀H . (3.57)

This implies the eigenvectors of π(h) are Xα = Eij where Eij contains a single non-zero entry

at the position ij. The eigenvalues are α(H) = ai − aj .

π(H)Eij = [H,Eij ] = (ai − aj)Eij . (3.58)

Eigenvalues here are linear functionals in h?. Let us call Li the linear functional which acts:

Li


a1

a2

. . .

ad

 = ai . (3.59)
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Hence the eigenvalues α(H) corresponding to the subspaces gα are of the form α(H) = Li−Lj .
Therefore each subspace gα is of the form gLi−Lj , i 6= j. Now let us consider the action of an

element Xα ∈ gα on an element Y ∈ gα′ : π(Xα)Yα′ = [Xα, Yα′ ]. We now show that this belongs

to one of the eigenspaces of h:

[H, [Xα, Yα′ ]] = [Xα, [H,Yα′ ]] + [[H,Xα], Yα′ ] (3.60)

= [Xα, α
′(H)Yα′ ] + [α(H)Xα, Yα′ ] (3.61)

= (α+ α′)(H)[Xα, Yα′ ] . (3.62)

Hence [Xα, Yα′ ] is an eigenvector of the adjoint action of h with eigenvalue α+ α′. This shows

that we can move between the eigenspaces gα′ by the action of elements in other eigenspaces

gα:

π(gα)(gα′) = gα+α′ . (3.63)

Take the algebra g = h
⊕

α gα. The eigenvalues α are called roots. These form a root system Φ

embedded in h∗. We do not define a root system formally, it is essentially just a set of vectors

embedded in Euclidean space which obey some symmetry constraints. We remember that these

are given by Li − Lj ∈ h∗. We call simple roots those which are of the form Li − Li+1; the set

of simple roots is ∆. Every element in Φ is an integer linear combination of simple roots. All

positive (integer) combinations of elements in ∆ are positive roots Φ+.

Example 5. We consider the case of SU(3) explicitly. Take as a basis for h the following:

H1 =
1

2


1 0 0

0 −1 0

0 0 0

 , H2 =
1

2
√

3


1 0 0

0 1 0

0 0 −2

 . (3.64)

These span h0. We now consider the (adjoint) action of H1 and H2 on the 6 non-zero eigen-

vectors, i.e. the subspaces gα. These are given by Eij, with i 6= j. We deterine the six eigen-

values αij given by [H,Eij ] = αij(H)Eij. We choose the basis {H1, H2} and write a functional

α = (α(H1), α(H2)). Using [H,Eij ] = (ai − aj)Eij we can write the six eigenvalues as:

α12 = (1, 0), α13 = (
1

2
,

√
3

2
), α23 = (−1

2
,

√
3

2
) , (3.65)

α21 = (−1, 0), α31 = (−1

2
,−
√

3

2
), α32 = (−1

2
,

√
3

2
) . (3.66)

63



These form a root system Φ. We observe that αij = −αji (this is one of the conditions for

forming a root system). The simple roots are α1,2 and α2,3 which form the set ∆. We write the

roots in the (non-orthogonal) basis (α12, α23):

α12 = (1, 0), α13 = (1, 1), α23 = (0, 1) , (3.67)

α21 = (−1, 0), α31 = (−1,−1), α32 = (0,−1) . (3.68)

The positive roots are those which are positive combinations of the roots in ∆, hence Φ+ =

{α12, α13, α23}. There is a partial order on this set (defined in terms of simple roots) which

makes α13 the highest element of this set. We will define this partial order in the next section.

Arbitrary representation

Let us now consider an arbitrary irreducible representation ρ : g → gl(V ). By equation (3.49)

the carrier space V decomposes into eigenspaces of the action of ρ(h):

V =
⊕
β

Vβ . (3.69)

The subspaces Vβ are weight spaces, with weight β. Now let us take an element Xα ∈ gα and

consider its action on an eigenvector v ∈ Vβ: ρ(Xα)v. We now show that ρ(Xα)v is also an

eigenvector of ρ(h).

ρ(H)ρ(Xα)v = ρ([H,Xα])v + ρ(Xα)ρ(H)v . (3.70)

We use the fact that [H,Xα] = α(H)Xα:

ρ(H)ρ(Xα)v = α(H)ρ(Xα)v + β(H)ρ(Xα)v = (α(H) + β(H))ρ(Xα)v . (3.71)

Hence we can move vectors from subspace Vβ by acting with the elements Xα ∈ gα. In other

words the action of ρ(Xα) maps Vβ to Vα+β, where α = Li − Lj . We see that by finding one

vector in an eigenspace Vβ we can then map it to all other eigenspaces by repeated action of

ρ(Xα) = ρ(Eij) (for differing values of i and j). The subspaces Vβ form a lattice generated by

Li−Lj . This lattice is embedded in a space Rd−1 (since the Li−Lj are just functionals in h∗).

We show the weight diagram of the adjoint representation of su(3) in figure 3.1.

The lattice corresponding to a representation ρ will have extremal subspaces where the

action of a certain ρ(Eij) will give 0. These subspaces are on the edge of the lattice. We pick
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Figure 3.1: Weight diagram for the adjoint representation of su(3). The central point corre-

sponding to the 0 eigenvalue subspace is two dimensional. If we remove this subspace we obtain

the root system.

an arbitrary such subspace to be the most extremal. We call the eigenvector of this subspace

the highest weight vector.

We impose a partial ordering on the weight spaces as follows: λ � µ if λ−µ can be expressed

as a positive linear combination of positive roots. Essentially this guarantees that the highest

weight will lie in the “direction” of the positive roots. Indeed it is the unique eigenvector of h

which is mapped to 0 under the action of all elements Eij with i < j (since these are positive

roots). We do not prove it here, but the eigenspace in which the highest weight vector lives is

one dimensional, which implies that the highest weight vector is unique [74, Proposition 14.13].

Once we have defined the highest weight vector we can generate the space V by applying

ρ(Eij) for all i > j. We observe that in the case where a representation is reducible, then by

applying ρ(Eij) for all i > j we generate the carrier space of an irreducible sub-representation.

Highest weights of some important representations

Let us find the highest weights of some of the representations. For the fundamental represen-

tation on V ∼= Cd, with a basis {|ei〉}i=1d we have:

H |ei〉 = Li |ei〉 , ∀H ∈ h . (3.72)
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Hence the weights are given by Li. The highest weight is L1 by the above ordering.

Next let us study the dual representation. For a Lie Algebra the dual of a representation

can be defined from the dual of a group representation:

ρ?(X) =
d

dt
ρ?(etX)|t=0 =

d

dt
ρ(e−tX)|t=0 = −ρ(X) . (3.73)

Where we have used the fact that the representation is unitarizable and ρ?(g) = ρ(g)∗. Hence

the weights of the dual representation are −Li with highest weight −Ld.
Similarly let us consider the action of a Lie algebra element on the tensor product of two

spaces V and W carrying representations ρ and π respectively:

(ρ⊗π)(X) =
d

dt
[(ρ⊗π)(etX)]t=0 =

d

dt
[ρ(etX)⊗π(etX)]t=0 = ρ(X)⊗π(I)+ρ(I)⊗π(X) , (3.74)

where in the last step we use the standard product rule for derivatives.

Let us consider the action on ∧2(V ), a space spanned by elements of the form |ei〉 |ej〉 −
|ej〉 |ei〉. The action of the Lie algebra on this space is given by X ⊗ I + I ⊗X. The action of

an arbitrary element of the Cartan subalgebra on a basis vector |ei〉 |ej〉 − |ej〉 |ei〉 is:

(H ⊗ I + I⊗H)(|ei〉 |ej〉 − |ej〉 |ei〉) = Li |ei〉 |ej〉 − Lj |ej〉 |ei〉+ Lj |ei〉 |ej〉 − Li |ej〉 |ei〉

= (Li + Lj)(|ei〉 |ej〉 − |ej〉 |ei〉) . (3.75)

Hence the representation acting on ∧2(Cd) has weights Li + Lj (i 6= j). The highest weight

is L1 + L2. Similarly the representation acting on ∧k(Cd) with k ≤ d − 1 has highest weight∑k
i=1 Li [74]. Observe that for k = d − 1 the highest weight is

∑d−1
i=1 Li = −L1 and hence the

representation acting on ∧d−1V is equivalent to the dual representation (acting on V ∗).

3.3.2 Classifying irreducible representations via highest weight vectors

Due to symmetries of the weight lattice (and the partial ordering defined above) the highest

weight vector belongs to a cone with edges generated by the vectors L1, L1 +L2, ...,
∑d−1

i=1 Li [74,

p. 216]. Hence it can be written as:

w = j1L1 + j2(L1 + L2) + ...jd−1(L1 + ...+ Ld−1), ji ≥ 0 , (3.76)

also written as:

w =
∑
i

jiwi, ji ≥ 0 , (3.77)
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where wi =
∑i

k=1 Lk are known as the fundamental weights. Every highest weight vector can be

written as a linear combination of these with positive integer coefficients [74, p. 205]. We label

ρj1,...,jd−1
the representation with highest weight vector w as given above. This is called the

Dynkin notation. Any d− 1 tuple of natural numbers (j1, ..., jd−1) will correspond to a unique

irreducible representation with highest weight vector of the form given in equation (3.76) [74,

Theorem 14.18]. This allows us to classify all irreducible representations of sl(d;C). We now

study how to generate representations associated to a given (d− 1) tuple (j1, ..., jd−1).

Given representations acting on V and W with highest weight vectors v and w (with weights

α and β respectively) the vector v ⊗ w ∈ V ⊗W is a highest weight vector of a representation

acting on V ⊗W with weight α+ β [74, Observation 13.2]. As a specific case of this note that

the vector v⊗n ∈ Symn(V ) has highest weight nα. Hence using the fact that the highest weight

of ∧k(V ) (V ∼= Cd) is
∑k

i=1 Li it follows that:

Proposition 3. [74, p. 221] The representation ρj1,...,jd−1
with highest weight j1L1 + j2(L1 +

L2) + ...jd−1(L1 + ...+ Ld−1) appears inside the tensor product:

Symj1V ⊗ Symj2(∧2V )⊗ ...⊗ Symjd−1(∧d−1V ) . (3.78)

This tells us that the irreducible representation ρj1,...,jd−1
acts on some subspace of V ⊗n,

where n =
∑

i iji. In order to find carrier spaces of irreducible representations of SU(d) we

need just project onto subspaces of V ⊗n. We then generate the carrier space of the irreducible

representation by acting with U⊗n on a vector in the subspace corresponding to that irreducible

representation. We now see how to do this for a specific case.

Let us consider the case ρj,0,...,0 which has highest weight jL1. By the above proposition the

carrier space of this representation must live within Symj(V ). We observe that we can project

onto the subspace Symj(V ) by applying the following projector onto V ⊗j :

S =
1

j!

∑
σ∈Sj

σ . (3.79)

Where σ acts like:

σ : |ei1〉 ⊗ |ei2〉 ⊗ ...⊗ |eij 〉 7→ |eiσ(1)
〉 ⊗ |eiσ(2)

〉 ⊗ ...⊗ |eiσ(j)
〉 . (3.80)
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We observe that S is just the normalised Young symmetrizer c[j]. Moreover we can show that

the representation carried by Symj(V ) is an irreducible representation [83, Theorem 5], hence

it must the representation with highest weight vector L1.

By generalising this procedure we will be able to generate all irreducible representations

of SU(d). That is to say will apply a Young symmetrizer to a tensor power V ⊗n to generate

irreducible representations of SU(d). However in general it will not be so straightforward which

Young symmetrizer cλ corresponds to the representation with Dynkin index (j1, ..., jd−1).

3.3.3 Schur-Weyl duality and Weyl’s construction

As we have seen we can obtain irreducible representations of sl(d;C) (and by extension SU(d))

by considering the action of SU(d) on V ⊗n with V ∼= Cd the carrier space of the fundamental

representation. Let us consider the action of SU(d) on (Cd)⊗n:

ρ : SU(d)→ GL((Cd)⊗n) (3.81)

ρ(U) : |ei1〉 ⊗ |ei2〉 ⊗ ...⊗ |ein〉 7→ U |ei1〉 ⊗ U |ei2〉 ⊗ ...⊗ U |ein〉 , U ∈ SU(d) . (3.82)

Let us now consider the action of the symmetric group Sn:

π : Sn → GL((Cd)⊗n) (3.83)

σ : |ei1〉 ⊗ |ei2〉 ⊗ ...⊗ |ein〉 7→ |eiσ(1)
〉 ⊗ |eiσ(2)

〉 ⊗ ...⊗ |eiσ(n)
〉 , σ ∈ Sn . (3.84)

The actions of these two group commute:

Uσ(|v〉) = σU(|v〉) ,∀ |v〉 ∈ (Cd)⊗n . (3.85)

Schur-Weyl duality states that the space (Cd)⊗n which carries a representation of SU(d)×Sn

decomposes as:

(Cd)⊗n ∼=
⊕
λ

Vλ ⊗ Sλ , (3.86)

where the sum is taken over Young diagrams with n boxes and at most d rows (denoted by

λ ` (n, d)). We see that Young diagrams (of at most d rows) label irreducible representations

of SU(d). This duality also tells how to decompose the representations ρ and π of SU(d) on

(Cd)⊗n:

ρ(U) ∼=
⊕
λ

ρλ(U)⊗ ISλ . (3.87)
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Similarly:

π(σ) ∼=
⊕
λ

IVλ ⊗ πλ(σ) . (3.88)

We can project onto the carrier space Vλ using the Young symmetrizer of (3.32). Let us

consider the Young symmetriser for an arbitrary partition λ ` (n, d) and its Young symmetrizer

cλ. We consider the right action of cλ on the space (Cd)⊗n; since cλ ∈ C[Sn] this action is given

by equation (3.84). The image of cλ on V ⊗n carries an irreducible representation of SU(d) [74,

Theorem 6.3]. The image of cλ on (Cd)⊗n ∼= V ⊗n is denoted by SλV where Sλ is known as the

Schur functor [74].

Example 6. Let us consider the irreducible representation of SU(3) labelled by λ = [2, 1]. The

Young symmetrizer c[2,1] was computed in example 4.

c[2,1] = e1 + e(12) − e(13) − e(132) . (3.89)

λ has three boxes, hence we need to consider the action of c[2,1] on V ⊗3. The action of c[2,1] on

v1 ⊗ v2 ⊗ v3 is:

v1 ⊗ v2 ⊗ v3 + v2 ⊗ v1 ⊗ v3 − v3 ⊗ v2 ⊗ v1 − v3 ⊗ v1 ⊗ v2 . (3.90)

The subspace of V ⊗3 spanned by vectors of this form is Vλ.

The highest weight of a representation ρλ is given in the following proposition:

Proposition 4. The representation Sλ(Cd) has highest weight λ1L1 + λ2L2 + ...+ λd−1Ld−1 +

λdLd. [74, Proposition 15.15]

Hence we can translate between the Dynkin notation (in terms of fundamental weights)

and the partition notation. We remember that an irreducible representation with Dynkin label

(j1, ...jd−1) has a highest weight vector j1L1 + j2(L1 + L2) + ... + jd−1(L1 + ... + Ld−1). This

implies

(j1, ...jd−1) = (λ1 − λ2, λ2 − λ3, ..., λd−1 − λd) . (3.91)

We observe that two different partitions λ(1) and λ(2) which differ by a constant term c, i.e.

for which λ
(1)
i − λ

(2)
i = c for all i = 1, 2, ..., d correspond to the same Dynkin label. Applying

the functors Sλ(1) and Sλ(2) to V will project onto the same irreducible representation of SU(d).
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Since partitions differing by a constant give the same representation of SU(d) we often fix

λd = 0. This requirement ensures each representation of SU(d) corresponds to a unique λ. This

entails λk =
∑d−1

i=k
ji.

3.4 Littlewood-Richardson rule

The decomposition of the tensor product of two representations of SU(d) labelled with partitions

λ and µ is written:

SλV ⊗ SµV ∼=
⊕
ν

Nν
λµ SνV, (3.92)

where the Nν
λµ are known as the Littlewood-Richardson coefficients. The sum is over partitions

ν with |ν| = |λ| + |µ| and which are obtained from a construction we now describe. We

take the diagram µ and fill the first row with 1’s, the second with 2’s, ... Then we take these

numbered boxes and add them to λ in such a manner that the diagram is a valid Young diagram.

Moreover one requires that the entries are weakly increasing along rows and strictly increasing

along columns (starting from the top of the column). We illustrate using some examples, using

· to indicate this product of diagrams:

Example 7.

· =

1 1

⊕

1

1

⊕

1 1

. (3.93)

· =
1 1

⊕
1

1

. (3.94)

· =

1
2

⊕

1

2

. (3.95)

· =
1
2 ⊕

1

2

⊕
1
2

. (3.96)
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We now consider the decomposition of the following tensor product representation of SU(d),

which we will need later in this thesis:

Symj(U)⊗ Symj(U∗) . (3.97)

In Dynkin notation these are labelled by (j, 0, ..., 0)︸ ︷︷ ︸
d−1

and (0, 0, ..., j)︸ ︷︷ ︸
d−1

. The corresponding par-

titions are λ(1) = [j, 0, ..., 0]︸ ︷︷ ︸
d

and λ(2) = [2j, j, ..., j]︸ ︷︷ ︸
d

. We invoke Pieri’s formula [74, p.79 (6.8)]

which tells us that the product of these diagrams decomposes as the sum over all diagrams

obtained by adding j boxes to λ(2) in such a manner that no added boxes are in the same

column. We illustrate the case j = 3, d = 4:

· = ⊕

⊕ ⊕ . (3.98)

Translating into Dynkin notation we obtain:

(3, 0, 0)⊗ (0, 0, 3) =

3⊕
i=0

(i, 0, i) . (3.99)

Indeed we see that in the general case we have:

(j, 0, ..., 0)⊗ (0, 0, ..., j) =

j⊕
i=0

(i, 0, ..., 0, i) . (3.100)

We note that the coefficientsNν
λµ also indicate the multiplicity of the representations ∆λ�∆µ

in the restriction of the representation ∆ν of S|ν| to S|λ| ×S|µ|. Once more |ν| = |λ|+ |µ|.
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Chapter 4

Modifying measurement: framework

and classification

In this chapter we introduce a framework which will allow us to describe alternatives to the

measurement postulates of quantum theory. We derive constraints on the possible alternative

measurement postulates imposed by the requirement that the theory defined by these postulates

is operational. A theorem is presented which shows that all alternative measurement postulates

are in correspondence with representations of the dynamical group PU(d). Following this we

classify all possible alternative measurement postulates, via the aforementioned representations.

This classification is carried out using a representation theoretic tool known as a branching rule.

This chapter is based on [47, 48].

4.1 Modifying the measurement postulates of quantum systems

4.1.1 Finite dimensional quantum theory

The standard axioms of quantum theory for finite dimensional systems are:

P0. Each system type corresponds to Cd for d = 2, 3, ...

P1. The pure states of a system Cd correspond to the rays PCd 1.

1A ray on Cd corresponds to a one dimensional subspace of Cd
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P2. An isolated system in a pure state ψ ∈ PCd evolves unitarily: ψ → Uψ, U ∈ PU(d) 2.

P3. a) A measurement consists of a list of outcomes (F1, ..., Fn) where an outcome Fi corre-

sponds to a Hermitian operator F̂i on Cd, F̂i ≥ 0 and
∑

i F̂i = I.

b) The probability of a measurement outcome Fi occurring for a state ψ is given by the

Born rule: p(Fi|ψ) = 〈ψ|F̂i|ψ〉.

P4. The joint pure states of two systems CdA and CdB are rays on CdA ⊗ CdA ∼= CdAdB .

In this axiomatisation of quantum theory we have not included post-measurement states

or the notion of repeated measurements. The fact that mixed states are of the form ρ =∑
i pi|ψi〉〈ψi| and evolve as UρU † is a consequence of the above postulates. Postulates P3. a)

and b) can be reformulated as follows:

P3’. The probabilities of outcomes of measurements on a system Cd is the set of functions

Fd = {p(F |ψ) = 〈ψ|F̂ |ψ〉 |F̂ ≥ 0} with F̂ Hermitian.

Under the background assumption that any set outcomes which sum to one on all states

can form a measurement this is equivalent to P3. a) and b). We observe that this postulate

is just a set of functions Fd which give the probabilities of outcomes, defined for each system

type Cd.

4.1.2 Outcome probability functions

In order to consider theories with different measurement postulates, we need to modify postulate

P3′. Postulate P3′ states that outcomes are associated to positive Hermitian operators, and

that probabilities of outcomes occurring are given by the Born rule. Hence to change it we need

to have a framework where outcomes are no longer necessarily associated to these operators,

and where probabilities of outcomes occurring are given by different functions. We recall that

in the operational approach if two outcomes of two measurement procedures give the same

probability on all states, then they correspond operationally to the same outcome. Hence an

outcome is identified with a function that gives a probability on all states.

2PU(d) is obtained by taking equivalence classes of matrices in U(d) up to phases
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Definition 34. An outcome probability function (OPF) for a system with pure states PCd is a

function F : PCd 7→ [0, 1] which gives the probability of an outcome F occuring: P (F |ψ) = F (ψ).

Hence an alternative measurement postulate will just be a set of OPFs. These contain all

the information about measurement outcomes and the probability that they occur given a pure

state ψ ∈ PCd.

P3’. mod. The set of outcome probability functions of a system Cd is the set of OPFs Fd =

{P (F |ψ) = F (ψ)}.

Here there is the implicit assumption that any set of outcomes which sum to one on all

states form a measurement and hence the above postulate contains all the information about

measurements. We can account for systems where this is not the case by adding in an extra

postulate which specifies which sets of outcomes are valid measurements.

Assumption. Given an OPF set Fd any list of elements (F1, ..., Fn) with Fi ∈ Fd for all

i ∈ (1, .., n) such that
∑

i Fi(ψ) = 1 ∀ψ ∈ PCd form a measurement.

A system of type Cd with modified measurement postulates is one with pure states and

dynamics given by P1., P2. and a measurement structure given by some set Fd. We sometimes

write (Cd,Fd) for a system Cd to make explicit the OPF set.

A theory with modified measurement postulates is defined by postulates P0., P1., P2.,

P3’. mod and P4. In other words such a theory is just a set of systems (Cd,Fd) for every

d ≥ 2 which have the same pure states, dynamics and pure state composition rules as quantum

theory.

4.1.3 Operational constraints of Fd for a given theory

In Chapter 2 we outlined the framework of operational theories. The operational framework

imposes constraints on the possible sets Fd of OPFs. In this section we explore all the conse-

quences the operational approach imposes on the OPF sets of a given theory.

Single system experiment

The sets Fd contain outcome probability functions, in order for them to be operationally mean-

ingful they must form part of a measurement. From the the causality principle and the require-
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ment that every outcome is part of a measurement we have the following constraint:

C0. (Existence of unit OPF and complement) For every system Cd, ∃ ud ∈ Fd where ud(ψ) =

1, ∀ψ ∈ PCd. Moreover for every F ∈ Fd the OPF Fc(ψ) = ud(ψ)− F (ψ) is also in Fd.

From the pre-operational assumption that an agent is free to subjectively group devices as

she pleases it follows that a transformation device composed in sequence with a measurement

device is itself a valid device. From its input/output characteristics (one input and no output)

we infer that it is a measurement device. This implies:

C1. (Closure under transformation) If F ∈ Fd then F ◦ U = F (Uψ) ∈ Fd, ∀U ∈ SU(d).

We observe that this is the only constraint on measurement devices which emerges from con-

sidering operational properties of single system circuits. Further constraints will emerge when

considering probabilistic operations. The operational assumption that ensembles of procedures

of a given kind form a valid procedure of that kind entails:

C2. (Closure under mixing) For every ensemble {pi, Fi}i the OPF F (ψ) =
∑

i piFi(ψ) ∈ Fd.

In order to proceed we need to consider multiple system experiments. Associativity will

simplify the task, since it entails that one need only consider two system setups.

Multiple system experimental setup

The associative nature of parallel composition entails that all manners of partitioning an exper-

imental setup into subsystems are equivalent. As a consequence of this we can always consider

a multi-partite setup by partitioning it into a bi-partite setup, and then dividing the sub-setups

into further bi-partite setups if necessary. For instance a tri-partite setup A⊗B⊗C can always

be viewed as a bi-partite setup (A⊗B)⊗C. The bi-partite setup A⊗B will impose constraints

on the sets FdA , FdB and FdAdB . The bi-partite setup (A⊗B)⊗C will impose constraints on the

sets FdAdB , FdC and FdAdBdC . By just analysing these two bi-partite setups we will find all the

operational constraints emerging from the tri-partite setup A ⊗ B ⊗ C. Hence the operational

constraints on the sets Fd of a given theory are all contained within two system experimental

setups.
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In the following we consider theories with systems (Cd,Fd) (one for every d ≥ 2) and

determine the constraints on the allowed Fd implied by two system experimental setups (which

have to be met for every pair of systems). The most general form of an experiment with

two systems (where all transformations have been absorbed in the preparation/measurement

devices) is shown in figure 4.1.

PAB

B

MAB

A

Figure 4.1: Arbitrary two system experiment

In the case where both preparation and measurement are separable then the experiment

can be viewed as two separate experiments, which implies probabilities factor for product

preparations and product measurements as shown in equation (2.17). A product was introduced

in equation (2.43) which maps procedures on single systems to procedures on a composite

system. We can define an equivalent product in the OPF framework:

C3. (Existence of product OPFs) For any two systems (CdA ,FdA) and (CdB ,FdB) which com-

pose to a system (CdAdB ,FdAdB) in a given theory, it must be the case that for every

FA ∈ FdA and FB ∈ FdB there exists a product OPF in FdAdB . That is to say there must

exist an associative product ? : FdA ×FdB → FdAdB such that

(FA ? FB)(ψA ⊗ φB) = FA(ψA)FB(φB) , (4.1)

for all FA ∈ FdA , FB ∈ FdB , ψA ∈ CdA , φB ∈ CdB .

The ?-product satisfies udA ? udB = udAdB (following from equation (2.45)) and is bilinear
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when extended to ? : RFdA ×RFdB → RFdAdB (following from equation (2.43)). Here RF
is the real linear span of F .

Now for a given theory with alternative measurements, we consider all possible ways of

partitioning a two system experiment to derive the constraints on the OPF sets Fd.
By the definition of a preparation, any operational procedure which outputs a system is a

preparation. Hence consider the case where the measurement is separable. The procedure of

making a joint preparation and making a measurement on B is a preparation of a state A as

illustrated in Figure 4.2.

Operational Implication (Steering as preparation). Operationally Alice can make a prepa-

ration of system A by making a preparation of AB and getting Bob to make a measurement on

system B.

PAB

OB

Figure 4.2: Preparation by steering.

This entails:

C4. (Preparation by steering) For each φAB ∈ CdA ⊗ CdB and FB ∈ FdB there is an ensemble

(ψiA, pi) in CdA such that

(FA ? FB)(φAB)

(udA ? FB)(φAB)
=
∑
i

piFA(ψiA) , (4.2)

for all FA ∈ FdA . That is, the reduced state on A conditioned on outcome FB on B (and

re-normalized) is a valid mixed state of A.
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By the definition of a measurement any operational procedure which inputs a system and

outputs no system is a measurement. Consider the case where the preparation is separable.

Then the procedure of preparing system B and jointly measuring A and B is a measurement

procedure on A as shown in Figure 4.3.

PB

OAB

Figure 4.3: Measurement using ancilla.

Operational Implication (Measuring with an ancilla). A valid measurement for Alice consists

in adjoining her system to an ancillary system B and carrying out a joint measurement.

C5. (Measuring with an ancilla) Consider measurements on system CdA with the help of an

ancilla CdB . For any ancillary state φB ∈ CdB and any OPF in the composite FAB ∈ FdAdB
there exists an OPF on the system F ′A ∈ FdA such that

F ′A(ψA) = FAB(ψA ⊗ φB) , (4.3)

for all ψA.

In the bi-partite case these are no further methods of generating preparations and measure-

ments (when we absorb transformations in either for the two procedures). This can be seen

visually from the diagrams for two system experiments. We have studied all combinations of

separable/non-separable measurement and preparation procedures. Hence when determining

whether a pair of systems is consistent with operationalism, these are the only constraints which

we need to consider. By associativity if all pairwise combinations of systems in a theory are

consistent with these constraints then the theory as a whole (when it describes scenarios beyond

the bi-partite case) will be operationally consistent.
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4.2 Classification of all alternative measurement postulates for

single systems

In the following we will be following the reasoning of section 2.4 in order to derive the state

spaces for systems Cd with OPF sets Fd. We will adopt a less abstract, more basis dependent

approach in representing states and transformations and effects, as in [6]. This approach will

be useful for the next chapter where we explore informational properties of these systems. For

this chapter (and the rest of the thesis) we make one assumption which, whilst natural within

the operational framework, is an additional assumption.

Assumption. The set of mixed states is finite dimensional

4.2.1 Deriving the convex state space

Linear representation

Let us consider a system (Cd,Fd). The probability of an outcome F occurring for an en-

semble {pi, ψi}i is P (F |{pi, ψi}i) =
∑

i piF (ψi). The extension of F to the set of ensembles:

F ({pi, ψi}i) =
∑

i piF (ψi) is a convex-linear function. We define the space of mixed states, i.e.

equivalence classes of ensembles under the following equivalence relation:

P (F |{(pi, ψi)}i) = P (F |{(p′j , ψ′j)}j), ∀F ∈ Fd . (4.4)

From Lemma 1 the set of mixed states are linear forms on RFd (the real linear span of Fd).
We consider the linear forms Ω̄ψ corresponding to pure states. Ω̄ is a map from PCd to (RFd)∗.
By picking an arbitrary basis we can write a state Ω̄ψ as follows:

Ω̄ψ =


F (1)(ψ)

F (2)(ψ)
...

F (n)(ψ)

 . (4.5)

The outcomes {F (1), ...., F (n)} are called fiducial outcomes [6]. The real linear span of all states

span(Ω̄PCd) is an n-dimensional real vector space. Every OPF F is a linear combination of the
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fiducial outcomes:

F (ψ) =
∑
i

αiF
(i)(ψ) . (4.6)

Hence to every F (ψ) we can associate the linear form Λ̄F such that Λ̄F (Ω̄ψ) = F (ψ). As a

dual vector (in this basis) we have Λ̄F = (α1, ..., αn). We can write

P (F |ψ) = Λ̄F · Ω̄ψ . (4.7)

As shown in section 2.4 the ensemble {(pk, ψk)}k is represented as
∑

k pkΩ̄ψk . Let us consider

the action of transformations U on this space. The representation of a state Ω̄Uψ is:

Ω̄Uψ =


F (1)(Uψ)

F (2)(Uψ)
...

F (n)(Uψ)

 =


(F (1) ◦ U)(ψ)

(F (2) ◦ U)(ψ)
...

(F (n) ◦ U)(ψ)

 . (4.8)

Now since (F (i) ◦ U) ∈ Fd it can be expressed as a linear combination of the fiducial OPFs:

(F (i) ◦ U) =
∑
j

βUijF
(j) . (4.9)

Hence:

Ω̄Uψ =



∑
j β

U
1jF

(j)(ψ)∑
j β

U
2jF

(j)(ψ)
...∑

j β
U
njF

(j)(ψ)

 =


βU11 βU12 . . . βU1n

βU21 βU22 . . . βU2n
...

...
. . .

...

βUn1 βUn2 . . . βUnn




F (1)(ψ)

F (2)(ψ)
...

F (n)(ψ)

 . (4.10)

Hence if we label the above matrix Γ̄U gives:

Ω̄Uψ = Γ̄U Ω̄ψ . (4.11)

Moreover it immediately follows that:

Γ̄U1U2Ω̄ψ = Γ̄U1Γ̄U2Ω̄ψ ∀ψ ∈ PCd . (4.12)

Moreover since Ω̄ψ spans the space acted on by the matrices we have:

Γ̄U1U2 = Γ̄U1Γ̄U2 . (4.13)

This representation in which probabilities are given by linear functions of the states and

transformations are linear maps on the states is the linear representation of section 2.4.1.
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Affine representation

Now let us pick a basis where one of the elements is the unit OPF ud. Then we have that every

state is of the form:

Ω̄ψ =

 1

Ω̃ψ

 . (4.14)

The vector Ω̃ψ has entries which affinely generate the set RFd. This follows immediately

from the fact that any F (ψ) = α1ud(ψ) +
∑n

i=2 αiF
(i)(ψ) =

∑n
i=2 αiF

(i)(ψ) + α1. The affine

dimension of Fd is n−1 (whereas its linear dimension is n). In this representation we can write:

F (ψ) = (α2, ..., αn) · Ω̃ψ + α1 = Λ̃F (Ω̃ψ) . (4.15)

In this representation outcome probability functions are affine functions of the states Ω̃ψ as are

transformations. This is the affine representation. A transformation can be written as:

Γ̃U Ω̃ψ = MU Ω̃ψ + cU , (4.16)

with MU a (n− 1)× (n− 1) matrix and cU a (n− 1)× 1 vector. The affine span consists of all

linear combinations of elements with coefficients which sum to 1: Aff(Ω̄PCd) = Aff(Ω̃PCd) = V ,

with dim(V ) = n− 1.

Intermediate representation

In the following we will adopt an intermediate representation where outcomes are affine func-

tions of states, but transformations are linear functions of states. We define the maximally

mixed state:

ω̃mm =

∫
PU(d)
dU Γ̃U (Ω̃ψ) , (4.17)

where dU is the Haar measure and ψ is any pure state. We also note that the maximally mixed

state is invariant under any unitary: Γ̃U (ω̃mm) = ω̃mm for any U . Now, we define the new

representation as

Ωψ = Ω̃ψ − ω̃mm , (4.18)

ΓU (ω) = Γ̃U (ω̃)− ω̃mm , (4.19)

ΛF (ω) = Λ̃F (ω̃) , (4.20)
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which extends to general mixed states as ω = ω̃− ω̃mm. We observe that the new representation

is affinely related to the ˜ representation and hence preserves the structure of mixed states. In

this representation, the maximally mixed state is the zero vector ωmm = 0 ∈ V . Now, recalling

that ωmm is invariant under unitaries, we have that ΓU (0) = 0, which together with the affinity

of ΓU implies that ΓU : V → V is linear, for all U . We note that the affinity of Λ̃F implies that

of ΛF . We can summarise the above in the following theorem (in [47] we prove this theorem

without the assumption of finite-dimensionality):

ψ
U //

Ω

��

Uψ

Ω

��
Ωψ

ΓU

// ΩUψ

Figure 4.4: This diagram expresses the commutation of equation (4.24).

Theorem 4. Given a set Fd of OPFs for PCd (encoding an alternative to the measurement

postulates) there is a real vector space V and the maps

Ω : PCd → V , (4.21)

Γ : PU(d)→ GL(V ) , (4.22)

Λ : Fd → E(V ) , (4.23)

where E(V ) is the space of affine functions on V , satisfying the following properties:

i. Preservation of dynamical structure (see Figure 4.4):

ΓUΩψ = ΩUψ , (4.24)

ΓU1ΓU2 = ΓU1U2 . (4.25)
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ii. Preservation of probabilistic structure:

ΛF (Ωψ) = F (ψ) . (4.26)

iii. Minimality of V

Aff (ΩPCd) = V . (4.27)

iv. Uniqueness: for any other maps Ω′,Γ′,Λ′ satisfying all of the above, there is an invertible

linear map L : V → V such that

Ω′ψ = L(Ωψ) , (4.28)

Γ′U = LΓUL
−1 , (4.29)

Λ′F = ΛFL
−1 . (4.30)

We have not yet proved the uniqueness property iv. Let us suppose that there are other

maps Ω′,Γ′,Λ′ with the properties i., ii., iii. First consider the affine representation Ω̃′ψ:

Ω̃′ψ =


F (1)′(ψ)

F (2)′(ψ)
...

F (n−1)′(ψ)

 = L̃(Ω̃ψ) , (4.31)

where L̃ : V → V is an affine transformation. Let us now consider the intermediate represen-

tation: Ω̃′ → Ω′ and Ω̃ → Ω. Since the intermediate representation is affinely related to the

affine one, there exists an affine map L : V → V such that Ω′ψ = L(Ωψ). Moreover in the

intermediate representation ωmm = ω′mm = 0 implying that the map L is linear.

Finite dimensionality of V and continuity of the Γ map

Equation (4.25) entails that the map Γ : PU(d) → GL(V ) is a homomorphism. However in

order for it to be a Lie group representation we require it to be smooth.

From a physical point of view, the group of transformations ΓPU(d) must be topologically

closed. This follows from the fact that any mathematical transformation that can be approxi-

mated arbitrarily well by physical transformations should be a physical transformation too.
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In the affine representation Ω̃, the entries of states ω̃ ∈ S̃ are bounded (since they are just

probabilities). Hence, due to (4.18), the same is true in S. This implies that the absolute values

of all matrix elements of the group ΓPU(d) are also bounded.

In summary, the fact that the set ΓPU(d) ⊆ Rn is bounded and closed implies that it is

compact.

Lemma 5. When V is finite dimensional and ΓPU(d) compact, the map Γ : PU(d) → GL(V )

is smooth and hence the representation is a Lie group representation.

Proof. It is proven in Theorem 5.64 of [84, p.190] that any group homomorphism Γ : PU(d)→
G in which G is compact must be continuous. Since ΓPU(d) is compact it follows that Γ is

continuous. Moreover SU(d) are matrix Lie groups and if G is a matrix Lie group, then every

continuous homomorphism ρ : G→ GL(V ) is also smooth [80, Corollary 3.50].

Restriction of effects

We consider a set of OPFs Fd to be unrestricted [43] if for every effect (affine functional)

E : S → [0, 1] there is an OPF F ∈ Fd such that ΛF = E. When a system is unrestricted the

map Λ is redundant, and the maps Ω and Γ contain all the information about the system. A

restricted system can be understood as an unrestricted system with an additional constraint.

4.2.2 Dynamical structure

Theorem 4 shows that for every OPF set Fd there is an associated representation Γ : PU(d)→
GL(V ). The image of this representation gives the action of the dynamical group PU(d) on

the space of mixed states S. This action satisfies equation (4.24) which essentially tells us that

the dynamical structure of PCd is preserved by the maps Ω and Γ. ΩPCd is a PCd manifold

embedded in the carrier space V .

Not all representations of PU(d) are consistent with equation (4.24). In this section we

classify those which are. Any representation of PU(d) is also a representation of SU(d). Since

the representations of SU(d) are well studied we will work this these (whilst remembering to

check that they are also representations of PU(d)).

The action of SU(d) on PCd is transitive; the manifold PCd can be generated by applying

the whole transformation group SU(d) to a single ray ψ. We define a stabilizer subgroup Hψ
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of a ray ψ to be the subgroup of SU(d) which leaves ψ invariant:

Hψψ = ψ, Hψ < SU(d) . (4.32)

It is a feature of transitive spaces that all stabilizer subgroups are equivalent, specifically for any

two distinct elements ψ and φ the stabilizer subgroup Hψ is related to the stabilizer subgroup Hφ

by a conjugate transformation Hψ = UHφU
−1 for an element U ∈ SU(d). Hence Hψ

∼= Hφ
∼= H.

First let us consider the d ≥ 3 case. Take the state ψ0 = (1, 0, . . . , 0), and note that the

group Hψ0 is the set of unitaries of the form:

U =


eiα 0 · · · 0

0
... e−iα/(d−1)u

0

 , u ∈ SU(d− 1) . (4.33)

Hence, when d ≥ 3, all stabilizers are isomorphic to SU(d − 1) × U(1). When d = 2 the

stabilizer subgroup is isomorphic to U(1).

Let us return to equation (4.24) and consider the action of the stabilizer subgroup on a

state ψ:

ΓUΩψ = Ωψ, ∀U ∈ SU(d− 1)×U(1) . (4.34)

In other words there is a vector Ωψ ∈ V which is left invariant under the action of ΓU , U ∈
SU(d− 1)×U(1). The representations of SU(d) which obey equation (4.24) are the ones with

a SU(d− 1)×U(1) invariant vector. The representation Γ is finite-dimensional. Hence, we can

decompose Γ into real irreducible representations

Γ =
⊕
i

Γi . (4.35)

Where Γi : PU(d) → GL(Vi). Using the same partition into real linear subspaces, we also

decompose the map

Ω =
⊕
i

Ωi . (4.36)

Equation (4.24) independently holds for each summand ΓiUΩi
ψ = Ωi

Uψ. Hence each Vi has a

SU(d− 1)×U(1)-invariant vector under the action of Γi.
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In order to classify all finite dimensional representations of SU(d) with SU(d − 1) × U(1)

invariant vectors we need only find the irreducible ones with this feature.

For a representation Γ of SU(d) acting on V to have an SU(d − 1) × U(1)-invariant vector

v means the following. If we take the representation Γ and only consider a SU(d − 1) × U(1)

subgroup we obtain a representation of SU(d− 1)×U(1) acting on V which leaves v invariant.

This representation of SU(d − 1) × U(1) is in general reducible and hence decomposes into

irreducible sub-representations. If we decompose v according to these sub-representations, we

see that the components of v in the subspaces acted on by these sub-representations (for non-

trivial representations of SU(d−1)×U(1)) will not be left invariant by all of the transformations

SU(d−1)×U(1) (since each sub-representation is irreducible, so cannot have invariant subspaces

within it). However if one of the sub-representations corresponds to a trivial representation of

SU(d− 1)× U(1) then it will leave that component of v invariant. Thus v has support just in

those subspaces which correspond to trivial representations of the SU(d− 1)×U(1) subgroup.

Taking a representation of a group G and only considering a subgroup H is known as

restricting the representation of G to H. The restriction of a representation Γ of G to H is

written as Γ|H . The decomposition of a representation Γ of G restricted to a subgroup H is

obtained using a branching rule. It gives the decomposition:

Γ|H =
⊕
i

Γi, (4.37)

where Γi are representations of H.

Using branching rules we can find the representations Γ of SU(d) which have a trivial

component when restricted to SU(d − 1) × U(1). These are the representations which will be

consistent with the dynamical structure of PCd, i.e. which are compatible with equation (4.24).

4.2.3 Branching rules

In this section we study the branching rule SU(d) → SU(d − 1) × U(1) in order to find the

representations of SU(d) which have a trivial component when restricted to SU(d− 1)×U(1).

We first consider the case d ≥ 3.
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Branching rule for U(d)→ U(d− 1)

An irreducible representation of U(d) can be labelled by a Young partition λ. We consider a

partition λ = [λ1, ..., λd]. A partition µ = [µ1, ..., µd−1] is said to interlace λ when:

λ1 ≥ µ1 ≥ ... ≥ λn−1 ≥ µd−1 ≥ λd . (4.38)

The branching rule from U(d) to U(d−1) is as follows. Let U(d) have irreducible representation

πλd acting on a space Vλ. Then there is a unique decomposition of Vλ into subspaces under the

action of U(d− 1) [85, p.19]:

Vλ =
⊕
µ

Vµ , (4.39)

where the sum is over every µ which interlaces λ and Vµ is a carrier space for an irreducible

representation of U(d− 1) labelled by µ.

Branching rule for SU(d)→ SU(d− 1)×U(1)

The restriction of πλd (which is a representation of U(d)) to an SU(d) subgroup is an irreducible

representation of SU(d) with partition λ (which for SU(d) is defined up to a constant). This

representation acts irreducibly on Vλ. The subgroup U(d− 1) is given by:
1 0 · · · 0

0
... U(d−1)×(d−1)

0

 , U(d−1)×(d−1)U
†
(d−1)×(d−1) = I . (4.40)

Its action on Vλ decomposes as a direct sum of Vµ. We wish to consider the action of SU(d− 1)

on Vλ. This subgroup is given by:
1 0 · · · 0

0
... U(d−1)×(d−1)

0

 , U(d−1)×(d−1) ∈ SU(d− 1) . (4.41)

U(d − 1) acts on each Vµ irreducibly and restricting an irreducible representation of U(d − 1)

to SU(d− 1) gives an irreducible representation with the same partition. Hence the SU(d− 1)
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acts irreducibly on each Vµ in the decomposition. The branching rule SU(d) → SU(d − 1) is

the same as U(d)→ U(d− 1) [86].

We now establish the branching SU(d) → SU(d − 1) × U(1) subgroup. The U(1) part

corresponds to all matrices C of the following form:

C =


eit

e
−i
d−1

t

. . .

e
−i
d−1

t

 . (4.42)

We note that this U(1) subgroup commutes with the SU(d− 1) subgroup hence its action will

leave the subspaces Vµ invariant. Therefore the space Vλ decomposes into the Vµ invariant

subspaces of equation (4.39) under the action of SU(d−1)×U(1). We now establish the action

of the U(1) subgroup on these subspaces. We use a similar technique as that found in [76,

Theorem 8.1.2. (proof) , p.364]. We consider a matrix A ∈ U(d):

A =


eit

eit

. . .

eit

 , (4.43)

And a matrix B ∈ U(d− 1):

B =


1

e−i
d
d−1

t

. . .

e−i
d
d−1

t

 . (4.44)

We note that AB = C for the above defined U(1) subgroup. We determine the action of A and

B on Vλ which will allow us to know that of C. The action of A on the whole carrier space

Vλ is multiplication by a scalar eit|λ|. Similarly the action of B (which belongs to the U(d− 1)

subgroup and commutes with all elements of U(d−1)) on each subspace Vµ is multiplication by

e−i
d
d−1

t|µ| [76, Theorem 8.1.2. (proof) , p.364]. Hence we can compute the action of the U(1)

subgroup on each subspace which is multiplication by :

eit|λ|e−i
d
d−1

t|µ| = eit(|λ|−
d
d−1
|µ|) , (4.45)
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Hence the action of this U(1) subgroup on the carrier space Vλ acts by scalar multiplication on

each Vµ (where the scalar can be the same for different µ). We can now summarise: given a

representation πλd of SU(d) acting on Vλ there exists a decomposition (into invariant subspaces)

under the action of SU(d− 1)×U(1) given by:

Vλ =
⊕
µ

Vµ , (4.46)

where the sum is over every µ which interlaces λ. The µ determine irreducible representations

of SU(d− 1) acting on each subspace. The U(1) parts acts like eit(|λ|−
d
d−1
|µ|) on each subspace.

Representation of SU(d) with trivial representations under the action of SU(d− 1)×
U(1)

We can now address the problem of finding which representations of SU(d) are such that their

restriction to SU(d− 1)×U(1) contains a trivial representation of SU(d− 1)×U(1).

A trivial representation of SU(d − 1) has Dynkin coefficients (0, ...0) and hence partition

µ = [µ1, ...µd−1] where µ1 = µ2 = ... = µd−1. Hence representations of SU(d) which contain

trivial representations of SU(d − 1) in this decomposition will have partitions λ where λ2 =

λ3 = ... = λd−1 = µ1, following the requirement that µ interlace λ.

We now consider the requirement that the U(1) action is trivial. Since the action of U(1)

on Vµ is given by eit(|λ|−
d
d−1
|µ|), it is trivial when |λ| − d

d−1 |µ| = 0. We note that some authors

multiply the U(1) charge by a constant so that it is an integer value. Since we are considering

only 0 U(1) charge this will not concern us.

We can now add this requirement on λ to the preceding one: λ2 = λ3 = ... = λd−1 = µ1.

As stated above we are considering λd = 0 in order to identify one representation of SU(d− 1)

with each partition λ. We have

|µ| = (d− 1)µ1 , (4.47)

and

|λ| = λ1 + (d− 2)µ1 . (4.48)

We substitute this into the requirement |λ| − d
d−1 |µ| = 0 :

λ1 + (d− 2)µ1 − dµ1 = 0 ,

λ1 = 2µ1 .
(4.49)
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Hence the representation πλn of SU(d) with partition [2µ1, µ1, ..., µ1, 0] which corresponds to

Dynkin label (µ1, 0, ..., 0, µ1) meets the requirements. This shows that any representation of

SU(d) with Dynkin label (j, 0, ..., 0, j) (for any positive integer j) has a trivial subspace under

the action of SU(d) × U(1). We now show that these representations have a unique trivial

representation in the decomposition. These are representations with partition λ = [2j, j, ..., j, 0].

Under the branching rule into SU(d−1)×U(1), trivial representations correspond to partitions

µ which have components µi which are all equal (in order for the SU(d − 1) component to be

trivial) and these must be equal to j. There is a single such µ of this form. This shows that

there is a unique trivial representation in the decomposition.

We label the representations of SU(d) of the form (j, 0, ..., 0, j) by Ddj . These are the only

representations of SU(d) (and PU(d)) which leave a vector invariant under SU(d)×U(1) (more-

over this vector is unique up to normalisation).

Checking that the representations are representations of PU(d)

Representations of SU(d) for which the centre e
2πin
d Id acts trivially on the carrier space Vλ are

representations of PU(d). We now show that all representations classified above are represen-

tations of PU(d). The action of zId on Vλ is scalar multiplication by z|λ| [76, Theorem 8.1.2.

(proof) , p.375]. Hence the action of the centre

Z =


e

2πin
d

e
2πin
d

. . .

e
2πin
d

 , (4.50)

on the carrier space is e
2πin|λ|

d . This is trivial (equal to 1) when |λ| is a multiple of d. A repre-

sentation Ddj with Young partition λ = [2j, j, ..., j, 0] gives |λ| = dj, hence is a representation of

PU(d).

A comment on real and complex irreducibility

A technical point arises. The representations we are studying act on real vector spaces, how-

ever the branching rules used to find the Ddj concern representations acting on complex vector
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spaces. A representation which acts on a complex vector space is real if it can be expressed in a

basis where all the matrix elements are real. This is the case of the irreducible representations

Ddj . These representations are irreducible when acting on both complex and real vector spaces.

However not all real irreducible representations correspond to complex irreducible representa-

tions.

There are reducible representations acting on a complex vector space whose action is irre-

ducible when acting on a real vector space. We have found all real irreducible representations

which are also complex irreducible which meet our criteria. However it could be the case that

there are representations which are real irreducible but complex reducible which meet our cri-

teria. If this is the case our approach would not have found them. We now show that there are

no such representations satisfying the invariance properties we require.

A real representation Γ which is irreducible on a real vector space but reducible on a complex

one can be block diagonalised in the following form Γ = ρ ⊕ ρ̄ [74, Exercise 3.39, p. 41]. For

example consider the following representation of SO(2) ∼= U(1): cos(θ) sin(θ)

−sin(θ) cos(θ)

 . (4.51)

This is irreducible when acting on R2. However its action on C2 can be diagonalised as follows: eiθ 0

0 e−iθ

 . (4.52)

All real irreducible representations are either: complex irreducible or complex reducible of the

form ρ+ ρ̄.

Let us consider a real irreducible representation Γ which is complex reducible. There exists

a transformation L such that Γ = L(ρ ⊕ ρ̄)L−1. We now ask the same question: does there

exist a vector which is invariant under the subgroup H = SU(d − 1) × U(1). Let us call this

vector v. We have:

Γ|Hv = v . (4.53)

We observe that if such a vector exists then the (complex) vector L−1v is invariant under

L−1Γ|HL = ρ|H ⊕ ρ̄|H . Moreover if there exists a vector w which is left invariant by ρ|H ⊕ ρ̄|H
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then the vector Lw is left invariant under Γ|H . Hence if we show that there are no vectors left

invariant under ρ|H ⊕ ρ̄|H then there are no vectors left invariant under Γ|H .

There exists a vector w invariant under ρ|H⊕ ρ̄|H if and only if this representation (obtained

by restricting ρ⊕ ρ̄) has at least one trivial component. This is only possible if at least one of

the representations ρ|H or ρ̄|H has one or more trivial components.

Here ρ and ρ̄ are complex irreducible representations of SU(d). The only such representations

with a SU(d − 1) × U(1) invariant vector are of the form Ddj which is real (and we observe

Ddj = D̄dj ). Hence there are no representations which are complex reducible but real irreducible

which have these invariant vectors.

We can summarise the results of this section in the following lemma:

Lemma 6. The only finite-dimensional real irreducible representations of SU(d) that have

U(1) × SU(d − 1)-invariant vectors are the Ddj introduced above. Additionally, the vector is

always unique (up to a constant).

Consequence of the uniqueness of the trivial invariant subspace

An important feature of the uniqueness of the trivial SU(d−1)×U(1) subspace is the following.

Consider an irreducible representation Γ of the type Ddj . Then the only state spaces which can

be generated with Γ are obtained by applying the group action to vectors invariant under

SU(d− 1)×U(1), all of which are proportional to each other. The state spaces obtained from

two different choices of vectors (differing just by a proportionality constant) will be related

by an equivalence transformation L of the type (4.28)-(4.30). Hence all state spaces with the

same associated representation Γ are equivalent. This shows that the correspondence between

representations and state spaces (and hence OPF sets Fd up to restriction of effects) is one to

one.

Case of d = 2

In the case d = 2, the stabilizer subgroup Gψ is isomorphic to U(1). This subgroup is generated

by a single Lie algebra element (e.g. Z). The irreducible representations D2
j in which the

subgroup Gψ leaves a vector invariant, are those in which D2
j (Z) has at least one zero eigenvalue.
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These are the integer spin representations. The multiplicity of this eigenvalue is always one.

We label D2
j the representation with spin j.

Characterisation of representations Ddj

We now characterise the family of representations Ddj which are denoted with the Dynkin

label (j, 0, . . . , 0︸ ︷︷ ︸
d−3

, j). The corresponding Young diagram is [2j, j, ..., j]. For any positive integer

j, Ddj : SU(d) → GL(RD
d
j ) is the highest-dimensional irreducible representation inside the

reducible representation SymjU ⊗ SymjU∗, where SymjU is the projection of U⊗j into the

symmetric subspace [74, Appendix 2]. Here U is the fundamental representation of SU(d)

acting on Cd. The dimension Dd
j of the real vector space acted upon by Ddj (U) is

Dd
j =

(
2j

d− 1
+ 1

) d−2∏
k=1

(
1 +

j

k

)2

, (4.54)

(see [74, p.224]). Note that quantum theory corresponds to j = 1. The weight diagram for the

j = 1 representation (adjoint) for SU(3) is shown in Figure 3.1. We show the weight diagram

for the representation D3
2 in Figure 4.5.

Figure 4.5: Weight diagram for the representation D3
2 of su(3).
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4.2.4 Reducible representations

Reducible representations satisfying (4.24) will have irreducible sub-representations of the type

Ddj . Consider the map Ω:

Ω =
⊕
i

Ωi . (4.55)

Maps Ωi are completely determined up to a factor. Let us consider two different maps Ω1

and Ω2, which differ only in the factors on each Ωi
1 and Ωi

2. Then one can act on each block

Ωi
1 of Ω1 with an equivalence transformation Li of the type (4.28)-(4.30) to obtain Ω2. The

total transformation L =
⊕
Li acting on Ω1 is of the type (4.28)-(4.30). Hence reducible

representations also uniquely fix the state space.

We summarise our classification results in the following theorem:

Theorem 5. Each finite-dimensional representation Ω : PCd → Rn and Γ : PU(d)→ GL(Rn)

satisfying (4.24), (4.25), (4.27) is of the form

Γ =
⊕
j∈J
Ddj , (4.56)

Ωψ0 =
⊕
j∈J

ωdj , (4.57)

where J is any finite set of positive integers. ωdj ∈ RD
d
j is the unique (up to proportionality)

invariant vector Ddj (U)ωdj = ωdj for all elements of the subgroup

U =


eiα 0 · · · 0

0
... e−iα/(d−1)u

0

 , u ∈ SU(d− 1) . (4.58)

Consider the case when the list J contains repetitions. Some subspaces in the decompo-

sitions of equation (4.56) will be copies. Similarly the states Ω under the partition of equa-

tion (4.57) will contain a direct sum of two identical components ωdj . Consider the following

linear transformation, acting on the direct sum of the two repeated copies:

1

2

I I

I −I

ωdj
ωdj

 =

ωdj
0

 . (4.59)
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This transformation is invertible, and maps two copies of v to a single copy. By Theorem 4

state spaces related by an invertible linear transformation are equivalent. This show that any

list J with repeated elements corresponds to the same state space as the state space indexed

by the list J without repetitions.

4.3 Faithfulness

In order for the manifold of pure states to correspond to PCd it is necessary for all rays in PCd

to be mapped to different vectors in V . In other words we require the map Ω to be injective.

Theorem 6 (Faithfulness). When d ≥ 3 the map Ω is always injective. When d = 2 the map

Ω is injective if and only if J contains at least one odd number.

Proof. Let us prove that when d ≥ 3 the map Ω specified in Theorem 5 is injective. We start

by assuming the opposite: there are two different pure states ψ 6= ψ′ which are mapped to the

same vector Ωψ = Ωψ′ . This vector must be invariant under the action of the two stabilizer

subgroups: ΓUΩψ = Ωψ for all U ∈ Gψ and all U ∈ Gψ′ . Now, note that if ΓUΩψ = ΓU ′Ωψ = Ωψ

then also ΓUU ′Ωψ = Ωψ. Hence, the stabilizer group of the vector Ωψ contains the group

{UU ′|∀U ∈ Gψ, U ′ ∈ Gψ′}. We first show that when d ≥ 3 the group SU(d) can be generated

by any two stabilizer subgroups SU(d− 1)×U(1) of two distinct rays on PCd.

We consider two SU(d− 1)×U(1) stabilizer subgroups of two distinct rays on PCd (d ≥ 3).

Consider a ray ψ (expressed in a basis where ψ is the first vector) with stabilizer group Gψ.

The Lie algebra gψ which generates this group has elements Xψ (corresponding to U(1))

Xψ =


i 0 · · · 0

0
... − i

d−1 Id−1

0

 , (4.60)

and elements Yψ (corresponding to the SU(d− 1) group)

Yψ =


0 0 · · · 0

0
... A

0

 , A = −A†, Tr(A) = 0 . (4.61)
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As can be seen by the generators ψ is the unique ray stabilized by this subgroup. Hence distinct

rays ψ and ψ′ have distinct stabilizer groups (which are equivalent up to conjugation). This is

not the case for SU(2) for example; the U(1) stabilizer of |0〉 also stabilizes |1〉.
The two subgroups Gψ and Gψ′ (which stabilizes ψ′) are maximal subgroups of SU(d) [87].

A maximal subgroup H of G is a proper subgroup (i.e. H 6= G) such that if H ≤ K ≤ G then

H = K or K = G. The group H generated by these two groups Gψ and Gψ′ is not equal to

either Gψ and Gψ′ . Hence it is equal to the full group SU(d).

Hence the group generated by any two stabilizer subgroups is the full group SU(d). There-

fore, the vector Ωψ is invariant under any transformation ΓU . This implies that all states ψ and

ψ′ are mapped to the same vector Ωψ′ = Ωψ and have exactly the same outcome probabilities.

Equivalently, all functions F ∈ Fd are constant.

Now, let us analyse the d = 2 case. In what follows we prove that the map Ωi associated

to an irreducible representation Γi = D2
j is injective when j is odd. Hence, the global map Ω is

injective if it contains at least one summand Ωi that is injective. An irreducible representation

of SU(2) can be expressed as a symmetric power of the fundamental representation [74, p.150]:

D2
j = Sym(2j)D2

1
2

, (4.62)

where D2
1
2

is the fundamental representation of SU(2) acting on C2, with basis {ψ0, ψ1}. The

action of the Lie algebra element Z on this basis is:

Zψ0 = iψ0 , (4.63)

Zψ1 = −iψ1 . (4.64)

Given D2
j , we take as reference state Ωj

ψ0
, the 0 eigenstate of D2

j (Z) (since ψ0 is invariant under

all transformations generated by Z).

eD
2
j (Z)tΩj

ψ0
= Ωj

ψ0
. (4.65)

The 0 eigenstate is given by Ωj
ψ0

= ψ⊗j0 �ψ⊗j1 (where the product is the symmetric product) [74,

p.150]. All states can be obtained by applying a unitary to the reference state: Ωj
ψ = D2

j (U)Ωj
ψ0

.

We call UZ the set of transformations generated by Z. All states ψ 6= ψ0 are of the form

ψ = Uψ0, U /∈ UZ .
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We show that for j odd there are no states Uψ0, U /∈ UZ such that D2
j (U)Ωj

ψ0
= Ωj

ψ0
hence

ψ0 and ψ are mapped to distinct states. For j even we show that there is a U /∈ UZ such that

Ωj
ψ = D2

j (U)Ωj
ψ0

= Ωj
ψ0

and hence the representation is not faithful. A generic U ∈ SU(2)

acting on C2 has the following action:

ψ0 → αψ0 + βψ1 ,

ψ1 → α∗ψ1 − β∗ψ0 , (4.66)

where |α|2 + |β|2 = 1. The action D2
j (U) on Ωj

ψ0
is the same as that of U⊗2j since Ωj

ψ0
belongs

to the symmetric subspace.

ψ⊗j0 → (αψ0 + βψ1)⊗j ,

ψ⊗j1 → (α∗ψ1 − β∗ψ0)⊗j . (4.67)

We now determine which unitaries U preserve the state:

ψ⊗j0 ψ⊗j1 = (αψ0 + βψ1)⊗j(α∗ψ1 − β∗ψ0)⊗j . (4.68)

This only holds when either α or β is 0. When β = 0 this corresponds to a U ∈ UZ . When

α = 0 we have:

ψ⊗j0 ψ⊗j1 = (−1)jψ⊗j0 ψ⊗j1 , (4.69)

since by unitarity requirement |β| = 1. For even j there is a unitary U0 /∈ UZ , such that

D2
j (U0)Ωj

ψ0
= Ωj

ψ0
hence the map Ω is not injective. For odd j any unitary U /∈ UZ maps Ωj

ψ0

to a different state and so the map Ω is injective. Moreover we see that U0ψ0 = ψ1 and hence

orthogonal rays ψ0 and ψ1 are mapped to antipodal states Ωψ0 and Ωψ1 = −Ωψ0 for odd j.

4.4 Alternative characterisation of systems

Let us consider Ωψ = |ψ〉〈ψ|⊗n. We observe that this representation of states is the linear

one. The group action is ΓUΩψ = U⊗n|ψ〉〈ψ|⊗nU †⊗n. This is just the representation SymnU ⊗
SymnU∗. This has the following decomposition:

SymnU ⊗ SymnU∗ ∼=
n⊕
i=0

Ddi (U) , (4.70)
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as shown in equation (3.100). Effects are linear in this representation hence of the form F (ψ) =

Tr(F̂ |ψ〉〈ψ|⊗n) with F̂ is a Hermitian operator (not necessarily positive). Consider a system

with a representation indexed with a list of integers J , the highest one of which is n. Then

we can represent states as Ωψ = |ψ〉〈ψ|⊗n, and restrict the effects to only have support in the

subspaces of (4.70) labelled by i ∈ J .

4.5 Conclusion

4.5.1 Summary

In this chapter we have introduced the notion of OPF sets in order to re-phrase the measure-

ment postulates of quantum theory. By considering the measurement postulates of a theory

as corresponding to sets of functions it becomes clear how to modify measurement postulates;

one just needs to consider different sets of functions. We derived consistency constraints these

function sets should meet in order to define operational theories. We obtained the convex state

space of systems in these alternative theories, and showed that different OPF sets corresponded

to different representations of the dynamical group on the space of mixed states. Not all rep-

resentations of PU(d) correspond to such actions, and we classified all possible representations

that did via a representation theoretic tool called a branching rule.

4.5.2 Gleason’s theorem

The results in this chapter show, that for single systems, it is possible to consistently modify

the measurement postulates of quantum theory and that the Born rule is therefore not the only

consistent probability assignment. This initially appears at odds with a celebrated theorem

by Gleason [31] which shows that the Born rule is the unique probability assignment (for Cd

with d ≥ 3 ) consistent with the structure of measurements of quantum theory. The structure

of measurements is the fact that a measurement is associated to an orthonormal basis on Cd,

and that outcomes correspond to basis elements. Gleason makes an additional assumption

of non-contextuality (the probability of an outcome is independent of the basis in which it is

measured) but makes no assumptions about the structure of pure states and dynamics. From

Gleason’s theorem one can recover the Born rule and by extension that states are given by
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density operators.

Here we see that Gleason’s theorem starts from premises about the nature of measurements

in order to arrive at the Born rule. In our approach we make no assumption about the nature

of measurements, but just about the nature of pure states and dynamics. We see that the two

approaches are complementary in a certain way.

4.5.3 Mielnik’s work

In [55] Mielnik (using a different terminology) also defines OPF sets in order to modify mea-

surement rules for single systems. He argues that the space of mixed states will differ for

different sets of OPFs. He does not provide the full classification we do, however he does

identify state spaces of the form conv(|ψ〉〈ψ|⊗n) as corresponding to systems with modified

measurement postulates. In our classification these are just one type of possible systems with

modified measurement rules, which in section 5.2.1 we call simple systems. Mielnik mentions

that composition will impose more constraints on the allowed OPF sets, which we have worked

out in full in this chapter.
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Chapter 5

Informational properties of single

systems

In this chapter we explore informational properties of the alternative systems classified in the

previous chapter. We first consider (C2,F2) systems for both irreducible and reducible rep-

resentations, and later we generalize to (Cd,Fd) systems with d ≥ 3 by studying how Cd−1

systems are embedded in Cd systems. Although Fd encodes all the information about the rep-

resentation Γd we will sometimes include it in the description of a system and write (Cd,Fd,Γd).
In this chapter we work in the intermediary representation of Theorem 4 where effects are affine

functions of states, and transformations are linear maps on states.

5.1 C2 systems with modified measurements

In this section we study (C2,F2,Γ
2) systems and explore which properties they have in common

with the qubit, and which properties distinguish them from quantum theory. We classify them

into a number of families according to whether the representation Γ2 is irreducible, and whether

the state space is restricted. We will show that unrestricted (C2,F2,Γ
2) systems are not bit

symmetric, unlike quantum systems.
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5.1.1 Irreducible d = 2 systems

We denote by SI2 the class of non-quantum (C2,F2,Γ
2) systems which are faithful, unrestricted

(all effects allowed) and have irreducible Γ2. According to theorem 6, each of these systems is

characterized by an odd integer j ≥ 3, such that Γ2 = D2
j .

Distinguishable states

An important property of a system is the maximal number of perfectly distinguishable states

it has. This quantity determines the amount of information that can be reliably encoded

in one system. For instance a classical bit has two distinguishable states, as does a qubit.

Distinguishable states of a qubit are orthogonal rays in the Hilbert space, or equivalently,

antipodal states on the Bloch sphere. The following lemma tells us about the similarities of

systems in SI2 with qubits.

Lemma 7. Any system (C2,F2,Γ
2) with Γ2 irreducible has a maximum of two perfectly distin-

guishable states.

Proof. The proof is by contradiction: we assume the existence of 3 distinguishable states, and

show that any distinguishing measurement has an outcome with a negative probability for

certain states. Hence the maximum number of perfectly distinguishable states is two. Since

effects are affine functions we can write an effect E as a pair (e, c).

E(ω) = e · ω + c . (5.1)

A measurement is a set of effects {Ei} such that
∑
Ei(ω) = 1 for all states ω; this entails∑

ei = 0 and
∑
ci = 1. If three states ω1, ω2 and ω3 are distinguishable then there exists a

measurement which distinguishes them of the following form: {E1 = (c1, e1), E2 = (c2, e2), E3 =

(c3, e3)}, with Ei(ωj) = δij . This entails

ei · ωi = 1− ci . (5.2)

From the proof of theorem 6 there exists an antipodal state −Ωψ for every Ωψ for faithful

systems (C2,F2,Γ
2) . Since this is true for pure states Ωψ it extends to arbitrary mixed states

ω =
∑

i piΩψi . We compute the outcome probabilities for the states −ωi:

Ei(−ωi) = ei · (−ωi) + ci = −1 + 2ci . (5.3)
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The sum of these three measurement outcomes probabilities is:∑
i

Ei(−ωi) = −3 + 2(c1 + c2 + c3) = −1 . (5.4)

This implies at least one of the outcome probabilities is negative and therefore not legitimate.

By contradiction this proves there is no measurement which perfectly distinguishes three states

in these systems.

We now consider systems in SI2 and show that they have an important difference with

quantum theory.

Lemma 8. All systems in SI2 have pairs of non-orthogonal (in the underlying Hilbert space)

rays which are perfectly distinguishable.

Proof. See Appendix C.

The existence of distinguishable non-antipodal states entails that systems in SI2 have exotic

properties not shared by qubits. We discuss a few of these in the following.

Bit symmetry

Bit symmetry, as defined in [88], is a property of theories whereby any pair of pure distinguish-

able states (ω1, ω2) can be mapped to any other pair pure of distinguishable states (ω′1, ω
′
2)

with a reversible transformation U belonging to the dynamical group, i.e. ΓUω1 = ω′1 and

ΓUω2 = ω′2. The qubit is bit symmetric since distinguishable states are orthogonal rays, and

any pair of orthogonal rays can be mapped to any other pair of orthogonal rays via a unitary

transformation.

Lemma 9. All systems in SI2 violate bit symmetry.

Proof. In theories belonging to SI2 images of the orthogonal rays ψ0 and ψ1 are antipodal

states Ωψ0 and Ωψ1 with Ωψ0 = −Ωψ1 . These states can be perfectly distinguished using the

measurement {E0 = (e, 1
2), E1 = (−eT , 1

2)} where e = ΩT
ψ0
/2. We observe that 0 ≤ Ei (Ωψ) ≤ 1

for all ψ ∈ C2, i = 0, 1. Since we are assuming no-restriction {E0, E1} form a valid measurement.

From Lemma 8 there exists a state Ωψ2 which is distinguishable from Ωψ0 and not antipodal

to it. Due to the faithfulness of Ω for j odd we have ψ2 6= ψ1. Since ψ1 is the unique ray
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orthogonal to ψ0 in PC2 ψ2 is not orthogonal to ψ0. There is no unitary which maps the pair

of orthogonal rays (ψ0, ψ1) to the pair of non-orthogonal rays (ψ0, ψ2). Hence there exist pairs

of distinguishable pure states which are not related by a reversible transformation belonging to

the dynamical group.

No simultaneous encoding

No simultaneous encoding [11] is an information-theoretic principle which states that if a system

is used to perfectly encode a bit it cannot simultaneously encode any other information (similarly

for a trit and higher dimensions). More precisely, consider a communication task involving two

distant parties, Alice and Bob. Similarly as in the scenario for information causality [89],

suppose that Alice is given two bits a, a′ ∈ {0, 1}, and Bob is asked to guess only one of them.

He will base his guess on information sent to him by Alice, encoded in a SI2 system. Alice

prepares the system with no knowledge of which of the two bits, a or a′ Bob will try to guess.

No simultaneous encoding imposes that, in a coding/decoding strategy in which Bob can guess

a with probability one, he knows nothing about a′. That is, if b, b′ are Bob’s guesses for a, a′

then

P (b|a, a′) = δab ⇒ P (b′|a, a′ = 0) = P (b′|a, a′ = 1) , (5.5)

where δab is the Kronecker tensor.

As an example consider a qubit. Alice decides to perfectly encode bit a, which she can

only do by encoding a = 0 and a = 1 in two perfectly distinguishable states. Without loss

of generality she can choose to encode a = 0 in |0〉 and a = 1 in |1〉, with 〈0|1〉 = 0. She

now also needs to encode a′ whilst keeping a perfectly encoded. Since, |0〉 is the only state

which is perfectly distinguishable from |1〉, we have that both a = 0, a′ = 0 and a = 0, a′ = 1

combinations must be assigned to |0〉. Similarly a = 1, a′ = 0 and a = 1, a′ = 1 combinations

must be assigned to |1〉. In this case we see that whilst Bob can perfectly guess the value of a

if he chooses to, if he chooses to guess the value of a′ he cannot do so. Hence this property is

met by qubits.

Lemma 10. All systems in SI2 violate no simultaneous encoding.

Proof. All systems in SI2 have pairs of non-antipodal states ω0 and ω1 which are perfectly
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distinguishable. The measurement which distinguishes them perfectly, also distinguishes −ω0

and −ω1.

Ei(ωj) = δij , (5.6)

Ei(−ωj) = −δij + 1 . (5.7)

A first bit a can be perfectly encoded as follows:

a = 0→ ω0 or − ω1 ,

a = 1→ ω1 or − ω0 .

The second bit a′ can be encoded as:

a′ = 0→ ω0 or ω1 ,

a′ = 1→ −ω1 or − ω0 .

For example if Alice needed to encode the bits a = 0 , a′ = 0 she would choose the state ω0.

According to the scenario Alice encodes her bits a and a′ in a single system and sends it to

Bob. He then tries to guess one of the bits. If he chooses to guess the value of bit a he can do

so with certainty (using the measurement which perfectly distinguishes ω0 and −ω1 from −ω0

and ω1 ). If Bob chooses to guess the value of bit a′ he can use another effect to obtain partial

information about whether the state is ω0 or ω1 or whether the state is −ω1 or − ω0. This

could be any effect which partially distinguishes ω0+ω1
2 from −ω0+ω1

2 . Since neither of these is

the maximally mixed state such an effect exists.

We see that the properties of bit symmetry and no-simultaneous encoding single out the qubit

amongst all SI2 systems.

5.1.2 Irreducible d = 2 state spaces with restricted effects

The study of systems in SI2 has shown that they differ from qubits in many ways. We now

consider a new family of systems S̃I2 , which is constructed by restricting the effects of the

systems in SI2 . These systems turn out to be closer to qubits in that they obey the above

properties. This approach is similar to the self-dualization procedure outlined in [90] (which

also recovers bit symmetry).
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We call a system pure-state dual if the only allowed effects are “proportional” to pure states.

That is, for every allowed effect, there is a pure state ψ and a pair of normalization constants

α, β such that

E(ω) = α(ΩT
ψ · ω) + β . (5.8)

All systems in S̃I2 have a maximum of two distinguishable states, and all pairs of distinguishable

states are antipodal.

Lemma 11. All systems in S̃I2 are bit symmetric and obey no-simultaneous encoding.

Proof. A two outcome measurement is a pair of effects E1 = (e, c) and E2 = (−e, 1 − c). In

theories with irreducible Γ2 for each pure state Ωψ ∈ S (where S is the state space) the state

−Ωψ also exists. For a pure state dual theory we impose that effects are proportional to states

and sharp. Hence the effects are given by:

{e =
ΩT
ψ

2
|ψ ∈ PC2} . (5.9)

The set of effects is such that for every e the linear functional −e also exists. Two outcome

measurements are of the form M = {(e, 1
2), (−e, 1

2)}. The linear functional e has a single

maximum for state ΩT
ψ and a single minimum for −ΩT

ψ . Hence the only states which are

distinguishable are antipodal. This entails that the state spaces are bit symmetric. The fact

that for all effects there is a single maximum/minimum entails that no-simultaneous encoding

holds.

5.1.3 Reducible C2 systems

We consider the set of all unrestricted faithful non-quantum state spaces generated by reducible

representations of SU(2). These representations are given by equation (4.56) with d = 2 and

|J | > 1 containing at least one odd number. We denote the set of all these theories SR2 .

Lemma 12. All systems in SR2 violate bit symmetry.

Proof. Consider a system in SR2 ; its state space S is a direct sum of state spaces of theories in

SI2 :

S =
⊕
j∈J
Sj . (5.10)
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Qubit SI2 S̃I2 SR2
Distinguishable states 2 2 2 ≥ 2
Bit symmetry X X X X
No simultaneous encoding X X X ?

Figure 5.1: Summary of results for d = 2 state spaces. SI2 denotes the family of C2 state spaces

with irreducible Γ and which are unrestricted. S̃I2 is the family of irreducible C2 state spaces

where pure effects are proportional to pure states. SR2 is the family of unrestricted C2 state

spaces. The table shows which properties these families of state spaces (and the qubit) obey.

Where Sj is the state space of the unrestricted system (C2,F2,D2
j ). Moreover S has at least

one faithful block in the decomposition. In the case where this block is non-quantum we denote

it by k (k > 1, k odd). Now consider effects with support solely on subspace k. The state space

restricted to this subspace is just a state space corresponding to a theory with j = k (and hence

in SI2 ). There exists a measurement (with support just in this subspace) which can distinguish

pairs of non-antipodal states (by Lemma 8). Moreover there also exists a measurement (with

support only in this subspace) which distinguishes pairs of antipodal states. Hence the entire

state space S has pairs of distinguishable states which are images of orthogonal rays and pairs

which are not images of orthogonal rays.

If the generators contain a single faithful block j = 1 (with all others unfaithful) then a

measurement on that block can distinguish a pair of states (which are images of orthogonal rays).

The unfaithful blocks have pairs of distinguishable states which are not images of orthogonal

rays. This follows from the fact that orthogonal rays are mapped to the same state in unfaithful

representations and that the unfaithful block are also state spaces when considered alone. Since

all unrestricted state spaces have at least two distinguishable pure states it follows that pairs of

states which are not images of orthogonal rays can be distinguished using effects with support

in the unfaithful blocks.

Therefore all systems in SR2 have pairs of distinguishable states which are images of orthog-

onal rays and pairs which are not; these theories violate bit symmetry.

This implies that bit symmetry singles out quantum theory amongst all d = 2 unrestricted

faithful state spaces (both irreducible and reducible).

107



5.2 Cd systems with modified measurements

Having studied in detail different families of (C2,F2) systems, we now consider properties of

arbitrary (Cd,Fd) unrestricted systems. We also show that the property of bit symmetry singles

out quantum theory in all dimensions. This is proven by showing that all faithful PCd state

spaces have embedded within them faithful (reducible) PCd−1 state spaces. We then show that

if a state space PCd−1 violates bit symmetry, then any state space PCd it is embedded in also

does.

5.2.1 Embeddedness

Embeddedness of simple systems

In this section we look at a family of systems called simple systems which do not obey the

constraint given by (4.27) and study how PCd−1 subspaces are embedded in the PCd state

space. We consider an unrestricted PCd state space, which can be generated by applying all

transformations ΓU to a reference state Ω0 = |0〉〈0|⊗N :

ΓUΩ0 = U⊗N |0〉〈0|⊗N U †⊗N = SymNU |0〉〈0|⊗N SymNU †, (5.11)

The action of the product SymNU ⊗ SymNU∗ can be decomposed as:

(N, 0, ..., 0)⊗ (0, ..., 0, N) = (0, ..., 0)⊕ (1, 0, ..., 0, 1)⊕ ...⊕ (N, 0, ..., 0, N) , (5.12)

which was shown in equation (3.100). In our previous notation this is just:

ΓU =

N⊕
i=0

Ddi . (5.13)

The state space is given by Hermitian matrices acting on the symmetric subspace of (Cd)⊗n.

However it is not immediately clear that every summand in (5.13) acts on the space of Hermitian

matrices (which is the state space). For example when we generate the state space by acting

with a reducible representation on a reference state, if the reference state does not have support

in every block of the representation then there are certain components of the representation

which are superfluous (since they do not act on the state space). The dimension of the space

of Hermitian matrices is:

Dω =

(
d+ n− 1

n

)2

. (5.14)
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Using the dimension formula for the representations Ddj given by (4.54) and requiring that

the representation of the transformations acts on a space of dimension Dω we see that every

summand in (5.13) acts on the state space. Hence we see that these theories are equivalent to

reducible systems of PCd with J = {1, 2, ..., N}. We consider a PCd−1 subspace of the Hilbert

space and see which subspace of the state space it corresponds to. It can be generated from

the state |1〉〈1|⊗N by applying an SU(d− 1) subgroup:

U⊗N |1〉〈1|⊗NU †⊗N , (5.15)

With:

U =


1 0 · · · 0

0
... U(d−1)×(d−1)

0

 . (5.16)

We notice that this state space is just a PCd−1 state space of the type described above with

representation:

Γ′ =
N⊕
i=0

Dd−1
i . (5.17)

This shows that every simple PCd (d ≥ 2) state space has embedded within it a simple

PCd−1 state space.

Embeddedness of irreducible systems

We consider a system (Cd,Fd,Ddj ). We want to determine the embedded PCd−1 state space.

Before proceeding we need to prove a lemma which will allow us to find where the states ΩPCd−1

(embedded in a PCd state space) have support. We define the charge of a U(1) irreducible

representation enit as the integer n.

Lemma 13. Consider a representation Ddj and its decomposition under a SU(d − 1) × U(1)

subgroup. The reducible representation of SU(d−1)×U(1) has blocks with various U(1) charges.

The subspace with 0 U(1) charge is acted upon by the representation of SU(d− 1):

j⊕
i=0

Dd−1
i . (5.18)
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Proof. Similarly to Lemma 6 we label Ddj with partition λ = [2j, j, j...., j, 0]. The restriction to

a SU(d− 1)×U(1) subgroup acts reducibly on the carrier space Vλ as:

Vλ =
⊕
µ

Vµ , (5.19)

where the sum is over every µ which intertwines λ and Vµ is a carrier space for an irreducible

representation of SU(d− 1) with partition µ . The µ which intertwine λ are of the form:

µ = [a, j, j, ..., b], 2j ≥ a ≥ j , j ≥ b ≥ 0 . (5.20)

We have |λ| = dj and |µ| = (d− 3)j + a+ b. From the proof of Lemma 6 we have the condition

that the U(1) charge is 0 when |λ|− d
d−1 |µ| = 0. We now substitute in the relevant expressions:

|λ| − d

d− 1
|µ| = 0 ,

dj − d

d− 1
((d− 3)j + a+ b) = 0 ,

(d− 1)j − (d− 3)j − a− b = 0 ,

a = 2j − b .

(5.21)

This entails that when b = 0, a = 2j, when b = 1, a = 2j − 1... and when b = j, a = j.

Every possible µ (intertwining λ) is in the direct sum and hence every µ which meets the above

condition for having 0 U(1) charge is in the decomposition. Hence there are j+ 1 subspaces Vµ

where the action of U(1) is trivial. If we express the representations acting on these in terms

of Dynkin notation we observe that µ = [2j − b, j, ..., j, 2j − b] becomes (j − b, 0, 0..., j − b)

for b = 0, ..., j. The terms in the direct sum are therefore just the representations Dd−1
i for

i = 0, ..., j.

We consider a basis {|0〉 , |1〉 , ..., |d− 1〉} and determine the image of all states of the form

α1 |1〉 + ... + αd−1 |d− 1〉 (i.e. corresponding to an embedded PCd−1 system). These are all

the states (apart from |0〉) which are invariant under the U(1) group of the SU(d − 1) × U(1)

subgroup specified in the proof of Theorem 6.

From Lemma 13 we know that restricting the representation Ddj to a SU(d − 1) × U(1)

subgroup gives a reducible representation of SU(d − 1) × U(1). Moreover the U(1) action is

trivial for the following blocks:
j⊕
i=0

Dd−1
i . (5.22)
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The image of α1 |1〉+ ...+αd−1 |d− 1〉 therefore lies in this subspace (since it is invariant under

this U(1) action) which we call the α = 0 subspace. Moreover the image of |0〉 is uniquely

determined as the trivial subspaceDd−1
0 (which is invariant under the whole subgroup). However

we do not know if the image of the PCd−1 subspace spans the whole α = 0 subspace. We show

that it must have support in the subspace Dd−1
j (which is part of the α = 0 subspace).

We first consider a reducible system described with representation:

Γ =

j⊕
i=0

Ddi . (5.23)

This corresponds to a simple system as characterised above. We call its state space S. Consid-

ering a PCd−1 subspace gives a state space S ′ with representation:

Γ′ =

j⊕
i=0

Dd−1
i . (5.24)

We observe that the state space with representation Γ is equivalent to a direct sum of state

spaces with representation Ddk for k = 1, ..., j. We label these state spaces Sk. We write:

S =

j⊕
k=0

Sk . (5.25)

Moreover reducing a state space Sk gives a PCd−1 state space with a representation inside the

direct sum (i.e. which may or may not have support in each representation):

k⊕
i=0

Dd−1
i . (5.26)

We have seen that the restriction of S gives a state space S ′ with support in block Dd−1
j .

Moreover since S is a direct sum of state spaces Sk it must be the case that (at least) one of

these Sk reduces to a state space with support in Dd−1
j . The state space Sj is the only state

space in the direct sum in (5.25) which can have support in Dd−1
j when restricted. That is to

say the reduction of Sj (with representation Ddj ) gives a PCd−1 state space with support in

block Dd−1
j . We note that the state space may have support on other blocks Dd−1

i also.

Embeddedness of arbitrary reducible theories

From the above considerations we see that a system (Cd,Fd,Ddj ) when restricted to a PCd−1

subspace must give a state space which has support in the subspaceDd−1
j , and hence corresponds
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to a state space of a Cd−1 system which has a representation which contains at least a block

Dd−1
j . A reducible system of Cd J = j1, ..., jn has a state space S which is a direct sum of state

spaces Sji . The restriction of S to a PCd−1 subspace is equivalent to restricting each of the Sji
state spaces. Hence the restriction of S to PCd−1 will have support in at least subspaces Dd−1

k

for k = j1, ..., jn. This entails:

Lemma 14. Given a Cd system corresponding to maps Ω and Γ, where the highest weight

representation in Γ is Ddj , the image of a PCd−1 subspace of PCd under Ω is equivalent to a

state space of a Cd−1 with representation Γ′, whose highest weight component is Dd−1
j .

5.2.2 Bit symmetry

We now have the tools to prove that all unrestricted systems we are studying violate bit sym-

metry.

Lemma 15. All unrestricted (Cd,Fd) non-quantum systems are not bit symmetric.

Proof. It follows from Lemma 14 that any non-quantum PC3 (i.e. which has a block D3
j with

j > 1) state space when restricted to a PC2 subspace is equivalent to a non-quantum state

space with a representation which has a block D2
j (if j is even it must also be the case that the

representation has a block with j odd since the representation of states is faithful). Hence the

restricted state space belongs to SR2 . By Result 12 this PC2 state space is not bit symmetric,

that is to say it has pairs of distinguishable states which have different (Hilbert space) inner

products. Moreover the PC3 state space is not bit symmetric since there are no transformations

in PU(3) mapping pairs of states with different Hilbert space inner products.

Any non-quantum PCd state space (i.e. which has a block Ddj with j > 1) has a PCd−1

subspace which is equivalent to a state space associated to a reducible representation which has

a block Dd−1
j . If the PCd−1 subspace is not bit symmetric (i.e. the Hilbert space inner product

between two pairs of distinguishable state is not the same) then the PCd state space is not bit

symmetric either (since even considering the whole PU(d) transformation group its elements

will still only map between pairs of states with the same inner product). Hence by induction

any non-quantum PCd (d ≥ 2) unrestricted state space is not bit symmetric.
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This result shows that the quantum measurement postulates can be singled out amongst

all possible probability assignments from the following set of assumptions: (i) no restriction on

the allowed effects, and (ii) bit symmetry.

5.3 Conclusion

5.3.1 Summary

In this chapter we studied informational properties of systems with modified measurement

postulates. We showed that in the case of unrestricted non-quantum C2 systems there exist

pairs of distinguishable states which are not images of orthogonal rays in Hilbert space. This

property led to differences in informational features of these systems compared to quantum

systems. However we showed that by restricting the effects we could obtain systems which were

closer to qubits.

By studying the embedding of Cd−1 systems in Cd systems we showed that all unrestricted

Cd systems violate bit-symmetry. This shows that the quantum measurement postulates for

single systems are the only ones consistent with the requirements of no-restriction and bit-

symmetry.

5.3.2 No restriction and bit symmetry

Although many works in GPTs only consider unrestricted theories no-restriction remains an

assumption of convenience with a less direct physical or operational meaning. Bit symmetry

however is a property which has computational and physical significance as discussed in [88].

It is generally linked to the possibility of reversible computation, since bit symmetric theories

allow any logical bit (pair of distinguishable states) of the theory to be reversibly transformed

into any other logical bit. In the next chapter we study bi-partite systems, and find properties

which single out quantum systems without needing the no-restriction hypothesis.
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Chapter 6

Properties of bi-partite systems

As illustrated in Chapter 5 there is a rich family of single systems (Cd,Fd) which we can explore.

However we do not yet know if they are consistent with the compositional structure of quantum

theory. For two systems (CdA ,FdA) and (CdB ,FdB) to compose to a system (CdAB ,FdAB) it is

necessary for the OPF sets FdA , FdB and FdAB to meet consistency constraint C0.−C5. derived

in Chapter 4.

In this chapter we show that any (non-quantum) composite system (CdAB ,FdAB) with sub-

systems (CdA ,FdA) and (CdB ,FdB) must violate purification. We show that composite systems

with dA = dB = 3 must violate local tomography. We observe that we do not classify all triples

(CdA ,FdA), (CdB ,FdB) and (CdAB ,FdAB) which are consistent with C0.−C5. Rather we show

that the ones which are violate purification and in the case of dA = dB = 3 local tomography

also.

Following this we then introduce a toy model of a bi-partite system with modified mea-

surement postulates which meets all the consistency constraints. This shows that there are

bi-partite systems with modified measurement postulates which compose.

6.1 Local tomography, holism and representation theoretic im-

plications

Γ̄d labels the representation of PU(d) acting on span(S) (the linear representation) for a system

(Cd,Fd). In this chapter we will mainly consider the dual representation which acts on the space
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of OPFs. Since these representations are unitarizable (by Proposition 1), the dual representation

is just obtained by complex conjugation. Moreover since they are real, this entails that the dual

is isomorphic to the original representation. We study the representations Γ̄d some more.

Lemma 16. The representation Γ̄d acting on RFd contains a unique trivial subrepresentation.

Proof. Consider the basis {Fi}i where F1 = u. We observe that u(ψ) = u(Uψ), ∀U ∀ψ. This

implies that Γ̄dUu = u, ∀U ∈ PU(d) and that the representation Γ̄ has a trivial component. If

the representation had another trivial component, it would necessarily be linearly dependent

on the first. It would then be a redundant entry in the list of fiducial outcomes (as defined in

equation (4.5)) which is contrary to the property that they are linearly independent.

The representation Γ̄ is of the form 1 ⊕ Γ where Γ acts on the space spanned by {Fi}ni=2.

As shown in section 4.2.1 these OPFs affinely generate Fd. The dual of the span of {Fi}ni=2

is the span of normalised states whereas the dual of RFd is the span of all states, including

subnormalised ones.

6.1.1 Local tomography

Consider two systems (CdA ,FdA) and (CdB ,FdB) which compose to a system (CdAB ,FdAdB). Let

{F iA}i be a basis for RFdA and {F jB}j be a basis for RFdB .

A bi-partite system is locally tomographic if {F iA?F
j
B}ij is a basis for RFdAdB . Operationally

this entails that state tomography of a bi-partite system can be carried out using joint local

measurements alone. It follows immediately from the bilinearity of ? and the fact that {F iA ?
F jB}ij span RFdAdB that the ? product for locally tomographic theories is a tensor product.

Hence an arbitrary element FAB of FdAdB can be written:

FAB =
∑
ij

γij(F
i
A ⊗ F jB), γij ∈ R . (6.1)

One of the main results of this chapter is that the feature of local tomography imposes

strong requirements on the representation Γ̄dAdB acting on FdAdB .

Lemma 17. For a locally tomographic bi-partite system (CdAB ,FdAdB , Γ̄dAdB) with subsystems

(CdA ,FdA , Γ̄dA) and (CdB ,FdB , Γ̄dB) the restriction of Γ̄dAdB to SU(dA)× SU(dB) is:

Γ̄dAdB|SU(dA)×SU(dB) = Γ̄dA � Γ̄dB . (6.2)
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Proof. Let us consider the action of an element of SU(dA) × SU(dB) on an OPF FAB =∑
ij γij(F

i
A ⊗ F

j
B) in FAB .

Γ̄dAdBUA⊗UB
FAB = FAB ◦ (UA ⊗ UB) =

∑
ij

γij(F
i
A ⊗ F jB) ◦ (UA ⊗ UB) . (6.3)

Using equation (2.43) we obtain:

Γ̄dAdBUA⊗UB
FAB =

∑
ij

γij(F
i
A ◦ UA)⊗ (F jB ◦ UB) . (6.4)

From the actions of SU(dA) and SU(dB) on RFdA and RFdB we have:

F iA ◦ UA = Γ̄dAUAF
i
A , (6.5)

F jB ◦ UB = Γ̄dBUBF
j
B . (6.6)

Hence,

Γ̄dAdBUA⊗UB
FAB =

∑
ij

γij(Γ̄
dA
UA
F iA ⊗ Γ̄dBUBF

j
B) =

∑
ij

γij(Γ̄
dA
UA
⊗ Γ̄dBUB )(F iA ⊗ F lB) = (Γ̄dAUA ⊗ Γ̄dBUB )FAB .

(6.7)

6.1.2 Holism

A bi-partite system which is not locally tomographic is holistic. Real vector space quantum

theory is an example of a holistic theory [14]. A basis for FdAdB in a holistic bi-partite system

is {F iA ? F
j
B, F

k
AB}ijk [59, 91]. Here {F iA ? F

j
B}ij span the locally tomographic subspace of FdAdB

denoted FLT
dAdB

. Due to bilinearity of the ? product the map ? : RFdA × RFdB → RFLT
dAdB

is

isomorphic to a tensor product.

Lemma 18. For a holistic bi-partite system with representation Γ̄dAdB the restriction of Γ̄dAdB

to SU(dA)× SU(dB) is:

Γ̄dAdB|SU(dA)×SU(dB) = Γ̄dA � Γ̄dB ⊕
⊕
i

ΓdAi � ΓdBi , (6.8)

where the representations Γ̄dAdB , Γ̄dA and Γ̄dB contain a trivial representation. This is not nec-

essarily the case for ΓdAi and ΓdBi (which may not be of the form DdAj or DdBj ).
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Proof. In holistic systems a basis for FAB is {F iA ⊗ F
j
B, F

k
AB}ijk.

FAB =
∑
ij

γLT
ij (F iA ⊗ F jB) +

∑
k

γH
k F

k
AB = FLT

AB + FH
AB . (6.9)

We consider the action of a SU(dA)× SU(dB) subgroup on span({F iA ⊗ F
j
B}ij).

F iA ⊗ F jB ◦ (UA ⊗ UB) = (F iA ◦ UA)⊗ (F jB ◦ UB) . (6.10)

The action of SU(dA)× SU(dB) maps basis elements of the form FA ⊗ FB to other elements of

that form. Hence span(F iA ⊗ F
j
B) is a proper subspace of FAB left invariant under the action of

SU(dA)× SU(dB). The representation Γ̄dAdB|SU(dA)×SU(dB) is reducible and decomposes as:

Γ̄dAdB|SU(dA)×SU(dB) = Γ̄dAdBLT|SU(dA)×SU(dB) ⊕ ΓdAdBH|SU(dA)×SU(dB) . (6.11)

The action Γ̄dAdBLT|SU(dA)×SU(dB) on the locally tomographic subspace is of the form Γ̄dA � Γ̄dB (as

determined in the previous lemma). ΓdAdBH|SU(dA)×SU(dB) is an arbitrary representation of SU(dA)×
SU(dB) hence of the form

⊕
i ΓdAi � ΓdBi .

The above lemmas show that we can determine whether a bi-partite system is locally to-

mographic (or holistic) by studying the representation Γ̄dAdB .

Lemma 19. A bi-partite system (CdAB ,FdAdB , Γ̄dAdB) with subsystems (CdA ,FdA , Γ̄dA) and (CdB ,FdB , Γ̄dB)

is holistic if Γ̄dAdB|SU(dA)×SU(dB) is not of the form (6.2).

6.1.3 Representation theoretic constraint imposed by the compositional struc-

ture

An immediate consequence of the above Lemmas is the following:

Lemma 20. A necessary condition for (CdAB ,FdAdB , Γ̄dAdB) to be the composite system of two

systems (CdA ,FdA , Γ̄dA) and (CdB ,FdB , Γ̄dB) is that the restriction of Γ̄dAdB to SU(dA)× SU(dB)

contains a subrepresentation Γ̄dA � Γ̄dB.

We observe that a representation which does not have this feature cannot correspond to a bipar-

tite system. In such a representation one cannot describe joint probabilities (and hence cannot

be consistent with consistency constraint C3.). This (potentially) imposes further restrictions
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on the representations classified in Chapter 4. If a representation Γ̄dAdB to SU(dA) × SU(dB)

contains a subrepresentation Γ̄dA � Γ̄dB we say that it contains a subspace compatible with

subsystems.

6.1.4 Intermediary representation

The above Lemmas can be translated into the intermediary representations Γd of Theorem 4

which do not contain a trivial subrepresentation.

Γ̄d = 1d ⊕ Γd . (6.12)

where 1d is the trivial representation of SU(d). We can decompose the tensor product action:

Γ̄dA � Γ̄dB = (1dA ⊕ ΓdA) � (1dB ⊕ ΓdB) = (1dA � 1dB)⊕ (1dA � ΓdB)⊕ (ΓdA � 1dB)⊕ (ΓdA � ΓdB) .

(6.13)

The first term occurs due to the trivial component in Γ̄dAdBAB = 1dAdB ⊕ ΓdAdBAB . Hence we can

re-write Lemma 20:

Lemma 21. A necessary condition for (CdAB ,FdAdB ,ΓdAdB) to be the composite system of two

systems (CdA ,FdA ,ΓdA) and (CdB ,FdB ,ΓdB) is that ΓdAdB|SU(dA)×SU(dB) contains a subrepresentation

(1dA � ΓdB)⊕ (ΓdA � 1dB)⊕ (ΓdA � ΓdB).

Moreover for a locally tomographic system with OPF set FdAdB and representation Γ̄dAdB ,

the restriction of ΓdAdB to the local subgroup SU(dA)× SU(dB), has the following form:

ΓdAdB|SU(dA)×SU(dB) = (1dA � ΓdB)⊕ (ΓdA � 1dB)⊕ (ΓdA � ΓdB) . (6.14)

This shows that for a locally tomographic theory the representations ΓdAdBAB|SU(dA)×SU(dB) cannot

contain any terms 1dA � 1dB . By contraposition we establish:

Lemma 22. A bi-partite system (CdAB ,FdAdB ,ΓdAdB) with subsystems (CdA ,FdA ,ΓdA) and (CdB ,FdB ,ΓdB)

is holistic if ΓdAdBAB has a subrepresentation 1dA � 1dB upon restriction to SU(dA)× SU(dB).

In the following use we will make use of Lemma 21 to show that all systems (C9,F9,Γ
9)

have a subspace compatible with the existence of subsystems upon restriction to SU(3)×SU(3).

Using Lemma 22 we will see that all these systems are holistic. For all representations Γ9 of
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SU(9) of the form given in Theorem 5 we need to determine the restricted representation

Γ9
|SU(3)×SU(3). In order to do this we need to study the SU(mn) → SU(m) × SU(n) branching

rule.

6.2 Branching rule SU(mn)→ SU(m)× SU(n)

In this section we index representations using Young diagrams. We denote by Γmnλ the repre-

sentation of SU(mn) with Young diagram λ. Due to this extra index we will now write Γmnλ (U)

for the image of U under the map Γ (previously this was written as ΓU ).

The restriction Γmnλ|SU(m)×SU(n) of Γmnλ to a SU(m)× SU(n) subgroup is of the form:

Γmnλ|SU(m)×SU(n) =
⊕
µ,ν

Γmµ � Γnν , (6.15)

where there can be repeated copies for a given µ, ν. In general finding which representations

Γmµ �Γnν occur in this restriction is a hard problem. In the following we outline a method which

allows us to determine the multiplicity of Γmµ � Γnν in Γmnλ|SU(m)×SU(n).

Inner product of representations of the symmetric group

We consider two representations ∆µ and ∆ν of Sf . We construct the Kronecker product of the

two matrices ∆µ(s) and ∆ν(s) for all s ∈ Sf . This creates the tensor product representation

∆µ ⊗∆ν of Definition 18 (sometimes called the inner product). In general this is a reducible

representation:

∆µ ⊗∆ν =
⊕
λ

g(µ, ν, λ)∆λ . (6.16)

Here we abuse notation slightly to mean that g(µ, ν, λ) is the multiplicity of ∆λ in ∆µ ⊗∆ν .

These g(µ, ν, λ) are known as the Clebsch-Gordan coefficients of the symmetric group, and

understanding them remains one of the main open problems in classical representation theory.

These coefficients are also relevant in quantum information theory, as they are related to the

spectra of statistical operators [92, 93].
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Recipe

What is the multiplicity of Γmµ �Γnν in the restriction of Γmnλ to SU(m)×SU(n)? We adopt the

approach from [94] to answer this question. Let f = |λ| be the number of boxes in the Young

diagram λ. As shown in Chapter 3, λ also labels a representation of the symmetric group on

f objects Sf . This representation is ∆f
λ. Take the Young diagram µ (ν) and add columns

of m (n) boxes to the left until it has f boxes. The tableau obtained which we call µf (νf )

labels a representation of Sf denoted ∆f
µf (∆f

νf ). We remember that adding columns to the

left of length m (n) keeps µ (ν) within the equivalence class of Young diagrams labelling the

representation Γmµ (Γnν ). Hence µf (νf ) labels the same representation of SU(m) (SU(n)) as µ

(ν).

The diagrams λ, µf and νf refer both to representations of the special unitary group Γmnλ ,

Γmµ (= Γmµf ) and Γnν (= Γnνf ) as well as representations of Sf : ∆f
λ, ∆f

µf and ∆f
νf .

Theorem 7. Γmµ � Γnν occurs as many times in the restriction of Γmnλ to SU(m) × SU(n) as

∆f
λ occurs in ∆f

µf ⊗∆f
νf , where f = |λ| [94].

6.2.1 Inductive lemma

Lemma 23. Consider representations Γmn
λ̄

, Γmµ̄ , Γnν̄ , Γmnλ , Γmµ , Γnν , Γmnλ′ , Γmµ′ and Γnν′ where

λ̄ = λ + λ′, µ̄ = µ + µ′ ν̄ = ν + ν ′ and |λ|−|µ|
m , |λ|−|ν|n , |λ

′|−|µ′|
m and |λ′|−|ν′|

n are integers. If

Γmnλ|SU(m)×SU(n) contains a term Γmµ � Γnν and Γmnλ′|SU(m)×SU(n) contains a term Γmµ′ � Γnν′ then

Γmn
λ̄|SU(m)×SU(n)

contains a term Γmµ̄ � Γnν̄ .

Proof. Γmnλ|SU(m)×SU(n) containing a term Γmµ � Γnν implies that ∆f
λ occurs in ∆f

µf ⊗ ∆f
νf (by

Theorem 7). Here µf is the tableau µ (ν) to which f−|µ|
m (f−|ν|n ) columns of length m (n) has

been added so that the total number of boxes |µf | = f (|νf | = f).

µf = µ+ ((
f − |µ|
m

)m) , (6.17)

νf = ν + ((
f − |ν|
n

)n) . (6.18)

Here we recall that ((f−|µ|m )m) indicates m rows of length ((f−|µ|m ). By Theorem 7 the premises

of the Lemma imply that g(λ, µf , νf ) > 0. Similarly g(λ′, µ′f ′ , ν
′
f ′) > 0.
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We now show that µ̄ = µ+ µ′ and ν̄ = ν + ν ′ implies that µ̄f̄ = µf + µ′f ′ and ν̄f̄ = νf + ν ′f ′ .

µf + µ′f ′ = µ+ µ′ + ((
f − |µ|
m

)m) + ((
f ′ − |µ′|

m
)m) = µ̄+ ((

(f + f ′ − |µ| − |µ′|)
m

)m)

= µ̄+ ((
f̄ − |µ̄|
m

)n) = µ̄f̄ . (6.19)

And similarly for ν̄.

Let us make use of a property of the Clebsch-Gordan coefficients called the semi-group

property. If g(λ, µf , νf ) > 0 and g(λ′, µ′f ′ , ν
′
f ′) > 0 then g(λ+λ′, µf +µ′f ′ , νf +ν ′f ′) > 0 [95]. By

the semi-group property we have g(λ̄, µ̄f̄ , ν̄f̄ ) > 0. This implies that ∆f̄

λ̄
occurs in ∆f̄

µ̄f̄
⊗∆f̄

µ̄f̄
.

By Theorem 7 this implies that Γmn
λ̄|SU(m)×SU(n)

contains a term Γmµ̄ � Γmν̄ .

6.3 Existence of subspace compatible with subsystems

As shown in Chapter 4 the representations Γd corresponding to alternative measurement pos-

tulates for systems with pure states PCd (d > 2) are of the form

Γ =
⊕
j∈J
Ddj , (6.20)

where J is a list of positive integers (at least one of which is not 1) and Ddj are representations

of SU(d) labelled by Young diagrams (2j, j, . . . , j︸ ︷︷ ︸
d−2

).

In the following we establish that Γ9
|SU(d)×SU(d) contains terms 13�Γ3⊕Γ3�13⊕Γ3�Γ3 for

representations Γ9 = D9
j with j > 1. This subspace is of the form given in Lemma 21 and shows

that these representations meet a necessary condition for having well defined subsystems.

Lemma 24. If the representation Ddj contains a term DdAj � 1dB and Dd2 contains a term

DdA2 � 1dB when restricted to SU(dA)× SU(dB) then Ddj+2 contains a term DdAj+2 � 1dB upon this

restriction.

Proof. Let

Γdλ = Ddj , ΓdAµ = DdAj , ΓdBν = 1dB , (6.21)

Γdλ′ = Dd2 , ΓdAµ′ = DdA2 , ΓdBν′ = 1dB , (6.22)

Γλ̄ = Ddj+2, Γµ̄ = DdAj+2, ΓdBν̄ = 1dB . (6.23)
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where

λ = (2j, jd−2), µ = (2j, jdA−2), ν = 0 , (6.24)

λ′ = (4, 2d−2), µ′ = (4, 2dA−2), ν ′ = 0 , (6.25)

λ̄ = (2j + 4, (j + 2)d−2), µ̄ = (2j + 4, (j + 2)dA−2), ν̄ = 0 . (6.26)

We observe

λ̄ = λ+ λ′, µ̄ = µ+ µ′, ν̄ = ν + ν ′ , (6.27)

f = |λ| = jd, f ′ = |λ′| = 2d, f̄ = |λ̄| = d(j + 2) . (6.28)

Next we check that the quantities below are integer valued:

|λ| − |µ|
m

=
jd− jdA

dA
= j(dB − 1) , (6.29)

|λ| − |ν|
n

=
jd− 0

dB
= jdA , (6.30)

|λ′| − |µ′|
m

=
2d− 2dA

dA
= 2(dB − 1) , (6.31)

|λ′| − |ν ′|
n

=
2d− 0

dB
= 2dA . (6.32)

From Lemma 23 it follows that if Ddj contains a representation DdAj � 1dB and Dd2 contains a

representation DdA2 �1dB when restricted to SU(dA)×SU(dB) then Ddj+2 contains a representation

DdAj+2 � 1dB .

Lemma 25. If the representation Ddj contains a term 1dA � DdBj and Dd2 contains a term

1dA �DdB2 when restricted to SU(dA)× SU(dB) then Ddj+2 contains a term 1dA �DdBj+2 upon this

restriction.

Proof. Same as above with relabelling of µ’s for ν’s.

Lemma 26. If the representation Ddj contains a term DdAj � DdBj and Dd2 contains a term

DdA2 � DdB2 when restricted to SU(dA) × SU(dB) then Ddj+2 contains a term DdAj+2 � DdBj+2 upon

this restriction.
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Proof. Let

Γdλ = Ddj , ΓdAµ = DdBj , ΓdBν = DdBj , (6.33)

Γdλ′ = Dd2 , ΓdAµ′ = DdA2 , ΓdBν′ = DdB2 , (6.34)

Γλ̄ = Ddj+2, ΓdAµ̄ = DdBj+2, ΓdBν̄ = DdBj+2, (6.35)

where

λ = (2j, jd−2), µ = (2j, jdA−2), ν = (2j, jdB−2) , (6.36)

λ′ = (4, 2d−2), µ′ = (4, 2dA−2), ν ′ = (4, 2dB−2) , (6.37)

λ̄ = (2j + 4, (j + 2)d−2), µ̄ = (2j + 4, (j + 2)dA−2) , (6.38)

ν̄ = (2j + 4, (j + 2)dB−2) . (6.39)

(6.40)

We observe

λ̄ = λ+ λ′, µ̄ = µ+ µ′, ν̄ = ν + ν ′ , (6.41)

f = |λ| = jd, f ′ = |λ′| = 2d, f̄ = |λ̄| = d(j + 2) . (6.42)

Next we check that the quantities below are integer valued:

|λ| − |µ|
m

=
jd− jdA

dA
= j(dB − 1) , (6.43)

|λ| − |ν|
n

=
jd− jdB

dB
= j(dA − 1) , (6.44)

|λ′| − |µ′|
m

=
2d− 2dA

dA
= 2(dB − 1) , (6.45)

|λ′| − |ν ′|
n

=
2d− 2dB

dB
= 2(dA − 1) . (6.46)

From Lemma 23 it follows that if Ddj contains a representation DdAj �DdBj and Dd2 contains a rep-

resentation DdA2 �DdB2 when restricted to SU(dA)×SU(dB) then Ddj+2 contains a representation

DdAj+2 �DdBj+2.

The above three lemmas entail that:

Lemma 27. If the representation Dd2 contains a representation (1dA�DdB2 )⊕(DdA2 �1dB)⊕(DdA2 �

DdB2 ) upon restriction to SU(dA)× SU(dB) and the representation Dd3 contains a representation
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(1dA�DdB3 )⊕(DdA3 �1dB)⊕(DdB3 �DdB3 ) upon restriction to SU(dA)×SU(dB) then all representation

Ddj contain a representation (1dA�DdBj )⊕(DdAj �1dB)⊕(DdAj �DdBj ) upon restriction to SU(dA)×
SU(dB).

6.3.1 Proof for d = 9

Using Sage software [96] we can show that D9
2 contains a representation (13 �D3

2)⊕ (D3
2 �13)⊕

(D3
2�D3

2) upon restriction to SU(3)×SU(3) and the representation D9
3 contains a representation

(13 � D3
3) ⊕ (D3

3 � 13) ⊕ (D3
3 � D3

3) upon restriction to SU(3) × SU(3). By Lemma 27 all

representations D9
j contain a representation (13 �D3

j )⊕ (D3
j � 13)⊕ (D3

j �D3
j ) upon restriction

to SU(3)× SU(3).

6.3.2 Reducible representations

All representations of SU(9) of the form given in equation (6.20) contain a subspace compatible

with subsystems since each term Ddj in the sum provides a subspace compatible with subsys-

tems. However we observe that in general the direct sum of the subspaces compatible with

subsystems is not a subspace compatible with subsystems. Consider a representation Ddk ⊕Ddl .
The restriction of this representation will have components:

(1dA �DdBk )⊕ (DdAk � 1dB)⊕ (DdAk �DdBk )⊕ (1dA �DdBl )⊕ (DdAl � 1dB)⊕ (DdAl �DdBl ) . (6.47)

However we observe that this is not equal to:

(1dA � (DdBk ⊕D
dB
l ))⊕ ((DdAk ⊕D

dA
l ) � 1dB)⊕ ((DdAk ⊕D

dA
l ) � (DdBk ⊕D

dB
l )) , (6.48)

since the last term will contain cross terms not present in (6.47). From the above consideration

it follows that all representations of SU(9) of the form (6.20) have a subspace compatible with

subsystems upon restriction to SU(3)× SU(3).

6.3.3 Comments

It is important to make some comments about these results. What we have shown is that all

representations of SU(9) which are compatible with the dynamical structure of quantum theory

have a subspace which is of the form Γ̄3 � Γ̄3. We have not shown that this is the unique
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such subspace (indeed for reducible representations it never is). Consider a C9 system with

representation D9
j which is the composite of two C3 systems (i.e. it meets all the consistency

constraints); we have found that the representation D9
j has a subspace which is compatible

with subsystems having representations D3
j . However it may be that the actual C3 subsystems

are not of the form D3
j , since there are possibly other subspaces within D9

j compatible with

subsystems.

6.4 Violation of local tomography in all alternative measure-

ment postulates

In the following we establish that Γ9
|SU(3)×SU(3) contains a term of 13 � 13, where 13 is the

trivial representation of SU(3), for all representations Γ9 of SU(9) (apart from the adjoint

representation) which are compatible with the dynamical structure of quantum theory (i.e. of

the form given in (4.56)). By Lemma 22 all PC9 systems with alternative measurements violate

local tomography.

6.4.1 Arbitrary dimension dAdB

We first construct a proof by induction to show that representations DdAdBj are not compatible

with local tomography (for a partition into systems CdA and CdB) if the representations DdAdB2

and DdAdB
3 are not compatible with local tomography.

Lemma 28. If the representations DdAdBj and DdAdB2 of SU(d) contain a term 1dA � 1dB when

restricted to SU(dA)× SU(dB) then so does DdAdBj+2 .

Proof. Let

Γdλ = Ddj , ΓdAµ = 1dA , ΓdBν = 1dB , (6.49)

Γdλ′ = Dd2 , ΓdAµ′ = 1dA , ΓdBν′ = 1dB , (6.50)

Γλ̄ = Ddj+2, Γµ̄ = 1dA , ΓdBν̄ = 1dB , (6.51)
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where

λ = (2j, jd−2), µ = 0, ν = 0 , (6.52)

λ′ = (4, 2d−2), µ′ = 0, ν ′ = 0 , (6.53)

λ̄ = (2j + 4, (j + 2)d−2), µ̄ = 0, ν̄ = 0 . (6.54)

We observe

λ̄ = λ+ λ′, µ̄ = µ+ µ′, ν̄ = ν + ν ′ , (6.55)

f = |λ| = jd, f ′ = |λ′| = 2d, f̄ = |λ̄| = d(j + 2) . (6.56)

Next we check that the quantities below are integer valued:

|λ| − |µ|
m

=
jd

dA
= jdB , (6.57)

|λ| − |ν|
n

=
jd

dB
= jdA , (6.58)

|λ′| − |µ′|
m

=
2d

dA
= 2dB , (6.59)

|λ′| − |ν ′|
n

=
2d

dB
= 2dA . (6.60)

From Lemma 23 it follows that if Ddj contains a representation 1dA � 1dB and Dd2 contains a

representation 1dA�1dB when restricted to SU(dA)×SU(dB) then Ddj+2 contains a representation

1dA � 1dB when restricted to SU(dA)× SU(dB).

Hence it suffices to show thatDd2 andDd3 contain 1dA�1dB when restricted to SU(dA)×SU(dB)

to show that Ddj does for any j > 1 using induction and the previous lemma.

6.4.2 Existence of 13 � 13 for all non-quantum representations of SU(9)

Using Sage software we can show that D9
2 and D9

3 have a representation 13 � 13 when restricted

to SU(3)×SU(3). By Lemma 28 all representations D9
j , j > 1 have this property. An arbitrary

representation corresponding to non quantum measurement postulates for PC9 is of the form:

Γ9 =
⊕
j∈J
D9
j , (6.61)

where J is a list of positive integers containing at least one integer which is not 1. Since at

least one (non-trivial) subrepresentation in Γ9 has a 13 � 13 when restricted to SU(3)× SU(3)

so does the representation Γ9.
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6.5 Violation of local tomography for all theories

In order to show that a theory with systems PCd (for every d > 1) violates local tomography, it

is sufficient to show that a pair of the systems in the theory violates local tomography. Since all

PC9 non-quantum systems violate local tomography it follows that all non-quantum theories

with systems PCd violate local tomography.

6.6 Violation of purification

A system CdA satisfies the purification principle if for each ensemble (ψi, pi) in CdA there exists

a pure state φAB in CdA ⊗ CdB for some dB satisfying

(FA ? uB)(φAB) =
∑
i

piFA(ψi) , (6.62)

for all FA ∈ FdA . Moreover any φAB and ψAB which purify the same ensemble (ψi, pi) in CdA

must be related by a transformation IA ⊗ UBwith UB ∈ SU(dB) [43]. In this work we disregard

the requirement that the purifying state φAB be unique up to a unitary transformation on CdB .

Quantum theory satisfies the purification principle.

We now show that all alternative measurement postulates violate purification (for an arbi-

trary choice of ancillary system dimension). Consider a system (CdAdB ,FdAB) with representation

ΓdAdB which is the composite of two systems (CdA ,FdA) with representation ΓdA and (CdB ,FdB)

with representation ΓdB . Here the representations Γd are of the form (6.20). Let us define the

following equivalence classes of pure global states:

[|ψ〉AB]UB
= {|ψ〉′AB ∈ CdAdB | |ψ〉′AB = IA ⊗ UB |ψ〉AB} . (6.63)

All members of the same equivalence class are necessarily mapped to the same reduced state of

Alice; otherwise Bob could signal to Alice. We note that [97] makes use of this observation in a

similar context. The no-signalling assumption is part of the operational framework, since it is

necessary for there to exist well defined subsystems. Let us call the set of all these equivalence

classes RB:

RB := {[|ψ〉AB]UB
| |ψ〉AB ∈ CdAdB} . (6.64)

128



The map from global states to reduced states can be defined on the equivalence classes [|ψ〉AB]UB

since two members of the same equivalence class are always mapped to the same reduced states.

R : RB → SA is the map from equivalence classes to reduced states:

R([|ψ〉AB]UB
) = ω̄A(|ψ〉AB) , (6.65)

where ω̄A(|ψ〉AB) is the reduced state obtained in the standard manner from the global state

|ψ〉AB. Next we prove that the image ofR is smaller than SA for any non-quantum measurement

postulates. In other words there are some (local) mixed states in SA which are not reduced

states of the global pure states |ψ〉AB.

In the Schmidt decomposition a state |ψ〉AB is:

|ψ〉AB =

dA∑
i=1

λi |i〉A |i〉B , λi ∈ R ,
∑
i

λ2
i = 1 , (6.66)

where we assume that the Schmidt coefficients are in decreasing order λi ≥ λi+1. Two states

with the same coefficients and the same basis states on Alice’s side belong to the same equiva-

lence class [|ψ〉AB]UB
. Also, two Alice’s basis differing only by phases (e.g. {|i〉A} and {eiθi |i〉A})

give rise to the same equivalence class because the phases eiθi can be absorbed by Bob’s unitary.

We observe that this is used by Zurek in his envariance principle [40].

Let us count the number of parameters that are required to specify an equivalence class

in RB. First, we have the dA − 1 Schmidt coefficients. Second, we note that the number of

parameters to specify a basis in CdA is the same as to specify an element of U(dA). Which is the

dimension of its Lie algebra, d2
A, the set of anti-hermitian matrices. Third, we have to subtract

the dA irrelevant phases θi. The three terms together give

(dA − 1) + d2
A − dA = d2

A − 1 . (6.67)

Hence d2
A − 1 parameters are needed to specify elements of RB. The set Image(R) requires the

same or fewer parameters to describe as RB. This follows from the fact that every element of

RB can be mapped to distinct images, or multiple elements can be mapped to the same image.

Hence by requiring that Alice’s reduced states are in one-to-one correspondence with these

equivalence classes, her state space must have a dimension d2
A − 1. We now show measurement

postulates which generate a state space with this dimension are the quantum ones.
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First consider the measurement postulates which generate state spaces with irreducible

representations, which are of the form DdAj by Theorem 5. The dimension of a representation

DdAj is given by:

DdA
j =

(
2j

dA − 1
+ 1

) d−2∏
k=1

(
1 +

j

k

)2

. (6.68)

We observe that DdA
j > DdA

i for j > i ≥ 1. Since DdA
j = d2

A−1 this implies that all non-quantum

irreducible state spaces have a dimension strictly greater than d2
A − 1. It follows from this that

all non-quantum reducible state spaces have a dimension strictly greater than d2
A − 1.

Hence the only measurement postulates which generate a state space with dimension d2
A−1

are the quantum ones. All other state spaces have a dimension which is strictly greater than

d2
A − 1.

6.7 A toy model

In this section we present a family of bi-partite systems which serve as an example for the results

that we have proven in general (violation of purification and local tomography). These bi-partite

systems have a well defined (but non-associative) ?-product and all consistency constraints C0.

- C5. are met.

Since the ?-product is non-associative, this toy theory cannot describe tri-partite systems.

In the following we consider two local subsystems CdA and CdB with sets of OPFs FL
dA

and FL
dB

.

The composite (global) system has a set of OPFs FG
dAdB

. We prove that the toy model meets

consistency constraints C0. - C5. (apart from associativity of the ? product) in Appendix D.

Definition 35 (Local effects FL
d ). Let S be the projector onto the symmetric subspace of Cd⊗Cd.

To each d2 × d2 Hermitian matrix F̂ satisfying

• 0 ≤ F̂ ≤ S,

• F̂ =
∑

i αi|φi〉〈φi|⊗2 for some |φi〉 ∈ Cd and αi > 0,

• S − F̂ =
∑

i βi|ϕi〉〈ϕi|⊗2 for some |ϕi〉 ∈ Cd and βi > 0,

there corresponds the OPF

F (ψ) = tr(F̂ |ψ〉〈ψ|⊗2) , (6.69)
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The unit OPF corresponds to û = S.

That is, both matrices, F̂ and S − F̂ , have to be not-necessarily-normalized mixtures of sym-

metric product states.

Example 8 (Canonical measurement for d prime). For the case where d is prime there exists

a canonical measurement which can be constructed as follows. Consider the (d + 1) mutually

unbiased bases (MUBs): {|φji 〉}di=1 where j runs from 1 to d + 1 [98]. Then we can associate

an OPF to each Hermitian matrix 1
2 |φ

j
i 〉〈φ

j
i |⊗2. Since the basis elements of these MUBs form a

complex projective 2-design [99], by the definition of 2-design [100], we have the normalization

constraint:
1

2

∑
i,j

|φji 〉〈φ
j
i |⊗2 = S , (6.70)

and hence the set of OPFs forms a measurement.

Definition 36 (? product). For any pair of OPFs FA ∈ FL
dA

and FB ∈ FL
dB

the Hermitian

matrix corresponding to their product FA ? FB ∈ FG
dAdB

is

F̂A ? FB = F̂A ⊗ F̂B +
trF̂A

trSA
AA ⊗

trF̂B

trSB
AB , (6.71)

where SA and AA are the projectors onto the symmetric and anti-symmetric subspaces of CdA ⊗
CdA, and analogously for SB and AB.

This product is clearly bilinear and, by using the identity SAB = SA ⊗ SB + AA ⊗ AB, we can

check that uA ? uA = uAB.

We observe that not all effects F̂A ? FB are of the form
∑

i αi|φi〉〈φi|⊗2
AB. Hence the set of

effects on the joint system is not FL
dAdB

, but has to be extended to FG
dAdB

to include these joint

product effects.

Definition 37 (Global effects FG
dAdB

). The set FG
dAdB

should include all product OPFs F̂A ? FB,

all OPFs FL
dAdB

of CdAdB understood as a single system, and their convex combinations.

The identity SAB = SA⊗SB +AA⊗AB perfectly shows that the vector space FG
dAdB

is larger

than the tensor product of the vector spaces FL
dA

and FL
dB

, by the extra term AA ⊗ AB. This

implies that this toy theory is holistic.
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The joint probability of outcomes FA and FB on the entangled state ψAB ∈ CdA ⊗ CdB can

be written as

(FA ? FB)(ψAB) = tr
[(
F̂A ⊗ F̂B + trF̂A

trSA
AA ⊗ trF̂B

trSB
AB

)
|ψAB〉〈ψAB|⊗2

]
.

When we only consider sub-system A outcome probabilities are given by

(FA ? uB)(ψAB) = tr
[(
F̂A ⊗ SB + trF̂A

trSA
AA ⊗AB

)
|ψAB〉〈ψAB|⊗2

]
(6.72)

= trA

[
F̂A ω̄A

]
, (6.73)

where the reduced state must necessarily be

ω̄A = trB
(
SB|ψAB〉〈ψAB|⊗2

)
+

SA
trSA

trAB
(
AA⊗AB|ψAB〉〈ψAB|⊗2

)
. (6.74)

All these reductions ω̄A of pure bipartite states ψAB are contained in the convex hull of

|φA〉〈φA|⊗2, as required by the consistency constraint C4. However, not all mixtures of |φA〉〈φA|⊗2

can be written as one such reduction (6.74). That is the purification postulate is violated. This

phenomenon is graphically shown in Figure 6.1. This toy model is locally restricted [10], in that

Figure 6.1: Projection of C2 toy model state space. In this projection the coloured points (blue

and purple) are states of the form
∑

i pi|ψi〉〈ψi|⊗2. The blue points are projections of reduced

states of a larger system obtained using formula (6.74). The left hand corner corresponds to

the state |0〉〈0|⊗2 and the right hand corner to the state |1〉〈1|⊗2. All pure states are projected

onto the curved boundary. This figure shows that there are local mixed states (in purple) which

are not reduced states (in blue).

not all mathematically allowed effects on the local state spaces (when considered in isolation)

are allowed effects. We observe that many mathematically allowed effects on the local state
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spaces are ruled out when considering bi-partite systems (for instance they give negative values

on entangled states). The toy model violates the principle of pure sharpness [101] in that all

the effects are noisy.

6.8 Conclusion

6.8.1 Summary

In this chapter we studied bi-partite systems with modified measurement postulates. We showed

that the compositional structure of bi-partite systems entails that the representation acting on

the mixed states of the global system has a subspace of a certain form when restricted to the

local subgroup. We showed that all representations of SU(9) had this feature when restricted

to the local SU(3)× SU(3) subgroup. Moreover we showed that whether a system was locally

tomographic or holistic also had implications on the form of the global representation restricted

to the local subgroups. Using this feature we showed that all C9 systems with alternative

measurement violate local tomography. From a parameter counting argument we showed that

all systems Cd violate the purification principle. Following this we introduced a toy model to

give an example of a bi-partite system with modified measurements.

6.8.2 Interpreting results as a derivation of the Born rule

In this chapter we have shown that all theories with modified measurements violate the pu-

rification principle and local tomography. This entails that one can derive the measurement

postulates of quantum theory from the dynamical postulates P0.-P2., the compositional pos-

tulate P4. and either the assumption of local tomography or purification. Such a derivation

begins from the dynamical structure of quantum theory and uses the operational framework.

As discussed in section 4.5 this is a different starting point from Gleason’s theorem (one of the

most well-known derivation of Born rule) which begins from the structure of measurements and

is within the tradition of quantum logic.

A derivation of the Born rule which starts from similar assumptions to ours is the envariance

based derivation of Zurek [40]. Zurek begins by assuming the dynamical structure of quantum

theory and the assumption that quantum theory is universal, which is to say that all the phe-
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nomena we observe can be explained in terms of quantum systems interacting. Specifically the

classical worlds of devices can be modelled quantum mechanically, including the measurement

process. We observe that this is philosophically very different to the operational approach

outlined in Chapter 2 which takes the classical world as a primitive. By assuming the dynami-

cal structure of quantum theory and the assumption of universality (as well as some auxiliary

assumptions) Zurek shows that measurements are associated to orthonormal bases, and that

outcome probabilities are given by the Born rule. For criticisms of Zurek’s approach we refer

the reader to [97, 102–104].

We observe that the purification postulate seems linked to the notion that quantum theory

is universal, in the sense that any classical uncertainty can be explained as originating from

some pure global quantum state. This shows an interesting link to Zurek’s derivation, since

although we work within an operational framework, the concept of purification is linked to the

idea that quantum theory is universal. This shows that we can also rely on a concept linked

to universality in order to derive the Born rule (and the structure of measurements) within an

operational approach.

We can also derive the measurement postulates of quantum theory from the assumption

of local tomography for composites of three-dimensional systems, which does not have this

connotation of universality.

6.8.3 Purification as a constraint on physical theories

In Theorem 19 of [43] the authors show that any two convex theories with the same states (pure

and mixed) which obey purification are the same theory. In other words “states specify the

theory” for theories with purification [43]. In this chapter we show that in the case of theories

with pure states PCd, any two theories which obey purification with the same pure states are

the same. This means that for a restricted family of theories (those with systems with pure

states PCd) we have the same result as Theorem 19 of [43] but with weaker assumptions. For

one specific case “pure states specify the theory”. In this sense the purification result of this

chapter is both a stronger and a weaker version of the theorem.
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6.8.4 Associativity

In this chapter we showed that generic theories with modified measurements have bi-partite

systems which violate purification and local tomography. We constructed one explicit example

in the form of the toy model, however this model is not associative. This raises the question as

to whether there are any systems with modified measurement rules which are consistent with

associativity. We discuss this further in section 7.2.1.
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Chapter 7

Summary and future work

7.1 Summary

In this thesis we explored how to modify the measurement postulates of quantum theory in

a manner consistent with operational principles. We made use of representation theoretic

techniques in order to classify, and study informational properties of theories with modified

measurement postulates.

In Chapter 2 we introduced the framework of GPTs and showed that operational principles

imposed two structures on GPTs. A convex structure follows from the experimenters capac-

ity for carrying out probabilistic operations, whilst a categorical structure follows from the

experimenters capacity to compose devices.

In Chapter 3 we presented some basic results in the representation theory of the symmetric

group and the special unitary group. We showed how to classify and generate all representations

of these groups.

In Chapter 4 we introduced the OPF framework to describe measurement postulates of a

system Cd using an OPF set Fd. We derived the consistency constraints imposed by opera-

tionalism on these OPF sets. We restricted our attention to single systems and showed that

every OPF set Fd was in correspondence with a representation of the dynamical group SU(d).

Following this we found all representations of SU(d) which corresponded to sets Fd, allowing

us to systematically classify all alternative measurement postulates.

In Chapter 5 we explored informational properties of systems with alternative measurement
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postulates. We explored in depth several family of C2 systems and found some which had many

differences with qubits: distinguishable states which did not correspond to orthogonal rays, no

bit symmetry and violation of no-simultaneous encoding. By studying the embedding of Cd−1

systems in Cd systems and using the fact that all unrestricted C2 systems violate bit symmetry

we showed that all unrestricted Cd systems violate bit symmetry.

In Chapter 6 we studied composition in theories with modified measurements. We showed

that all such theories have systems which violate the purification principle and the principle of

local tomography. This was shown by considering bi-partite systems only, and we introduced a

toy model of bi-partite systems with modified measurement postulates. We did not study triples

of systems, and did not resolve whether there are modified measurement postulates compatible

with associativity of systems.

7.2 Future work

7.2.1 Multi-partite systems

The main open question left in this thesis is that of associativity. We have classified all single

systems with modified measurement postulates and found them to possess exotic informational

properties. Although we did not show whether all these single systems can compose according

to postulate P4. we showed that those which do violate purification, and in the case of C9

also violate local tomography. We introduced a family of bi-partite systems which met all the

consistency constraints for composition, apart from associativity of the star product, thus show-

ing that composition (when restricted to bi-partite systems) is possible when the measurement

postulates of quantum theory are modified.

The question which naturally arises is whether one can find non-quantum OPF sets Fd such

that there is an associative ? product between them. Associativity is a basic pre-operational as-

sumption about the freedom of the experimenter to subjectively divide the world as she pleases.

If our description of a set of systems is not associative, then one cannot consider the description

as operational. Hence failure of associativity is tantamount to operational inconsistency. In

ongoing work with Lluis Masanes and Markus Müller we show that all non-quantum OPF sets

(subject to constraints C0. - C5.) cannot have an associative ? product. This shows the
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quantum measurement postulates to be the only consistent ones, given the dynamical structure

of quantum theory. This essentially is a derivation of the quantum measurement postulates

from minimal operational requirements (and finite dimensionality of the state space).

7.2.2 General transitive systems

We observe that Theorem 4 applies to more general systems. Indeed by considering a system

with some other set of pure states X, some group G with a transitive action on X and a set of

OPFs (defined on X) one can derive the state space for the system in the same manner as done

in the proof of Theorem 4. Moreover due to the transitivity of of the group action G there is

a stabilizer group H (which is isomorphic for every point) and X ∼= G/H. Hence one can also

classify the representations which correspond to group actions on the state space by finding the

representations of G which have a trivial component upon restriction to H.

An example of group/subgroup choice is to keep the dynamical group SU(d) of quantum

theory, but have as stabilizer subgroup a group of the form S(U(d − k) × U(k)). This is a

generalisation of the quantum stabilizer group which occurs for k = 1. The manifold Gr(k; d) =

SU(d)/S(U(d − k) × U(k)) with k < d is a Grassmann manifold. It is a generalisation of

projective space. PCd is obtained from Cd by taking the set of all one dimensional subspaces;

the manifold Gr(k; d) is the set of all k-dimensional subspaces. The author has some unpublished

notes in which all representations of SU(d) which have a trivial representation upon restriction

to S(U(d − k) × U(k)) are classified (for d and k finite). This provides a classification of all

systems with pure states Gr(k; d) and dynamical group SU(d), analogous to that of Theorem 5.

Future work will include determining whether these systems compose, first in the bi-partite

case then in full.
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Appendix A

Unique extension of convex-linear

maps to affine and linear maps

In this appendix we prove Lemma 2 and Lemma 3.

A.1 Proof of Lemma 2

First let us define the extension of M to be MAff such that:

MAff (
∑

iαiωi) =
∑
i

αiM(ωi),
∑
i

αi = 1, ωi ∈ S . (A.1)

We first show that this map is affine not just on S (which it is by definition), but also on Aff(S).

We show MAff (
∑

k γkvk) =
∑

k γkMAff(vk) for vk ∈ Aff(S) and
∑

k γk = 1. Any vk can be

written as vk =
∑

i α
k
i ω

k
i with ωki ∈ S and

∑
i α

k
i = 1.

MAff

(∑
k

γkvk

)
=MAff(

∑
ik

γkα
k
i ω

k
i ) . (A.2)

Observe that
∑

ik γkα
k
i = 1 and ωki ∈ S, hence:

MAff(
∑
ik

γkα
k
i ω

k
i ) =

∑
ik

γkα
k
iMAff(ωki ) =

∑
k

γkMAff(
∑
i

αki ω
k
i ) =

∑
k

γkMAff(vk) . (A.3)

Where in the penultimate step we use equation (A.1). We now show that the extended map is

is well defined, that is to say that it gives the same value for two different decomposition for a
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point ω ∈ Aff(S). Let us set ω =
∑

i αiωi =
∑

j βjω
′
j . Then this is equivalent to:

∑
i

α>0
i ωi −

∑
j

β<0′

j ω′j =
∑
j

β>0
j ω′j −

∑
i

α<0
i ωi , (A.4)

where the label > 0 (< 0) indicates that the coefficients are positive (negative). If we divide

through by
∑

i α
>0
i −

∑
j β

<0′

j =
∑

j βj −
∑

i α
<0
i = n we obtain

1

n

∑
i

α>0
i ωi −

∑
j

β<0′

j ω′j

 =
1

n

∑
j

β>0
j ω′j −

∑
i

α<0
i ωi

 . (A.5)

Both sides correspond to different convex combinations of the same point ω ∈ S. Hence:

M(
1

n
(
∑

iα
>0
i ωi −

∑
jβ

<0′

j ω′j)) =M(
1

n
(
∑

jβ
>0
j ω′j −

∑
iα
<0
i ωi)) , (A.6)

⇔ 1

n

∑
i

α>0
i M(ωi)−

∑
j

β<0′

j M(ω′j)

 =
1

n

∑
j

β>0
j M(ω′j)−

∑
i

α<0
i M(ωi)

 , (A.7)

⇔
∑
i

αiM(ωi) =
∑
j

βjM(ω′j)⇔MAff (
∑

iαiωi) =MAff(
∑

jβjω
′
j) . (A.8)

Moreover the map is unique. Let us define another map NAff such that NAff(ω) =
∑

i αiM(ωi),∑
i αi = 1, ωi ∈ S. Then it is immediate that NAff(ω) =MAff(ω), ∀ω ∈ Aff(S).

A.2 Proof of Lemma 3

Let us defineML(
∑

i αiωi) =
∑

i αiMAff(ωi) for ωi ∈ Aff(S). We first show that it is linear on

span(S). We first show that ML(γv) = γML(v):

ML(γv) =ML
(
γ
∑
i

αiωi
)

=
∑
i

γαiMAff
(
ωi
)

= γML (v) (A.9)

We show that ML(v1 + v2) = ML(v1) + ML(v2) for all v1, v2 ∈ span(S). We write v1 =∑
i αiωi and v2 =

∑
j α
′
jω
′
j with ωi and ω′j in Aff(S).

ML(
∑
i

αiωi +
∑
j

α′jω
′
j) = ML

(
∑
i

αi)

∑
i αiωi∑
i αi

+ (
∑
j

α′j)

∑
j α
′
jω
′
j∑

j α
′
j

 . (A.10)
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Since
∑
i αiωi∑
i αi

and
∑
j α
′
jω
′
j∑

j α
′
j

are elements of Aff(S) we can use ML(
∑

i αiωi) =
∑

i αiMAff(ωi)

for ωi ∈ Aff(S) to obtain:

ML(
∑
i

αiωi +
∑
j

α′jω
′
j) =

∑
i

αiMAff

(∑
i αiωi∑
i αi

)
+
∑
j

α′jMAff

(∑
j α
′
jω
′
j∑

j α
′
j

)
(A.11)

= ML

(∑
i

αiωi

)
+ML

∑
j

α′jω
′
j

 = ML(v1) +ML(v2) . (A.12)

In the penultimate step we have usedML(γv) = γML(v). Hence this map is linear, and obeys

ML(0) = 0. We show that it is well defined on span(S), i.e. that it gives the same value for

two different decompositions of the same ω ∈ span(S). Let ω =
∑

i αiωi =
∑

j α
′
jω
′
j . Then

ML(
∑
i

αiωi −
∑
j

α′jω
′
j) =ML(0) , (A.13)

⇔
∑
i

αiMAff(ωi)−
∑
j

α′jMAff(ω′j) = 0 , (A.14)

⇔
∑
i

αiMAff(ωi) =
∑
j

α′jMAff(ω′j) , (A.15)

⇔ML(
∑
i

αiωi) =ML(
∑
j

α′jω
′
j) . (A.16)

This map is unique.
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Appendix B

Number of irreducible

representations of a finite group G

In this appendix we prove Theorem 2. We follow the proof methods of [105, Section 3] and

[106, Section 3].

The character χ of a group element g in a given representation ρ : G → GL(V ) is the

trace of the representative matrix of that element: χ(g) = tr(ρ(g)). Here we remember that

V is a complex space. We observe that χ(g) = χ(g−1)∗ (this follows from the fact that the

eigenvalues of a matrix are roots of unity in a unitary representation). Two elements of the

same conjugacy class K have the same character: χ(g) = χ(hgh−1) (this follows from the cyclic

property of the trace). For each irreducible representations of G one can assign a character

function χ : G → C, which assigns the value tr(ρ(K)) for all conjugacy classes K. Let us call

the number of conjugacy classes k, then we can interpret the character function as a vector:

~χ = (χ(K1), ..., χ(Kk)). We sometimes call the character funciton χ just the character (of

the representation). We then define an inner product on the characters of two representations

as follows. Let us call χ and θ the characters of two representations ρ : G → GL(V ) and

π : G→ GL(W ) respectively, then:

〈χ, θ〉 =
1

|G|
∑
g∈G

χ(g)θ(g−1) (B.1)

=
1

|G|
∑
K

|K|χ(K)θ(K)∗ , (B.2)
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Conjugacy class K [1,1,1] [2,1] [3]

Number of elements in class |K| 1 3 2

Trivial 1 1 1

Alternating 1 -1 1

Standard 2 0 -1

Table B.1: This gives the value χ(K) for all the conjugacy classes K of S3 of all the irreducible

representations.

with |K| the number of group elements in the conjugacy class K.

We see that the values 〈χ, θ〉 for S3 can easily be read off table B.1. This is equal to zero

for any irreducible representations ρ 6= π as we now show. Let us call dV the dimension of V

and dW the dimension of W . Define a homomorphism φi,j : V → W for every i ≤ dV and

j ≤ dW . First consider the dW × dV matrix Ei,j which has a single entry equal to 1 at position

i, j. Next define:

Fi,j =
1

|G|
∑
g∈G

π(g)Ei,jρ(g−1) . (B.3)

The homomorphism φi,j is given by:

φi,j(v) = Fi,jv . (B.4)

We show that φi,j is a homomorphism, i.e. that φi,j(ρ(g)v) = π(g)φi,j(v), ∀v ∈ V or equiva-

lently φi,j = π(g−1)φi,jρ(g). This follows from:

π(h−1)Fi,jρ(h) = π(h−1)
1

|G|
∑
g∈G

π(g)Ei,jρ(g−1)ρ(h) (B.5)

=
1

|G|
∑
g∈G

π(h−1g)Ei,jρ(g−1h) (B.6)

=
1

|G|
∑

h−1g∈G

π(h−1g)Ei,jρ((h−1g)−1) (B.7)

= Fi,j . (B.8)

By Schur’s lemma this map must be the identity or 0. Since the two irreducible representations

are inequivalent we have that Fi,j is the zero matrix for all i, j. This implies (by rules of matrix
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multiplication):

(Fi,j)lk =
1

|G|
∑
g∈G

π(g)kkρ(g)∗ll = 0 , (B.9)

where we use that ρ(g−1) = ρ(g)† since representations of finite groups over C are unitarizable.

This is equivalent to:
1

|G|
∑
g∈G

θ(g)χ(g)∗ = 〈θ, χ〉 = 0 . (B.10)

By the equality 〈θ, χ〉 = 0 for characters of two inequivalent representations ρ and π it follows

that the vectors ~χ and ~θ are linearly independent.

A class function is a function γ : G→ C which gives a single value on all conjugacy classes.

By expressing a class function as ~γ = (γ(K1), ..., γ(Kk)) we see that the space of all class

functions spans a k-dimensional space. The space of character vectors is embedded in this k-

dimensional space, and every irreducible representation has a character vector which is linearly

independent from all the character vectors of the other irreducible representations. Hence the

number of irreducible representations is upper bounded by k, the number of conjugacy classes.

We now show that there are no non-zero class functions orthogonal to all the character

vectors, implying that the equality holds for the above bound. The inner product on characters

extends to these more general functions.

Let us consider an arbitrary class function γ : G → C such that 〈γ, χ〉 = 0 for every

irreducible representation ρ of G with carrier space V . Let us consider the following linear map

V → V :

M(γ,V ) =
∑
g∈G

γ(g)ρ(g) . (B.11)

We observe that M(γ,V ) commutes with the group action: ρ(h)M(γ,V )v = M(γ,V )ρ(h)v. By

Schur’s lemma it must be proportional to the identity.

M(γ,V ) = λIV , (B.12)

λ =
1

dV
tr(M(γ,V )) =

∑
g∈G

γ(g)tr(ρ(g)) =
|G|
dV
〈γ, χ〉 = 0 , (B.13)

where the final step is just the initial assumption that the class function γ is orthogonal to all the

character vectors. Hence M(γ,V ) = 0 for all irreducible representations. It must also be 0 for all

reducible representations. Now let us consider the regular representation (the representation on
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the group algebra), which is reducible. The carrier space V is spanned by the group elements,

which are linearly independent. We have 〈γ, χ〉 = 1
|G|
∑

g∈G γ(g)tr(ρ(g)) = 0. Since all the

elements ρ(g) = g are linearly independent this is only possible if γ(g) = 0 ∀g.
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Appendix C

Existence of distinguishable

non-antipodal states for systems in

SI2

In this chapter we show that all systems in SI2 have perfectly distinguishable non-antipodal

states (Lemma 8).

We show that for each systems in SI2 there exists a measurement of the formM = {(e, c), (−e, 1−
c)} with e ∝ (Ω2

j )
†D2

j (X)† which perfectly distinguishes pairs of non-antipodal states lying on

the D(UX(t))Ω2
j orbit.

Systems in SI2 are generated by representations D2
j with j odd. The dimension of such

representations is n = 2j + 1. We write UK(t) = eKt/2 for an arbitrary element of the Lie

Algebra K. We will use the following elements of su(2):

Z =

 i 0

0 −i

 , (C.1)

X =

 0 i

i 0

 , (C.2)

H =
1√
2

 i i

i −i

 . (C.3)
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We note that D2
j (e

Kt/2) = eD
2
j (K)t. The reference state Ω2

j is chosen to be invariant under all

UZ(t):

D2
j (UZ(t))Ω2

j = Ω2
j , (C.4)

which implies D2
j (Z)Ω2

j = 0. The 0-weight subspace is one dimensional, the other possible

(normalised) state is −Ω2
j . This will be the antipodal state. The manifold of pure states can

be generated in the following manner:

Ω(s, t) = D2
j (UZ(s))D2

j (UX(t))Ω2
j . (C.5)

This is just a 2-sphere (embedded in a space of dimension n) parametrised by polar angle s and

azimuthal angle t. The generators of the irreducible (unitary) representations of SU(2) can be

written as [107, p.387]:

D2
j (X) = i



0
√

2j
2 0 0 0 0 0

√
2j
2 0

√
2(2j−1)

2 0 0 0 0

0

√
2(2j−1)

2 0
. . . 0 0 0

0 0
. . . 0

. . . 0 0

0 0 0
. . . 0

√
2(2j−1)

2 0

0 0 0 0

√
2(2j−1)

2 0
√

2j
2

0 0 0 0 0
√

2j
2 0


, (C.6)

D2
j (Z) = i



j 0 0 0 0 0 0

0 j − 1 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0 −j + 1 0

0 0 0 0 0 0 −j


. (C.7)

We define k = j + 1 where D(K)(k,k) is the central element of the matrices D(K) for some

Lie algebra element K. It is clear that in this basis the reference state (0 eigenstate of D2
j (Z))

is:

(Ω2
j )i = δik . (C.8)
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In the following we drop the explicit reference to the representation, and use D(U) for D2
j (U).

We now use the notation ΩK
k+i for the i eigenstate of the representation matrix D(K) of the

Lie Algebra element K. Here i runs from −j to j. In the case of the diagonal operator D(Z)

we observe that an eigenvector with eigenvalue i has a single entry at position k + i. The

zero eigenstate (ΩZ
k )m = δkm which is just a vector with a single entry at position k (the

central entry). The 0 eigenstate of the operator D(X) for example is ΩX
k . Hence we use ΩZ

k

for the reference state Ω2
j (since it is the 0 eigenstate of the Z operator). The 0 eigenstate of

D(X) corresponds to the state ΩX
k which is equal to D(UY (−π

2 ))ΩZ
k (and is invariant under

D(UX(t))). These 0 eigenstates of Lie Algebra matrices D(K) correspond to states since they

have the correct invariance properties, that is, being invariant under eiD(K)t, t ∈ R.

As shown in the proof of Theorem 6 these state spaces have antipodal states for all states.

An effect which has as maximum Ωm will have as minimum −Ωm. This effect may be noisy

(i.e. not have values 0 and 1 for the minimum and maximum) but will be proportional to an

effect which is sharp (gives values 0 and 1 on the minimum and maximum). Hence any sharp

effect which has as maximum Ωm will distinguish it from −Ωm. In the following we show that

there exist effects which have 2 global maxima and minima when applied to the manifold of

pure states. These effects are proportional to sharp effects which distinguish Ω0 and −Ω0 and

also distinguish Ω0 and Ω1 (for Ω1 6= −Ω0).

Since effects (e, c) are of the form e · Ω(s, t) + c, we need only consider e · Ω(s, t) to es-

tablish the number of global extrema and their locations. We now prove the effect (e, c) with

e = (ΩZ
k )†D(X)† (up to normalisation) perfectly distinguishes non-antipodal states in all repre-

sentations. Here we use the † since the specific representation of the states have complex entries

(even though the vector space spanned by the states is a real vector space). We first show that e

gives real values when applied to the state space (whose states span a real vector space). There

is a basis for the representation where all entries are real which is related to this representation

by AD(U)A−1. It acts on states as AΩ, and since AD(U)A−1 is real it follows that AD(X)A−1

is real for Lie algebra elements X. Hence (ΩZ
j )†A−1AD(X)†A−1 · AD(U)A−1AΩ is real for all

Ω (since it is an inner product of vectors with real entries). This is equal to e ·Ω for all omega.

Hence e applied to the state space is real valued.

We study the maxima and minima of f(s, t) = e · Ω(s, t) which corresponds to applying e
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to the entire manifold of pure states:

f(s, t) = e · D(UZ(s))D(UX(t))ΩZ
k . (C.9)

We consider the first part (a row vector)

es = e eD(Z)s = (Ωz
k)
†D(X)†eD(Z)s , (C.10)

for which entries are 0 apart from entries k ± 1:

(es)k±1 = i

√
j(j + 1)

2
e∓is . (C.11)

We can write this as:

es = (0, ..., i

√
j(j + 1)

2
eis, 0, i

√
j(j + 1)

2
e−is, 0, ..., 0) . (C.12)

We now determine the second part of the function f(s, t): D(UX(t))ΩZ
k . Since ΩZ

k has

a single entry equal to 1 at position k this just selects the kth column of D(UX(t)), we call

these states ΩX(t); they form an orbit. The inner product es · ΩX(t) will only have two terms

corresponding to the k − 1 and k + 1 entries of each vector.

es · Ωt = i

√
j(j + 1)

2
(eisΩX(t)k−1 + e−isΩX(t)k+1) . (C.13)

This is real valued for all values of s, hence it must be the case that ΩX(t)k−1 = ΩX(t)k+1 and

both are imaginary (or both real and ΩX(t)k−1 = −ΩX(t)k+1). However since the ΩY
k state

belongs to the orbit ΩX(t) and has the property (ΩY
k )k−1 = (ΩY

k )k+1 it must be the former.

es · Ωt =
√
j(j + 1)ΩX(t)k+1cos(s) . (C.14)

The maxima and minima of this function occur for s = 0 (or π but this corresponds to the

same orbit). Hence we need to find the maxima and minima of the function:

f(s, t = 0) = g(t) = e ·D(UX(t))ΩZ
k = (ΩZ

k )†D(X)† ·D(UX(t))ΩZ
k = (ΩX

k )†D(Z)† ·D(UZ(t))ΩX
k .

(C.15)

Where we have used H the Hadamard transformation defined above which changes the basis

from Z to X: HZH† = X. Moreover HUZ(t)H† = UX(t). Therefore:

D(UX(t))ΩZ
k = D(H)D(UZ(t))D(H)†ΩZ

k , (C.16)
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we note that D(H)†ΩZ
k is a 0 eigenstate of D(X) and is therefore equal to ΩX

k .

We now evaluate the second part of g(t) : D(UZ(t))ΩX
k where ΩX

k is a normalised zero

eigenvector of D(X) and has the following form:

ΩX
k =



aj

0

a(j−2)

0
...

0

−a(j−2)

0

−aj



, (C.17)

where |an| > |am| for n > m.

D(eZt)ΩX
k =



aje
ijt

0

a(j−2) e
i(j−2)t

0
...

0

−a(j−2)e
−i(j+2)t

0

−aje−ijt



. (C.18)

We can also determine (ΩX
k )†D(Z)†:

(ΩX
k )†D(Z)† = (ja∗j , 0, (j − 2)a∗j−2, 0, ...., 0, (j − 2)a∗j−2, 0, ja

∗
j ) . (C.19)

We can now compute g(t):

g(t) = (ΩX
k )†D(Z)† · D(UZ(t))ΩX

k

= 2

j∑
l=1, l odd

l |al|2 sin(lt) .
(C.20)
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|an| > |am| for n > m hence |an|2 > |am|2 for n > m. We restrict ourselves to the interval

[0, 2π). We have been considering non-quantum theories with j > 1, however we briefly describe

what this effect corresponds to for the quantum case. When j = 1 (i.e k = 2) there is a single

maximum occurring for tm = π/2. Hence the global minimum occurs for t = 3π/2. The two

states distinguished by this effect are antipodal and correspond to the D(X) eigenstates. Indeed

we observe that this effect is just given by the tangent to ΩZ
2 (image of the ray |0〉) in the D(X)

direction which is proportional to ΩX
2 . We know that this effect gives the outcome probability

of being in the ΩX
2 state (image of the |+〉 ray) which is maximal for ΩX

2 and minimal for −ΩX
2

(image of the |−〉 ray).

We now show that g(t) has two global maxima and two global minima for j > 1. g(t) =

g(π−t), therefore given a maximum/minimum we can find another (unless tm = π/2). Moreover

since g(t) = −g(t+π) given a maximum/minimum we can find a minimum/maximum. To prove

our claim we need to find a global maximum/minimum in the interval [0, π). If this extremum

occurs for a value which is not π/2 then we can find the other maximum/minimum in the

same interval and the two minima/maxima in [π, 2π). We now show that for j > 1 the global

maximum/minimum does not occur for tm = π/2.

We first note that g(0) = 0, hence a global maximum is positive and a global minimum is

negative. We first compute g(π/2) and show that: g(π/2) > 0 → g(π/(2j)) > g(π/2). This

implies that g(π/2) cannot be a global maximum, since if it is positive there is a τ = π/(2j)

such that g(τ) > g(π/2). Similarly we show that g(π/2) < 0 → g(π/(2j)) < g(π/2) which

entails that when g(π/2) is negative it cannot be a global minimum. Hence the global extrema

of g(t) do not occur for t = π/2 when j > 1.

g(π/2) =

j∑
l=1,l odd

(−1)
l−1
2 l |al|2 . (C.21)

We note that:

l|al|2 > (l − 2)|al−2|2, l odd, l > 1 . (C.22)

Since each term in g(π/2) alternates sign and the absolute value of each term increases for

each l the sign of g(π/2) is determined by that of its highest term (−1)
j−1

2 l |aj |2. This implies

g(π/2) > 0 for j = 5, 9, 13, .... We consider these cases. The last term (which is the largest)

(−1)
j−1

2 j |aj |2 is always positive. We observe that the sum of the remaining terms is negative.
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This implies:

g(π/2)− j|aj |2 < 0 . (C.23)

We now determine

g(
π

2j
) =

j∑
l=1,l odd

l |al|2 sin(
lπ

2j
) . (C.24)

The arguments in each of the sin functions in g( π2j ) are always between 0 and π
2 , hence each

term is positive. Therefore:

g(
π

2j
)− j|al|2 > 0 . (C.25)

Combining equations (C.23) and (C.25) we obtain g( π2j ) > g(π2 ) when g(π2 ) > 0 . This shows

that the maximum of the function does not occur for t = π/2. The function therefore has at

least two maxima in the interval [0, π).

For j = 3, 7, 11, ... the same argument can be applied to show that the function has two

minima within the interval [0, π) and hence two maxima within [π, 2π].

This entails that there exists a global maximum which is separated from a global minimum

by a value which is not π. Hence there exist states which are distinguishable but are not

antipodal.
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Appendix D

Consistency of the toy model

In this appendix we show that the toy model introduced in section 6.7 meets consistency

constraints C0. - C5. (apart from associativity of the ? product).

C0. - C3.

It is immediate that consistency constraints C0. - C2. are met by the toy model.

C3.

We prove (FA ? FB)(ψA ⊗ φB) = FA(ψA)FB(φB) :

(FA ? FB)(ψA ⊗ φB) = tr
(
|ψ〉〈ψ|⊗2

A |φ〉〈φ|⊗2
B (F̂AF̂B +

tr(F̂AF̂B)

tr(SASB)
AAAB)

)
= tr

(
|ψ〉〈ψ|⊗2

A |φ〉〈φ|⊗2
B F̂AF̂B

)
= FA(ψA)FB(φB) . (D.1)

In the penultimate line we have used the fact that the overlap of product states |ψ〉〈ψ|⊗2
A |φ〉〈φ|⊗2

B

and AAAB is 0.

C4.

In the following it will occasionally be useful to label the two copies of CdA with 1 and 3 and

to label the two copies of CdB with 2 and 4. We write S̃A for the normalised projector onto the
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symmetric subspace of (CdA)⊗2. We make use of the identity S = 1
2(I + SWAP) throughout

this section.

In this section we show that normalised conditional states for Alice are valid states of a

CdA system. We first show this for the specific case where the state is conditioned on the unit

effect, i.e. is a reduced state. A reduced state of Alice for a bi-partite system in pure state

|ψAB〉〈ψAB|⊗2 is:

ω̄A = trB
(
SB|ψAB〉〈ψAB|⊗2

)
+

SA
trSA

trAB
(
AAAB|ψAB〉〈ψAB|⊗2

)
. (D.2)

We show that these reduced states lie in the convex hull of |ψA〉〈ψA|⊗2.

Lemma 29. SB |ψAB〉⊗2 = SASB |ψAB〉⊗2

Proof.

|ψAB〉⊗2 = αi1i2αi3i4 |i1i2i3i4〉 . (D.3)

SB |ψAB〉⊗2 =
1

2
αi1i2αi3i4(|i1i2i3i4〉+ |i1i4i3i2〉) . (D.4)

Let us relabel i1 ↔ i3 in the last term:

SB |ψAB〉⊗2 =
1

2
(αi1i2αi3i4 |i1i2i3i4〉+ αi3i2αi1i4 |i3i4i1i2〉) . (D.5)

SASB |ψAB〉⊗2 =
1

4
αi1i2αi3i4(|i1i2i3i4〉+ |i1i4i3i2〉+ |i3i2i1i4〉+ |i3i4i1i2〉) . (D.6)

Let us relabel i1 ↔ i3 in the second term , i2 ↔ i4 in the penultimate term and i1 ↔ i3 and

i2 ↔ i4 in the last term :

SASB |ψAB〉⊗2 =
1

4
(αi1i2αi3i4 |i1i2i3i4〉+ αi3i2αi1i4 |i3i4i1i2〉 (D.7)

+αi1i4αi3i2 |i3i4i1i2〉+ αi1i2αi3i4 |i1i2i3i4〉) =
1

2
(αi1i2αi3i4 |i1i2i3i4〉+ αi3i2αi1i4 |i3i4i1i2〉) .

(D.8)

From the above Lemma we can write a reduced state ω̄:

ω̄A = trB
(
SASB|ψAB〉〈ψAB|⊗2

)
+

SA
trSA

trAB
(
AAAB|ψAB〉〈ψAB|⊗2

)
. (D.9)
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Lemma 30. The reduced state ω̄A can be written as:

ω̄A = SA(ρA ⊗ ρA)SA + (1− tr(SA(ρA ⊗ ρA)SA))S̃A , (D.10)

where ρA = trB(|ψ〉〈ψ|AB) and we remember that S̃A is the normalised projector onto the sym-

metric subspace of (CdA)⊗2.

Proof. We first show that:

trB(SASB|ψ〉〈ψ|⊗2
AB) = SA(ρA ⊗ ρA)SA . (D.11)

From the proof of Lemma 29:

SASB |ψAB〉⊗2 =
1

4
αi1i2αi3i4(|i1i2i3i4〉+ |i1i4i3i2〉+ |i3i2i1i4〉+ |i3i4i1i2〉) . (D.12)

Hence:

SASB|ψAB〉〈ψAB|⊗2 =
1

4
αi1i2αi3i4ᾱj1j2ᾱj3j4(|i1i2i3i4〉〈j1j2j3j4| (D.13)

+|i1i4i3i2〉〈j1j2j3j4|+ |i3i2i1i4〉〈j1j2j3j4|+ |i3i4i1i2〉〈j1j2j3j4|) . (D.14)

which implies:

trB(SASB|ψ〉〈ψ|⊗2
AB) =

1

2
αi1b1αi3b2ᾱj1b1ᾱj3b2(|i1i3〉〈j1j3|+ |i3i1〉〈j1j3|) , (D.15)

where the partial trace is over the second and fourth factors, using indices b1 and b2. We now

compute SA(ρA ⊗ ρA)SA.

|ψ〉〈ψ|AB = αi1i2ᾱj1j2 |i1i2〉〈j1j2| . (D.16)

ρA = trB(|ψ〉〈ψ|AB) = αi1b1ᾱj1b1 |i1〉〈j1| . (D.17)

ρA ⊗ ρA = αi1b1αi3b2ᾱj1b1ᾱj3b2 |i1i3〉〈j1j3| . (D.18)

SA(ρA ⊗ ρA) =
1

2
αi1b1αi3b2ᾱj1b1ᾱj3b2(|i1i3〉〈j1j3|+ |i3i1〉〈j1j3|) . (D.19)

SA(ρA ⊗ ρA)SA =
1

4
αi1b1αi3b2ᾱj1b1ᾱj3b2(|i1i3〉〈j1j3|+ |i3i1〉〈j1j3|) (D.20)

+
1

4
αi1b1αi3b2ᾱj1b1ᾱj3b2(|i1i3〉〈j3j1|+ |i3i1〉〈j3j1|) . (D.21)
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In the second term we relabel j1 ↔ j3, i1 ↔ i3 and b1 ↔ b2 to obtain:

SA(ρA ⊗ ρA)SA =
1

2
(αi1b1αi3b2ᾱj1b1ᾱj3b2(|i1i3〉〈j1j3|+ |i3i1〉〈j1j3|)) . (D.22)

Hence,

ω̄A = SA(ρA ⊗ ρA)SA + (1− tr(|ψ〉〈ψ|⊗2
ABSASB))S̃A

= SA(ρA ⊗ ρA)SA + (1− tr(SA(ρA ⊗ ρA)SA))S̃A . (D.23)

Lemma 31. The reduced states ω̄A belong to the convex hull of the local pure states |ψ〉〈ψ|⊗2.

Proof. By Lemma 30 the reduced state can be written as:

ω̄A = SA(ρA ⊗ ρA)SA + (1− tr(SA(ρA ⊗ ρA)SA))S̃A , (D.24)

where ρA = trB(|ψ〉〈ψ|AB). In the following we drop the A label.

ρ =
∑
i

αi|i〉〈i| , (D.25)

Here the |i〉 are not necessarily orthogonal. The trace of ρ is
∑

i αi = 1, where αi > 0. Let us

write Φij = 1√
2
(|i, j〉+ |j, i〉) and observe:∑

i 6=j
|Φij〉〈Φij | = 2

∑
i<j

|Φij〉〈Φij | =
∑
i 6=j

(|i, j〉〈i, j|+ |i, j〉〈j, i|) . (D.26)

Consider the (not necessarily normalised) matrix

S(ρ⊗ ρ)S = S(
∑
ij

αiαj |i, j〉〈i, j|)S =
∑
i

α2
i |i, i〉〈i, i|+

∑
i<j

αiαj |Φij〉〈Φij | , (D.27)

The trace of this matrix is 1−∑i<j αiαj ; hence:

ω̄ =
∑
i

α2
i |i, i〉〈i, i|+

∑
i<j

αiαj |Φij〉〈Φij |+
∑
i<j

αiαjS̃ . (D.28)

We now show that this arbitrary mixed state ω̄ can be expressed as a convex combination of

local pure states |ψ〉〈ψ|⊗2. Consider the general vector

|ψ〉 =
∑
i

eiθj
√
αj |j〉 , (D.29)
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where αj ≥ 0 and for all j. Normalisation implies
∑

j αj = 1. Now, let us write the pure

product state

|ψ〉〈ψ|⊗2 =
∑

j,k,j′,k′

eiθjeiθke−iθj′e−iθk′
√
αjαkαj′αk′ |j, k〉〈j′, k′| . (D.30)

Let us make the following observations. When j 6= j′:∫ π

−π
e−iθjeiθj′dθjdθj′ = 0 . (D.31)

When j = j′: ∫ π

−π
e−iθjeiθj′dθjdθj′ = (2π)2 . (D.32)

Now consider:

Eθi |ψ〉〈ψ|⊗2 =
1

(2π)4

∫ π

−π

∑
j,k,j′,k′

eiθjeiθke−iθj′e−iθk′
√
αjαkαj′αk′ |j, k〉〈j′, k′|dθjdθkdθj′dθk′ .

(D.33)

The non zero contributions will arise from the following terms:

j = j′ = k = k′: ∫ π

−π
|eiθj |4dθjdθkdθj′dθk′ = (2π)4 . (D.34)

j = j′ 6= k = k′: ∫ π

−π
|eiθj |2|eiθk |2dθjdθkdθj′dθk′ = (2π)4 . (D.35)

j = k′ 6= k = j′: ∫ π

−π
|eiθj |2|eiθk |2dθjdθkdθj′dθk′ = (2π)4 . (D.36)

All other contributions will be zero.

Now, we write the mixed state corresponding to the uniform average over all values of the

phases θi,

ω̄1 = Eθi |ψ〉〈ψ|⊗2 =
∑
j,k

αjαk|j, k〉〈j, k|+
∑
j 6=k

αjαk|j, k〉〈k, j| , (D.37)

where the first term arises from contributions (D.34) and (D.35) and the second term arises

from contribution (D.36). Then we can write

ω̄1 =
∑
i

α2
i |i, i〉〈i, i|+ 2

∑
i<j

αiαj |Φij〉〈Φij | , (D.38)
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Let us take the state:

ω̄2 =
∑
i

α2
i |i, i〉〈i, i|+ 2

∑
i<j

αiαjS̃ . (D.39)

This is a mixture of states of the form |ψ〉〈ψ|⊗2 since S̃ =
∫
|ψ〉〈ψ|⊗2dψ and

∑
i α

2
i+2

∑
i<j αiαj =

1. If we take the mixture 1
2(ω̄1 + ω̄2) we obtain (D.28).

We now consider the more general case where Alice’s state is conditioned on an arbitrary

effect FB. The conditional state for Alice given one of Bob’s effects FB is:

ω̄A|FB
= TrB(SAF̂B|ψ〉〈ψ|⊗2

AB) + Tr(|ψ〉〈ψ|⊗2
ABAAAB)

Tr(F̂B)

Tr(SB)
S̃A . (D.40)

Although effects of the form F̂B = |φ〉〈φ|⊗2 are not valid (since the complement effects would

not be of the required form), we calculate the conditional state for such effects, as this will

allow us to later determine conditional states for general effects F̂B =
∑

i αi|φi〉〈φi|⊗2.

Lemma 32. For F̂B = |φ〉〈φ|⊗2:

TrB(SAF̂B|ψ〉〈ψ|⊗2
AB) = SA(ρψA|φ ⊗ ρ

ψ
A|φ)SA = ρψA|φ ⊗ ρ

ψ
A|φ , (D.41)

where ρψA|φ = Tr((IA ⊗ |φ〉〈φ|B)|ψ〉〈ψ|AB) .

Proof.

TrB(SAF̂B|ψ〉〈ψ|⊗2
AB) = SATrB(F̂B|ψ〉〈ψ|⊗2

AB) = SA(ρψA|φ ⊗ ρ
ψ
A|φ) . (D.42)

Let

ρψA|φ = Tr
(
(IA ⊗ |φ〉〈φ|B)|ψ〉〈ψ|AB

)
=
∑
i1,j1

αi1,φᾱj1,φ|i1〉〈j1| . (D.43)

We assume without loss of generality that |φ〉 is one of the basis vectors |i〉.

ρψA|φ ⊗ ρ
ψ
A|φ =

∑
i1,i3,j1,j3

αi1,φᾱj1,φαi3,φᾱj3,φ|i1i3〉〈j1j3| . (D.44)

SA(ρA|φ ⊗ ρA|φ) =
1

2
(
∑

i1,i3,j1,j3

αi1,φᾱj1,φαi3,φᾱj3,φ|i1i3〉〈j1j3|

+
∑

i1,i3,j1,j3

αi1,φᾱj1,φαi3,φᾱj3,φ|i3i1〉〈j1j3|) . (D.45)
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We relabel i1 ↔ i3 on the last line to obtain SA(ρA|φ ⊗ ρA|φ) = (ρA|φ ⊗ ρA|φ).

SA(ρA|φ ⊗ ρA|φ)SA =
1

4
(
∑

i1,i3,j1,j3

αi1,φᾱj1,φαi3,φᾱj3,φ|i1i3〉〈j1j3|

+
∑

i1,i3,j1,j3

αi1,φᾱj1,φαi3,φᾱj3,φ|i3i1〉〈j1j3|+
∑

i1,i3,j1,j3

αi1,φᾱj1,φαi3,φᾱj3,φ|i1i3〉〈j3j1|

+
∑

i1,i3,j1,j3

αi1,φᾱj1,φαi3,φᾱj3,φ|i3i1〉〈j3j1|) . (D.46)

We relabel j1 ↔ j3 on the last two lines to obtain SA(ρA|φ ⊗ ρA|φ) = SA(ρA|φ ⊗ ρA|φ)SA.

We need one more lemma before proving that normalised conditional states belong to the

convex hull of the local pure states |ψ〉〈ψ|⊗2
A .

Lemma 33. If S(ρ⊗ ρ)S = ρ⊗ ρ with Tr(ρ) = 1 then ρ⊗ ρ =
∑

i pi|ψi〉〈ψi|⊗2.

Proof. By Lemma 31 this is a valid reduced state and belongs to conv(|ψ〉〈ψ|⊗2).

We observe that since all pure states are such that S(|ψ〉〈ψ|⊗2)S = |ψ〉〈ψ|⊗2 and Tr(|ψ〉〈ψ|⊗2) =

1, we can characterise the state space of the systems of the toy model as being given by

conv(ρ⊗ ρ) for all normalised density operators such that S(ρ⊗ ρ)S = ρ⊗ ρ.

Lemma 34. The normalised conditional states ω̃A|FB
belong to the convex hull of the local pure

states |ψ〉〈ψ|⊗2.

Proof. We first show that the conditional state is a valid local state for effects F̂B = |φ〉〈φ|⊗2.

As a conditional state, this state can be subnormalised.

ω̄A|FB
= TrB(SAF̂B|ψ〉〈ψ|⊗2

AB) + cS̃A , (D.47)

where c = Tr(|ψ〉〈ψ|⊗2
ABAAAB)Tr(F̂B)

Tr(SB) . By Lemma 32 we have the equivalence:

TrB(SAF̂B|ψ〉〈ψ|⊗2
AB) = (ρψA|φ ⊗ ρ

ψ
A|φ) . (D.48)

The normalised conditional state is:

ω̃A|FB
=

ω̄A|FB

Tr(ω̄A|FB
)
. (D.49)
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Let us set e = Tr(ω̄A|FB
) and d = Tr(SAF̂B|ψ〉〈ψ|⊗2

AB) = Tr(ρψA|φ ⊗ ρ
ψ
A|φ); e = c+ d.

ω̃A|FB
=

1

e
(ρA|φ ⊗ ρA|φ) +

c

e
S̃A . (D.50)

We use the equality ρψA|φ ⊗ ρ
ψ
A|φ = d(ρ̃ψA|φ ⊗ ρ̃

ψ
A|φ) where ρ̃ψA|F is a standard normalised quantum

conditional state.

ω̃A|FB
=
d

e
(ρ̃ψA|φ ⊗ ρ̃

ψ
A|φ) +

c

e
S̃A . (D.51)

By Lemma 32 ρ̃ψA|φ ⊗ ρ̃
ψ
A|φ = SA(ρ̃ψA|φ ⊗ ρ̃

ψ
A|φ)SA hence by Lemma 33 it is a valid normalised

state (i.e. of the form
∑

i pi|ψi〉〈ψi|⊗2). Since 0 < d
e < 1, 0 < c

e < 1 and d+c
e = 1 the above is

a convex combination of ρ̃ψA|φ ⊗ ρ̃
ψ
A|φ and S̃A which are both valid states. Hence the state ω̃A|FB

is a valid local state.

Let FB =
∑
αi|φi〉〈φi|⊗2, with αi > 0.

ω̄A|FB
=
∑
i

αi(TrB(SAF̂B|φi〉〈φi|⊗2|ψ〉〈ψ|⊗2
AB) + Tr(|ψ〉〈ψ|⊗2

ABAAAB)
1

Tr(SB)
S̃A)

=
∑
i

αi
(
(ρψA|φi ⊗ ρ

ψ
A|φi) + ciS̃A) . (D.52)

Let e = tr(ωA|FB
) and di = tr(ρψA|φi ⊗ ρ

ψ
A|φi). We have e =

∑
i αi(ci + di). From above:

ω̃A|FB
=
∑
i

αi(
di
e

(ρ̃ψA|φi ⊗ ρ̃
ψ
A|φi) +

ci
e
S̃A) . (D.53)

Since 0 < αidi
e < 1 and 0 <

∑
i
αici
e < 1 and

∑
i
αi(ci+di)

e = 1 the above is a convex combination

of (ρ̃ψA|φi ⊗ ρ̃
ψ
A|φi) with coefficients αidi

e and the state S̃A with coefficient
∑

i
αici
e .

C5.

In this section we show that every OPFs in FG
dAdB

applied to a product state ψA ⊗ φB has a

corresponding OPF F ′A in FL
dA

. Let FAB be an arbitrary effect in FL
dAdB

. The corresponding

operator is

F̂AB =
∑
i

αi|xi〉〈xi|12 ⊗ |xi〉〈xi|34 . (D.54)
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We evaluate it on product states:

FAB(ψA ⊗ φB) =
∑
i

αiTr
(
|ψ〉〈ψ|⊗2

A |φ〉〈φ|⊗2
B (|xi〉〈xi|⊗2

AB)
)

=
∑
i

αiTrA(|ψ〉〈ψ|⊗2
A TrB(|φ〉〈φ|⊗2

B (|xi〉〈xi|⊗2
AB)))

=
∑
i

αiTrA(|ψ〉〈ψ|⊗2
A SATrB(IA|φ〉〈φ|⊗2

B |xi〉〈xi|⊗2
AB))

= TrA(|ψ〉〈ψ|⊗2
A (
∑
i

αi(SA(ρxiA|φ ⊗ ρ
xi
A|φ)SA))) . (D.55)

By Lemma 33 (SA(ρxA|φ ⊗ ρxA|φ)SA is of the form
∑

j βj |φj〉〈φj |⊗2 with βj ≥ 0. Hence

F̂ ′A = (
∑

i αi(SA(ρxiA|φ ⊗ ρ
xi
A|φ)SA) is a valid effect on A as long as its complement is also of the

form
∑

i γi|φi〉〈φi|⊗2. Since the complement of F̂AB is of the form
∑

i αi|xi〉〈xi|12 ⊗ |xi〉〈xi|34

it follows that the associated effect on A (which is the complement of F̂ ′A) is of the required

form. From this it follows that F̂ ′A is a valid effect. The set FG
dAdB

also contains effects FA ? FB

which are not necessarily of the form given above. However since these are product effects they

trivially are consistent with C5.
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[42] Borivoje Dakić, Tomasz Paterek, and Caslav Brukner. Density cubes and higher-order

interference theories. New Journal of Physics, 16(2):023028, 2014. doi:10.1088/1367-

2630/16/2/023028.

[43] Giulio Chiribella, Giacomo Mauro D’Ariano, and Paolo Perinotti. Probabilis-

tic theories with purification. Physical Review A, 81(6):062348, jun 2010.

doi:10.1103/PhysRevA.81.062348.

[44] L. Hardy. A formalism-local framework for general probabilistic theories including quan-

tum theory. ArXiv e-prints, May 2010.

[45] L. Hardy. Reformulating and Reconstructing Quantum Theory. ArXiv e-prints, April

2011.

[46] Giulio Chiribella. Dilation of states and processes in operational-probabilistic theories.

Electronic Proceedings in Theoretical Computer Science, 172:1–14, December 2014. ISSN

2075-2180. doi:10.4204/EPTCS.172.1.

[47] Thomas D. Galley and Lluis Masanes. Classification of all alternatives to the born rule in

terms of informational properties. Quantum, 1:15, jul 2017. doi:10.22331/q-2017-07-14-15.

[48] Thomas D. Galley and Lluis Masanes. Impossibility of mixed-state purification in any

alternative to the Born rule. eprint ArXiv:quant-ph/1801.06414, January 2018.

[49] Hasok Chang. Operationalism. In Edward N. Zalta, editor, The Stanford Encyclopedia

of Philosophy. Metaphysics Research Lab, Stanford University, fall 2009 edition, 2009.

[50] George W. Mackey. Mathematical Foundations of Quantum Mechanics. A. Benjamin,

Inc., New York, 1963.

171

http://dx.doi.org/10.1103/PhysRevA.71.052105
http://dx.doi.org/10.1098/rsta.2018.0107
http://dx.doi.org/10.1088/1367-2630/16/2/023028
http://dx.doi.org/10.1088/1367-2630/16/2/023028
http://dx.doi.org/10.1103/PhysRevA.81.062348
http://dx.doi.org/10.4204/EPTCS.172.1
http://dx.doi.org/10.22331/q-2017-07-14-15
https://arxiv.org/abs/quant-ph/1801.06414


[51] Gunther Ludwig. Versuch einer axiomatischen grundlegung der quantenmechanik und

allgemeinerer physikalischer theorien. Zeitschrift für Physik, 181(3):233–260, Jun 1964.

doi:10.1007/BF01418533.

[52] Gunther Ludwig. Attempt of an axiomatic foundation of quantum mechanics and more

general theories. ii. Comm. Math. Phys., 4(5):331–348, 1967. doi:10.1007/BF01653647.

[53] Gunther Ludwig. Attempt of an axiomatic foundation of quantum mechanics and more

general theories. III. Communications in Mathematical Physics, 9:1–12, March 1968.

doi:10.1007/BF01654027.

[54] Bogdan Mielnik. Theory of filters. Communications in Mathematical Physics, 15(1):1–46,

1969. doi:10.1007/BF01645423.

[55] Bogdan Mielnik. Generalized quantum mechanics. Communications in Mathematical

Physics, 37(3):221–256, 1974. doi:10.1007/BF01646346.

[56] E. Brian Davies and John T. Lewis. An operational approach to quan-

tum probability. Communications in Mathematical Physics, 17(3):239–260, 1970.

doi:10.1007/BF01647093.

[57] Howard Barnum, Jonathan Barrett, Matthew Leifer, and Alexander Wilce. Gen-

eralized no-broadcasting theorem. Phys. Rev. Lett., 99:240501, Dec 2007.

doi:10.1103/PhysRevLett.99.240501.

[58] Howard Barnum and Alexander Wilce. Information processing in convex operational

theories. Electronic Notes in Theoretical Computer Science, 270(1):3 – 15, 2011. ISSN

1571-0661. doi:https://doi.org/10.1016/j.entcs.2011.01.002. Proceedings of the Joint 5th

International Workshop on Quantum Physics and Logic and 4th Workshop on Develop-

ments in Computational Models (QPL/DCM 2008).

[59] Lucien Hardy. Foliable Operational Structures for General Probabilistic Theories. eprint

arXiv:0912.4740, December 2009.

[60] B. Coecke. Quantum picturalism. Contemporary Physics, 51:59–83, January 2010.

doi:10.1080/00107510903257624.

172

http://dx.doi.org/10.1007/BF01418533
http://dx.doi.org/10.1007/BF01653647
http://dx.doi.org/10.1007/BF01654027
http://dx.doi.org/10.1007/BF01645423
http://dx.doi.org/10.1007/BF01646346
http://dx.doi.org/10.1007/BF01647093
http://dx.doi.org/10.1103/PhysRevLett.99.240501
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2011.01.002
https://arxiv.org/abs/0912.4740
http://dx.doi.org/10.1080/00107510903257624
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