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Abstract

We study torsional buckling of a rod within the dynamics context, recognising that in a
real experiment a twisting moment is not instantaneously applied and therefore an angular
velocity (a spin) always accompanies a twist. We derive and solve the wave equation that
governs prebuckling torsion dynamics and highlight the compatibility problem between initial
and boundary conditions (corner singularity) plaguing numerical solution of the equation. We
deal with this problem by introducing a smoothing function. Prebuckling torque oscillations
are a major concern in various turbine applications.

Torsional instability, upon further increase of the applied moment, is found to be delayed
by the dynamic loading. We determine the dependence of the critical load on the rate of ap-
plication of the moment by computing initial postbuckling solutions and extrapolating back to
the critical point. For these computations we use the geometrically-exact Cosserat rod equa-
tions, which we discretise with the generalised-α method. We argue that in addition to inertia a
gyroscopic effect may play a role in the delay. Our results may help explain delayed torsional
buckling recently observed in simulation studies of flexible marine risers.

Keywords: Cosserat rod, torsional wave, torsional buckling, delay of buckling, corner singu-
larity

1 Introduction
The instability of an elastic rod at a critical value of an applied end twisting moment is a classical
problem in mechanics. It is good to realise though that pure static moments are hard to produce in
practice. Such moments are applied by twisting one end of the rod over a finite time, so that the
static moment is always accompanied by an angular velocity and a generation of waves. Here we
study this torsional buckling problem as a true dynamical problem. We are particularly interested
in the effect the rate of application of the twist has on the critical torsional load.

Most of the previous work on torsional buckling is focused on static deformation. Thompson
and Champneys [24] studied helical and localising modes in tensile torsional buckling with exper-
imental validation. Torsional buckling under a compressive load was studied by Atanackovic and
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Glavardanov [2] and Glavardanov and Maretic [7] who also considered the effects of shear and
axial compressibility. Goss et al. [9] and van der Heijden et al. [26] studied torsional instability
and post-buckling behaviour, including self-contact, both theoretically and experimentally.

Rod dynamics has also been well studied. One of the first computational formulations for
geometrically-exact rod dynamics was that of Simo and Vu-Quoc [22]. Torsional vibrations were
studied in [25] in a Cosserat model for drillstring dynamics. The Cosserat rod dynamics equations
were also used in [23] for hair modelling. Dynamical instabilities were studied in [8, 16]. Loop
formation in twisted rods was studied in [11]. In [10] torsional buckling was considered, but twist
rates were deliberately taken very small in order to approximate closely the static critical load. The
effect of the twist rate on the critical load was not investigated. Indeed, compared to the statics case
reviewed above, dynamical buckling has not received much attention. In [15] column buckling due
to axial impact is studied, but this is a different kind of buckling problem. There have been a few
recent studies on column buckling under a gradually increasing compressive load (e.g., [17], where
an increase of the critical load from the classical static Euler load is found), but there appear to be
no similar studies on torsional buckling.

The analytical approach of [17] is not available for our torsional case because the applied load
appears in the boundary conditions and not in the equation. We therefore resort to a numerical
approach in which we compute the initial postbuckling response and then extrapolate back to
the critical buckling point. The postbuckling response requires the solution of nonlinear large-
deformation rod equations. We use the geometrically-exact Cosserat formulation with linearly
elastic material behaviour. The rod is assumed to be inextensible and unshearable. The purpose
of this paper is to study the effect of dynamic loading, both on the prebuckling travelling-wave
solution and on the torsional buckling instability.

The outline of this paper is a follows. The Cosserat rod dynamics formulation is presented in
Section 2, where the equations are developed in the body frame. For the numerical solution we
use a discretisation based on the generalised-α method [4], which is outlined in Section 3. Section
4 discusses the postprocessing of solutions required for computing postbuckling rod shapes. In
Section 5 we first derive the linear wave equation governing prebuckling waves as a result of the
dynamic loading. We construct the exact solution of an appropriate initial-boundary-value prob-
lem for this wave equation and use this to highlight the appparently little-known incompatibility
between common (and physical) initial and boundary conditions in the dynamics context. This in-
compatibility prevents a straightforward comparison between analytical and numerical solutions,
which is only possible after applying a smoothing function to the dynamic boundary condition.
We then, in Section 6, investigate the effect that the rate of increase of the applied moment has
on the critical buckling load. We find a delaying effect that is well described by a power law. In
the closing Section 7 we argue that in addition to inertia, a gyroscopic effect may be responsible
for this delay. We also discuss applications of our results and propose that they may help explain
delayed torsional buckling observed in simulations of flexible marine risers [21].

2 Cosserat rod formulation
We describe the dynamic behaviour of slender structures by the Cosserat theory of thin rods. The
rod is assumed to be inextensible, unshearable and intrinsically straight. For the background of the
Cosserat theory the reader is referred to [1].

Let r(s, t) : [0, L] × R → R3 be a smooth space curve of length L describing the cen-
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Figure 1: Cosserat model of a rod.

terline of the rod (see Fig 1). Here s is arclength along the rod and t is time. Further, let
{d1(s, t), d2(s, t), d3(s, t)} be a frame of orthonormal directors (the Cosserat triad) such that
d1 and d2 span the cross-section of the rod at s, pointing along its principal bending axes, and
d3 = d1 ×d2 is perpendicular to it, together forming the body frame to describe the orientation of
each cross-section with respect to a fixed inertial frame {e1, e2, e3}. Orthonormality of the body
frame implies the existence of two axial vectors κ (the curvature vector) and ω (the spin vector)
such that

∂sdk = κ× dk, ∂tdk = ω × dk (k = 1, 2, 3). (1)

The equations of motion of a rod subjected to end loads only are

∂sn = ρA∂ttr, (2)
∂sm + ∂sr × n = ρ∂t(Iω), (3)

where n and m are the resultant contact force and contact couple acting at the centreline at s [1].
I is the moment of inertia tensor, A is the area of the cross-section and ρ is the density.

Since the rod is inextensible and unshearable, the director d3 coincides with the tangent to the
centreline of the rod, i.e., ∂sr = d3. If we also introduce the centreline velocity u = ∂tr, then the
identity ∂t∂sr(s, t) = ∂s∂tr(s, t) can be written as

∂td3 = ∂su. (4)

Similarly, the identity ∂t∂sdk(s, t) = ∂s∂tdk(s, t), on using Eq. (1), leads to the curvature-spin
compatibility equation

∂sω = ∂tκ + κ× ω. (5)

When expressed in the body frame, Eqs (2), (3), (4), (5) give us the following equations (using
a bold Roman font for triples of components in the body frame, writing k and w for the curvature
and spin triples, respectively, and denoting I on principal axes by I = diag(I1, I2, J)):

ρA∂tu = ∂sn + k× n− ρA(w × u),

ρI∂tw = ∂sm + k×m + d3 × n− ρ(w × Iw), (6)
∂tk = ∂sw + k×w,

0 = ∂su + k× u−w × d3.

We finally introduce linear constitutive relations between the curvatures k and the (body) mo-
ments m: m = K̂k, where K̂ = diag(B1, B2, C), with B1 = EI1 and B2 = EI2 the principal
bending stiffnesses and C = GJ the torsional stiffness, E and G being Young’s modulus and the
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shear modulus respectively. We note that for a homogeneous and isotropic material these elastic
moduli are related by G = E/[2(1 + ν)], where ν is Poisson’s ratio. The constitutive relations
can be used to eliminate m in Eq. (6) in favour of k, thus giving us 12 equations for the body
components (u,w,k,n) =: y in the form

M∂ty(s, t) + K∂sy(s, t) + F (s, t) = 0, (7)

where M and K are mass and stiffness matrices (constant in the case of a uniform rod). All
nonlinear terms in Eq. (6) are contained in the load vector F . The same formulation is used in
[11, 23].

3 Generalised-α method
The generalised-α method is a Newmark-like implicit integrator with desirable features such as
second-order accuracy, unconditional stability and controllable numerical dissipation, first pro-
posed by Chung and Hulbert in 1993 for the time integration of linear (second-order) structural
dynamics problems [4]. The method was extended to first-order systems by Jansen et al. [14].
Erlicher at al. [5] verified the accuracy and stability of the method when applied to nonlinear dy-
namics problems. We apply the generalised α-method for both spatial and temporal discretisation
(of our first-order system Eq. (7)) as in [11, 23].

In the first step, we derive the semi-discrete form of Eq. (7) with respect to time as

(M∂ty)1−αt + (K∂sy)1−βt + F 1−βt(y) = 0, (8)

where (·)1−ι = (1 − ι)(·)i + ι(·)i−1. αt and βt average the inertial term and terms of the stiffness
and the load vector of the rod system, respectively, in time. M and K are constant in our case.
As to the interpretation of the nonlinear F i term, we choose the generalised trapezoidal rule (one
of the three quadrature rules summarised in [5]), which corresponds to setting F 1−βt(y) = (1 −
βt)F (yi) + βtF (yi−1). Eq. (8) is then expressed as

M [(1− αt)∂ty
i + αt∂ty

i−1]

+ K[(1− βt)∂sy
i + βt∂sy

i−1]

+ (1− βt)F (yi) + βtF (yi−1) = 0.

(9)

Similarly, applying the generalised-α method in space gives

M{(1− αt)[(1− αs)∂ty
i
j + αs∂ty

i
j−1] + αt[(1− αs)∂ty

i−1
j + αs∂ty

i−1
j−1]}

+K{(1− βt)[(1− βs)∂sy
i
j + βs∂sy

i
j−1] + βt[(1− βs)∂sy

i−1
j + βs∂sy

i−1
j−1]} (10)

+{(1− βt)[(1− βs)F
i
j + βsF

i
j−1] + βt[(1− βs)F

i−1
j + βsF

i−1
j−1 ]} = 0.

In this equation the superscript indicates the time step while the subscript indicates the spatial step,
i.e., the node of the discretised curve.

In the second step the s and t derivatives are approximated as

∂ty
i =

yi − yi−1

γt∆t
− 1− γt

γt

∂ty
i−1, ∂syj =

yj − yj−1

γs∆s
− 1− γs

γs

∂syj−1, (11)
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where ∆s and ∆t are the spatial step size and time step size, respectively. By substituting Eq. (11)
into Eq. (10) we obtain a system of algebraic equations in the form

Λi
j := A(yi

j) + B(yi
j−1)− ζ∂s(Ky)i

j−1 −Ri−1
j−1 = 0 (12)

with

ζ =
(1− βt)(1− βs − γs)

γs

.

Here A(yi
j) and B(yi

j−1) are nonlinear functions of the unknown variables, while Ri−1
j−1 :=

Ri−1
j−1(y

i−1
j , yi−1

j−1, ∂ty
i−1
j , ∂ty

i−1
j−1, ∂sy

i−1
j−1) is known once variables at the earlier timestep yi−1 are

solved. Each set of three parameters αs, βs, γs and αt, βt, γt can be expressed as functions of λ∞,
the eigenvalue of the amplification matrix at infinity [4]:

α(·) =
3λ∞(·) + 1

2λ∞(·) − 2
, β(·) =

λ∞(·)
λ∞(·) − 1

, γ(·) =
1

1− λ∞(·)
, (13)

where λ∞(·) ∈ [−1, 0]. Note that then β(·) + γ(·) = 1 and hence

ζ = 0.

This allows us to eliminate the terms with ζ in Eq. (12) thereby significantly simplifying the Ja-
cobian matrix ∂Λi

j/∂yk
l of the nonlinear system of equations without loss of either accuracy or

numerical stability. We finally need to specify λ∞(·). We choose λ∞s = λ∞t = −1, corresponding to
a value of 1/2 for all six parameters, which gives a stable second-order scheme without numerical
damping. The final system of algebraic Eqs. (12) is solved with the global Newton code NLEQ1
[19].

4 Computing rod shapes
Since we solve the rod formulations in the body frame instead of the fixed inertial frame, to com-
pute rod shapes in space we need to postprocess the solution y by subsequently solving either of
the equations in Eq. (1) and integrating the centreline equation ∂sr = d3 or the velocity u = ∂tr
to obtain r. We define R as the matrix whose columns are the frame vectors e1, e2, e3 represented
in the body frame. R is thus the rotation matrix from the inertial to the body frame, satisfying

ek = R dk (k = 1, 2, 3). (14)

For any vector V we have the following transformation rule for derivatives with respect to the
different frames:

∂sV |{ek} = ∂sV|{dk} + k×V, ∂tV |{ek} = ∂tV|{dk} + w ×V (k = 1, 2, 3). (15)

Applying these to the inertial frame vectors, we have

∂sek = −k× ek = −k̂ek, ∂tek = −w × ek = −ŵek, (16)

where k̂ and ŵ are the skew-symmetric matrices corresponding to k and w. It follows that

∂sR = −k̂R, ∂tR = −ŵR. (17)
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Figure 2: Sketch of a straight rod under torsion.

Assuming we choose to use the second equation in Eq. (17) (i.e., time integration), the rotation
matrix is incrementally updated according to

R(s, t + ∆t) = e−
c∆θR(s, t), (18)

with initial condition R(0) = E (the identity matrix) if the body frame at t = 0 is aligned with the
fixed frame [18]. Here, ∆̂θ is the skew-symmetric matrix of the incremental rotation vector ∆θ
with respect to the spin vector w, where

∆θ =
w(s, t + ∆t) + w(s, t)

2
∆t. (19)

The exponential is conveniently computed by using the Rodrigues formula (valid for any skew-
symmetric matrix x̂)

e−bx = E − n̂ sin |x|+ n̂2(1− cos |x|), n =
x

|x|
. (20)

Having found R, we finally obtain the centreline r by integrating the velocity vector:

∂tr = u = RTu. (21)

5 Prebuckling torsional waves
The unstressed rod is taken to be straight and to lie along the basis vector e3 of the fixed inertial
frame. The left end of the rod is fixed in position and subjected to a twisting moment while the
right end is constrained in the e1 and e2 directions and allowed to move in the e3 direction, as
illustrated in Fig. 2.

If the twisting moment varies in time then a torsional wave will propagate along the straight
centreline before the rod buckles. In this situation κ3 and ω3 are the only two nonzero variables in
the rod. For notational simplicity we shall set κ := κ3 and ω := ω3 in this section. The governing
wave equation can be written with respect to either κ or ω, by setting all other variables to zero in
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Eq. (6) and combining the reduced moment balance equation ρJ∂tω = GJ∂sκ with the director
compatibility equation ∂tκ = ∂sω:

∂ttκ = c2∂ssκ or ∂ttω = c2∂ssω, (22)

where c =
√

G
ρ

is the wave speed. We shall formulate an initial-boundary-value problem in terms
of the variable κ. The initial condition (IC) ω(s, 0) = 0 can be written as ∂sω(s, 0) = 0, and thus
∂tκ(s, 0) = 0, by applying the reduced director compatibility equation. Similarily, the boundary
condition (BC) ω(L, t) = 0 can be written as ∂sκ(L, t) = 0 by applying the reduced moment
balance equation. The torsional rod experiment is thus governed by

∂ttκ = c2∂ssκ,

IC: κ(s, 0) = h(0), ∂tκ(s, 0) = 0,

BC: κ(0, t) = h(t), ∂sκ(L, t) = 0,

(23)

where h(t) is the twist function applied at the left end while h(0) is its initial value.
Using Duhamel’s principle, we find the analytical solution for Eq. (23) as follows:

κ(s, t) = h(t) +
∞∑

n=1

An sin c
√

λnt sin
√

λns +

∫ t

0

η(s, t; τ) dτ, (24)

where

An = − 2

Lc
√

λn

∫ L

0

h′(0) sin
√

λns ds = −2h′(0)

Lcλn

,

η(s, t; τ) = −
∞∑

n=1

2

Lcλn

h′′(τ) sin c
√

λn(t− τ) sin
√

λns
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Figure 3: Torsional wave under linear loading (c = 57.74 m/s, t = 0.01 s, ∆s = 0.002 m, ∆t =
0.001 s).
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and eigenvalues
√

λn = (2n−1)π
2L

(n = 1, 2, · · · ). If we take a linearly increasing function for the
twist boundary condition, i.e., h(t) = κ0 + at, the analytical solution (24) becomes

κ(s, t) = κ0 + at−
∞∑

n=1

2a

Lcλn

sin c
√

λnt sin
√

λns, (25)

where κ0 is the initial twist and a is the loading speed (i.e., the rod is pretwisted by a twisting
moment Ch(0) and the end moment is then varied according to Ch(t)).

The analytical solution (for L = 1 m, c = 57.74 m/s, κ0 = 0 m−1, a = 0.1 rad/s and at time
t = 0.01 s) is displayed in Fig. 3. Here we have truncated the series in Eq. (25) after the first 1000
terms (keeping more terms does not alter the plot) and taken ∆s = 0.002 m to resolve the sharp
peak.

The sharp peak in κ is a result of the incompatibility between boundary and initial conditions
in Eq. (23) (if the initial conditions are to hold for all s ∈ [0, L] and the boundary conditions for
all t ≥ 0). Note that this incompatibility is entirely physical: by applying a twisting moment κ
that varies in time (however slowly the change), one automatically applies an angular velocity ω as
well, which in turn, because of the relationships between κ and ω leads to higher-order derivatives
of κ, etc. Specifically, in this case with h(t) = κ0 + at, we have ∂tκ(0, t) = h′(t) = a, which
disagrees with the second initial condition in Eq. (23) at t = 0 unless a = 0. The solution is
thus discontinuous at t = 0. And had we chosen h(t) = κ0 + at2 then we could have taken
one more derivative and used the equation ∂ttκ = c2∂ssκ to reach a disagreement with the (twice
differentiated) first initial condition in Eq. (23) at t = 0 (unless a = 0). A discontinuity can only
be avoided by having infinitely slow speed-up h, i.e., by having end velocity ∂tκ(0, t), acceleration
∂ttκ(0, t) and all higher-order derivatives equal to zero at t = 0. As commented in [3, 6], the
initial and boundary conditions of a PDE need to be infinitely compatible to avoid singularities
in the solution at corners of the space-time domain. But this is a problem for our numerical
scheme, which is not designed to approximate discontinuous solutions, and hence the discrepancy
between analytical and numerical solution, computed using the generalised-α method described in
the previous section, seen in Fig. 3.

To look more closely into this singularity phenomenon, we take a twist-release example in
which the rod is initially twisted and instantaneously released at t = 0. This experiment is de-
scribed by

∂ttκ = c2∂ssκ,

IC: κ(s, 0) = κ0, ∂tκ(s, 0) = 0,

BC: ∂sκ(0, t) = 0, κ(L, t) = 0,

(26)

with analytical solution

κ(s, t) =
∞∑

n=1

2κ0

L
√

λn

(−1)n−1 cos c
√

λnt cos
√

λns (27)

and eigenvalues
√

λn = (2n−1)π
2L

(n = 1, 2, · · · ). Clearly, the initial condition κ(s, 0) is not com-
patible with the boundary condition κ(L, t). Note that, for this experiment, the analytical solution
(for t > 0) is a travelling square wave with maximum value κ0 and minimum value 0. Fig. 4 shows
that the numerical code cannot capture the torsional wave in this block shape (κ0 = 10 m−1).

In a real experiment, the twist is never released instantaneously but within a finite time. To
model this we use the infinitely smooth transition function f (taken from [13]) shown in Fig. 5.
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Figure 4: Torsional wave under instantaneous release (c = 57.74 m/s, t = 0.01 s).
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Figure 6: Torsional wave under smooth release (c = 57.74 m/s, t = 0.01 s).

The dynamic boundary condition of the torsional wave is made infinitely smooth by replacing
the right-end boundary condition in Eq. (26) by κ0f(50t), describing a release of the twist within
approximately 0.02 s. The new set of equations is thus

∂ttκ = c2∂ssκ,

IC: κ(s, 0) = κ0, ∂tκ(s, 0) = 0,

BC: ∂sκ(0, t) = 0, κ(L, t) = κ0f(50t),

(28)

with analytical solution

κ(s, t) = κ0f(50t) +

∫ t

0

η(s, t; τ) dτ, (29)

where

η(s, t; τ) =
∞∑

n=1

(−1)n 5000

Lcλn

κ0f
′′(50τ) sin c

√
λn(t− τ) cos

√
λns

and eigenvalues
√

λn = (2n−1)π
2L

(n = 1, 2, · · · ). We get good agreement between analytical so-
lution and numerical solution, as seen in Fig. 6, by only taking the first 100 terms in Eq. (29)
for the anaytical solution and ∆t = 0.005 s for the numerical solution. For both, ∆s = 0.01 m.
This suggests that taking smoothing functions is a good (as well as realistic) way to resolve the
compatibility problem of discontinuous waves. The remaining difference in Fig. 6 is probably
due to the fact that although the twist release is infinitely smooth, it is not infinitely slow at
t = 0. As a consequence, high-order compatibility conditions are not satisfied because, while
f ′(0) = f ′′(0) = f ′′′(0) = 0, we have f ′′′′(0) = −24, and hence ∂ttttκ(L, t) = (50)4κ0f

′′′′(50t),
implying ∂ttttκ(L, 0) 6= 0, which is incompatible with 0 = c4∂ssssκ(s, 0) = c2∂ss∂ttκ(s, 0) =
c2∂tt∂ssκ(s, 0) = ∂ttttκ(s, 0).
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6 Torsional buckling
For the dynamic buckling study we take a rod of circular cross-section with the physical parameters
listed in Table 1. The twist load is linearly increased at the left end. We have the following
boundary conditions:

s = 0 : u = 0, ω1 = ω2 = 0, κ3 = κ0 + at,

s = L : w = 0, u1 = u2 = 0, n3 = 0.
(30)

The initial condition for an unstressed straight and prismatic rod is y(s, 0) = 0. We solve for
y(s, t) first and then integrate rod shapes r(s, t) by the postprocessing procedure discussed in
Section 4. To observe the buckling phenomenon (rather than computing an unstable solution), a
small perturbative force, of magnitude 10−8 N, is added in the d1 direction.

Fig. 7 shows five representative snapshots during the dynamic evolution of torsional buckling
with κ0 = 0 m−1 and a = 1.6 rad/s. The rod initially takes an approximately helical shape, with
gradually increasing radius, which subsequently localises, in agreement with the torsional buckling
studies in [24] and [8]. The shape is more localised at the right end due to the asymmetry of the
dynamical boundary conditions (one end is twisted while the other end is not). Without a repulsive
force in the physical model, the rod will eventually pass through itself when the shape gets more
localised.

In order to detect the onset of buckling we measure the variation of the axial velocity u3 at the
free (right) end of the rod: u3 equals zero as long as the rod is straight and starts to vary dramatically
when the rod starts to buckle, as visualised in Fig. 7. Linearly fitting the initial dramatic variation
and extrapolating back to u3 = 0 gives an estimate for the critical time of buckling and hence the
critical twist κ3, as demonstrated in Fig. 8 and Fig. 9 (for different values of the density ρ). We
conclude from these plots that the dynamical critical load is larger for rods of larger density, which
seems consistent with the larger inertia of such rods.

The critical buckling load in a quasi-static analysis is [26]

Mcri = GJκcri =
2πEI1

L
mcri, (31)

where mcri = 1.4303 is the nondimensional critical twisting moment (the smallest nonzero root of
tan(πm) = πm). For a rod with the physical properties listed in Table 1 the quasi-static critical

Table 1: Physical parameters of the example circular rod.
Parameter Unit (SI) Value

Young’s modulus E Pa 1.25× 107

Poisson’s ratio ν – 0.25
Shear modulus G Pa G = E

2(1+ν)

Diameter D m 0.001
Length L m 1

Cross-sectional area A m2 A = πD2

4

Density ρ kg/m3 1500

Second moments of area (bending) m4 I1,2 = AD2

16

Second moment of area (twist) m4 J = AD2

8
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t=20.0 s, κ3=32.0 m-1
t=21.0 s, κ3=33.6 m-1

t=22.0 s, κ3=35.2 m-1

t=22.5 s, κ3=36.0 m-1

t=23.0 s, κ3=36.8 m-1

(a)
(b)
(c)
(d)
(e)

Figure 7: Snapshots at selected times during the dynamic evolution of buckling: (a) prebuck-
ling straight shape, (b) approximately helical shape, (c) helical shape with increased radius, (d)
localised shape, (e) right before the rod self-contacts.
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Figure 9: Axial velocity u3 at s = L (ρ =
5000 kg ·m3, κ0 = 0 m−1, a = 1.6 rad/s)
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twist is
κcri =

Mcri

GJ
=

2πEI1

LGJ
mcri = 11.2335 m−1. (32)

We notice that the dynamic critical load κ3 = 20.86a = 33.38 m−1 found by the linear fit in
Fig. 8 is much larger than the statics value 11.2335. To quantify the effect of the loading speed a
on the critical twist we use the extrapolation method described above for different values of a. The
result is shown in Fig. 10 (note that we have here taken a nonzero κ0 value to avoid very long runs
for small values of a). Extrapolation to the static buckling case (a = 0, dashed line in Fig. 10) gives
good agreement with the value in Eq. (32). Fig. 10 quantifies the delay effect on torsional buckling
due to the loading speed. The effect is seen to increase less than linearly with a. A least-squares
fit to the simple power law

κ3 = κcri +
b

L

(
aL

c

)σ

(33)

gives
b = 160.60, σ = 0.5680. (34)

This law predicts a ‘time until buckling’ of t = 20.11 s in Fig. 8 and t = 25.45 s in Fig. 9, in good
agreement with the results in those figures.
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Figure 10: Delay effect on torsional critical twist κ3 due to loading speed a (κ0 = 10 m−1 and
physical parameters are as listed in Table 1).

7 Conclusion
In this paper we have studied dynamic torsional buckling of a rod under an increasing end twisting
moment, accounting for the finite time of application of the moment. The dynamic loading induces
an incompatibility between initial and boundary conditions leading to discontinuous wave patterns
that are hard to capture by the numerical solution method. In transient problems (e.g., the heat
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equation) or in problems with dissipation these discontinuities are smeared out over time, but this
is not the case for our undamped wave equation. To deal with these incompatibilities we have
applied a smoothing function. We argue that the modified boundary-value problem, describing
twist release in finite time, is also a more accurate model of actual experiments in which twisting
moments are never applied or released instantaneously.

Torsional buckling is observed when a critical amount of twist has been inserted into the rod.
We find this critical amount of twist to be larger than the static critical twist, i.e., dynamic appli-
cation of the twist leads to a delay of torsional buckling. A plausible explanation for the delay
effect is inertia: it takes time for the unstable straight configuration to evolve into a stable bent
configuration. Looked at it in another way: there is a constant trade between twist (κ3) and an-
gular velocity (ω3), so the actual moment in the rod constantly fluctuates. However, the period of
torsional waves for the parameters in Section 6 (T = 2π/(c

√
λ1) = 4L/c = 0.06928 s for the first

vibration mode) is much smaller than the delay found, which suggests that inertia does not provide
the whole explanation. We suggest that gyroscopic stabilisation as a result of the angular velocity
also plays a role.

Our results have various applications. Prebuckling torque oscillations are a major concern
in (gas, steam or wind) turbine generators [12, 20, 27] where large transient torques induced by
the fast reclosing of transmission lines may cause shaft fatigue damage or instability. In [20]
an 18-mass model is discussed for the turbine shaft, expected to be capable of representing the
machine’s most significant torsional modes. A continuum model like ours would also be able
to detect unexpectedly high modes. As to the effect of the rate of application of the end torque
on torsional buckling, numerical simulations in [21] reveal a delay in torsional buckling (kink
formation) of flexible marine risers being subjected to a torque during installation. The authors
relate the delay to the frictional torque at the touch-down point. Our results suggest that even in
the absence of such a torque a delay of torsional buckling might be expected.
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