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Abstract

One of the main questions in the field of quantum computation is where the quantum

computational speed-up comes from. Recent studies in the field of quantum foundations have

suggested which are the features to be considered as inherently non-classical. One of the major

contributions in this direction comes from a result known as Spekkens’ toy theory, which is a

model built to reproduce quantum theory as a classical phase-space-inspired theory with restric-

tions on what an observer can know about reality. The model reproduces many of the features of

quantum mechanics, but it does not reproduce non-locality and contextuality. In this thesis we

first complete Spekkens’ toy theory with measurement update rules and a mathematical frame-

work that generalises it to systems of any finite dimensions (prime and non-prime). We also

extend the operational equivalence between the toy theory and stabilizer quantum mechanics

to all odd dimensions via Gross’ Wigner functions. We then use the toy theory to represent the

non-contextual and classically simulatable part of the computation in state-injection schemes of

quantum computation where contextuality is a resource. In the case of qubits, we show that the

subtheories of quantum mechanics represented in the toy model can achieve the full stabilizer

theory via state-injection and we associate different proofs of contextuality to different injection

processes. Stepping back from Spekkens’ toy theory, we conclude by focusing on single system

protocols that compute non-linear functions (similarly to the popular CHSH game) which show

quantum advantages even in absence of non-locality and contextuality (in its standard notions).

We analyse their performances (formalised in Bell’s and Tsirelson’s bounds) in relation to Lan-

dauer’s principle, which associates entropic costs to irreversible computations, and to a new

notion of contextuality for sequences of transformations.
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Impact Statement

We are probably living in the golden age of the foundations of quantum mechanics. Many re-

search groups originated all over the world, conferences are organised every year and researchers

do not have to hide with embarrassment while studying what is the nature of quantum reality.

This is due, in addition to the universally fascinating questions charaterising the field, to the

concrete applications that have resulted from these studies. The main example is Bell’s theo-

rem, stating that quantum mechanics is incompatible with the intuitive local realism underlying

classical physics. It can be stated as the violation of a simple inequality, that has been proven

to guarantee stronger cryptographic security and to certify whether numbers are intrinsically

random (crucial matter, for example, for gambling companies). Much has still to be discovered

and other applications, in particular in the directions of developing more powerful computers,

are around the corner.

The results of this thesis, mainly concerning contextuality – a notion originating from a

similar result to Bell’s theorem – contribute to the understanding of what are the resources

that justify why quantum computers are more powerful than classical ones. As such, they are

beneficial towards the big goal of developing a quantum computer. The impact of this discovery

would be huge as, for example, universal quantum computers would be able to break current

cryptographic techniques that guarantee the security of our financial transactions. We also

deal with examples of quantum computational advantages that involve single systems only, thus

extending the area of application and impact of our results. Moreover, some of our mathematical

techniques, in particular when dealing with systems of non-prime dimensions, will hopefully

provide a new methodology to treat models of computation based on more complex systems

than the usual two-level systems (bits/qubits). We believe that extending the knowledge on
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the resources for quantum technologies would be a benefit in the academical environment, as it

would trigger new research projects, open the possibility of new faculty courses and be one of

the leading topics in top-level scientific journals. Lastly, understanding how the world works in

light of the mysterious and bizarre phenomena described by quantum mechanics is already an

extremely frequent theme in popular-science magazines, and our results would fit well in that

context too.
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Stands at the sea,

wonders at wondering: I

a universe of atoms

an atom in the universe.

R. P. Feynman, The Value of Science (1955)
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Chapter 1

Introduction

1.1 Overview

Quantum mechanics is the most precisely tested theory in the history of science. It provides the-

oretical predictions that agree with experiments with unprecedented success1 and, after about

a century of tests, it has never been experimentally falsified. It originated at the beginning of

the twentieth century to explain observations of the black-body radiation that were inconsistent

with the predictions of classical physics [2] and the photoelectric effect [3]. It then developed as

a theory of atomic physics [4] and eventually underpinned all the modern physics except from

gravity (for now!) [5].

In the last few decades quantum mechanics has been applied to other fields, such as infor-

mation and computer sciences. The novel features of the theory such as superposition, entan-

glement and non-locality, originally perceived as problematic obstacles for a full understanding

of the theory, over time became intended as resources for information processing and computing

tasks that show better performances than approaches based only on classical resources. The

first idea of a computer that exploits quantum phenomena was suggested by Richard Feyn-

man in 1982 [6] in a lecture titled “Simulating Physics with Computers” and three years later

developed by David Deutsch, who formalised the theoretical structure of a universal quantum

computer [7]. The field of quantum computation became very popular after the invention of

1Up to eleven significant figures in the case of the anomalous magnetic moment of the electron for testing
quantum electrodynamics [1].
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Shor’s algorithm in 1994 [8], which showed that a quantum computer would allow one to factor

large numbers exponentially more quickly than the best known classical algorithms, thus be-

ing able to break current cryptographic techniques that guarantee the security of our financial

transactions [9].

Other algorithms showing quantum advantages have been designed [10–13] as well as other

evidences of the quantum computational supremacy over classical computation [14], thus moti-

vating the widespread belief that the dream of a quantum computing era will eventually come

true: world-leading companies, like IBM, Google and Microsoft, have started to invest consider-

able amount of funds in this area, many research groups have originated all over the world and

an increasing number of universities have created programmes to develop quantum technologies

(thus allowing people like the current author to carry out research in this area). As the state of

the art stands at the moment, several theoretical models for realising quantum computers have

been formulated [7, 15, 16], but their experimental realisations still remain challenging [17, 18].

Nevertheless, technologies based on quantum mechanics for specific tasks are already available

on the market, in particular concerning cryptography [19].

Despite the central attention that quantum computation has gained in recent years, we

cannot still understand which physical principles underlie its power. One of the main questions

in the field concerns, therefore, the features that might be responsible for the supposed quantum

computational speed-up. In this work we aim to gain insights into this issue by exploiting results

coming from recent studies in the field of foundations of quantum mechanics, whose main goal

is to find an uncontroversial understanding of the reality described by quantum mechanics.

Despite being extremely effective, the mathematical formulation of quantum mechanics [20–25]

is indeed highly abstract and does not suggest any clear interpretation of how nature behaves.

This has lead to the formulation of many possible interpretations of the theory [26] and there is

still no consensus among scientists on which one to adopt. The idea is therefore to reformulate

quantum theory with a more intuitive framework, possibly starting from physically meaningful

principles, similarly to the case of the theory of special relativity, which is singled out by the

requirements that the speed of light in a vacuum – the maximum speed of any interaction –

is independent of the motion of all observers and that the laws of physics have to work the

same in any inertial reference frame [27]. A possible way to achieve this and obtain a better
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understanding of the theory is to identify the features that are inherently non-classical and

make quantum theory special. One of the main contributions in this direction comes from a

result known as Spekkens’ toy theory [28, 29], a model built to reproduce quantum theory as

a classical phase-space-based theory with restrictions on what an observer can know about the

ontic state (identified with a phase space point) describing the reality of a system. This model

has shown that almost all phenomena and protocols that were considered to be non-classical,

like entanglement [30] and teleportation [31], can actually be reproduced in this classical-like

model: approximately everything but Bell non-locality [32] and contextuality [33, 34], that

therefore emerge as inherently non-classical features.

The main goal of this work is to shed light on the physical sources of the quantum com-

putational speed-up. We do that by using notions of non-classicality developed in studies of

quantum foundations. We can concisely sum up the main contributions of this work as follows.

We first complete the formulation of Spekkens’ toy theory and state, by using the tool of Gross’

Wigner functions, its equivalence for odd-dimensional systems with a well-known subtheory

of quantum mechanics called stabilizer quantum mechanics. We then exploit the toy theory

to support the statement that contextuality is a resource for universal quantum computation

(UQC) in state-injection schemes of quantum computation. We finally address more restricted

computational scenarios that show quantum advantages to compute non-linear functions, where

there is no presence of non-locality and contextuality (in its standard notions [33,34]), providing

instead an analysis in terms of information erasure, as famously studied by Landauer.

Before proceeding with a more detailed description of the structure of the thesis, we think

it is fundamental to clarify what we mean by classical physics and quantum physics, in order

to make sense of terms like “non-classicality”, “classical computation” and “quantum compu-

tation”.

Classical physics is usually referred to as the theory that describes the physical world at the

macroscopic scales (above the atomic scale). It acquires a precise meaning depending on the

context it is considered in, and approximately it includes all the theories that were established

before the advent of quantum mechanics (i.e. Newtonian/Lagrangian/Hamiltonian mechanics,

Maxwell electrodynamics, thermodynamics). In this thesis, when we refer to classical physics we

will usually be referring to Hamiltonian mechanics [35](formulated in the formalism of phase
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space and symplectic geometry). The reason for this choice is that Hamiltonian mechanics,

among the formulations of classical mechanics, is the natural example of a hidden variable

model as developed first by Einstein [36], and later by Bell [37] and Kochen-Specker [33]. In

Hamiltonian mechanics the hidden variables – the states of physical reality that (pre)exist even

without observers and experiments performed on the system – are points in the phase space,

i.e. specifications of the position and momentum of a system at a given time, and any property

of the system can be obtained from these specifications. In the framework of hidden variable

models of Einstein, Bell, Kochen and Specker, that defines our notion of classicality, assumptions

like non-contextuality and locality are included. The latter are not compatible with quantum

mechanics, as proven by the well-known Bell and Kochen-Specker no-go theorems [32,33]. The

precise notion of hidden variable models, more generally addressed as ontological models, will

be given in subsection 3.1.2 as well as the notion of non-contextuality. Bell locality will be

treated in subsection 4.1.1. We recall that, briefly said, non-contextuality – in its original

formulation – refers to the fact that the outcome of a measurement does not depend on which

other set of compatible measurements we perform with it [33]. Locality refers to the fact that

no instantaneous (faster-than-light) interaction can take place between distant (“space-like”)

separated events.

When talking about Spekkens’ toy theory we will be more permissive with what a classical

theory is, as we will endow the Hamiltonian formalism with a richer structure. We will add

a restriction on which regions of the phase space represent states that can be known by an

observer and this allows us to obtain features that are usually not considered classical, such

as entanglement. We will also talk about classical computation when considering computation

performed by using systems whose information is stored in bits (or more general dits), i.e.

two(d)-level systems that cannot exhibit superpositions of logically exclusive states, and pro-

cessed by logic gates that can generate any Boolean function of the bits (examples of universal

sets of gates are AND,OR plus NOT gates, and the TOFFOLI gate). The final read-out just

reveals the states of the processed bits. Classical computation will be contrasted with quantum

computation, which is the computation performed using systems whose information is stored

in qubits (or more general qudits) i.e. two(d)-level systems that can exhibit superpositions of

logically exclusive states, processed by unitary reversible gates (examples of universal sets for
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qubit gates are single qubit plus CNOT gates, and Hadamard plus Toffoli gates) and measured

according to the formalism describing quantum measurements (reported below). We will also

talk about classical simulations of quantum computations, meaning that the output statistics

of the quantum computation can also be efficiently reproduced by a classical computer.

When referring to non-classicality, we therefore address features which do not arise in clas-

sical theories as defined above, even in cases where the classical theory is equipped with extra

structures as in Spekkens’ toy theory.

We can now provide the precise mathematical formulation of the theories of quantum and

classical mechanics in terms of states, evolutions and measurements (see table 1.1). We follow

the standard description of the postulates of quantum mechanics as described in [38] and we

then formulate the analogue description in the classical case [35], thus comparing the two

theories on the same ground. We assume the reader to be familiar with basic notions of linear

algebra, vector spaces, symplectic geometry and phase spaces ( [38] and [35, 39] are excellent

references for these subjects).
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Quantum mechanics [38].

– States. Associated to any isolated physical system is a Hilbert space H (complex vector

space with inner product) known as state space of the system. The system is completely

described by its density operator ρ (a positive trace one operator) acting on the state

space of the system. We say that the system is in a pure state if its density operator

is of the form ρ = |ψ〉 〈ψ|, where |ψ〉 is a unit vector in the system’s state space and

〈ψ| is its transpose conjugate. The density operator of a mixed state can be written as

ρ =
∑

i pi |ψi〉 〈ψi| , where pi denotes the probability of finding the system in the pure

state |ψi〉 . We recall that the inner product between two density operators in the Hilbert

space is defined by their trace (note that density operators are Hermitian), Tr(ρσ). The

state space H of a composite physical system is the tensor product of the state spaces of

the component physical systems, H =
⊗

iHi.

– Evolutions. The evolution of a closed quantum system is described by a unitary trans-

formation U, that acts on the state ρ as UρU †. We remind the reader that a unitary

operator U is defined as UU † = U †U = I, where I represents the identity operator.

Unitary transformations are reversible, as the inverse U−1 = U † always exists.

– Measurements. Quantum measurements are described by a collection {Mk} of measure-

ment operators acting on the state space of the system being measured. The index k

refers to the possible outcomes of the measurement. The measurement operators sat-

isfy the completeness equation
∑

kM
†
kMk = I. If the outcome k occurs, the state of the

system after measurement ρ′ is given by ρ′ =
MkρM

†
k

p(k) , where ρ is the state before the

measurement and p(k) is the probability of obtaining the outcome k. For convenience

let us define POVM (positive operator-valued measure) elements Ek as positive opera-

tors Ek = M †kMk, such that
∑

k Ek = I. The probability p(k) is given by the Born rule,

p(k) = Tr(Ekρ). If the POVM elements are orthogonal projectors Pk ≡ Ek = E2
k associ-

ated to each outcome k, then the measurement is known as a Von Neumann projective

measurement (PVM). A PVM is associated to an observable, i.e. an Hermitian opera-

tor, O with spectral decomposition O =
∑

k kPk, where k are the real eigenvalues of the

projector Pk onto the eigenspace of O.
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Classical mechanics [35].

– States. Associated to any physical system is a phase space Ω. The system is fully specified

by a point λ in the phase space. It may be that the observer has partial knowledge of

the physical state of the system and, in that case, the state of the system is associated

to a probability distribution over the phase space. We recall that the phase space is a

symplectic manifold, i.e. an even-dimensional manifold that locally has the structure

of a symplectic vector space. The latter is a vector space equipped with a symplectic

form, which means a bilinear real function [·, ·] : Ω × Ω → R that is anti-symmetric, i.e.

[λ1, λ2] = −[λ2, λ1] and non-degenerate, i.e. [λ1, λ2] = 0 ∀λ2 ∈ Ω implies λ1 = 0. The

state space Ω of a composite physical system is the Cartesian product of the individual

phase spaces, Ω = ×iΩi. We will mainly consider discrete phase spaces Ω = Z2n
d , where

d denotes the dimension and n is the number of systems we take into account. Every

point λ in the phase space is denoted with respect to the conjugate variables position

and momentum, λ = (x1, . . . , xn, p1, . . . , pn). The standard symplectic form in Ω = Z2
d is

[λ1, λ2] = x1p2 − x2p1, where λ1 = (x1, p1) and λ2 = (x2, p2).

– Evolutions. The physical evolution of a classical system is described by a symplectic

diffeomorphism in the phase space S : Ω → Ω. This is equivalent to state that the

physical evolutions satisfy Hamilton equations [39]. We remind the reader that a sym-

plectic transformation is a linear transformation that preserves the symplectic form, i.e.

[S(·), S(·)] = [·, ·]. A diffeomorphism is a map between manifolds which is differentiable

and has a differentiable inverse.

– Measurements. Classical measurements have no special role in classical mechanics, unless

we consider probability distributions for which measurement update rules are needed, and

they are treated as any other physical evolution. The process of obtaining the outcome of

a measurement just consists of revealing the value of the property being measured without

disturbing the system and is therefore represented as a real (or integer) function on the

phase space, o : Ω→ R.
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Real functions.
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Hilbert space.
<latexit sha1_base64="1qfnshgcAfHnnGcLKccLtrBohPg=">AAAB/3icbVA9SwNBEN2LXzF+nVpY2CwGwSrciaB2QZuUEYwGkhD2NnPJkr29Y3dODEca/4qNhYqtf8POf+NekkITHww83pvZnXlBIoVBz/t2CkvLK6trxfXSxubW9o67u3dn4lRzaPBYxroZMANSKGigQAnNRAOLAgn3wfA69+8fQBsRq1scJdCJWF+JUHCGVuq6B22ER8xqQgagkZqEcaiMaanrlr2KNwFdJP6MlMkM9a771e7FPI1AIZfMmJbvJdjJmEbBJYxL7dSAfXzI+tCyVLEITCebHDCmx1bp0TDWthTSifp7ImORMaMosJ0Rw4GZ93LxP6+VYnjRyYRKUgTFpx+FqaQY0zwN2hMaOMqRJYxrYXelfMA042gzy0Pw509eJI3TymXFvzkrV69maRTJITkiJ8Qn56RKaqROGoSTMXkmr+TNeXJenHfnY9pacGYz++QPnM8fXy2VzA==</latexit><latexit sha1_base64="1qfnshgcAfHnnGcLKccLtrBohPg=">AAAB/3icbVA9SwNBEN2LXzF+nVpY2CwGwSrciaB2QZuUEYwGkhD2NnPJkr29Y3dODEca/4qNhYqtf8POf+NekkITHww83pvZnXlBIoVBz/t2CkvLK6trxfXSxubW9o67u3dn4lRzaPBYxroZMANSKGigQAnNRAOLAgn3wfA69+8fQBsRq1scJdCJWF+JUHCGVuq6B22ER8xqQgagkZqEcaiMaanrlr2KNwFdJP6MlMkM9a771e7FPI1AIZfMmJbvJdjJmEbBJYxL7dSAfXzI+tCyVLEITCebHDCmx1bp0TDWthTSifp7ImORMaMosJ0Rw4GZ93LxP6+VYnjRyYRKUgTFpx+FqaQY0zwN2hMaOMqRJYxrYXelfMA042gzy0Pw509eJI3TymXFvzkrV69maRTJITkiJ8Qn56RKaqROGoSTMXkmr+TNeXJenHfnY9pacGYz++QPnM8fXy2VzA==</latexit><latexit sha1_base64="1qfnshgcAfHnnGcLKccLtrBohPg=">AAAB/3icbVA9SwNBEN2LXzF+nVpY2CwGwSrciaB2QZuUEYwGkhD2NnPJkr29Y3dODEca/4qNhYqtf8POf+NekkITHww83pvZnXlBIoVBz/t2CkvLK6trxfXSxubW9o67u3dn4lRzaPBYxroZMANSKGigQAnNRAOLAgn3wfA69+8fQBsRq1scJdCJWF+JUHCGVuq6B22ER8xqQgagkZqEcaiMaanrlr2KNwFdJP6MlMkM9a771e7FPI1AIZfMmJbvJdjJmEbBJYxL7dSAfXzI+tCyVLEITCebHDCmx1bp0TDWthTSifp7ImORMaMosJ0Rw4GZ93LxP6+VYnjRyYRKUgTFpx+FqaQY0zwN2hMaOMqRJYxrYXelfMA042gzy0Pw509eJI3TymXFvzkrV69maRTJITkiJ8Qn56RKaqROGoSTMXkmr+TNeXJenHfnY9pacGYz++QPnM8fXy2VzA==</latexit><latexit sha1_base64="1qfnshgcAfHnnGcLKccLtrBohPg=">AAAB/3icbVA9SwNBEN2LXzF+nVpY2CwGwSrciaB2QZuUEYwGkhD2NnPJkr29Y3dODEca/4qNhYqtf8POf+NekkITHww83pvZnXlBIoVBz/t2CkvLK6trxfXSxubW9o67u3dn4lRzaPBYxroZMANSKGigQAnNRAOLAgn3wfA69+8fQBsRq1scJdCJWF+JUHCGVuq6B22ER8xqQgagkZqEcaiMaanrlr2KNwFdJP6MlMkM9a771e7FPI1AIZfMmJbvJdjJmEbBJYxL7dSAfXzI+tCyVLEITCebHDCmx1bp0TDWthTSifp7ImORMaMosJ0Rw4GZ93LxP6+VYnjRyYRKUgTFpx+FqaQY0zwN2hMaOMqRJYxrYXelfMA042gzy0Pw509eJI3TymXFvzkrV69maRTJITkiJ8Qn56RKaqROGoSTMXkmr+TNeXJenHfnY9pacGYz++QPnM8fXy2VzA==</latexit>

Hermitian operators.
<latexit sha1_base64="XurCOJAj7CwdSb+Zg6Beoenao+c=">AAACBXicbZC9SgNBFIVn41+Mf6uWIgwGwSrsiqB2QZuUEYwJJCHMTm6SIbMzy8xdMSypbHwVGwsVW9/BzrdxN0mhiQcGPs65l+GeIJLCoud9O7ml5ZXVtfx6YWNza3vH3d27szo2HGpcS20aAbMghYIaCpTQiAywMJBQD4bXWV6/B2OFVrc4iqAdsr4SPcEZplbHPWwhPGBSARMKFExRHYFhqI0tjWmh4xa9kjcRXQR/BkUyU7XjfrW6mschKOSSWdv0vQjbCTMouIRxoRVbiBgfsj40U1QsBNtOJmeM6XHqdGlPm/QppBP390bCQmtHYZBOhgwHdj7LzP+yZoy9i3YiVBQjKD79qBdLippmndCuMMBRjlJg3KQ9cMoHzDCOaXNZCf78yYtQOy1dlvybs2L5atZGnhyQI3JCfHJOyqRCqqRGOHkkz+SVvDlPzovz7nxMR3PObGef/JHz+QOFSZiy</latexit><latexit sha1_base64="XurCOJAj7CwdSb+Zg6Beoenao+c=">AAACBXicbZC9SgNBFIVn41+Mf6uWIgwGwSrsiqB2QZuUEYwJJCHMTm6SIbMzy8xdMSypbHwVGwsVW9/BzrdxN0mhiQcGPs65l+GeIJLCoud9O7ml5ZXVtfx6YWNza3vH3d27szo2HGpcS20aAbMghYIaCpTQiAywMJBQD4bXWV6/B2OFVrc4iqAdsr4SPcEZplbHPWwhPGBSARMKFExRHYFhqI0tjWmh4xa9kjcRXQR/BkUyU7XjfrW6mschKOSSWdv0vQjbCTMouIRxoRVbiBgfsj40U1QsBNtOJmeM6XHqdGlPm/QppBP390bCQmtHYZBOhgwHdj7LzP+yZoy9i3YiVBQjKD79qBdLippmndCuMMBRjlJg3KQ9cMoHzDCOaXNZCf78yYtQOy1dlvybs2L5atZGnhyQI3JCfHJOyqRCqqRGOHkkz+SVvDlPzovz7nxMR3PObGef/JHz+QOFSZiy</latexit><latexit sha1_base64="XurCOJAj7CwdSb+Zg6Beoenao+c=">AAACBXicbZC9SgNBFIVn41+Mf6uWIgwGwSrsiqB2QZuUEYwJJCHMTm6SIbMzy8xdMSypbHwVGwsVW9/BzrdxN0mhiQcGPs65l+GeIJLCoud9O7ml5ZXVtfx6YWNza3vH3d27szo2HGpcS20aAbMghYIaCpTQiAywMJBQD4bXWV6/B2OFVrc4iqAdsr4SPcEZplbHPWwhPGBSARMKFExRHYFhqI0tjWmh4xa9kjcRXQR/BkUyU7XjfrW6mschKOSSWdv0vQjbCTMouIRxoRVbiBgfsj40U1QsBNtOJmeM6XHqdGlPm/QppBP390bCQmtHYZBOhgwHdj7LzP+yZoy9i3YiVBQjKD79qBdLippmndCuMMBRjlJg3KQ9cMoHzDCOaXNZCf78yYtQOy1dlvybs2L5atZGnhyQI3JCfHJOyqRCqqRGOHkkz+SVvDlPzovz7nxMR3PObGef/JHz+QOFSZiy</latexit><latexit sha1_base64="XurCOJAj7CwdSb+Zg6Beoenao+c=">AAACBXicbZC9SgNBFIVn41+Mf6uWIgwGwSrsiqB2QZuUEYwJJCHMTm6SIbMzy8xdMSypbHwVGwsVW9/BzrdxN0mhiQcGPs65l+GeIJLCoud9O7ml5ZXVtfx6YWNza3vH3d27szo2HGpcS20aAbMghYIaCpTQiAywMJBQD4bXWV6/B2OFVrc4iqAdsr4SPcEZplbHPWwhPGBSARMKFExRHYFhqI0tjWmh4xa9kjcRXQR/BkUyU7XjfrW6mschKOSSWdv0vQjbCTMouIRxoRVbiBgfsj40U1QsBNtOJmeM6XHqdGlPm/QppBP390bCQmtHYZBOhgwHdj7LzP+yZoy9i3YiVBQjKD79qBdLippmndCuMMBRjlJg3KQ9cMoHzDCOaXNZCf78yYtQOy1dlvybs2L5atZGnhyQI3JCfHJOyqRCqqRGOHkkz+SVvDlPzovz7nxMR3PObGef/JHz+QOFSZiy</latexit>

STATES
<latexit sha1_base64="rjLa7o6Kl4PutRb9jiPMaeQ0UmY=">AAAB+XicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoN6qInistLGFNpTNdtMu3WzC7kQtsT/FiwcVr/4Tb/4bkzYHbX0w8Hhvhpl5XiS4Bsv6NgpLyyura8X10sbm1vaOWd6902GsKHNoKELV9ohmgkvmAAfB2pFiJPAEa3mjq8xv3TOleSibMI6YG5CB5D6nBFKpZ5a7wB7B85NG86J53ZjgUs+sWFVrCrxI7JxUUI56z/zq9kMaB0wCFUTrjm1F4CZEAaeCTUrdWLOI0BEZsE5KJQmYdpPp6RN8mCp97IcqLQl4qv6eSEig9Tjw0s6AwFDPe5n4n9eJwT9zEy6jGJiks0V+LDCEOMsB97liFMQ4JYQqnt6K6ZAoQiFNKwvBnn95kTjH1fOqfXtSqV3maRTRPjpAR8hGp6iGblAdOYiiB/SMXtGb8WS8GO/Gx6y1YOQze+gPjM8ffEGTCA==</latexit><latexit sha1_base64="rjLa7o6Kl4PutRb9jiPMaeQ0UmY=">AAAB+XicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoN6qInistLGFNpTNdtMu3WzC7kQtsT/FiwcVr/4Tb/4bkzYHbX0w8Hhvhpl5XiS4Bsv6NgpLyyura8X10sbm1vaOWd6902GsKHNoKELV9ohmgkvmAAfB2pFiJPAEa3mjq8xv3TOleSibMI6YG5CB5D6nBFKpZ5a7wB7B85NG86J53ZjgUs+sWFVrCrxI7JxUUI56z/zq9kMaB0wCFUTrjm1F4CZEAaeCTUrdWLOI0BEZsE5KJQmYdpPp6RN8mCp97IcqLQl4qv6eSEig9Tjw0s6AwFDPe5n4n9eJwT9zEy6jGJiks0V+LDCEOMsB97liFMQ4JYQqnt6K6ZAoQiFNKwvBnn95kTjH1fOqfXtSqV3maRTRPjpAR8hGp6iGblAdOYiiB/SMXtGb8WS8GO/Gx6y1YOQze+gPjM8ffEGTCA==</latexit><latexit sha1_base64="rjLa7o6Kl4PutRb9jiPMaeQ0UmY=">AAAB+XicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoN6qInistLGFNpTNdtMu3WzC7kQtsT/FiwcVr/4Tb/4bkzYHbX0w8Hhvhpl5XiS4Bsv6NgpLyyura8X10sbm1vaOWd6902GsKHNoKELV9ohmgkvmAAfB2pFiJPAEa3mjq8xv3TOleSibMI6YG5CB5D6nBFKpZ5a7wB7B85NG86J53ZjgUs+sWFVrCrxI7JxUUI56z/zq9kMaB0wCFUTrjm1F4CZEAaeCTUrdWLOI0BEZsE5KJQmYdpPp6RN8mCp97IcqLQl4qv6eSEig9Tjw0s6AwFDPe5n4n9eJwT9zEy6jGJiks0V+LDCEOMsB97liFMQ4JYQqnt6K6ZAoQiFNKwvBnn95kTjH1fOqfXtSqV3maRTRPjpAR8hGp6iGblAdOYiiB/SMXtGb8WS8GO/Gx6y1YOQze+gPjM8ffEGTCA==</latexit><latexit sha1_base64="X/BbPPQRM1pmBhxdK1enSbL+gJw=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCozbtSd4MZlBccW2qFkMnfa0ExmSO4IpfQFXLhRfDB3vo3pz0KtBwIf5yTk3pOUSloKgi+vtrW9s7tX3/cPGv7h0XGz8WSLygiMRKEK00u4RSU1RiRJYa80yPNEYTeZ3C3y7jMaKwv9SNMS45yPtMyk4OSszrDZCtrBUmwTwjW0YK1h83OQFqLKUZNQ3Np+GJQUz7ghKRTO/UFlseRiwkfYd6h5jjaeLcecs3PnpCwrjDua2NL9+WLGc2uneeJu5pzG9m+2MP/L+hVl1/FM6rIi1GL1UVYpRgVb7MxSaVCQmjrgwkg3KxNjbrgg14zvOgj/brwJ0WX7ph0+BFCHUziDCwjhCm7hHjoQgYAUXuDNG3uv3vuqqpq37uwEfsn7+AaqKYoN</latexit><latexit sha1_base64="/lK3JW8ZW5kBRMVTq//6I5xxwzc=">AAAB7nicbZDNTsJAFIVv8Q8RFdy6mUhMXJHWjbrTGBOXGKiQQEOmwxQmTKfNzK1KKo/ixoUaH8edb2MLLBQ8ySRfzpnJvXP8WAqDtv1tFdbWNza3itulnfLu3n6lWr43UaIZd1kkI93xqeFSKO6iQMk7seY09CVv++PrPG8/cG1EpFo4ibkX0qESgWAUM6tfqfaQP6EfpM3WVeumOSWlfqVm1+2ZyCo4C6jBQo1+5as3iFgScoVMUmO6jh2jl1KNgkk+LfUSw2PKxnTIuxkqGnLjpbPVp+Q4cwYkiHR2FJKZ+/tFSkNjJqGf3Qwpjsxylpv/Zd0Eg3MvFSpOkCs2HxQkkmBE8h7IQGjOUE4yoEyLbFfCRlRThllbeQnO8pdXwT2tX9SdOxuKcAhHcAIOnMEl3EIDXGDwCC/wBu/Ws/VqfczbKliL2g7gj6zPHyhbkaQ=</latexit><latexit sha1_base64="/lK3JW8ZW5kBRMVTq//6I5xxwzc=">AAAB7nicbZDNTsJAFIVv8Q8RFdy6mUhMXJHWjbrTGBOXGKiQQEOmwxQmTKfNzK1KKo/ixoUaH8edb2MLLBQ8ySRfzpnJvXP8WAqDtv1tFdbWNza3itulnfLu3n6lWr43UaIZd1kkI93xqeFSKO6iQMk7seY09CVv++PrPG8/cG1EpFo4ibkX0qESgWAUM6tfqfaQP6EfpM3WVeumOSWlfqVm1+2ZyCo4C6jBQo1+5as3iFgScoVMUmO6jh2jl1KNgkk+LfUSw2PKxnTIuxkqGnLjpbPVp+Q4cwYkiHR2FJKZ+/tFSkNjJqGf3Qwpjsxylpv/Zd0Eg3MvFSpOkCs2HxQkkmBE8h7IQGjOUE4yoEyLbFfCRlRThllbeQnO8pdXwT2tX9SdOxuKcAhHcAIOnMEl3EIDXGDwCC/wBu/Ws/VqfczbKliL2g7gj6zPHyhbkaQ=</latexit><latexit sha1_base64="UBL6I3BqwsPtjXCNYQ0mko/i9eI=">AAAB+XicbVBNT8JAEN36ifhV9OhlIzHxRFov6g01Jh4xUCEBQrbLFjZst83uVCWVn+LFgxqv/hNv/hu30IOCL5nk5b2ZzMzzY8E1OM63tbS8srq2Xtgobm5t7+zapb07HSWKMo9GIlItn2gmuGQecBCsFStGQl+wpj+6yvzmPVOaR7IB45h1QzKQPOCUgJF6dqkD7BH8IK03LhrX9Qku9uyyU3GmwIvEzUkZ5aj17K9OP6JJyCRQQbRuu04M3ZQo4FSwSbGTaBYTOiID1jZUkpDpbjo9fYKPjNLHQaRMScBT9fdESkKtx6FvOkMCQz3vZeJ/XjuB4KybchknwCSdLQoSgSHCWQ64zxWjIMaGEKq4uRXTIVGEgkkrC8Gdf3mReCeV84p765Srl3kaBXSADtExctEpqqIbVEMeougBPaNX9GY9WS/Wu/Uxa12y8pl99AfW5w97AZME</latexit><latexit sha1_base64="rjLa7o6Kl4PutRb9jiPMaeQ0UmY=">AAAB+XicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoN6qInistLGFNpTNdtMu3WzC7kQtsT/FiwcVr/4Tb/4bkzYHbX0w8Hhvhpl5XiS4Bsv6NgpLyyura8X10sbm1vaOWd6902GsKHNoKELV9ohmgkvmAAfB2pFiJPAEa3mjq8xv3TOleSibMI6YG5CB5D6nBFKpZ5a7wB7B85NG86J53ZjgUs+sWFVrCrxI7JxUUI56z/zq9kMaB0wCFUTrjm1F4CZEAaeCTUrdWLOI0BEZsE5KJQmYdpPp6RN8mCp97IcqLQl4qv6eSEig9Tjw0s6AwFDPe5n4n9eJwT9zEy6jGJiks0V+LDCEOMsB97liFMQ4JYQqnt6K6ZAoQiFNKwvBnn95kTjH1fOqfXtSqV3maRTRPjpAR8hGp6iGblAdOYiiB/SMXtGb8WS8GO/Gx6y1YOQze+gPjM8ffEGTCA==</latexit><latexit sha1_base64="rjLa7o6Kl4PutRb9jiPMaeQ0UmY=">AAAB+XicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoN6qInistLGFNpTNdtMu3WzC7kQtsT/FiwcVr/4Tb/4bkzYHbX0w8Hhvhpl5XiS4Bsv6NgpLyyura8X10sbm1vaOWd6902GsKHNoKELV9ohmgkvmAAfB2pFiJPAEa3mjq8xv3TOleSibMI6YG5CB5D6nBFKpZ5a7wB7B85NG86J53ZjgUs+sWFVrCrxI7JxUUI56z/zq9kMaB0wCFUTrjm1F4CZEAaeCTUrdWLOI0BEZsE5KJQmYdpPp6RN8mCp97IcqLQl4qv6eSEig9Tjw0s6AwFDPe5n4n9eJwT9zEy6jGJiks0V+LDCEOMsB97liFMQ4JYQqnt6K6ZAoQiFNKwvBnn95kTjH1fOqfXtSqV3maRTRPjpAR8hGp6iGblAdOYiiB/SMXtGb8WS8GO/Gx6y1YOQze+gPjM8ffEGTCA==</latexit><latexit sha1_base64="rjLa7o6Kl4PutRb9jiPMaeQ0UmY=">AAAB+XicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoN6qInistLGFNpTNdtMu3WzC7kQtsT/FiwcVr/4Tb/4bkzYHbX0w8Hhvhpl5XiS4Bsv6NgpLyyura8X10sbm1vaOWd6902GsKHNoKELV9ohmgkvmAAfB2pFiJPAEa3mjq8xv3TOleSibMI6YG5CB5D6nBFKpZ5a7wB7B85NG86J53ZjgUs+sWFVrCrxI7JxUUI56z/zq9kMaB0wCFUTrjm1F4CZEAaeCTUrdWLOI0BEZsE5KJQmYdpPp6RN8mCp97IcqLQl4qv6eSEig9Tjw0s6AwFDPe5n4n9eJwT9zEy6jGJiks0V+LDCEOMsB97liFMQ4JYQqnt6K6ZAoQiFNKwvBnn95kTjH1fOqfXtSqV3maRTRPjpAR8hGp6iGblAdOYiiB/SMXtGb8WS8GO/Gx6y1YOQze+gPjM8ffEGTCA==</latexit><latexit sha1_base64="rjLa7o6Kl4PutRb9jiPMaeQ0UmY=">AAAB+XicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoN6qInistLGFNpTNdtMu3WzC7kQtsT/FiwcVr/4Tb/4bkzYHbX0w8Hhvhpl5XiS4Bsv6NgpLyyura8X10sbm1vaOWd6902GsKHNoKELV9ohmgkvmAAfB2pFiJPAEa3mjq8xv3TOleSibMI6YG5CB5D6nBFKpZ5a7wB7B85NG86J53ZjgUs+sWFVrCrxI7JxUUI56z/zq9kMaB0wCFUTrjm1F4CZEAaeCTUrdWLOI0BEZsE5KJQmYdpPp6RN8mCp97IcqLQl4qv6eSEig9Tjw0s6AwFDPe5n4n9eJwT9zEy6jGJiks0V+LDCEOMsB97liFMQ4JYQqnt6K6ZAoQiFNKwvBnn95kTjH1fOqfXtSqV3maRTRPjpAR8hGp6iGblAdOYiiB/SMXtGb8WS8GO/Gx6y1YOQze+gPjM8ffEGTCA==</latexit><latexit sha1_base64="rjLa7o6Kl4PutRb9jiPMaeQ0UmY=">AAAB+XicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoN6qInistLGFNpTNdtMu3WzC7kQtsT/FiwcVr/4Tb/4bkzYHbX0w8Hhvhpl5XiS4Bsv6NgpLyyura8X10sbm1vaOWd6902GsKHNoKELV9ohmgkvmAAfB2pFiJPAEa3mjq8xv3TOleSibMI6YG5CB5D6nBFKpZ5a7wB7B85NG86J53ZjgUs+sWFVrCrxI7JxUUI56z/zq9kMaB0wCFUTrjm1F4CZEAaeCTUrdWLOI0BEZsE5KJQmYdpPp6RN8mCp97IcqLQl4qv6eSEig9Tjw0s6AwFDPe5n4n9eJwT9zEy6jGJiks0V+LDCEOMsB97liFMQ4JYQqnt6K6ZAoQiFNKwvBnn95kTjH1fOqfXtSqV3maRTRPjpAR8hGp6iGblAdOYiiB/SMXtGb8WS8GO/Gx6y1YOQze+gPjM8ffEGTCA==</latexit><latexit sha1_base64="rjLa7o6Kl4PutRb9jiPMaeQ0UmY=">AAAB+XicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoN6qInistLGFNpTNdtMu3WzC7kQtsT/FiwcVr/4Tb/4bkzYHbX0w8Hhvhpl5XiS4Bsv6NgpLyyura8X10sbm1vaOWd6902GsKHNoKELV9ohmgkvmAAfB2pFiJPAEa3mjq8xv3TOleSibMI6YG5CB5D6nBFKpZ5a7wB7B85NG86J53ZjgUs+sWFVrCrxI7JxUUI56z/zq9kMaB0wCFUTrjm1F4CZEAaeCTUrdWLOI0BEZsE5KJQmYdpPp6RN8mCp97IcqLQl4qv6eSEig9Tjw0s6AwFDPe5n4n9eJwT9zEy6jGJiks0V+LDCEOMsB97liFMQ4JYQqnt6K6ZAoQiFNKwvBnn95kTjH1fOqfXtSqV3maRTRPjpAR8hGp6iGblAdOYiiB/SMXtGb8WS8GO/Gx6y1YOQze+gPjM8ffEGTCA==</latexit>

EVOLUTIONS
<latexit sha1_base64="DKPm7k73OO98eUEM/gtFAP1DqFk=">AAAB/XicbVBNS8NAEN34WetXVDx5WSyCp5KIoN6KIiiIrdi0hbaUzXbTLt1swu5ELKHgX/HiQcWr/8Ob/8akzUFbHww83pthZp4bCq7Bsr6NufmFxaXl3Ep+dW19Y9Pc2q7pIFKUOTQQgWq4RDPBJXOAg2CNUDHiu4LV3cFF6tcfmNI8kFUYhqztk57kHqcEEqlj7raAPYLrxZe18o1TvS7f3o9wvmMWrKI1Bp4ldkYKKEOlY361ugGNfCaBCqJ107ZCaMdEAaeCjfKtSLOQ0AHpsWZCJfGZbsfj80f4IFG62AtUUhLwWP09ERNf66HvJp0+gb6e9lLxP68ZgXfajrkMI2CSThZ5kcAQ4DQL3OWKURDDhBCqeHIrpn2iCIUksTQEe/rlWeIcFc+K9t1xoXSepZFDe2gfHSIbnaASukIV5CCKYvSMXtGb8WS8GO/Gx6R1zshmdtAfGJ8/FVmUdA==</latexit><latexit sha1_base64="DKPm7k73OO98eUEM/gtFAP1DqFk=">AAAB/XicbVBNS8NAEN34WetXVDx5WSyCp5KIoN6KIiiIrdi0hbaUzXbTLt1swu5ELKHgX/HiQcWr/8Ob/8akzUFbHww83pthZp4bCq7Bsr6NufmFxaXl3Ep+dW19Y9Pc2q7pIFKUOTQQgWq4RDPBJXOAg2CNUDHiu4LV3cFF6tcfmNI8kFUYhqztk57kHqcEEqlj7raAPYLrxZe18o1TvS7f3o9wvmMWrKI1Bp4ldkYKKEOlY361ugGNfCaBCqJ107ZCaMdEAaeCjfKtSLOQ0AHpsWZCJfGZbsfj80f4IFG62AtUUhLwWP09ERNf66HvJp0+gb6e9lLxP68ZgXfajrkMI2CSThZ5kcAQ4DQL3OWKURDDhBCqeHIrpn2iCIUksTQEe/rlWeIcFc+K9t1xoXSepZFDe2gfHSIbnaASukIV5CCKYvSMXtGb8WS8GO/Gx6R1zshmdtAfGJ8/FVmUdA==</latexit><latexit sha1_base64="DKPm7k73OO98eUEM/gtFAP1DqFk=">AAAB/XicbVBNS8NAEN34WetXVDx5WSyCp5KIoN6KIiiIrdi0hbaUzXbTLt1swu5ELKHgX/HiQcWr/8Ob/8akzUFbHww83pthZp4bCq7Bsr6NufmFxaXl3Ep+dW19Y9Pc2q7pIFKUOTQQgWq4RDPBJXOAg2CNUDHiu4LV3cFF6tcfmNI8kFUYhqztk57kHqcEEqlj7raAPYLrxZe18o1TvS7f3o9wvmMWrKI1Bp4ldkYKKEOlY361ugGNfCaBCqJ107ZCaMdEAaeCjfKtSLOQ0AHpsWZCJfGZbsfj80f4IFG62AtUUhLwWP09ERNf66HvJp0+gb6e9lLxP68ZgXfajrkMI2CSThZ5kcAQ4DQL3OWKURDDhBCqeHIrpn2iCIUksTQEe/rlWeIcFc+K9t1xoXSepZFDe2gfHSIbnaASukIV5CCKYvSMXtGb8WS8GO/Gx6R1zshmdtAfGJ8/FVmUdA==</latexit><latexit sha1_base64="DKPm7k73OO98eUEM/gtFAP1DqFk=">AAAB/XicbVBNS8NAEN34WetXVDx5WSyCp5KIoN6KIiiIrdi0hbaUzXbTLt1swu5ELKHgX/HiQcWr/8Ob/8akzUFbHww83pthZp4bCq7Bsr6NufmFxaXl3Ep+dW19Y9Pc2q7pIFKUOTQQgWq4RDPBJXOAg2CNUDHiu4LV3cFF6tcfmNI8kFUYhqztk57kHqcEEqlj7raAPYLrxZe18o1TvS7f3o9wvmMWrKI1Bp4ldkYKKEOlY361ugGNfCaBCqJ107ZCaMdEAaeCjfKtSLOQ0AHpsWZCJfGZbsfj80f4IFG62AtUUhLwWP09ERNf66HvJp0+gb6e9lLxP68ZgXfajrkMI2CSThZ5kcAQ4DQL3OWKURDDhBCqeHIrpn2iCIUksTQEe/rlWeIcFc+K9t1xoXSepZFDe2gfHSIbnaASukIV5CCKYvSMXtGb8WS8GO/Gx6R1zshmdtAfGJ8/FVmUdA==</latexit>

OBSERVABLES
<latexit sha1_base64="qj5di/t4+WPC5C9A19FLrrHyPYY=">AAAB/nicbVBNS8NAEN34WetXVPDiZbEInkoignqrlYIHwWpNW2hD2Ww37dLNB7sTscQe/CtePKh49Xd489+YtDlo64OBx3szzMxzQsEVGMa3Nje/sLi0nFvJr66tb2zqW9t1FUSSMosGIpBNhygmuM8s4CBYM5SMeI5gDWdwkfqNeyYVD/w7GIbM9kjP5y6nBBKpo++2gT2A48bX5Vrltn5evqrURjjf0QtG0RgDzxIzIwWUodrRv9rdgEYe84EKolTLNEKwYyKBU8FG+XakWEjogPRYK6E+8Ziy4/H9I3yQKF3sBjIpH/BY/T0RE0+poecknR6Bvpr2UvE/rxWBe2rH3A8jYD6dLHIjgSHAaRi4yyWjIIYJIVTy5FZM+0QSCklkaQjm9MuzxDoqnhXNm+NCqZylkUN7aB8dIhOdoBK6RFVkIYoe0TN6RW/ak/aivWsfk9Y5LZvZQX+gff4AcP2Ung==</latexit><latexit sha1_base64="qj5di/t4+WPC5C9A19FLrrHyPYY=">AAAB/nicbVBNS8NAEN34WetXVPDiZbEInkoignqrlYIHwWpNW2hD2Ww37dLNB7sTscQe/CtePKh49Xd489+YtDlo64OBx3szzMxzQsEVGMa3Nje/sLi0nFvJr66tb2zqW9t1FUSSMosGIpBNhygmuM8s4CBYM5SMeI5gDWdwkfqNeyYVD/w7GIbM9kjP5y6nBBKpo++2gT2A48bX5Vrltn5evqrURjjf0QtG0RgDzxIzIwWUodrRv9rdgEYe84EKolTLNEKwYyKBU8FG+XakWEjogPRYK6E+8Ziy4/H9I3yQKF3sBjIpH/BY/T0RE0+poecknR6Bvpr2UvE/rxWBe2rH3A8jYD6dLHIjgSHAaRi4yyWjIIYJIVTy5FZM+0QSCklkaQjm9MuzxDoqnhXNm+NCqZylkUN7aB8dIhOdoBK6RFVkIYoe0TN6RW/ak/aivWsfk9Y5LZvZQX+gff4AcP2Ung==</latexit><latexit sha1_base64="qj5di/t4+WPC5C9A19FLrrHyPYY=">AAAB/nicbVBNS8NAEN34WetXVPDiZbEInkoignqrlYIHwWpNW2hD2Ww37dLNB7sTscQe/CtePKh49Xd489+YtDlo64OBx3szzMxzQsEVGMa3Nje/sLi0nFvJr66tb2zqW9t1FUSSMosGIpBNhygmuM8s4CBYM5SMeI5gDWdwkfqNeyYVD/w7GIbM9kjP5y6nBBKpo++2gT2A48bX5Vrltn5evqrURjjf0QtG0RgDzxIzIwWUodrRv9rdgEYe84EKolTLNEKwYyKBU8FG+XakWEjogPRYK6E+8Ziy4/H9I3yQKF3sBjIpH/BY/T0RE0+poecknR6Bvpr2UvE/rxWBe2rH3A8jYD6dLHIjgSHAaRi4yyWjIIYJIVTy5FZM+0QSCklkaQjm9MuzxDoqnhXNm+NCqZylkUN7aB8dIhOdoBK6RFVkIYoe0TN6RW/ak/aivWsfk9Y5LZvZQX+gff4AcP2Ung==</latexit><latexit sha1_base64="qj5di/t4+WPC5C9A19FLrrHyPYY=">AAAB/nicbVBNS8NAEN34WetXVPDiZbEInkoignqrlYIHwWpNW2hD2Ww37dLNB7sTscQe/CtePKh49Xd489+YtDlo64OBx3szzMxzQsEVGMa3Nje/sLi0nFvJr66tb2zqW9t1FUSSMosGIpBNhygmuM8s4CBYM5SMeI5gDWdwkfqNeyYVD/w7GIbM9kjP5y6nBBKpo++2gT2A48bX5Vrltn5evqrURjjf0QtG0RgDzxIzIwWUodrRv9rdgEYe84EKolTLNEKwYyKBU8FG+XakWEjogPRYK6E+8Ziy4/H9I3yQKF3sBjIpH/BY/T0RE0+poecknR6Bvpr2UvE/rxWBe2rH3A8jYD6dLHIjgSHAaRi4yyWjIIYJIVTy5FZM+0QSCklkaQjm9MuzxDoqnhXNm+NCqZylkUN7aB8dIhOdoBK6RFVkIYoe0TN6RW/ak/aivWsfk9Y5LZvZQX+gff4AcP2Ung==</latexit>

CLASSICAL MECHANICS
<latexit sha1_base64="ft2UeWrQf9yIteccnpcH3LSwLu0=">AAACBnicdVDJSgNBEO2JW4zbqEdBGoPgKcyIqLklDkICUSIxJpCE0NPpSZr0LHTXiGHIzYu/4sWDile/wZt/42QRXB8UPN6roqqeHQiuwDDetcTM7Nz8QnIxtbS8srqmr29cKT+UlFWpL3xZt4lignusChwEqweSEdcWrGb3rZFfu2ZScd+7hEHAWi7petzhlEAstfXtJrAbsJ3IKuUrlaKVL+GzU6uQPy9alSFOtfW0kckaZvbQxL+JmTHGSKMpym39rdnxaegyD6ggSjVMI4BWRCRwKtgw1QwVCwjtky5rxNQjLlOtaPzHEO/GSgc7vozLAzxWv05ExFVq4Npxp0ugp356I/EvrxGCc9yKuBeEwDw6WeSEAoOPR6HgDpeMghjEhFDJ41sx7RFJKMTRjUL4/BT/T6r7mWzGvDhI506maSTRFtpBe8hERyiHCqiMqoiiW3SPHtGTdqc9aM/ay6Q1oU1nNtE3aK8fVI+XPg==</latexit><latexit sha1_base64="ft2UeWrQf9yIteccnpcH3LSwLu0=">AAACBnicdVDJSgNBEO2JW4zbqEdBGoPgKcyIqLklDkICUSIxJpCE0NPpSZr0LHTXiGHIzYu/4sWDile/wZt/42QRXB8UPN6roqqeHQiuwDDetcTM7Nz8QnIxtbS8srqmr29cKT+UlFWpL3xZt4lignusChwEqweSEdcWrGb3rZFfu2ZScd+7hEHAWi7petzhlEAstfXtJrAbsJ3IKuUrlaKVL+GzU6uQPy9alSFOtfW0kckaZvbQxL+JmTHGSKMpym39rdnxaegyD6ggSjVMI4BWRCRwKtgw1QwVCwjtky5rxNQjLlOtaPzHEO/GSgc7vozLAzxWv05ExFVq4Npxp0ugp356I/EvrxGCc9yKuBeEwDw6WeSEAoOPR6HgDpeMghjEhFDJ41sx7RFJKMTRjUL4/BT/T6r7mWzGvDhI506maSTRFtpBe8hERyiHCqiMqoiiW3SPHtGTdqc9aM/ay6Q1oU1nNtE3aK8fVI+XPg==</latexit><latexit sha1_base64="ft2UeWrQf9yIteccnpcH3LSwLu0=">AAACBnicdVDJSgNBEO2JW4zbqEdBGoPgKcyIqLklDkICUSIxJpCE0NPpSZr0LHTXiGHIzYu/4sWDile/wZt/42QRXB8UPN6roqqeHQiuwDDetcTM7Nz8QnIxtbS8srqmr29cKT+UlFWpL3xZt4lignusChwEqweSEdcWrGb3rZFfu2ZScd+7hEHAWi7petzhlEAstfXtJrAbsJ3IKuUrlaKVL+GzU6uQPy9alSFOtfW0kckaZvbQxL+JmTHGSKMpym39rdnxaegyD6ggSjVMI4BWRCRwKtgw1QwVCwjtky5rxNQjLlOtaPzHEO/GSgc7vozLAzxWv05ExFVq4Npxp0ugp356I/EvrxGCc9yKuBeEwDw6WeSEAoOPR6HgDpeMghjEhFDJ41sx7RFJKMTRjUL4/BT/T6r7mWzGvDhI506maSTRFtpBe8hERyiHCqiMqoiiW3SPHtGTdqc9aM/ay6Q1oU1nNtE3aK8fVI+XPg==</latexit><latexit sha1_base64="ft2UeWrQf9yIteccnpcH3LSwLu0=">AAACBnicdVDJSgNBEO2JW4zbqEdBGoPgKcyIqLklDkICUSIxJpCE0NPpSZr0LHTXiGHIzYu/4sWDile/wZt/42QRXB8UPN6roqqeHQiuwDDetcTM7Nz8QnIxtbS8srqmr29cKT+UlFWpL3xZt4lignusChwEqweSEdcWrGb3rZFfu2ZScd+7hEHAWi7petzhlEAstfXtJrAbsJ3IKuUrlaKVL+GzU6uQPy9alSFOtfW0kckaZvbQxL+JmTHGSKMpym39rdnxaegyD6ggSjVMI4BWRCRwKtgw1QwVCwjtky5rxNQjLlOtaPzHEO/GSgc7vozLAzxWv05ExFVq4Npxp0ugp356I/EvrxGCc9yKuBeEwDw6WeSEAoOPR6HgDpeMghjEhFDJ41sx7RFJKMTRjUL4/BT/T6r7mWzGvDhI506maSTRFtpBe8hERyiHCqiMqoiiW3SPHtGTdqc9aM/ay6Q1oU1nNtE3aK8fVI+XPg==</latexit>

QUANTUM MECHANICS
<latexit sha1_base64="OUPZvIUt8YV5d4SpA0UFlzJKzT4=">AAACBHicdVDJSgNBEO2JW4zbqEc9NAbBU5gRUXNLDEI8JCSYMYEkhJ5OT9KkZ6G7RgxDLl78FS8eVLz6Ed78GyeL4Pqg4PFeFVX17EBwBYbxriXm5hcWl5LLqZXVtfUNfXPrSvmhpMyivvBlwyaKCe4xCzgI1ggkI64tWN0eFMZ+/ZpJxX2vBsOAtV3S87jDKYFY6ui7LWA3YDtR1cqXa1YJl84LxXz5onA5wqmOnjYyWcPMHpv4NzEzxgRpNEOlo7+1uj4NXeYBFUSppmkE0I6IBE4FG6VaoWIBoQPSY82YesRlqh1Nvhjh/VjpYseXcXmAJ+rXiYi4Sg1dO+50CfTVT28s/uU1Q3BO2xH3ghCYR6eLnFBg8PE4EtzlklEQw5gQKnl8K6Z9IgmFOLhxCJ+f4v+JdZjJZszqUTp3NksjiXbQHjpAJjpBOVREFWQhim7RPXpET9qd9qA9ay/T1oQ2m9lG36C9fgBjQZbG</latexit><latexit sha1_base64="OUPZvIUt8YV5d4SpA0UFlzJKzT4=">AAACBHicdVDJSgNBEO2JW4zbqEc9NAbBU5gRUXNLDEI8JCSYMYEkhJ5OT9KkZ6G7RgxDLl78FS8eVLz6Ed78GyeL4Pqg4PFeFVX17EBwBYbxriXm5hcWl5LLqZXVtfUNfXPrSvmhpMyivvBlwyaKCe4xCzgI1ggkI64tWN0eFMZ+/ZpJxX2vBsOAtV3S87jDKYFY6ui7LWA3YDtR1cqXa1YJl84LxXz5onA5wqmOnjYyWcPMHpv4NzEzxgRpNEOlo7+1uj4NXeYBFUSppmkE0I6IBE4FG6VaoWIBoQPSY82YesRlqh1Nvhjh/VjpYseXcXmAJ+rXiYi4Sg1dO+50CfTVT28s/uU1Q3BO2xH3ghCYR6eLnFBg8PE4EtzlklEQw5gQKnl8K6Z9IgmFOLhxCJ+f4v+JdZjJZszqUTp3NksjiXbQHjpAJjpBOVREFWQhim7RPXpET9qd9qA9ay/T1oQ2m9lG36C9fgBjQZbG</latexit><latexit sha1_base64="OUPZvIUt8YV5d4SpA0UFlzJKzT4=">AAACBHicdVDJSgNBEO2JW4zbqEc9NAbBU5gRUXNLDEI8JCSYMYEkhJ5OT9KkZ6G7RgxDLl78FS8eVLz6Ed78GyeL4Pqg4PFeFVX17EBwBYbxriXm5hcWl5LLqZXVtfUNfXPrSvmhpMyivvBlwyaKCe4xCzgI1ggkI64tWN0eFMZ+/ZpJxX2vBsOAtV3S87jDKYFY6ui7LWA3YDtR1cqXa1YJl84LxXz5onA5wqmOnjYyWcPMHpv4NzEzxgRpNEOlo7+1uj4NXeYBFUSppmkE0I6IBE4FG6VaoWIBoQPSY82YesRlqh1Nvhjh/VjpYseXcXmAJ+rXiYi4Sg1dO+50CfTVT28s/uU1Q3BO2xH3ghCYR6eLnFBg8PE4EtzlklEQw5gQKnl8K6Z9IgmFOLhxCJ+f4v+JdZjJZszqUTp3NksjiXbQHjpAJjpBOVREFWQhim7RPXpET9qd9qA9ay/T1oQ2m9lG36C9fgBjQZbG</latexit><latexit sha1_base64="OUPZvIUt8YV5d4SpA0UFlzJKzT4=">AAACBHicdVDJSgNBEO2JW4zbqEc9NAbBU5gRUXNLDEI8JCSYMYEkhJ5OT9KkZ6G7RgxDLl78FS8eVLz6Ed78GyeL4Pqg4PFeFVX17EBwBYbxriXm5hcWl5LLqZXVtfUNfXPrSvmhpMyivvBlwyaKCe4xCzgI1ggkI64tWN0eFMZ+/ZpJxX2vBsOAtV3S87jDKYFY6ui7LWA3YDtR1cqXa1YJl84LxXz5onA5wqmOnjYyWcPMHpv4NzEzxgRpNEOlo7+1uj4NXeYBFUSppmkE0I6IBE4FG6VaoWIBoQPSY82YesRlqh1Nvhjh/VjpYseXcXmAJ+rXiYi4Sg1dO+50CfTVT28s/uU1Q3BO2xH3ghCYR6eLnFBg8PE4EtzlklEQw5gQKnl8K6Z9IgmFOLhxCJ+f4v+JdZjJZszqUTp3NksjiXbQHjpAJjpBOVREFWQhim7RPXpET9qd9qA9ay/T1oQ2m9lG36C9fgBjQZbG</latexit>

Symplectic di↵eomorphisms.
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Figure 1.1: Classical and quantum mechanics. States, evolutions and observables in classi-
cal and quantum mechanics. In order to avoid confusions, we here point out that in this work we
do not consider evolutions of open quantum systems, that are described by completely-positive
trace-preserving maps.

We conclude by also defining the notion of entanglement, arising in quantum mechanics,

that is going to be useful in what follows. We define entangled quantum states – for simplicity

we assume the bipartite scenario – as states ρAB that cannot be written as separable states,

i.e. as convex mixtures of the form
∑

i ciρA ⊗ ρB, where ρA and ρB denote states of the two

parties A and B, respectively, and ci ∈ [0, 1] is such that
∑

i ci = 1.

1.2 Structure and outline of the thesis

The thesis is structured as follows:

• Chapter 2 primarily focuses on Spekkens’ toy theory and overall presents the results

cointained in [40], which is a joint work with Dan Browne. We start by introducing the

original framework of the toy theory as developed firstly in [28] and later in [29]. More

precisely, we rigorously define ontic and epistemic states, measurement observables and

the rule to obtain the outcomes of a measurement observable on a system in a given

state. We then describe stabilizer quantum mechanics [41], a subtheory of quantum
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mechanics that only allows eigenstates of tensors of Pauli operators, Clifford unitaries

and Pauli measurement observables. First derived for the purpose of constructing error-

correcting codes, it now plays a role in many areas of quantum information theory. We also

illustrate the tool we use to relate stabilizer quantum mechanics with Spekkens’ toy theory:

Wigner functions. These are a way of recasting quantum mechanics in the formalism of

the phase space [42]. Wigner functions are defined as quasi-probability representations,

which roughly means probability distributions with (sometimes negative) real values. In

this chapter we mainly focus on the Wigner functions that are always non-negative – thus

interpreted as actual probability distributions – for stabilizer states and observables in

odd dimensions, also known as Gross’ Wigner functions [43].

The original framework of the toy theory is constructed only for prime dimensional and

infinite dimensional systems and formal rules for the update of states after measurements

have not been written down. We here remedy this by deriving measurement update

rules and extending the framework to derive models in all dimensions, both prime and

non-prime. The distinction between the two cases has its roots in the mathematical

difference between the set of integers modulo d, for d prime and non-prime. In the

latter case Zd is not a field, as the inverse of a number does not always exist. This

fact implies that there are some problematic observables in the non-prime case (in the

sense that they encode some degeneracy in the spectrum of possible outcomes) that need

to be written in terms of the non-problematic ones in order to provide rules for the

updating of states after measurements. Having developed the toy theory for all finite

dimensions, we then focus on the general odd-dimensional case. In [29] it is proven

that the toy theory is operationally equivalent to stabilizer quantum mechanics in odd

prime dimensions. “Operationally equivalent” means that the two theories provide the

same statistics of outcomes, given certain states, transformations and measurements. By

exploiting Gross’ theory of discrete Wigner function [43], that unlike most other studies

concerns both prime and non-prime cases, and the now complete and general toy theory,

we extend this equivalence to all odd dimensions (see figure 1.2). We also express the

already found update rules in terms of Wigner functions and we use them to depict the

elegant analogies between these three theories. The chapter ends with a discussion of the
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Figure 1.2: Spekkens’ toy theory, stabilizer quantum mechanics and Gross’ Wigner
functions in odd dimensions. Spekkens’ toy theory and stabilizer quantum mechanics are
operationally equivalent theories in odd dimensions via Gross’ Wigner functions.

possible applications of our achievements and a summary of the main results.

The question of which part of quantum mechanics is operationally equivalent to the toy

theory in the even dimensional cases is still unanswered and motivates the subsequent

chapter. It particularly applies to the dimension-two case, as nowadays qubits are the

fundamental bricks in all the implementable models of quantum computation. A result

that connects the toy theory and stabilizer quantum mechanics and analogue to the odd

case cannot hold because of the unavoidable negativity of any Wigner function represen-

tation of qubit stabilizer quantum mechanics [44, 45]. This fact can also be seen as an

expression of the contextuality present in qubit stabilizer quantum mechanics [46–48], not

appearing in the odd dimensional qudit case.

• Chapter 3 predominantly illustrates an application of the toy theory for state-injection

schemes of quantum computation, where contextuality is a resource and mainly reports

the material contained in [49], which is a joint work with Nadish De Silva and Dan Browne,

and [50], which is a joint work with Dan Browne.

The background section begins with a review of state-injection schemes of quantum com-

putation [51], which are one of the leading models of fault tolerant universal quantum
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computation. These schemes are composed of a “free” part,2 which consists of quantum

circuits that are efficiently simulatable by a classical computer – usually stabilizer circuits

– and by magic resources – which are usually distilled from many copies of noisy states

through magic state distillation [53] – that boost the computation to universal. Recent

results have shown that the contextuality possessed solely by the magic state is a neces-

sary resource for universal quantum computation [54–57]. As this chapter focuses on the

role of contextuality in quantum computation, we accurately define the standard notion

of contextuality [33] and its state-independent [47] and dependent manifestations [46].

These are the main versions found in the literature studying contextuality as a resource

for quantum computation. We also briefly talk about a generalised notion of contextu-

ality that extends the original notion of contextuality – which deals only with projective

measurements – also to preparations, transformations and unsharp measurements [34]

and its applications. We then describe the results on contextuality as a resource for state

injection schemes of quantum computation, both regarding qudits of odd prime dimen-

sions [54], where the free part is, as usual, stabilizer quantum mechanics, rebits (qubits

with real density matrices) [55] and qubits [56, 57], where the free parts need to be more

restrictive than stabilizer quantum mechanics in order to avoid manifestations of contex-

tuality. Once again, all these results use the framework of the Wigner functions, which

we treat in all its generality, following the work of Raussendorf et al in [57].

In order to see why Spekkens’ toy theory well relates with the aforementioned works,

we need to define and characterise the subtheories of the toy theory, in particular in

the dimension two case where the full toy theory does not consistently match with any

subtheory of quantum mechanics, which are operationally equivalent to subtheories of

stabilizer quantum mechanics. We define subtheories of Spekkens’ toy theory compat-

ible with subtheories of stabilizer quantum mechanics as closed subtheories of quan-

tum mechanics whose states and measurements are non-negatively represented by co-

variant Wigner functions. The property of covariance guarantees the preservation of

the symplectic form, which is crucial in the definition of the toy theory and its epis-

temic restriction. We use Spekkens’ subtheories to represent the non-contextual free

2The jargon adopted derives from the literature on resource theories [52].
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Figure 1.3: Spekkens’ theory and state-injection schemes with contextuality as a
resource for quantum universality. Spekkens’ subtheories can be used to represent the non-
contextual free part of state-injection schemes of quantum computation where contextuality is
a resource injected through the magic states.

part of the known examples of state-injection schemes in [54, 55] where contextuality

arises as a resource. These can be unified in the following framework (figure 1.3):

Spekkens′ subtheory + Magic state(s) → UQC, as shown in figure 1.3. Furthermore,

we prove that, in the case of qubits, stabilizer quantum mechanics can be obtained from a

Spekkens’ subtheory via state-injection, as all the objects not contained in the Spekkens’

subtheory, namely non-covariant Clifford gates, can be state-injected via a circuit made

of objects in the Spekkens’ subtheory. This shows that within Spekkens’ subtheories we

possess the toolbox to perform state-injection of every object outside of them and suggests

that there is no need to use bigger subtheories to reach universal quantum computation

via state-injection. Before closing up and introducing the future challenges, we show a

novel scheme of computation suggested by our approach which is based on the injection

of particular states – CCZ states – and we also relate different proofs of contextuality to

different state injections of non-covariant gates.

The results supporting the statement that contextuality is responsible for the quantum

computational speed-up are not fully general, as they cannot be extended to any model of

quantum computation. In the next chapter we therefore look at other scenarios showing

quantum advantages where contextuality is not present, at least in its standard notions.

• Chapter 4 describes a single system protocol that computes non-linear functions and its

sources of non-classicality. It mainly treats the content of [58], which is a joint work with

Luciana Henaut, Dan Browne, Shane Mansfield and Anna Pappa.

24



The protocol considered in this chapter is inspired by the Clauser-Horne-Shimony-Holt

(CHSH) game [59], which constitutes a way of recasting the celebrated Bell’s scenario [32]

into a two-player game for which quantum strategies can provide an advantage. In the

CHSH game the probability of success of strategies involving only classical resources is

bounded by a value, 0.75, known as Bell’s bound; on the other hand, allowing the players

to access quantum resources leads to a probability of success bounded by a value, cos2 π
8 ,

known as Tsirelson’s bound [60]. We describe the standard CHSH game, with a special

focus on non-locality, which is the non-classical feature usually employed as the physical

justification to why the quantum strategies can perform better than the Bell bound. Non-

local correlations are strong correlations that cannot be found in any classical theory and

are proven to be a resource for quantum technologies, such as device independent cryp-

tography [61–63]. We treat the generalisation of the CHSH game, phrased in arithmetics

modulo 2, to arithmetics modulo q, where q is any prime integer, about which tight Bell’s

and Tsirelson’s bound have not been found yet [64–67]. We also discuss other protocols

that are strictly related to the CHSH game, such as quantum random access codes [68]

and parity oblivious multiplexing [69]. We conclude the background section illustrating

Landauer’s principle [70], that associates entropic costs to irreversible computations. This

will serve us to analyse our protocol, where irreversible computation assumes a crucial

role.

The protocol we present in this chapter, that we call CHSH* game, consists of an initial

system in a fixed state, two gates controlled by classical bits and a fixed measurement.

We consider the game of choosing gates to maximize the probability of computing the

product (modulo 2) of the input bits. For qubit systems subject to unitary gates and

projective measurements, we demonstrate that any strategy in our game can be mapped

to a strategy in the CHSH game, which implies that Tsirelson’s bound also holds in

our setting. We then show that the optimal success probability depends on the set of

operations allowed to the player (e.g. reversible versus irreversible and Clifford versus

non-Clifford), the quantum or classical nature of the system and the dimension of the

system. We also briefly describe the expected results when considering our scheme in

arithmetics modulo q, where q is an arbitrary prime integer, by studying the case q = 3.
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Finally, since the single-system protocol restricts the degrees of freedom to gates only, we

analyse the bounds obtained in light of Landauer’s principle, showing the entropic costs of

the erasure associated with the game, which is a powerful tool for increasing the winning

probability. This shows a connection between the reversibility in fundamental operations

embodied by Landauer’s principle and Tsirelson’s bound, that arises from the restricted

physics of a unitarily-evolving single-qubit system. Some considerations on the presence

of a new notion of contextuality [71] in certain quantum strategies for the protocol are

also discussed.

• In the Summary and Outlook chapter we recap the results shown throughout the dis-

sertation, we illustrate their significance and we discuss the future challenges. To say

it concisely, we complete Spekkens’ toy model and study its relation with quantum me-

chanics, we use it to support the statement that contextuality is a resource for universal

quantum computation in state-injection schemes of quantum computation and we analyse

the sources of non-classicality in a protocol showing quantum advantages for computing

non-linear functions, where neither standard contextuality nor non-locality are present.

Among other implications, these results suggest that the source of quantum computational

speed-up is scenario-dependent, as there are no resources which are strictly necessary in

any context that provides quantum advantages. The inherent non-classical notions arising

from the field of quantum foundations, like contextuality, do not always match the notions

of non-classicality we have in quantum computation, e.g. non-efficient classical simulata-

bility. Hence, the question of which form of contextuality is useful in this sense is still

pending. It may be the case that we have to come up with a novel and inclusive notion of

non-classicality, that manifests itself in different forms depending on the computational

scenario.
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Chapter 2

Spekkens’ toy theory in all

dimensions and its relationship with

stabilizer quantum mechanics

A long tradition of research, starting from the famous “EPR paper” [36], has consisted of

analysing quantum theory in terms of hidden variable models, with the aim of obtaining a

more intuitive understanding of it. This has led to some crucial results in foundation of quan-

tum mechanics, namely Bell’s and Kochen-Specker’s no-go theorems [32, 33]. Nowadays a big

question is whether to interpret the quantum state according to the ontic view, i.e. where it

completely describes reality, or to the epistemic view, where it is a state of incomplete knowl-

edge of a deeper underlying reality which can be described by the hidden variables. In 2005,

Robert Spekkens [28] constructed a non-contextual hidden variable model to support the epis-

temic view of quantum mechanics. The aim of the model was to replace quantum mechanics

by a hidden variable theory with the addition of an epistemic restriction (i.e. a restriction on

what an observer can know about reality). The first version of the model [28] was developed in

analogy with qubits, with two-outcome observables. Despite the simplicity of the model, it was

able to support many phenomena and protocols that were believed to be intrinsically quantum

mechanical (such as entanglement and dense coding). Spekkens’ toy model has influenced much

research over the years: e.g. people provided a new notation for it [72], studied it from the
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categorical point of view [73], used it for quantum protocols [74], exploited similar ideas to

find a classical model of one qubit [75], and tried to extend it in a contextual framework [76].

Moreover, Spekkens’ toy model addresses many key issues in quantum foundations: whether the

quantum state describes reality or not, finding a derivation of quantum theory from intuitive

physical principles and classifying the inherent non-classical features.

A later version of the model [29], which we will call Spekkens’ Theory (ST), introduced

a more general and mathematically rigorous formulation, extending the theory to systems of

discrete prime dimension, where dimension refers to the maximum number of distinguishable

measurement outcomes of observables in the theory, and continuous variable systems. Spekkens

called these classical statistical theories with epistemic restrictions as epistricted statistical the-

ories. By considering a particular epistemic restriction that refers to the symplectic structure

of the underlying classical theory, the classical complementarity principle, theories with a rich

structure can be derived. Many features of quantum mechanics are reproduced there, such

as Heisenberg uncertainty principle, and many protocols introduced in the context of quan-

tum information, such as teleportation. However, as an intrinsically non-contextual theory, it

cannot reproduce quantum contextuality (and the related Bell non-locality)1, which therefore

arises as the signature of quantumness. Indeed, for odd prime dimensions and for continuous

variables, ST was shown to be operationally equivalent to sub-theories of quantum mechanics,

which Spekkens called quadrature quantum mechanics.

In the finite dimensional case quadrature quantum mechanics is better known as stabi-

lizer quantum mechanics (SQM). The latter, as already mentioned in the introduction, is a

sub-theory of quantum mechanics developed for the description and study of quantum error

correcting codes [41], but subsequently playing a prominent role in many important quan-

tum protocols. In particular, many studies of quantum contextuality can be expressed in the

framework of SQM, including the GHZ paradox [46] and the Peres-Mermin square [47, 48]

(see subsection 3.1.2). This exposes a striking difference between odd and even dimensional

SQM. Even-dimensional SQM contains standard examples of quantum contextuality while odd-

dimensional SQM exhibits no contextuality at all, necessary for its equivalence with Spekkens’

Theory. While developed for qubits, SQM was rapidly generalised to systems of arbitrary di-

1Contextuality and non-locality will be precisely defined in subsection 3.1.2 and 4.1.1 respectively.
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mension, [41]. However, for non-prime dimensions SQM remains poorly characterised and little

studied (progress in this was recently reported in [77]).

Quasi-probability representations, such as the Wigner function, have been an important tool

for the description of quantum systems for many years. Recently, negative quasi-probability

representations and contextuality have been shown to have an important resource character in

quantum computation [54–57, 78–83]. In particular, in certain fault tolerant quantum compu-

tation schemes, SQM plays a central role as both the set of operations that can be directly

fault tolerantly realised, and the part of the computation which is efficiently simulatable by a

classical computer [84]. As introduced in the previous section, such computation can be then

boosted to quantum universality by “injecting” a resource state, known as a magic state. In the

case of odd prime dimensions, Howard et al. [54] showed that the contextuality of the injected

state is necessary for reaching universal quantum computation. Other similar results have been

found in the case of qubits, at the cost of considering smaller subtheories than SQM for the

classically simulatable non-contextual part of the computation [55–57]. The operational equiv-

alence between SQM and ST in odd dimensions motivates the study of the role of ST in this

research field, which is the main topic treated in the next chapter.

In spite of the importance of Spekkens’ Theory, there remain some important aspects of it

which have not yet been characterised and studied. First of all, all prior work on ST have only

considered systems where the dimension is prime. Furthermore, while Spekkens’ recent work

strengthens the mathematical foundations of the model [29], one key part of the theory has not

yet been described in a general and rigorous way. These are the measurement update rules, the

rules which tell us how to update a state after a measurement has been made. In prior work,

these rules, and the principles behind them have been described but not formalised.

In this chapter, we complete this step, deriving a formal description of the measurement

rules for prime-dimensional ST. Having done so, we now have a fully formal description of the

model, which can be used as a basis to generalise it. We do so, generalising the framework from

prime-dimensions to arbitrary dimensions and finding that it is the measurement update rule,

where the richer properties of the non-prime dimension can be seen, which provides the key to

this generalisation.

Having developed ST for all finite dimensions, we then focus on the general odd-dimensional
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case, and prove that in all odd-dimensional cases Spekkens’ Theory is equivalent to Stabilizer

Quantum Mechanics. The bridge between SQM and ST is given by Gross’ theory of discrete

Wigner functions (GT) [43]. Unlike most other studies, Gross’ treatment considered both prime

and non-prime cases in its original formulation.

To summarise the contributions of this chapter, we provide a compete formulation of ST in

all discrete dimensions, even and odd, endowed with the update rules for sharp measurements

both for prime and non-prime dimensional systems. We extend the equivalence between ST and

SQM via Gross’ Wigner functions to all odd dimensions, and find the measurement update rules

also for the Wigner functions. The above equivalence allows us to shed light onto a complete

characterisation of SQM in non-prime dimensions. Finally, the elegant analogy between the

three theories in odd dimensions: ST, SQM and GT, is depicted in terms of their update rules.

The remainder of the chapter is structured as follows. In the section 2.1, we first precisely

and concisely describe the original framework of Spekkens’ theory, in particular we define ontic

and epistemic states, observables and the rule to obtain the outcome of the measurement of an

observable given a state. We then describe more extensively stabilizer quantum mechanics and

we define Wigner functions, with a particular focus on the ones used for systems of discrete

odd dimensions (Gross’ theory). In section 2.2 and 2.3 we state and prove the update rules in

Spekkens’ theory respectively for prime and non-prime dimensional systems. We prove these

in two steps: first considering the case in which the state and measurement commute, and

then the more general (non-commuting) case. The mathematical difference between the set of

integers modulo d, for d prime and non-prime, results in having two levels of observables: the

fundamental ones - the fine graining observables - and the ones that encode some degeneracy

- the coarse-graining observables. The latter are problematic and are only present in the non-

prime case. This is the reason why we need a different formulation in the two cases. The

update rules for the coarse graining observables will need a step in which the coarse-graining

observables are written in terms of fine graining ones. In section 2.4 we state the equivalence of

ST and SQM via Gross’ Wigner functions in all odd dimensions. We also express the already

found update rules in terms of Wigner functions and we use them to depict the elegant analogies

between these three theories. The chapter ends with a discussion of the possible applications

of our achievements in section 2.5 and with a summary of the main results in section 2.6.
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2.1 Background

This section does not contain original material. The references that have been used will be

specified in the corresponding subsections.

2.1.1 Spekkens’ theory

We start by reviewing and introducing Spekkens’ theory for prime-dimensional systems. We

take a slightly different approach to [28] and [29]. ST is a hidden variable theory, where

the hidden variables are points in a phase space. The state of the hidden variables is called

the ontic state. In Spekkens’ model the ontic state is hidden and can never be known by

an experimenter. The experimenter’s best description of the system is the epistemic state,

representing a probability distribution over the points in phase space.

For a single d-dimensional system, a phase space can be defined via the values of two

conjugate fiducial variables, which we label X and P , in analogy to position and momentum.

X and P can each take any value between 0 and d− 1, and a single ontic state of the system is

specified by a pair (x, p), where x is the value of X and p is the value of P . This phase space is

equivalent to the space Z2
d. In figures 2.1 and 2.2 examples of states of one and two bits (d = 2),

and one trit (d = 3) are depicted, where X and P are represented by the rows and columns in

the phase spaces Z2, Z2
2 and Z3, respectively.

A collection of n systems is described by n pairs of independent conjugate variables Xj

and Pj , with j ∈ 0, . . . , n− 1 a label indexing the systems. The phase space, denoted by Ω, is

simply the cartesian product of single system phases spaces and thus Ω ≡ (Zd)2n.2

The ontic state of the n-party system represents a set of values for each fiducial observables

Xj and Pj . In other words, an ontic state is denoted by a point in the phase space λ ∈ Ω. We

call Xj and Pj observables because they correspond to measurable quantities, and assume that

these observables are sufficient to uniquely define the ontic state. We can refer to Ω as a vector

space where the ontic states are vectors (bold characters) whose components (small letters) are

2The dimension d is any positive number, and we will not, in general, restrict it to odd or even, prime or
non-prime, unless specified.
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Figure 2.1: Spekkens’ toy states of one and two bits. The figures 2.1a and 2.1b above show
the elementary system of Spekkens’ theory in two dimension: the bit. One possible ontic state
of one bit is shown in 2.1a, where the observer both knows X = 0 and P = 0, so λ = (0, 0). The
epistemic restriction - classical complementarity principle - in this case corresponds to saying
that at maximum the observer has “half” of the knowledge about the ontic state. For example
a possible epistemic state is shown in figure 2.1b, where the observer only knows the variable
X = 0, so V = span{(1, 0)} and w = (0, 0). In this case the epistemic state X = 0 of one bit
can be seen as the analogue of the quantum state |0〉 of one qubit. Figure 2.1c shows two kinds
of two-bits epistemic states of maximal knowledge. The state on the left is a non-correlated
state (X1 = 0 = X2), indeed we have the knowledge of the states of the individual subsystems,
while the state on the right (X1 = X2 and P1 = P2) is perfectly correlated (i.e. entangled),
indeed it would be impossible to know the states of the individual subsysytems, but we know
exactly the correlation between them (in the case above we know that they have the same ontic
states). This trade-off in choosing if knowing the correlation or the states of the individual
subsystems is something which is not present in any purely classical theory.

the values of the fiducial variables:

λ = (x0, p0, x1, p1, . . . , xn−1, pn−1). (2.1)

Not only are the fiducial variables important for defining the state space, they also generate
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Epistemic	state

(c)

Figure 2.2: Spekkens’ epistemic states of one trit. In the figures above we consider
the case of one trit and we find the isotropic subspaces V and V ⊥ and the corresponding
Spekkens epistemic state. In these cases the observables(linear functionals) are always of the
form aX+bP = 0, where a, b ∈ Z3. Moreover in the above examples we assume w = 0. In figure
2.2a the observer only knows X = 0 and this implies that the generator of V is Σ = (1, 0).
The subspace V ⊥ can be simply calculated from V by definition. In figure 2.2b the observer
only knows that X + P = 0 and this implies the generator of V to be Σ = (1, 1). In figure 2.2c
nothing is known. The subspace V is generated by Σ = (0, 0) only. Here V ⊥ coincides with
the whole phase space Ω. Note that it is not possible to have V ⊥ = (0, 0), because this would
correspond to have the knowledge of the ontic state.

the set of all general observables in the theory. A generic observable, denoted by Σ, is defined

by any linear combination of fiducial variables:

Σ =
∑

m

(amXm + bmPm), (2.2)

where am, bm ∈ Zd and m ∈ 0, . . . , n− 1. The observables inhabit the dual space Ω∗, which is

isomorphic to Ω itself. Therefore we can define them as vectors, in analogy with ontic states,

Σ = (a0, b0, a1, b1, . . . , an−1, bn−1). (2.3)
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The formalism provides a simple way of evaluating the outcome σ of any observable measure-

ment Σ given the ontic state λ, i.e. by computing their inner product :

σ = ΣTλ =
∑

j

(ajxj + bjpj), (2.4)

where all the arithmetic is over Zd.

Spekkens’ theory gains its special properties and, in particular, its close analogy with stabi-

lizer quantum mechanics, via the imposition of an epistemic restriction, a restriction on what

an observer can know about the ontic state of a system. The observer’s best description is

called the epistemic state, which is represented by a probability distribution p(λ) over Ω (figure

2.2).

The epistemic restriction of ST is called classical complementarity principle and it states

that two observables can be simultaneously measured only when their Poisson bracket is zero.

This is motivated by stabilizer quantum mechanics, since it captures the condition for two

observables in there to commute. We shall adopt the quantum terminology and notation here,

and say that if the Poisson bracket between two observables is zero they commute, i.e. [·, ·] = 0.

This can be simply recast in terms of the symplectic inner product :

[Σ1,Σ2] ≡ Σ1
TJΣ2 = 0, (2.5)

where J =
⊕n

j=1


 0 1

−1 0



j

is the usual invertible matrix used in symplectic geometry. Note

that each observable Σj partitions Ω into d subsets, each of the form (span{Σj})⊥ + w, where

w is any ontic state such that Σj
Tw = σj , and σj takes values in {0, 1, . . . , d− 1}, one for each

subset.

Let us now consider sets of variables that can be jointly known by the observer. Such

variables commute, and represent a sub-space of Ω known as an isotropic subspace. We denote

the subspace of the known variables as V = span{Σ1, . . . ,Σn} ⊆ Ω, where Σi denotes one of

the generators (commuting observables) of V .

Sets of known commuting variables are important as these define the epistemic states within

the theory. In particular, we can define an epistemic state by the set of variables V that are
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known by the observer and also the values σ1, . . . , σn that these variables take.

This means that ΣT
j · w = σj , where w ∈ V is an ontic state that evaluates the known

observables. We will call w a representative ontic state for the epistemic state. More precisely

we can state the following theorem.

Proposition 1. The set of ontic states consistent with the epistemic state described by (V,w)

is

V ⊥ + w, (2.6)

where the perpendicular complement of V is, by definition, V ⊥ = {a ∈ Ω | aTb = 0 ∀ b ∈ V }.

Proof. Let us start by considering the set of ontic states λ such that ΣT
j λ = 0 ∀j. By definition

of perpendicular complements, the ontic states λ belong to V ⊥. If we consider an ontic state

w such that ΣT
j w = σj , then ΣT

j (λ + w) = σj . Therefore the ontic states consistent with the

epistemic state associated to (V,w) are the ones of the kind λ + w, i.e. the ones belonging to

V ⊥ + w.

Note that the presence of w 6= 0 simply implies a translation, that is why we can also call

it shift vector.

By assumption the probability distribution associated to the epistemic state (V,w) is uni-

form (indeed we expect all possible ontic states to be equiprobable), so the probability distri-

bution of one of the possible ontic states in the epistemic state (V,w) is

p(V,w)(λ) =
1

N
δV ⊥+w(λ), (2.7)

where the delta is equal to one only if λ ∈ V ⊥ + w (note this means that the theory is a

possibilistic theory) and N is a normalization factor. For epistemic states of maximal knowledge

about the ontic state, the normalization N is equal to dn. Like in quantum theory, duality in

the description of states and measurements characterises ST. This means that we can represent

the elements of a sharp measurement Π in an epistemic-state way, (VΠ, r), where we can go

from one element of the measurement to the other by simply shifting the representative ontic

vector r (see figure 2.3).

The aim of Spekkens’ theory is to show that epistemic states and measurements in the theory
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are the analogue of quantum states and measurements in quantum theory. The analogue of

unitary evolutions in quantum theory has to correspond to the allowed transformations in

the toy theory. More precisely the allowed transformations are the ones that preserve the

classical complementarity principle (the symplectic inner product), i.e. the symplectic affine

transformations G in the phase space (in general a subset of the permutations in the phase

space):

G(λ) = Sλ + a, (2.8)

where S is a symplectic matrix and a ∈ Ω a translation vector. In figure 2.4 we report the

table present in [29] that shows the achievements of ST in terms of the phenomena of quantum

mechanics that it can and cannot reproduce. We refer again to figures 2.1a and 2.1b, that

picture the notions defined so far in the two dimensional case. The notion of entanglement is

depicted in figure 2.1c. Figure 2.2 provides three examples of states of one trit.

P

X

2

0

1

0 21

Epistemic	representation

(V⇧, r)

⇧0

P

X

2

0

1

0 21

Epistemic	representation

(V⇧, r1)

⇧1

P

X

2

0

1

0 21

Epistemic	representation

(V⇧, r2)

⇧2

Figure 2.3: Epistemic representation of a measurement. The elements of the measure-
ment Π can be represented as epistemic states. This duality is present also in quantum theory.
The elements of the measurement Π0,Π1,Π2 can be thought as the analogue of the projectors
{|0〉 〈0| , |1〉 〈1| , |2〉 〈2|}. We can always go from one element to the other by shifting the rep-
resentative ontic vector. In the above case we can go, for example, from Π0 to Π1 by adding
to r = (0, 0) the vector (1, 0), thus obtaining r1 = (1, 0). The measurement represented in the
figure can be interpreted as asking the question “what is the value of the variable X?” about
the ontic state of the system.
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Phenomena arising in Spekkens’ theory Phenomena not arising in Spekkens’ theory

Noncommutativity Bell inequality violations
Coherent superposition Noncontextuality inequality violations
Collapse Computational speed-up (if it exists)
Complementarity Certain aspects of items on the left
No-cloning
No-broadcasting
Interference
Teleportation
Remote steering
Key distribution
Dense coding
Entanglement
Monogamy of entanglement
Choi-Jamiolkowski isomorphism
Naimark extension
Stinespring dilation
Ambiguity of mixtures
Locally immeasurable product bases
Unextendible product bases
Pre and post-selection effects
Quantum eraser
And many others...

Figure 2.4: Achievements of Spekkens’ theory. Almost all the phenomena of quantum
mechanics are reproduced in the toy theory, apart from Bell non-locality and contextuality,
that emerge as inherently non-classical features. The figure is taken from [29].

We can sum up our approach to Spekkens’ model as follows:

1. Start from the intuitive (physically justified) formula (2.4) that relates observables Σj ,

ontic states λ and outcomes σj .

2. Epistemic restriction: the compatible observables are the ones whose symplectic inner

product is zero.

3. Compute the shift vector w. This allows us to shift back the set of points λ to obtain a

subspace.

4. The set of ontic states compatible with the epistemic state (V,w) is V ⊥ + w, where V is

the isotropic subspace spanned by the observables Σj (the set of known variables).
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We say that this approach is physically intuitive because we start with equation (2.4), which

is physically motivated and states, observables and the corresponding outcomes are defined in

terms of it. Equation (2.4) also allows us to see that the shift comes from the need to recover

the subspace structure.

2.1.2 Stabilizer quantum mechanics

Stabilizer quantum mechanics is a subtheory of quantum mechanics where we only consider

common eigenstates of tensors of Pauli operators, unitaries belonging to the Clifford group,

and Pauli measurements. We first treat the formalism for systems of odd dimensions, as we

will mainly deal with it in this chapter. Almost all the definitions will hold the same for the

even case, apart from some crucial details.

A stabilizer state ρ can always be written as

ρ =
1

N ρ1 · ρ2 · · · · · ρN , (2.9)

where N = Tr[ρ1 · ρ2 · · · · · ρN ] and

ρj = (Id + gj + g2
j + · · ·+ gd−1

j ), (2.10)

where j ∈ {1, . . . , N ≤ n}, n is the number of qudits (N = n for pure states), Id is the identity

operator in dimension d and gj is a generator of the stabilizer group, more precisely an element

of the group generated by the Weyl operators or generalised Pauli operators that, for one qudit,

read as:

Ŵ (λ) = χ(−2−1px)Z(p)X(x), (2.11)

where χ(a) = e
2πi
d
a for any a ∈ Zd, x, p are the coordinates of the phase space point λ =

(x, p) ∈ Z2
d, and X,Z are respectively the shift and boost operators (generalised Pauli X and

Z operators) and the arithmetics is modulo d,

X(x) =
∑

x′∈Zd

|x′ − x〉 〈x′| (2.12)
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Z(p) =
∑

x∈Zd

χ(px) |x〉 〈x| . (2.13)

Note that 2−1 = d+1
2 is the multiplicative inverse of 2 modulo d. When considering more than

one qudit, the Weyl operator is given by the tensor product of the single Weyl operators,

Ŵ (λ) = Ŵ (x0, p0, . . . , xn−1, pn−1) = Ŵ (x0, p0)⊗ · · · ⊗ Ŵ (xn−1, pn−1), (2.14)

where here λ ∈ Z2n
d . Weyl operators form a closed set under multiplication and an orthonormal

basis in the space of operators on the Hilbert space with respect to the Hilbert-Schmidt product

given by d−ntr(·†·) [43]. We define the Pauli group Pn,d as the group of Weyl operators on n

systems of dimension d. We can write the stabilizer state ρ in a more compact way as

ρ =
1

N
N∏

j

d−1∑

i

gij . (2.15)

However we will mostly use the following notation in terms of stabilizer generators,

ρ→ 〈g1, . . . , gN 〉 . (2.16)

The unitary evolution in SQM is due to Clifford group transformations Cn,d, i.e. the unitary

transformations that map Pauli operators into Pauli operators:

Cn,d = {U | UPU † ∈ Pn,d ∀P ∈ Pn,d}. (2.17)

Measurements in SQM are expressed as tensor products of generalised Pauli operators.

Let us now consider even-dimensional SQM. All the above definitions still hold, apart from

the fact that the exponent a in the phase factor χ(a) involves arithmetics modulo 2d instead of

modulo d. This has some crucial implications, like the presence of contextuality in qubit SQM,

that is going to be treated in the next chapter. As an example of even-dimensional SQM we can

consider the popular case of qubits. The Pauli operators on the single system are, as usually
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represented in the computational basis,

I =


1 0

0 1


 , X =


0 1

1 0


 , Y =


0 −i
i 0


 , Z =


1 0

0 −1


 . (2.18)

A simple example of stabilizer state is the Bell state of two qubits: |ψ〉 = |00〉+|11〉√
2

, which is a +1

eigenstate of XX,ZZ,−Y Y and II, thus represented by the stabilizer generators 〈XX,ZZ〉 .
Notice that we drop the tensor product symbol in order to soften the notation. The Clifford

gates are generated by 〈Hi, Si, CNOTi,j〉 , where Hi is the Hadamard gate acting on the single

qubit, Si is the phase gate acting on the single qubit and CNOTi,j is the controlled not gate

acting on two qubits. They are represented in the computational basis as

H =


1 1

1 −1


 , S =


1 0

0 i


 , CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



. (2.19)

Notice that, as already mentioned, the stabilizer formalism here described is defined in terms

of the set of integers modulo d, Zd. This set is a field only when d is a prime number, as the

inverses do not exist for all its elements. This implies that some of the desired properties for

stabilizer error correcting codes in non-prime dimensions no longer hold [77]. A fully satisfactory

definition of the Pauli group in arbitrary dimensions is still to be found. In the case of prime

power dimensions Gottesman has proposed to use the so called Galois finite fields [77]. We will

not deal with these re-definitions of the Pauli groups in what follows and we will keep treating

Zd in any dimension, non-prime too.

The stabilizer formalism was developed by Gottesman in the late nineties in the field of

quantum error correction [41]. The idea behind it is to calculate key properties of stabilizer codes

(most of the utilised codes fall into this category [85–87]) by representing code-words through

Pauli operators instead of state vectors, thus avoiding the exponential complexity that derives

from the latter. For example, it is possible to detect a given Pauli error, if it anti-commutes

with at least one stabilizer generator. SQM is also very important for its applications in the

field of quantum computation [53,77], as will be fully described in the next chapter (subsection
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3.1.1).

2.1.3 Wigner functions

Wigner functions are a way of recasting quantum mechanics in the framework of the classical

phase space [42, 44, 45]. Wigner functions are quasi-probability distributions, i.e. real valued

functions that represent quantum states, transformations and measurements providing statistics

for measurement outcomes that are consistent with quantum mechanics [88, 89]. The main

difference between quasi-probability distributions and actual probability distributions is that the

former can take negative values. Nevertheless their marginals represent probability distributions

of measurement outcomes. The feature of negativity has often been associated with a signature

of non-classicality [42, 82, 88]. The phase space formalism based on Wigner functions is very

popular in the field of quantum optics [90] and it originated for the case of infinite dimensional

systems (see figure 2.5).

Figure 2.5: Continuous Wigner functions. The figure above, taken from
http://www.sciencemag.org/content/332/6027/313/F1.expansion.html, shows four examples of
continuous Wigner functions representing the state of a particle in the phase space, where the
axes represent the position and momentum of the particle. Wigner functions are not proper
probability distributions since they can be negative (like in the two figures at the bottom).
However if we integrate out one of the variables we obtain a probability distribution (indicated
by the shadows). The two figures in the top describe Gaussian states (notice the Gaussian
shape of the probability distributions), which are very important states in the field of quantum
optics [90].
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Our work will focus on discrete Wigner functions. These were first proposed by Buot [91] and

Berry [92] in the mid seventies, rediscovered for the case of the single qubit by Scully [93] and

Feynman [94] and extended to prime-dimensional Hilbert spaces by Wootters [44] and Galetti

[95] in the late eighties. In 2004 Gibbons et al. set a framework for Wigner functions based

on the work by Wootters, where Wigner functions are defined by associating lines in a discrete

phase space to projectors belonging to a fixed set of mutually unbiased bases [96]. Few years

later, Galvao and collaborators [45,97] used the class of Wigner functions described by Gibbons

and Wootters to study which states are non-negatively represented in qubit quantum mechanics.

Among the same family of Wigner functions, in 2006, Gross [43] identified a particular Wigner

function for qudits of odd dimensions that satisfies all the desired properties that were also

present in the infinite dimensional case (listed below). Remarkably, this Wigner function turns

out to be non-negative if and only if the pure quantum state it represents is a stabilizer state.

Unfortunately a similar result does not hold for n−qubit SQM and the presence of negativity

is unavoidable. Non-negativity of the Wigner function for states and measurements in qubit

SQM holds only when a single qubit is considered, as shown by Galvao [45]. Non-negative

Wigner functions can be interpreted as actual probability distributions and are important both

from a foundational and computational point of view. If quantum states can be represented

by probability distributions, then this is a strong argument in favour of the epistemic view of

quantum mechanics [98], where quantum states are just the observer’s partial knowledge about

an underlying reality represented by the ontic states (phase-space points). The present work is

an example of such approach, as we will use the Wigner function representations of SQM and

its subtheories to prove their operational equivalence with ST and its subtheories. In addition,

non-negative Wigner functions are also used to perform classical simulations of certain quantum

computations, like in the case of odd dimensional qudit SQM [82].

In this chapter we will deal with odd dimensional qudit SQM and we now treat Gross’ theory

of discrete Wigner functions, that non-negatively describes it [43]. We will briefly mention the

standard qubit Wigner function due to Wootters and Gibbons at the end of the subsection

(equation (2.31)), but we refer the reader to the next chapter (subsection 3.1.4) for an extensive

treatment of n−qubit Wigner functions and their usage in quantum computation.

We construct the Wigner function by defining the characteristic function associated with
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an operator ρ as

Ξρ(x, ξ) =
1

N
tr(Ŵ (x, ξ)†ρ), (2.20)

where Ŵ denotes the Weyl operator as defined in equation 2.11 and the normalization N

corresponds to dn when considering pure states. The Wigner function Wρ is defined as the

symplectic Fourier transform of Ξρ,
3

Wρ(λ) =
1

N2

∑

λ′∈Ω

χ∗([λ, λ′])tr(Ŵ (λ′)†ρ), (2.21)

The above expression can be rewritten as

Wρ(λ) =
1

N
tr(A(λ)ρ), (2.22)

where the Hermitian operators A(λ) = 1
N

∑
λ′∈Ω χ([λ, λ′])Ŵ (λ′) are called the phase-space point

operators.

The above formulation of Wigner functions for the discrete case is easily extendible to the

continuous case by considering the Weyl operators as Ŵ (λ) = ei(pX−xP ) and χ(x) = eix, where

x, p ∈ R and they are the usual momentum and position (see figure 2.5).

Some basic properties [43] of the discrete Wigner function Wρ are:

• Wρ is real and the following relations hold:

∑

λ∈Ω

Wρ(λ)Wσ(λ) =
1

N
tr(ρσ), (2.23)

∑

λ∈Ω

Wρ(λ) = 1, (2.24)

where ρ, σ are two quantum states.

• The marginals of a Wigner function on the state ρ behave as a classical probability

distribution:
∑

p∈Zd

Wρ(x, p) = | 〈x| ρ |x〉 |2. (2.25)

3Consider a function f : Ω → C. The symplectic Fourier transform of f is f̃(λ) =

|Ω|−
1
2
∑
λ′∈Ω χ

∗([λ, λ′])f(λ′), where λ, λ′ ∈ Ω.
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• The Wigner function of many systems in a product state is the tensor product of the

Wigner functions of each system, as a consequence of the factorability of the phase-point

operators,

A(x0, p0 . . . xn−1, pn−1) = A(x0, p0)⊗ · · · ⊗A(xn−1, pn−1). (2.26)

• The Wigner function is covariant with respect to the Clifford gates U, i.e. for all the

stabilizer states ρ,

WUρU†(λ) = Wρ(Sλ + a), (2.27)

where S is a symplectic transformation and a is a translation vector.

We are interested in finding the Wigner function of a stabilizer state in any odd dimension

and in rephrasing SQM in terms of Gross’ Wigner functions. We recall that a stabilizer state is

a joint eigenstate of a set of commuting Weyl operators. Two Weyl operators commute if and

only if the corresponding phase-space points λ, λ′ have vanishing symplectic inner product:

[Ŵ (λ), Ŵ (λ′)] = 0 if and only if [λ, λ′] = λTJλ′ = 0. (2.28)

This result derives from the product rule of Weyl operators:

Ŵ (λ)Ŵ (λ′) = χ([λ, λ′])Ŵ (λ+ λ′).

We recall again that the square brackets denote the usual commutator when referring to op-

erators and the symplectic inner product when referring to vectors. From this result, the sets

of commuting Weyl operators and, as a consequence, the stabilizer states, are parametrized by

the isotropic subspace M of Ω. Isotropic, as already mentioned when we introduced Spekkens’

theory, means that it is composed by mutually commuting elements. In the case that M has

dimension dn, i.e. the eigenspaces are non-degenerate and uniquely map to the (pure) state

vectors in the Hilbert space, it is maximally isotropic. For each M and each w ∈ Ω we can define

a stabilizer state ρM,w as the projector onto the joint eigenspace spanned by {Ŵ (λ) : λ ∈M},
where Ŵ (λ) has eigenvalue χ([w, λ]). Let M be maximally isotropic, then the Wigner function

associated to the state ρM,w is always non-negative (necessary and sufficient condition in odd
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dimensions, as proven in [43]) and it is of the kind

WρM,w(λ) =
1

dn
δMC+w(λ), (2.29)

where MC is the symplectic complement of M. When we consider non-maximally isotropic

subspaces M, i.e. mixed stabilizer states, the above expression (2.29) still holds, with the

only exception of the normalization factor that is calculated in order to make the probability

distribution uniform,

WρM,w(λ) =
1

N
δMC+w(λ), (2.30)

where N =
∑

λ δMC+w(λ). However, notice that, unlike the case of pure stabilizer states, while

it is true that mixed stabilizer states have non-negative Wigner function, it could be that mixed

non-stabilizer states also are non-negatively represented [82].

We can find the above form of the Wigner function in equation (2.29) by simply writing the

characteristic function

ΞρM,w(λ) =
1

dn
χ([w, λ])δM (λ),

and then make the same calculations of equation (2.21). Moreover it can be proven that the

transformations that map between the non-negative Wigner functions above are the Clifford

unitaries. GT is a faithful way of representing SQM.

Notice now that the Wigner function (2.30) has the same form of the probability distribution

(2.7) associated to the epistemic state (V,w) in Spekkens’ theory. More precisely, they are

equivalent if we assume M = JV,4 indeed this transformation implies that V ⊥ = MC . The

equivalence between GT and ST, using the matrix J as the bridge, also extends in terms of

transformations and measurement statistics [29]. Once we will complete ST with measurement

update rules for systems of any dimensions, this equivalence will also imply the equivalence

between ST and SQM in odd dimensions. Therefore we can see the description based on known

variables (Spekkens) and the description based on Wigner functions (Gross) as two equivalent

descriptions of stabilizer quantum mechanics in odd dimensions.

In this subsection we have treated the Wigner function formalism developed by Gross,

that is suitable for treating non-negatively SQM of odd dimensional qudits and showing its

4Note that the action of J is simply to map a variable into its conjugated.
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Figure 2.6: Discrete phase space and Wigner function. The figure above represents the
discrete phase space of two qubits, where an example of Wigner function, the original Wootters
Wigner function [44], for the Bell state 1√

2
|00 + 11〉 is calculated in each point. Note that the

Wigner function assumes also negative values. The above Wigner function is not normalized,
it should be divided by 8 in each term.

operational equivalence with Spekkens’ toy theory. A formalism for qubit Wigner functions

that shares analogous properties does not exist. We will treat several possible qubit Wigner

functions in the next chapter. However, we want to conclude this section by reporting the

standard Wigner function for one qubit first developed by Wootters [44, 96] and then largely

used, in particular in the works by Galvao [45, 97] showing that it is always non-negative for

qubit stabilizer states. It is defined as in equation (2.22) , with a different definiton of the phase

point operators,

A(0, 0) =
1

2
(I +X + Y + Z)

A(0, 1) =
1

2
(I +X − Y − Z)

A(1, 0) =
1

2
(I−X + Y − Z)

A(1, 1) =
1

2
(I−X − Y + Z),

(2.31)

where the operators I, X, Y, Z are the usual Pauli operators of equation (2.18) . When going

to more than one qubit, by considering the Wigner function given by the tensor product of

the phase point operators of equation (2.31), the Wigner function associated to the Bell state

1√
2
|00 + 11〉 does show negativity, as represented in figure 2.6.

The remainder of the chapter mainly presents the results cointained in [40], which is a joint

work with Dan Browne.
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2.2 Update rules - prime dimensional case

The formulation of ST in [29], made for prime (and infinite) dimensional systems and described

in the previous section, does not provide a full treatment of the transformative aspect of mea-

surements, i.e. how the epistemic state has to be updated after a measurement procedure.

In the following we will provide a proper formalization of it, and in the next section we will

generalise the formalism to all dimensions, non-prime too.

The set of integers modulo d shows different features depending on d being prime or not.

In particular in the non-prime case it is not always possible to uniquely define the inverse of

a number. The consequences of this will directly affect the update rules. In particular the

possible observables sometimes will not show full spectrum: some outcomes will not be possible

because they would derive from arithmetics involving numbers with not well-defined inverses.

This will divide the set of possible observables in two categories depending on whether they

have full spectrum or not. We start from the prime case where problematic observables are not

present because inverses always exist.

In ST the measurement process corresponds to the process of learning some information

(aka asking questions) about the ontic state of the system. According to the classical comple-

mentarity principle only the observables that are compatible (i.e. Poisson-commute) with the

state of the system can be learned (jointly knowable). This means that the state after mea-

surement will be given by the generators of the measurement and the generators of the state

before the measurement, which are compatible with it.5 It is then fundamental to understand

how compatible sets of ontic states (the isotropic subspaces of known variables V and their

perpendicular V ⊥) change when independent observables are added and removed from the set

of known variables V .

2.2.1 Adding and removing generators to/from V

1. Let us start with the case of adding a generator Σ′ to the set of generators of V =

span{Σ1, . . . ,Σn}. We assume that Σ′ is linearly independent with respect to the set

spanned by the Σj . Let us see what happens to V ⊥. The subspace V after the addition

5As an abuse of language we here talk of generators of a state meaning the orthogonal basis set that generates
the subspace of known variables associated with the state.
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becomes

V ′ = V ⊕ span{Σ′}. (2.32)

By definition the direct sum of two subspaces A ⊕ B returns a subspace such that for

each a ∈ A and b ∈ B, the sum a+ b belongs to A⊕B. The direct sum of two subspaces

is a subspace. We are interested in the orthogonal complement of a direct sum. It is

well known that (A⊕ B)⊥ = A⊥ ∩ B⊥. This means that by adding a generator to V, its

perpendicular V ⊥ is given by

V ′⊥ = V ⊥ ∩ (span{Σ′})⊥. (2.33)

Note that V ′⊥ is smaller than V ⊥.

2. We now analyse what happens if we remove a generator, say Σn, from the set of generators

of V. This means that now V ′ = span{Σ1, . . . ,Σn−1}. The set V ⊥ is clearly contained

in V ′⊥, since any vector orthogonal to all elements of V must also be orthogonal to all

elements of V ′. By definition, the set V ′⊥ is composed by all the ontic states λ such that

ΣT
j λ = 0 for all j < n, but ΣT

nλ 6= 0. This means that we need to remove the constraint

ΣT
nλ = 0 to enlarge V ⊥ to V ′⊥, i.e. we simply need to add the ontic states λ′ = cγ to

V ⊥, where c ∈ Zd 6= 0 and γ is a vector such that ΣT
nγ = 1. Indeed this implies that

ΣT
n (λ + λ′) = ΣT

n (λ + cγ) = 0 + c 6= 0.

In prime dimensions γ uniquely exists and it corresponds to k−1Σn, where k = ΣT
nΣn.

Indeed the inverse of an integer k ∈ Zd 6= 0 always uniquely exists if d is a prime number.

The formula for V ′⊥ then reads

V ′⊥ =
⋃

c

(V ⊥ + ck−1Σn) ≡
⋃

wn∈Vn

(V ⊥ + wn) = V ⊥ ⊕ Vn, (2.34)

where the addition of +wn means that the whole set V ⊥ is shifted by wn, and Vn =

span{Σn}. The previous trick in general works as follows. Given the ontic state λ, the

observable Σ and the outcome σ associated with them, i.e. ΣTλ = σ, then it is possible
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to shift the value σ by a constant k such that ΣTΣ = k, by only adding Σ itself to the

ontic state:

ΣT (λ + Σ) = σ + ΣTΣ = σ + k. (2.35)

Note that the above identity allows us to change the value of the outcome associated

with an ontic state by a constant factor (that we can also choose) without affecting any

commuting observable (in this case Σ).

2.2.2 Measurement update rules

We now want to find the update rules for the state (V,w) of a prime dimensional system when

we perform a measurement Π described by the subspace VΠ, with generators Σ′i, and by the

representative ontic vectors rj associated to the different outcomes σ′j . These vectors rj can be

obtained from each other by a shift vector (see figure 2.3), therefore we will consider the generic

measurement element represented by (VΠ, r) for stating the measurement update rules. The

subspace of known variables V can be written in terms of the sets generated by the generators

Poisson-commuting with all the Σ′j , Vcommute, and non-commuting ones, Vother. According to

this definition Vcommute will always be a subspace. We cannot state the same for Vother, since

the null vector does not belong to it. For this reason we augment Vother with the null vector in

order to create a subspace. This implies that we can decompose V as

V = Vcommute ⊕ Vother. (2.36)

We will now provide the update rules both for V and w in two steps: first considering the

state and measurement to commute, and then the general (non-commuting) case.

Theorem 1. Commuting case. Given the epistemic state (V,w) and the measurement Π that

commutes with it, i.e. the generators of V and VΠ all Poisson commute, the epistemic state

(V ′,w′) after the outcome σ′ associated to the measurement element (VΠ, r) has occurred, is

described by

V ′⊥ = (V ⊥ + w −w′) ∩ (V ⊥Π + r−w′), (2.37)
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where w′ is given by equation

w′ = w +
∑

i

Σ′
T
i (r−w)γi, (2.38)

where Σ′i are the generators of the measurement Π and the vectors γj are such that Σ′Ti γj = δi,j .

Proof. When the state and measurement commute we have to add the generators of the mea-

surement to the set of generators of V, as we have seen in the previous subsection 2.2.1 (learning

stage). Therefore the update rule for the subspace V is (equation (2.32))

V → V ′ = V ⊕ span{Σ′0,Σ′1, . . .Σ′i, . . . } = V ⊕ VΠ. (2.39)

In terms of perpendicular subspaces this implies that V ′⊥ = V ⊥ ∩ V ⊥Π .

Let us initially assume the measurement to consist only of one generator Σ′. Let us recall

that the outcome associated with Σ′ is σ′. We assume w is not compatible with this outcome,

i.e. Σ′Tw = σ′ + x, for some shift x ∈ Zd, and we want to find w′ such that

Σ′
T
w′ = σ′. (2.40)

The identity (2.35) we used in the previous section does the job. More precisely,

w′ = w − xγ,

where the vector γ is such that Σ′Tγ = 1. The above expression can be also written as

w′ = w − k−1xΣ′,

where k = Σ′TΣ′. The inverse of k always exists because we are in the prime dimensional case.

Without referring to x we can restate the update rule for the representative ontic vector as

w→ w + k−1(σ′ −Σ′
T
w)Σ′ = w + k−1Σ′

T
(r−w)Σ′. (2.41)

Note that if we consider more than one generator of the measurement, we simply have to sum
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over all those generators in the second term. This immediately follows from considering the

whole measurement Π as a sequence of measurements given by each generator Σ′i and apply

every time the rule (2.41). In addition, we need also to require that the γj ’s are such that

Σ′Ti γj = δi,j , so that Σ′Ti w′ gives σ′ without unwanted additional terms. We state again that

the above formula always holds for prime dimensional systems. We cannot claim the same in

non-prime dimensions. The correct update rule for the subspace V ′⊥ is found by combining the

update rules for V and w as in (2.37). This correction simply sets the subspaces to the same

origin in order to correctly compute their intersection, as schematically shown in figure 2.8. At

the end we obtain for the epistemic state (V ′,w′) that V ′⊥ + w′ = (V ⊥ + w) ∩ (V ⊥Π + r). We

recall that the probability associated to each ontic state consistent with the epistemic state is

uniform, i.e. given by 1
|V ′⊥+w′| = 1

|V ′⊥| = 1
|(V ⊥+w)∩(V ⊥Π +r)| , where | · | indicates the size of the

subspace.

Figure 2.7 shows a basic example of theorem 1.

Theorem 2. Non-commuting case. Given the epistemic state (V,w) and the measurement

Π that does not commute with it, i.e. some of the generators of VΠ do not Poisson commute

with the generators of V , the epistemic state (V ′,w′) after the outcome σ′ associated to the

measurement element (VΠ, r) has occurred, is described by

V ′⊥ = (V ⊥commute + w −w′) ∩ (V ⊥Π + r−w′), (2.42)

where V ⊥commute is given by

V ⊥commute = V ⊥ ⊕ Vother. (2.43)

The representative ontic vector w′ is given by

w′ = w +
∑

i

Σ′
T
i (r−w)γi, (2.44)

where Σ′i are the generators (even the non-commuting ones) of the measurement Π and the

vectors γj are such that Σ′Ti γj = δi,j .
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Nothing	known

State

P=0 P=0

Measurement

(V,w) (V 0,w0)

State	after	
measurement

(V⇧, r)

Figure 2.7: Update rules in the prime commuting case. The figure above shows a simple
one-trit example of theorem 1 regarding the update rule to predict the state after a sharp
measurement that commutes with the original state. The state after measurement is given
by V ′⊥ + w′ = (V ⊥ + w) ∩ (V ⊥Π + r). In the above case the shift vectors are all (0, 0), the
perpendicular subspaces are V ⊥ = Ω, V ⊥Π = span{(1, 0)}, and V ′⊥ = V ⊥Π . Note that with
“measurement” we are here representing one element of the measurement. The other elements
can be obtained by simply shifting r as seen in figure 2.3. The final state is associated to each
element of the measurement, each one with a corresponding probability of happening. The
same reasoning holds for figures 2.9 and 2.12.

Proof. Let us assume that Σ′j , for j ∈ {0, . . . ,m − 1}, do not commute with the generators of

V. In addition to the learning stage of the previous commuting case, we also have a removal

stage of the disturbing part of the measurement. We have already seen that we can split the

subspace V in V = Vcommute⊕Vother. Therefore we can reduce to the commuting case if we only

consider Vcommute instead of the whole V. The update rule for the subspace V then becomes

V → V ′ = Vcommute ⊕ span{Σ′0,Σ′1, . . .Σ′i, . . . } = Vcommute ⊕ VΠ.

In terms of the perpendicular subspaces note that we can both write

V ′⊥ = (V ⊥ ⊕ Vother) ∩ V ⊥Π ,
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⌦

V ?

(V ? + w) \ (V ?
⇧ + r)

V ?
⇧

V ?
⇧ + r

V ? + w

V 0? w

w0
V ?
⇧ + r

O

Figure 2.8: Update rules via Venn diagrams. The figure above schematically shows the
subspaces V ⊥, V ⊥Π , V ′⊥ and the shifted ones (after applying the corresponding representative
ontic vectors w, r,w′). In particular this picture explains the expression V ′⊥ = (V ⊥+w−w′)∩
(V ⊥Π + r − w′) as a result of combining the update rules for the epistemic subspaces and the
representative ontic vectors. It is important to notice that to obtain the correct intersection we
have to shift the subspaces V ⊥ + w and VΠ + r back to the same origin (this is the role of w′).
Indeed note that V ⊥ ∩ V ⊥Π is different from (V ⊥ + w) ∩ (V ⊥Π + r).

and

V ′⊥ = V ⊥commute ∩ V ⊥Π ,

from the usual property that the perpendicular of a direct sum is the intersection of the perpen-

dicular subspaces. The update rule for the representative ontic vector is the same as in the previ-

ous case (equation (2.38)). The correct update rule for the subspace V ′⊥ is found by combining

the update rules for V and w as in the previous case (2.37), where V ⊥ is replaced by V ⊥commute.

At the end we obtain for the epistemic state (V ′,w′) that V ′⊥+w′ = (V ⊥commute+w)∩(V ⊥Π +r).

Figure 2.9 shows a basic example of theorem 1.
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P=0

State

X-P=0

Measurement

(V,w) (V 0,w0)

State	after	
measurement

X-P=0

(V⇧, r)

Figure 2.9: Update rules in the prime non-commuting case. The figure above shows a
simple one-trit example of theorem 2 regarding the update rule to predict the state after a sharp
measurement that does not commute with the original state. The state after measurement is
given by V ′⊥+w′ = (V ⊥commute+w)∩ (V ⊥Π +r). In the above case the shift vectors are all (0, 0),
the perpendicular subspaces are V ⊥commute = Ω, V ⊥Π = span{(1, 1)}, and V ′⊥ = V ⊥Π .

2.3 Update rules - non prime dimensional case

It is quite common in studies of discrete theories, like Spekkens’ model and SQM, to only

consider the prime dimensional case because of the particular features of the set of integers

modulo d, Zd, when d is non-prime, like the impossibility of uniquely define inverses of numbers.

For example in our present case, figure 2.10 shows the peculiar properties of the observable 3X

in d = 6, which has not full spectrum of outcomes. The general formulation of Spekkens’ model

of section 2.1.1 does not change; not even the rules for calculating the probabilities of outcomes

and the updating of the state after a reversible evolutions. The new formulation we provide

affects the observables and the related measurements update rules. More precisely our issue, as

already noticed, regards the updating-rule formula (2.38) for the shift vector w′, which does not

always hold when the dimension d is non-prime. In fact the vector γ such that Σ′Tγ = 1 does

not always exist in that case. On the other hand, in prime dimensions, it always uniquely exists

because γ = k−1Σ′ and the inverse of the integer k = Σ′TΣ′ always uniquely exists. Unlike the

original formulation due to Spekkens, we will now characterise Spekkens’ model in non-prime

dimensions. In particular we characterise which are the observables that are problematic in the
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above sense - the coarse-graining observables, like 3X in d = 6 - and we then find the update

rules for a state subjected to the measurement of such observables by rewriting them in terms

of non-problematic observables - the fine-graining observables.

In the next subsection we assume single-system observables (i.e. of the kind Σ′ = aX + bP,

a, b ∈ Zd) in order to soften the notation and facilitate the comprehension. This will bring more

easily to the update rules even in the most general case of many systems (subsection 2.3.2). In

this case we recall, without making any reference to the quantity k−1, but just in terms of the

vector γ, the update rule for the shift vector w′,

w′ = w − xγ, (2.45)

where, as usual, x = −Σ′T (r−w).

2.3.1 Coarse-graining and fine-graining observables

We define a fine-graining observable as an observable that has full spectrum, i.e. it can assume

all the values in Zd. On the contrary a coarse-graining observable has not full spectrum.

Lemma 1. An observable Ofg has full spectrum, i.e. it is a fine-graining observable, if and

only if it has the following form,

Ofg = a′X + b′P, (2.46)

where a′, b′ ∈ Zd are such that they do not share any integer factor or power factor of d.

On the contrary a coarse-graining observable is written as

Ocg = aX + bP = D(a′X + b′P ), (2.47)

where a′, b′ ∈ Zd are again such that they do not share any integer factor or power factor of d

and D is a factor shared by a, b ∈ Zd. More precisely the factor D is called degeneracy and it

is defined as

D = Dn1
1 ·Dn2

2 · . . . , (2.48)

where D1, D2, . . . are different integer factors of d shared by a and b, and n1, n2, . . . are the
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maximum powers of these factor such that they can still be grouped out from a and b. We

take the maximum powers because we want the remaining part, a′X + b′P, to not share any

common integer factor or power factor of d between a′ and b′. In this way we can associate a

fine-graining observable to a coarse graining one by simply dropping the degeneracy D from

the latter.

Proof. Let us first prove that an observable of the kind (2.46), Ofg = a′X + b′P, is a full

spectrum one. This can be proven by using Bezout’s identity [99]: let a′ and b′ be nonzero

integers and let D be their greatest common divisor. Then there exist integers X and P such

that aX + bP = D. In our case the greatest common divisor D is equal to one, since a′, b′

are coprime. 6 Therefore we have proven that there exist values of the canonical variables

X,P ∈ Zd such that Ofg = a′X + b′P = 1. In order to reach all the other values of the

spectrum we simply need to multiply both X and P in the previuos equation by j ∈ Zd.

We now prove the converse, i.e. that a full spectrum observable implies it to be written as

(2.46). We prove this by seeing that an observable written as (2.47) has not full spectrum, i.e.

we negate both terms of the reverse original implication. Proving the latter is straightforward,

since the multiplication modulo d between an arbitrary quantity and a factor D, which is given

by powers of integer factors of d, gives as a result a multiple of D. Since the multiples of D do

not cover the whole Zd, then any observable of the form (2.47) has not full spectrum. 7 Since

an observable of the form (2.46) is an observable that cannot be written as (2.47) by definition,

we obtain that a full spectrum observable implies the observable to be written as (2.46).

Given lemma 1 we have got the expressions (2.47) and (2.46) for coarse-graining and fine-

graining observables. We want now to prove the following lemma to ensure that fine-graining

observables are characterised by precisely defined update rules.

Lemma 2. The vector γ in the update rule (2.45) for the shift vector w′ exists if and only if

the observable is a fine-graining one.

6It could be that a′, b′ share a factor which is not a factor of d. In this case the argument follows identically
as if they were coprime.

7Multiples of D do not cover the whole spectrum of Zd because D has not an inverse D−1 (it is not coprime
with d) and so we cannot obtain the whole values σ of Zd by simply finding X,P such that a′X + b′P = D−1σ.
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Proof. Let us prove that if we have a fine graining observable the vector γ exists. In our case

Σ′ = (a′, b′) and, by definition of a′, b′ (as usual defined for fine-graining observables) and full

spectrum, we can always find a vector γ = (γa, γb) such that Σ′Tγ = a′γa + b′γb equals 1.

Let us prove the converse. We now have the vector γ such that Σ′Tγ = aγa + bγb = 1,

where the coefficients a, b ∈ Zd define our observable aX+bP = σ. We want to prove that σ can

achieve all the values of Zd. Since Σ′Tγ = 1 we can set the values of (X,P ) as equal to (γa, γb)

in order to reach the value σ = 1. We can now achieve all the other values of the spectrum by

simply redefining γ as γ̃ = cγ, where c assumes all the values in Zd.

The above lemma 2 should convince us that in order to find the update rules in the presence

of a coarse graining observable, it is appropriate to decompose it in terms of fine-graining

observables. Let us assume that our coarse-graining observable is Ocg = aX + bP = D(a′X +

b′P ) = σ, and the associated isotropic subspace and representative ontic vector are (Vcg, rcg).
8

To this observable we can associate D̄ different fine-graining observables Ofg = a′X+b′P = σj ,

where j ∈ 0, . . . , D̄ − 1. The quantity D̄ is the degeneracy D without the powers n1, n2, . . . , i.e.

D̄ = D1 ·D2 · . . . . Indeed the powers n1, n2, . . . simply represent multiplicities associated to each

corresponding fine-graining observable. The associated isotropic subspaces and representative

ontic vectors are (Vfg, r
(j)
fg ), where Vfg = span{(a′, b′)} (see figure 2.10).

By definition the perpendicular isotropic subspaces are

V ⊥cg = {v = (va, vb) ∈ Ω|vaa+ vbb = D(vaa
′ + vbb

′) = 0 mod d} (2.49)

V ⊥fg = {v′ = (v′a, v
′
b) ∈ Ω|v′aa′ + v′bb

′ = 0 mod d}. (2.50)

It is clear that V ⊥cg ⊃ V ⊥fg and we can therefore construct V ⊥cg as

V ⊥cg =
D̄−1⋃

j=0

(V ⊥fg + vj) = V ⊥fg ⊕ VD, (2.51)

where the subspace VD provides all the vectors that we need to combine with the vectors of V ⊥fg

8Notice that we use terms like “subspaces” and “vectors” even when we refer to modules and not proper
vector spaces. The operations we will use, like the union and the direct sum, also hold for modules.
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Figure 2.10: Simple example of a coarse-graining observable and its decomposition
in fine-graining observables in d = 6. The coarse-graining observable Ocg = 3X = 0 in
d = 6 shows degeneracy D = 3. The three fine-graining observables associated with Ocg are

O
(0)
fg = X = 0, O

(1)
fg = X = 2 and O

(2)
fg = X = 4. The perpendicular subspaces of known

variables are V ⊥cg = span{(0, 1), (2, 0)}, V ⊥fg = span{(0, 1)} and VD = span{(2, 0)}. A choice

for the representative ontic vectors is rcg = (0, 0), r
(0)
fg = (0, 0), r

(1)
fg = (2, 0) and r

(2)
fg = (4, 0).

Notice that not all the values are possible for the coarse-graining observable 3X to be a valid
observable. Only 3X = 0 and 3X = 3 are valid (indeed what would it be the epistemic
state representation for e.g 3X = 2?), as witnessed by the expression (2.54) for the associated
fine-graining observables, that is valid only when the ratio

σcg
D exists.

to reach the whole V ⊥cg . More precisely, it is defined as

VD = {v ∈ Ω|αw + βv = t, where w ∈ V ⊥fg, α, β ∈ Zd, t ∈ V ⊥cg }. (2.52)

We call the subspace VD the degeneracy subspace because it encodes the degeneracy of Vcg

with respect to Vfg . It has dimension 1 and size D̄. This is consistent with the fact that the

dimensions of V ⊥cg and V ⊥fg are respectively 2 and 1. The sizes are respectively D̄ · d and d.

The size of V ⊥fg is d because it is always a maximally isotropic subspace and its dimension is 1

because from one generator we get all the other vectors of the subspace by multiplication with

j ∈ Zd. The dimension V ⊥cg is 2 because it cannot be 1 (it would be the same subspace as V ⊥fg)
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and it cannot be greater than 2 since also the whole phase space Ω = Z2
d has dimension 2. In

order to know the size of V ⊥cg we need to count all the jv, where j ∈ {0, 1, . . . , D̄ − 1}, that

means D̄ ·d. Therefore it can be written as VD = span{v}, and all its D̄ vectors are of the kind

vj = jv. The above reasoning easily extends to the case of n systems, where the dimensions

are dim(V ⊥cg ) = 2n, dim(V ⊥fg) = n, dim(VD) = n, and the sizes are |V ⊥cg | = D̄ndn, |V ⊥fg| =

dn, |VD| = D̄n.

We now define the shift vectors r
(j)
fg in terms of rcg and see that we can encode the degeneracy

expressed by VD in there. The idea is schematically depicted in figure 2.11.

Given the shift vector associated to the coarse-graining observable rcg, the shift vectors r
(j)
fg

associated to the corresponding fine-graining observables are of the kind

r
(j)
fg = rcg + vj , (2.53)

where vj ∈ Vd and are therefore of the kind jv, where j ∈ {0, . . . , D̄−1}. This implies that if we

assume the outcome associated to the coarse-graining observable to be σcg, i.e. ΣT
cgrcg = σcg,

where Σcg = (a, b), then the outcomes associated to the fine graining-observables are

ΣT
fgr

(j)
fg = ΣT

fg(rcg + jv) =
σcg
D

+ jC, (2.54)

where C is the anti-degeneracy and it is defined as a non-zero number belonging to Zd such

that D ·C = 0 mod d. The idea is that the vector v ∈ VD is such that ΣT
fgv = C 6= 0, so it does

not belong to V ⊥fg, but it does belong to V ⊥cg , since D · C = 0 mod d. An easy way to find one

of the possible v is to calculate it as CΣfg, where Σfg is the generator of Vfg. In this way we

know that Dv = 0, but v does not belong to V ⊥fg, i.e. vaa
′+ vbb

′ 6= 0 because Σfg is not in V ⊥fg.

It is important to notice that equation (2.54) implies that not all the outcomes are allowed for

the fine-graining observables associated to the coarse-graining one; they are allowed only when

the ratio
σcg
D exists. Figure 2.10 also explains this fact.

2.3.2 Measurement update rules

Let us assume to have n systems and to measure the coarse-graining observable Ocg = a1X1 +

b1P1 + · · · + anXn + bnPn = D(a′1X1 + b′1P1 + · · · + a′nXn + b′nPn) with the outcome σcg,
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Figure 2.11: Schematic representation of Coarse-graining decompositions into fine-
graining observables. The figure above schematically represents the relation between the

subspaces V ⊥, V ⊥cg , V
⊥
fg and their corresponding shift vectors w, rcg, r

(j)
fg . The green rectangles

represent the subspaces V ⊥cg and its translated V ⊥cg +rcg. The latter can be seen to be equivalent

either to the dashed red rectangle representing V ⊥fg shifted by the degeneracy vectors of VD

(light black arrows), this corresponding to V ⊥cg , and then shifted by rcg (green arrow or light grey

arrow), or to the dashed rectangle representing V ⊥fg shifted by each r
(j)
fg (red arrows). Both are in

accordance with the expressions of V ⊥cg +rcg, V
⊥
cg +rcg = V ⊥fg⊕VD+rcg = V ⊥fg+

∑D̄−1
j=0 (rcg+jv),

where v is the generator of VD. Note that, as a consequence of the degeneracy characterising
the coarse-graining observable, we could keep adding

∑D−1
j=0 jv = Dv without changing the

validity of the expression of V ⊥cg + rcg. We can see it just by noticing that VD +
∑D−1

j=0 jv = VD
or, more simply, that Dv = D · CΣ′fg = 0, since D · C = 0 mod d.

and corresponding isotropic subspace of known variables Vcg and shift vector rcg, on the state

ρ defined by α1X1 + β1P1 + · · · + αnXn + βnPn = σ, with corresponding isotropic subspace

of known variables V = span{Σ1, . . . ,Σn} and shift vector w. The idea in order to find

the update rules for the state after measurement, the subspace of known variables V ′ and

the representative ontic vector w′ is to compute the update rule of the initial state ρ with

the fine-graining observables that are associated to the coarse graining observable Ocg, i.e.
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O
(j)
fg = a′1X1 + b′1P1 + · · · + a′nXn + b′nPn with outcome σ

(j)
fg (indeed we know that the update

rules are valid for them from lemma 2), and then combine them together. More precisely, the

following theorem holds.

Theorem 3. Given the epistemic state (V,w) and the coarse-graining measurement Π, the

epistemic state (V ′,w′) after the outcome σcg associated to the measurement element (Vcg, rcg)

has occurred, is described by

V ′⊥ =

D̄−1⋃

j=0

[(V ⊥commute + w −w′) ∩ (V ⊥fg + r
(j)
fg −w′)], (2.55)

where the shift vector w′ is the shift vector deriving from the update rule of the state after the

measurement of the fine-graining observable O
(j)
fg ,

w′ = w′j = w +

n∑

i=0

Σ′
T
i (r

(j)
fg −w)γi, (2.56)

where the vectors γj are defined such that Σ′Ti γj = δi,j , and Σ′i are the n generators of the

subspace Vfg associated to the fine-graining observable O
(j)
fg . The subspace V ⊥commute is given by

the original V after having removed the non-commuting part, i.e. equation (2.43).

The above theorem tells us that the way we combine the updating subspaces of the state

with each individual fine-graining observables is through their union. This result is clear in

terms of schematic diagrams (figure 2.11). The updated shift vector is just one of the updated

shift vectors of the state with the fine-graining observables, because the information needed to

update the shift vector of the state is encoded in just one of the fine-graining shift vectors. The

degeneracy includes a meaningless multiplicity in the coarse-graining shift vector, and therefore

every fine-graining observable can do the job of correctly updating the shift vector of the state.

Actually every combination of the shift vectors w′j can do the job, apart from the ones that

sum to 0 mod d, like
∑D̄−1

j=0 w′j .

Proof. We find the expression for the updated subspace V ′⊥ by simply reusing the already

found formulas (2.37) and (2.43) of the prime-dimensional case and substituting V ⊥Π with V ⊥cg
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and r with rcg,

V ′⊥ = (V ⊥commute + w −w′) ∩ (V ⊥cg + rcg −w′).

If we now consider the decomposition of V ⊥cg + rcg as in (2.51) and (2.53), we obtain

V ′⊥ = (V ⊥commute + w −w′) ∩ [∪D̄−1
j=0 (V ⊥fg + r

(j)
fg )−w′].

Since the intersection of a union is the union of the intersections, we have proven the first part

of the theorem,

V ′⊥ =
D̄−1⋃

j=0

[(V ⊥commute + w −w′) ∩ (V ⊥fg + r
(j)
fg −w′)].

The second part of the proof regards w′ being equal to any of the w′j . Because of the degeneracy,

any w′j is equivalent to the others (with different value of j) in order to provide us with w′,

indeed it is possible to find one from another just by adding a vector v ∈ VD. The latter can

be proven as follows. For simplicity let us assume to be in the case n = 1 and that v is the

generator of VD. We know that, by the definition of state after measurement of a fine-graining

observable, the updated shift vector w′j is such that ΣT
fgw

′
j =

σcg
D +jC = σ

(j)
fg , where C = ΣT

fgv

is the antidegeneracy (equation (2.54)). It is straightforward to see that if we add v to w′j , we

get w′j + v = w′j+1, indeed ΣT
fg(w

′
j + v) =

σcg
D + (j + 1)C = σ

(j+1)
fg .

Figure 2.12 shows a basic example of theorem 3.

2.4 Equivalence of Spekkens’ theory and stabilizer quantum

mechanics in all odd dimensions

In [29] it has been shown that SQM and Spekkens’ toy model are two operationally equivalent

theories in odd prime dimensions via Gross’ theory of discrete non-negative Wigner functions.

We have generalised Spekkens’ model to all discrete dimensions. The above equivalence does

not hold in even dimensions, but we will now see that it holds in all odd dimensions. We

will also state the equivalence in terms of the update rules, where all its elegance arises. We

recall that SQM and Gross’ theory of non-negative Wigner functions are equivalent in all odd

dimensions [43].
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P=0

State

3X=0

Measurement

(V,w) (V 0,w0)

State	after	
measurement

3X=0

(V⇧, r)

Figure 2.12: Update rules in the non-prime non-commuting case. The figure above
shows a simple example (one system in d = 6) of theorem 3 regarding the update rule to
predict the state after a sharp measurement that does not commute with the original state.

The state after measurement is given by V ′⊥+w′ =
⋃D̄−1
j=0 [(V ⊥commute+w)∩ (V ⊥fg +r

(j)
fg )]. In the

above case the shift vectors are w = (0, 0), r
(0)
fg = (0, 0), r

(1)
fg = (2, 0), r

(2)
fg = (4, 0),w′ = (0, 0),

the perpendicular subspaces are V ⊥commute = Ω, V ⊥fg = span{(0, 1)}, V ⊥Π = span{(0, 1), (2, 0)},
and V ′⊥ = V ⊥Π .

2.4.1 Stabilizer quantum mechanics - update rules

We now analyse the update rules for the stabilizer state ρ under the stabilizer measurement

Π, where, as already described in subsection 2.1.2, equation (2.16), we denote ρ and Π in

terms of their stabilizer generators gj and pk respectively, where j ∈ {1, . . . , N ≤ n}, and

k ∈ {1, . . . ,M ≤ n},
ρ→ 〈g1, . . . , gN 〉 ,

Π→ 〈p1, . . . , pM 〉 .

where pk is a stabilizer generator of Π and k ∈ {1, . . . ,M ≤ n}. We analyse the update rules

first in the commuting case ([ρ,Π] = 0) and then in the general case.

1. For non-disturbing (commuting) measurements, the state after measurement ρ′ is given

by adding the stabilizer generators of the measurement Π and the state ρ. The generating
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set is then given by removing the linear dependencies between the two set of generators.

For simplicity, we here assume the generators of the state and the generators of the

measurement to be linearly independent.

ρ′ → 〈g1, g2, . . . , gN , p1, p2, . . . , pM 〉 . (2.57)

This formula means that the state ρ′ is now

ρ′ =
1

N
N∗∏

j

d−1∑

i

rij ,

where N∗ = N + M and rj is a stabilizer generator of ρ′, i.e. it is either a valid (com-

muting) generator gj or pj .

2. For disturbing (non-commuting) measurements (the most general case) the idea is that

if we remove the non-commuting factors ρj from the state ρ, i.e. [ρj ,Π] 6= 0, this case

reduces to the previous commuting one. We assume the state ρ to have only one non-

commuting factor, say ρN , which corresponds to the stabilizer generator gN . The state

after measurement ρ′ is given by removing the non-commuting generator and adding the

remaining ones of the state and measurement.

ρ′ → 〈g1, g2, . . . , gN−1, p1, p2, . . . , pM 〉 , (2.58)

where we have here considered the case in which no generators coincide. This formula

means that the state ρ′ is now

ρ′ =
1

N
N∗∏

j

d−1∑

i

rij ,

where N∗ = N + M − 1 and rj is a stabilizer generator of ρ′, i.e. it is either a valid

(commuting) generator gj or pj .

To sum up, in the commuting case we add generators of state and measurement to obtain the

state after measurement. In the non-commuting case we remove the non-commuting generator

of the state and add all the others as in the commuting case. This structure is perfectly analogue
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to Spekkens’ update rules, which are just motivated by the classical complementarity principle.

2.4.2 Gross’ Wigner functions - update rules

Let us consider a stabilizer state ρ = ρ1 · ρ2 · · · · · ρn, where n is the number of qudits (odd

prime dimensions), and a measurement Π on the stabilizer state Π = Π1 · Π2 · · · · Πm, where,

in general, m ≤ n. Let us assume m = n in order to consider ”total” measurements (not only

to a part of the state).

Theorem 4. Commuting case. Let us assume the state and measurement to commute, i.e.

[ρ,Π] = 0. The Wigner function of the state after the outcome σ′ of the measurement has

occurred is

Wρ′(λ) =
1

N
Wρ(λ)RΠ(λ), (2.59)

where λ ∈ Ω and RΠ denotes the Wigner function (also called response function) associated

with the measurement element of Π associated with the outcome σ′. The normalisation factor

N is

N =
∑

λ∈Ω

Wρ(λ)RΠ(λ).

Proof. We rewrite the formula (2.59) by replacing the Wigner functions with their definition in

terms of Spekkens’ subspaces,

δλ,V ′⊥+w′ = δλ,V ⊥+w · δλ,V ⊥Π +r. (2.60)

The proof is straightforward. The RHS is one if and only if both the deltas are one; this means

that λ has to belong simultaneously to V ⊥ + w and V ⊥Π + r, i.e. λ ∈ (V ⊥ + w) ∩ (V ⊥Π + r). If

we recall equation (2.37) (and figure 2.8), we see that

(V ⊥ + w) ∩ (V ⊥Π + r) = (V ′⊥) + w′,

and we can conclude that the RHS of equation (2.60) is one if and only if the LHS is one. At

this point we can insert the normalisation factors on the RHS and the LHS. These guarantee

that
∑

λ∈ΩWρ′(λ) = 1 and the uniformity as expected.
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In the commuting case the update rule in SQM consists of the addition of the stabilizer

generators of state and measurement (equation (2.57)). In ST the update rule consists of the

intersection of the perpendicular isotropic subspaces (equation (2.37)). In GT addition and

intersection translate into the product of the Wigner functions (equation (2.59)). In particular

this stage consists of introducing zeros to the Wigner function in correspondence of the addition

of generators to the subspace of known variables V (and so removing generators from the sub-

space V ⊥). We call this process - where we learn information about the state - the localization

stage.

Theorem 5. Non-commuting case. Let us assume the measurement, in general, not to commute

with the state, i.e. [ρ,Π] 6= 0. The Wigner function of the state after the outcome σ′ of the

measurement has occurred is

Wρ′(λ) =
1

N

∑

t∈Vother

Wρ(λ− t)RΠ(λ), (2.61)

where λ ∈ Ω, Vother is the set spanned by the non-commuting generators of Spekkens’ subspace

V associated to the state ρ. The normalisation factor N is

N =
∑

λ∈Ω

∑

t∈Vother

Wρ(λ− t)RΠ(λ).

Note that we could have stated the theorem in terms of stabilizer generators instead of

Spekkens’ generators. The former being related to the latter as follows,

gj = Ŵ (J−1Σj), (2.62)

where J is the usual invertible matrix used in symplectic geometry, Σj are Spekkens’ generators

and gj the corresponding stabilizer generators. The relation (2.62) follows from the relation

between ST and GT previously described, where the bridge between the two formulations is

given by the matrix J.

Proof. In general the state after measurement in quantum mechanics (up to a normalization)

is ρ′ = ΠρΠ. If [ρ,Π] = 0 then ρ′ = ρΠ.
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In order to simplify the proof, let us assume the case of only one non-commuting gener-

ator, say ρn. In the present case we know, from the structure of SQM and Spekkens’ update

rules (adding the commuting factors between state and measurement and removing the non-

commuting ones), that the state after measurement is ρ′ = ρ∗Π, where ρ∗ = ρ1 · . . . ρn−1. This

means that we can write the state after measurement as a product of two commuting terms:

ρ∗ and Π. Therefore we can write the Wigner function of ρ′ according to the product rule for

the commuting case (equation (2.59)):

Wρ′(λ) =
1

N
Wρ∗(λ)RΠ(λ),

where N =
∑

λWρ∗(λ)RΠ(λ). We want now to prove that equation (2.61) is equal to the latter.

This means we want to prove the following:

Wρ′(λ) =
∑

t∈Vother

Wρ(λ− t)RΠ(λ) = Wρ∗(λ)RΠ(λ).

We can simplify the terms RΠ(λ), thus getting

∑

t∈Vother

Wρ(λ− t) = Wρ∗(λ). (2.63)

At this point, in order to prove the above theorem, we rewrite the formula (2.61) by replacing

the Wigner functions with their definition, i.e. Kronecker deltas,

∑

t∈Vother

δλ−t,V ⊥+w = δλ,V ⊥commute+w, (2.64)

where V ⊥commute = V ⊥ ⊕ Vother. Note that we have removed the response function of the mea-

surement. We now want to see that the LHS of equation (2.64) is different from zero exactly

when the RHS is. The LHS is different from zero when at least one t ∈ Vother is such that

λ−t ∈ V ⊥+w. The latter corresponds to λ ∈ V ⊥+w+t. This means that λ ∈ V ⊥⊕Vother+w,

i.e. λ ∈ V ⊥commute + w, which is precisely what makes the RHS different from zero.
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In the most general non-commuting case, in addition to the localization stage, in SQM we

also have to remove the non-commuting generators from the state (equation (2.58)). In ST

this consists of the union and shifts in the perpendicular subspace (equation (??)). In GT

removal and union translate into the averaging out of the Wigner function (equation (2.61)).

In particular this stage consists of introducing ones to the Wigner function in correspondence

of the removal of generators from the subspace of known variables V (and so adding generators

to the subspace V ⊥). We can think of this process as the one where, after having learned some

information in the localization stage, we need to forget something, otherwise we would get too

much information about the ontic state, which is forbidden by the classical complementarity

principle. This also explains why non-commuting measurements are also called disturbing mea-

surements. We call this forgetting-part of the process the randomization stage. Finally note

that the general-case formula (2.61) reduce to the product rule (2.59) in the commuting case.

Figure 2.13 summarises the update rules in the three theories in prime dimensions.

In the non-prime dimensional case, we can rephrase all the reasonings already done in ST

in terms of Wigner functions.

Lemma 3. The Wigner function Wcg(λ) of the coarse-graining observable Ocg = a1X1 +b1P1 +

· · · + anXn + bnPn = D(a′1X1 + b′1P1 + · · · + a′nXn + b′nPn) with outcome σcg, can be written

in terms of the Wigner functions W
(j)
fg (λ) of the associated fine graining observables O

(j)
fg =

a′1X1 + b′1P1 + · · ·+ a′nXn + b′nPn with outcomes σ
(j)
fg as

Wcg(λ) =
1

D̄

D̄−1∑

j=0

W
(j)
fg (λ). (2.65)

Proof. First of all the normalisation factor 1
D̄

is due to the fact that we are adding D̄ Wigner

functions, each of them having a normalisation factor of 1
d , since they are Wigner functions

of maximally isotropic subspaces (of dimension d). The proof of the rest of the formula is

straightforward. According to the definition of Wigner functions, we need to prove that

δV ⊥cg+rcg ∝
∑

j

δ
V ⊥fg+r

(j)
fg

. (2.66)

From the decomposition of the isotropic subspaces and shift vectors in Spekkens’ model, equa-
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Non-disturbing Measurements	
(Localization	stage)

Disturbing Measurements
(Localization	+	randomization	stage)

Stabilizer	Quantum	
Mechanics Add	generators	 Add	generators							Remove	g	N

[⇢,⇧] = 0 [⇢,⇧] 6= 0

⇢! hg1, . . . , gN i
⇧ ! hp1, . . . , pM i

⇢! hg1, . . . , gN i
⇧ ! hp1, . . . , pM i

⇢0 ! hg1, g2, . . . , gN , p1, p2, . . . , pM i ⇢0 ! hg1, g2, . . . , gN�1, p1, p2, . . . , pM i

V ! V 0 = V � V⇧ V ! V 0 = Vcommute � V⇧

V ? ! V 0? = V ? \ V ?
⇧ V ? ! V 0? = (V ? � Vother) \ V ?

⇧

w ! w0 = w +

nX

i

⌃0T
i (r � w)�i w ! w0 = w +

nX

i

⌃0T
i (r � w)�i

W⇢0(�) =
1

N
W⇢(�)R⇧(�)

Spekkens Theory

Wigner	Functions W⇢0(�) =
1

N

X

t2Vother

W⇢(�� t)R⇧(�)

Figure 2.13: Equivalence of three theories in odd dimensions in terms of measure-
ment update rules: Spekkens’ toy model, stabilizer quantum mechanics and Gross’
theory. The table above shows the update rules in the three mentioned theories in odd prime
dimensions both for the commuting and the more general non-commuting case. In SQM the
update rules were already known: if state and measurement commute then the final state ρ′ is
given by the stabilizer generators of both ρ and Π. If, more generally, they do not commute,
we also need to remove the non-commuting generators (gN in the table above) of the original
state. In Spekkens’ model the update rules for the epistemic state (V,w) and the measurement
(VΠ, r) have the same structure of the ones in SQM. At the level of the perpendicular subspaces,
the update rules involve the intersection and also the direct sum (union and shifts) of the state
perpendicular subspace V ⊥ with the non-commuting subspace Vother. The update rules for
the representative ontic vector w are written in terms of the measurement generators Σ′i and

the vector γi such that Σ′Ti γi = 1. The table above does not show, for aesthetics reasons, the
influence of the shift vectors w, r,w′ on the perpendicular subspaces. The actual update rule
would be V ′⊥ = (V ⊥commute + w − w′) ∩ (V ⊥Π + r − w′). In Gross’ theory the update rule for
Wigner functions of stabilizer states are given by a simple product of the Wigner functions
associated to the state, Wρ, and measurement, RΠ, in the commuting case, and an averaging
over the non-commuting subspace Vother in the general case. It is easy to see that the latter
formula reduces to the previous in the commuting case (i.e. Vother = {(0, 0)}).
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tions (2.51) and (2.53), we already know that V ⊥cg +rcg = V ⊥fg⊕VD+rcg = V ⊥fg+
∑D̄−1

j=0 (rcg+jv),

which exactly proves that the RHS of (2.66) is one if and only if the LHS is one.

From the above construction and theorem 3 we can immediately write the Wigner function

of a stabilizer state after a coarse-graining measurement, thus generalising theorem 5.

Theorem 6. Given the state ρ of n-qudit systems, where the dimension d is a non-prime

integer, and the (non-commuting) measurement Π, the Wigner function of the state ρ′ after the

outcome σcg of the measurement has occurred is

Wρ′(λ) =
1

N

1

D̄

∑

t∈Vother

D̄−1∑

j=0

Wρ(λ− t)R(j)
fg (λ), (2.67)

where λ ∈ Ω, Vother is the set spanned by the non-commuting generators of Spekkens’ subspace

V associated to the state ρ. The response function of the j − th fine-graining measurement

element associated with the outcome σ
(j)
fg is denoted by R

(j)
fg . The normalisation factor N is

N =
∑

λ∈Ω

∑

t∈Vother

Wρ(λ− t)RΠ(λ),

where RΠ(λ) = 1
D̄

∑D̄−1
j=0 R

(j)
fg (λ).

Proof. We just need to apply lemma 3 to the response function of the coarse graining measure-

ment of theorem 5.

Figure 2.14 summarises the update rules in ST and Gross’ theory in prime and non-prime

dimensions.

2.5 Discussion

The importance of completing Spekkens’ theory with update rules to determine the state after

a sharp measurement depends upon their application in future works. In particular we think

that it would be interesting to explore how quantum computational schemes can be represented

by ST. In order to do this it is appropriate to first characterise ST in terms of its computational

power.
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dimensional	systems
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commute + w � w0) \ (V ?
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D̄�1[
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[(V ?
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fg + r
(j)
fg � w0)]

w0 = w0
j = w +

nX
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⌃0T
i (r

(j)
fg � w)�i

W⇢0(�) =
1

N

1

D̄

X

t2Vother

D̄�1X
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Figure 2.14: Measurement update rules in Spekkens’ toy model and Gross’ theory in
prime and non-prime dimensions. The table above shows the update rules (for the general
non-commuting case) of ST and Gross’ theory in prime dimensions, first column, and non-prime
dimensions, second column. The former have been already depicted in table 2.13. The latter
regard the case of a coarse-graining measurement observable Ocg. In terms of perpendicular
subspaces the update rules consist of the union of the updating subspaces of the original state

(V,w) with each of the D̄ individual fine-graining observables (Vfg, r
(j)
fg ). The updated shift

vector w′ is just one of the updated shift vectors w′j of the state with the fine-graining ob-

servables. In terms of Wigner functions, the union translates into a sum of D̄ terms, and the

response functions of the fine-graining observables are denoted as R
(j)
fg .

We can perform a simple analysis of the computational complexity of simulating Spekkens’

theory on a classical computer following the same approach as Aaronson and Gottesman’s

analysis of the simulation of stabilizer circuits [100]. In ST, each epistemic state is described

by the isotropic subspace of known variables V, which is defined by n generators, and the

shift vector w, which attributes n values to the n variables. Each generator is specified by 2n

components. Therefore we need 2n2 + n digits to specify an epistemic state (V,w). To find the

perpendicular subspace V ⊥, we need a further n2 operations to check all the inner products
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between the generators.

Simulating dynamics requires computing symplectic affine transformations involving about

(2n)2+n ' n(n+1) digits for each generator of the epistemic state that has 2n ' n components,

since the product between a matrix and a vector involves O(n)2 modular arithmetic operations

and the affine translation 2n operations. Therefore the total is n(n+ 1) · n ' n3.

It should be possible to find more efficient algorithm using some of the ideas in [100].

However we are not aiming to optimise this simulation complexity in the current work, just

show that it is classically efficient. The update rules for the measurements in the prime case

(2) involve first adding the generators of the subspaces V and VΠ and then removing the non-

commuting ones (this involves to check their symplectic inner product, which means about

n3 operations). In total we would have n3 + 2n = n(n2 + 2) ' n3 operations for finding V ′,

the isotropic subspaces of known variables after the measurement. The updated shift vector

involves the sum of two inner products between vectors of 2n components, which roughly means

n3 operations. In the non-prime case (3) further operations are needed, namely the ones to

recover the degeneracy factor D̄, which consist of dividing the 2n components of the generators

by each of the d possible integer factors and then do the division again for surely less than d

times, which means no more than 2n · d2 operations. A final operation of checking whether

the results of the divisions of the 2n components give the same value must be considered. It

implies another factor of 2nd. This allows us to compute the operations to perform the union

of the perpendicular subspaces in (3), i.e. D̄n ' (nd)3 operations. This approximate analysis

wants just to show that, even with basic simulation schemes, the computational complexity to

perform a classical simulation of ST is polynomial in the number of systems. This is in line, as

expected, with the computational power of SQM.

The next chapter is dedicated to an application of ST in the above direction, where it is

used as a non-contextual hidden variable model that represents the classically simulatable part

of some state-injection schemes of quantum computation. ST and its subtheories which are

operationally equivalent to subtheories of QM play the role of witnesses of non-negativity of

the Wigner functions and non-contextuality, and are therefore used as a unifying framework for

state injection schemes where negativity and contextuality are resources for universal quantum

computation, similarly to [54–57, 79–81]. Moreover, our framework in non-prime dimensions
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could be used to extend some of the cited results, such as [54].

The result about the equivalence between ST and SQM and the associated update rules

in prime and non-prime odd dimensions can provide a powerful new way to use and analyse

SQM in non-prime dimensions, about which almost nothing is known. For example we are

now facilitated to state, given a set of commuting Pauli operators, whether the joint eigenstate

that they represent is pure. In non-prime dimensions the latter issue is not trivial because for

coarse-graining observables the number of independent generators is not equal to the number

of observables. However, from our construction to decompose coarse-graining into fine-graining

observables, we know that the number of independent generators is equal to the number of

fine-graining observables. Therefore if the set of commuting Pauli operators has the number of

independent generators that equals the number of fine-graining observables, then the state is

pure. Indeed fine-graining observables are associated to pure states. In addition, in the field of

quantum error correction it could be interesting to study if the coarse-graining observables have

any usefulness. The course-grained observables considered here are an example of degenerate

observables. Degenerate observables, such as a parity measurement, play a central role in

quantum error correction theory. The degeneracy means that errors can be detected without

collapsing the logical state. It would be interesting to investigate whether the course-grained

observables in compound dimension SQM have any utility for novel forms of quantum error

correction.

Finally, the enforced equivalence of SQM, ST and Gross’ theory in odd dimensions can be

exploited to address a given problem from different perspectives, where, depending on the cases,

one theory can be more appropriate than another. An example is the already mentioned one

of addressing protocols based on SQM with ST instead of SQM or Wigner functions.

2.6 Conclusion

Spekkens’ toy model is a very powerful model which has led to meaningful insights in the

field of quantum foundations and that seems to have interesting applications in the field of

quantum computation. We have extended it from prime to arbitrary dimensional systems and

we have derived measurement update rules for systems of prime dimensions when the state
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and measurement commute, equations (2.37)(2.38), when they do not, equations (2.42)(2.38),

and for systems of non-prime dimensions (theorem 3). These results directly derive from the

basic axiom of the theory: the classical complementarity principle. The latter characterises a

structure for the update rules which is the same as in stabilizer quantum mechanics: the state

after measurement is composed by the generators of the measurement and the compatible (i.e.

commuting) generators of the original state.

Spekkens showed the equivalence between SQM and ST in odd prime dimensions via Gross’

Wigner functions. We have extended this result to all odd dimensions and we have translated

the update rules of ST in terms of Wigner functions (theorems 4, 5, 6). We stress again that

Spekkens’ model and our measurement update rules hold in all dimensions, in even dimensions

too. However the equivalence between ST and SQM only holds in odd dimensions. The main

reason is that SQM in even dimensions shows contextuality, while ST does not. One of the

main future challenges is to find a hidden variable toy model which is also equivalent to qubit

SQM.

We treat the problem with systems of non-prime dimensions, which arises from the problem

of defining an inverse in Zd, by decomposing the problematic (coarse-graining) observables in

terms of the non-problematic (fine-graining) ones. This approach naturally suggests the form of

the update rules. By comparing the update rules in the three mentioned theories we highlight

the beauty and the elegance of this equivalence, where addition and removal of generators

in SQM correspond to intersection and union in ST and product and randomization in GT.

This correspondence is schematically depicted, for the prime-dimensional case, in table 2.13.

The non-prime case correspondence is represented in table 2.14. We believe that the fresh

perspective gained by moving from one theory to another can give powerful new tools for new

insights in the field of quantum computation.
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Chapter 3

State-injection schemes of quantum

computation in Spekkens’ toy theory

In the previous chapter we showed the operational equivalence between ST and qudit SQM

by representing the latter through Gross’ Wigner functions [43]. These turn out to be exactly

equivalent to Spekkens’ epistemic states and measurements. The measurement update rules are

consistent and positiveness-preserving. Clifford gates are mapped into consistent symplectic

affine transformations [40].

In the case of qubits the above equivalence does not hold. The toy theory is non-contextual

by construction, while qubit SQM shows state-independent contextuality, as witnessed by the

Peres-Mermin square argument [46–48]. This is reflected into the impossibility of finding a non-

negative Wigner function that maps non-negatively qubit SQM into ST [44, 45]. Even if these

two theories are not operationally equivalent, some restricted versions of them do show the

same statistics. Our aim is to identify the subtheories of ST that are operationally equivalent

to subtheories of qubit SQM. We define subtheories of ST compatible with subtheories of SQM

as closed subtheories of quantum mechanics whose states and measurements are non-negatively

represented by covariant Wigner functions.

In this chapter we use Spekkens’ subtheories to provide an application in the field of quan-

tum computation. More precisely, we relate them with state-injection schemes of quantum

computation [51]. The latter constitute nowadays one of the leading models to implement fault
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tolerant universal quantum computation (UQC). These schemes are composed by a “free” part,

which consists of quantum circuits that are efficiently simulatable by a classical computer (usu-

ally stabilizer circuits), and by magic resources (that are usually distilled from many copies of

noisy states through magic state distillation [53]) that boost the computation to universal. In

2014 Howard et al. [54] proved that in a state-injection scheme of qudits (odd prime dimen-

sions), with the free part composed by stabilizer circuits, the contextuality possessed solely by

the magic resource is a necessary resource for universal quantum computation. In terms of

systems of dimensions 2 a similar result due to Delfosse et al. [55] holds for rebits, where the

classical non-contextual free part is composed by Calderbank-Steane-Shor (CSS) circuits [87].

However, as already pointed out, an analogue version of Howard’s result for qubit cannot be

found, since qubit SQM is already contextual. Nevertheless it has been proven [56] that in any

state-injection scheme of qubits where we get rid of the state-independent contextuality (e.g.

Peres-Mermin square), the contextuality possessed solely by the magic resource is necessary for

universal quantum computation. A more complete version of this result is also treated in [57],

where a general framework for state-injection schemes of qubits with contextuality as a resource

is provided.

More precisely, in [57], Raussendorf et al. develop a framework for building non-negative

and non-contextual subtheories of qubit SQM from the choice of the phase function defining

the Weyl operators and consequently the Wigner functions (see equation (3.10)). Furthermore,

in [83], Wallman and Bartlett address the issue of finding the subtheories of qubit quantum

mechanics that are non-negative in certain quasi-probability representation (and so are classi-

cally simulatable and correspond to non-contextual ontological models). They construct the

so-called 8−state model, which can be seen as a generalisation of ST with an enlarged ontic

space. The non-negativity for states and measurements is guaranteed by considering both the

possible Wigner representations of a qubit [45].

It is important to point out that in the mentioned frameworks of [56] and [57], the definition

of state-injection schemes is broader than the one we consider here and it also includes schemes

based on measurement-based quantum computation with cluster states [15]. Measurement-

based quantum computation is a model of quantum computation, alternative to the standard

circuit model, based on local one-qubit measurements on some particular resource entangled
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states [15]. We here consider only state-injection schemes as developed by Zhou et al. in [51]

– defined in 3.1.1 – like the ones in [54] and [55], and we show that Spekkens’ subtheories

are an intuitive and effective tool to treat these cases. We first use Spekkens’ subtheories

to represent the non-contextual free part of the known examples of state-injection schemes,

both for qubits and qudits, where contextuality arises as a resource [54, 55]. These can be

unified in the following framework (figure 3.1): Spekkens’ subtheory + Magic state(s) → UQC.

Secondly, we prove in theorem 11 that qubit SQM can be obtained from a Spekkens’ subtheory

via state-injection since all its objects that do not belong to the Spekkens’ subtheory, namely

non-covariant Clifford gates, can be injected, where the circuit needed for the injection is always

made of objects belonging to the Spekkens’ subtheory. This means that Spekkens’ subtheories

contain all the tools for performing state-injection schemes of quantum computation. There is

no need to consider bigger non-covariant subtheories in the free part.

The proof of theorem 11 suggests a novel state-injection scheme, where contextuality is a

resource, based on injection of CCZ states. State-injection schemes with the related Toffoli

(CCNOT ) gates are already known [101–107], but our scheme differs from them as our non-

contextual free part of the computation – a strict subset of the CSS rebit subtheory considered

in [55] – is such that it is not possible to remove any object from it without denying the

possibility of obtaining universal quantum computation via state-injection. The price to pay

for this minimality is the injection of the control-Z state, CZ |++〉 , too (which also provides the

Hadamard gate). By analysing this example, we can associate different proofs of contextuality to

different state-injections of non-covariant gates. More precisely, we show how the Clifford non-

covariant CZ gate (as well as the phase gate S) can provide proofs of the Peres-Mermin square

contextuality and the GHZ paradox. Moreover, the injection of the T |+〉 magic state, where

T is the popular π
8 non-Clifford gate, allows, in addition to the previous proofs of contextuality

(as T 2 = S), also to obtain the maximum quantum violation of the CHSH inequality [59].

In the reminder of the chapter we start, in section 3.1, by covering some background material

on state-injection schemes, contextuality and the known results on contextuality as a resource

for quantum computation. We then provide the definition of a Spekkens’ subtheory in section

3.2 and we prove that Howard’s and Delfosse’s cases for qudits [54] and rebits [55], respectively,

fit in our framework where the free parts of the computation, qudit SQM and CSS rebits,

77



+Spekkens’ 
Subtheory

Magic 
states UQC

Non-contextual	part Injected	
contextuality/
negativity

Quantum
speed-up

Figure 3.1: Computational scheme. Schematic representation of the computational scheme
treated in this chapter.

respectively, are Spekkens’ subtheories. We then set the instructions to construct a Spekkens’

subtheory from the choice of a non-negative Wigner function in section 3.3. We do so in line

with [57] and we find that the main difference from Raussendorf et al ’s formulation (and also

from the 8-state model) consists of demanding for the covariance of the Wigner function with

respect to the allowed gates. By exploiting this comparison we then prove theorem 11. It

basically shows that any state-injection scheme can be obtained from our framework, since any

object not present in the considered Spekkens’ subtheory can be injected by using an injection

scheme made of objects in the Spekkens’ subtheory. In section 3.4 we provide a novel example

of state-injection for qubits based on CCZ magic states. We analyse the presence of different

proofs of contextuality in correspondence of different state injected gates in section 3.5 and we

recap all the results and the future directions in the conclusion section.

3.1 Background

This section does not contain original material. The references that have been used will be

specified in the corresponding subsections.

3.1.1 State-injection schemes of quantum computation

Building a large-scale quantum computer is a challenging task, mostly due to the fragile co-

herence of quantum systems. The field of quantum error correction provides techniques and

methods to face this problem and protect the information encoded in the quantum system [38].

In particular, it is important to protect the quantum information not only when it is stored
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or transmitted, but also when it dynamically undergoes computation. This consideration leads

to the concept of fault-tolerant quantum computing, that we here introduce. Fault tolerance

is the property that enables a system to continue performing the operations it is meant to

perform, even if some parts of the system fail, i.e. involve errors. The idea is to prevent single

errors on each component, e.g. input systems prepared in certain states, unitary gates and

measurements, from spreading. In particular, it is required that the error probability p is below

a certain constant threshold pth, for the quantum computation to be efficient and reliable, as

stated by the threshold theorem (verbatim from [38]),

Theorem 7. A quantum circuit containing p(n) gates may be simulated with probability of

error at most ε using

O(poly(log p(n)/ε)p(n))

gates on hardware whose components fail with probability at most p, provided p is below some

constant threshold, p < pth, and given reasonable assumptions about the noise in the underlying

hardware.

There are several approaches to compute error thresholds, which depend upon the error

model, the choice of error correcting code and the choice of the fault tolerant construction

for gates and error-detecting measurements.1 Moreover, once it is guaranteed that the errors

do not spread in accordance with the threshold theorem, they can be suppressed through the

concatenation technique [38], which is a recursive method to encode each qubit, starting from

the original quantum circuit, in quantum codes. This technique exponentially decreases the

probability of failure.

We have just seen that settings where the components are fault tolerantly implemented

ensure the computation to work. With this respect, SQM, already extensively defined in sub-

section 2.1.2, comes in again, as it involves components that can all be fault-tolerantly realised.

We recall that it is the subtheory of quantum mechanics composed by common eigenstates of

Pauli operators, Clifford unitaries and Pauli observables, and it describes many of the mostly

used error correcting codes [85–87]. We now describe the central role that SQM plays in quan-

1A couple of examples for well-studied codes: analytic thresholds for the Steane code [86] are of the order of
pth = 10−5, while numerical thresholds are of the order of pth = 10−3; the Bacon-Shor code [108] leads to an
analytic threshold of the order of p = 10−4.
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tum computation, by first stating the theorem that shows its computational power. 2

Theorem 8. Any quantum circuit on n qudits acting on an initial stabilizer state consisting of

a polynomial in n Clifford group gates, and Pauli observable measurements, can be effectively

simulated in poly(n) gates on a classical computer.

The Gottesman-Knill theorem states that stabilizer circuits, even if they contain systems

in maximally entangled states, such as Bell states, are easy to simulate classically and thus not

enough for universal quantum computing. Nevertheless we can still use stabilizer circuits to

perform universal quantum computation by adding a single non-Clifford unitary, as proven in

the Nebe-Rains-Sloane theorem [109] (here paraphrased):

Theorem 9. Given a non-Clifford unitary U , the set

〈
U,U †, CNOT,H, S

〉
(3.1)

is approximately universal, i.e. any unitary can be approximated to arbitrary accuracy by a gate

sequence contained in the set.

This means that, by using the set of gates in equation (3.1), we can simulate any other set,

thus gaining approximate universality. The simulation is shown to be efficient by the Solvay-

Kitaev theorem [110]. The single-qubit non-Clifford gate that is usually used to achieve UQC

is called the T gate. It is defined as a rotation of π
4 around the z axis in the Bloch sphere,

T =


1 0

0 e
iπ
4


 . (3.2)

Notice that the phase gate S defined in equation (2.19) is equal to T 2.

In this chapter we consider state-injection schemes of quantum computation as developed in

[51]. They represent one of the leading models for fault tolerant universal quantum computation

when combined with the magic state distillation procedure due to Bravyi and Kitaev in [53].

The latter allows one to distill non-stabilizer magic states from noisy copies of quantum states

with a high threshold for the error rate (about 14.6%), given a setting where only Clifford

2We refer the reader to [84,100] for a more rigorous statement and the proof of the theorem.
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gates are fault tolerant. This is extremely important because most of the popular codes do not

have fault tolerant non-Clifford gates [86, 111], and, even when they have, they show a poor

threshold [112]. The key idea of state-injection is that a non-Clifford gate can be implemented

with the combination of the magic state, a Clifford group circuit and Pauli measurement. More

precisely, as was proved in [51], we can define state-injection schemes for implementing any

diagonal unitary gate U as follows.

Definition 1 (Zhou-Leung-Chuang state-injection [51]). Given a n-qubit unitary gate U , we

say that it is achieved via state injection, if it is implemented via a circuit of the form in

figure 3.2 comprising the elements

• The injected state U |+〉⊗n.

• n CNOT gates, applied transversally.

• n Pauli Z measurements, with the output of the jth measurement denoted as sj = (−1)mj ,

where mj ∈ {0, 1}.

• The correction gate UXmU †, where m = m1 . . .mn is the bitstring of meausurement

outcomes and Xm = Xm1 ⊗ · · · ⊗Xmn .

Figure 3.2 depicts the state-injection scheme just defined.

3.1.2 Contextuality

In the previous subsection we introduced state-injection schemes of quantum computation,

that achieve quantum universality with the injection of magic states. It is natural to ask which

quantum ingredients must be present in these states to allow for the quantum computational

speed-up. We here provide the definition of contextuality, which is one of the main features

studied for explaining the source of quantum power and one of the main characters of this work.

The original notion of contextuality arose in 1967 due to Kochen-Specker’s no-go theorem

[33]. We here follow [113] for the statement.

Theorem 10. In a Hilbert space of dimension d ≥ 3, it is impossible to associate definite

numerical values, 1 or 0, with every projection operator Pk, in such a way that, if a set of

81



�

U |+i

| i

U | iUXU †

Z

Figure 3.2: State-injection schemes of quantum computation. The state-injection
schemes that we consider in this work are the ones developed by Zhou, Leung and Chuang
in [51]. The diagonal gate U can be injected in the circuit by using objects that are allowed in
the free part of the computation. The injected state is U |+〉 , which is subjected to a controlled
not with the input state |ψ〉 . Conditioned on the outcome of the measurement of the Pauli Z
on the state |ψ〉 after the CNOT, the correction UXU † is applied to the state U |+〉 . At the
end we obtain the gate U applied to the input state |ψ〉 .

commuting Pk satisfies
∑

k Pk = I, the corresponding values, namely v(Pk) = 0 or 1, also

satisfy
∑

k v(Pk) = 1.

This theorem can be rephrased by saying that a hidden variable theory – a theory with

variables that unambiguously determine the outcome of each sharp measurement3 – which

reproduces the statistical properties of quantum theory must be contextual, i.e. the outcome

of a projective measurement depends on the other commuting measurements that we perform

with it. In the present case this means that, if three operators Pk, Pj and Pl have commutators

[Pk, Pj ] = [Pk, Pl] = 0 and [Pj , Pl] 6= 0, the result of a measurement of Pk cannot be independent

of whether Pk is measured alone, or together with Pj , or together with Ps. The original proof

of the theorem involves 117 vectors in R3. It was then improved by Peres in [113], by using

33 unit vectors in R3 grouped in sixteen orthogonal triads (with each unit vector belonging to

several triads). However, the simplest proof is due to Cabello in [114], which only involves 18

four-dimensional vectors.

Probably the most simple and intuitive way of expressing the above notion of contextuality

is through the Peres-Mermin square argument [47], depicted below.

The square is composed by nine Pauli observables on a two-qubit system. Each row and

3When talking about general theories (possibly different or larger than quantum mechanics) sharp measure-
ments correspond to projective measurements in quantum mechanics.
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Z ⌦ I

X ⌦ I I ⌦ X

I ⌦ Z Z ⌦ Z

Z ⌦ XX ⌦ Z

X ⌦ X

Y ⌦ Y

each column is composed by commuting (simultaneously measurable) observables. With the

assumption that the functional relation between commuting observables is preserved in terms of

their outcomes (e.g. if an observable C is the product of two observables A,B, also its outcome

c is the product of the outcomes a, b of A,B) and the outcome of each observable does not

depend on which other commuting observables are performed with it (non-contextuality), the

square shows that it is impossible to assign the outcome of each observable among all the rows

and columns without falling into contradiction. For example, if we start by assigning values, say

±1, to the observables starting from the first (top left) row on, the contradiction can be easily

seen when we arrive at the last column and last row (red circles), that bring different results to

the same observable Y Y, as witnessed by the following simple calculation, (XZ) · (ZX) = Y Y,

and (XX) · (ZZ) = −(Y Y ). Kochen-Specker contextuality refers to the fact that the outcome

of a sharp measurement does depend on the other compatible measurements that we perform

with it (i.e. on the contexts). The Peres-Mermin square is an example of state-independent

contextuality, as the argument does not depend on the state the observables are measured on.

Another popular manifestation of contextuality is the Greenberger-Horne-Zeilinger (GHZ)

paradox [46]. In this case the key ingredient for the argument is the GHZ state, |000〉+|111〉√
2

, and

the mutually commuting observables XXX,XY Y, Y XY, Y Y X. The GHZ state is the common

eigenstate of these four operators, with the eigenvalues being +1,−1,−1,−1 respectively. By

considering these observables, the quantum predictions are in conflict with any non-contextual

hidden variable model that assigns definite pre-existing values, +1 and −1, to the local Pauli

observables X,Y. Let us denote these definite values as λx1, λx2, λx3, λy1, λy2, λy3 in correspon-

dence of each local Pauli X and Y. The product of the three observables XY Y, Y XY, Y Y X,

that must yield the outcome −1, in the hidden variable model means the following expression

λx1λx2λx3λ
2
y1λ

2
y2λ

2
y3 = −1. However this is in neat contradiction with the outcome of XXX

which is +1, and corresponds to λx1λx2λx3 = +1. Notice that, unlike the Peres-Mermin square
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example, the GHZ paradox is an example of state-dependent contextuality, as the argument

crucially relies on considering the GHZ state.

We mention that there are ways to quantify contextuality based on the graph theoretic

approach [115–118]. The idea is to associate contextual experiments to exclusivity graphs G,

where events ej , that are denoted with conditional probability distributions of outcomes given

tests, are associated to the vertices of the graph and mutually exclusive events are connected

by adjacent edges. Two events ei, ej are mutually exclusive if there exist two joint observables

Oi, Oj , each associated to one of the events, that distinguish between them. From the graph it

is possible to calculate linear combination of probabilities of a subset of events, S =
∑

iwip(ei),

with some weight wi ≥ 0, that we can assume to be wi = 1 for every i to simplify the argument.

It results that, when considering non-contextual hidden variable models, these expressions are

bounded by the independence number of the graph α(G), which is the maximum number of non-

connected vertices in the graph G. This result is known as Cabello-Severini-Winter inequality,

S ≤ α(G). (3.3)

Upper bounds for quantum theories and more general theories exist, but we do not formulate

them as we will not study post-quantum theories in the current work. We do not treat the

sheaf theoretic approach to contextuality, as developed by Abramsky and Brandenburger [119],

that also provides a resource theory for contextuality [120]. In our research that involves state-

injection schemes based on SQM, this approach does not look ideal as their notion of strong

contextuality is present already in qubit SQM, which, as already illustrated, is efficiently simu-

latable by a classical computer by the Gottesman-Knill theorem 8. Nevertheless we mention a

result, obtained from the framework of Abramsky and Brandenburger, showing that contextual-

ity is a necessary resource when computing non-linear Boolean functions in measurement-based

quantum computation [78].

We now introduce the generalised notion of contextuality introduced by Spekkens in 2005

[34]. It is defined in the so-called operational framework of a physical theory. According to

this framework the role of the operational theory is just to provide the rules to compute the

statistics that we observe in the laboratory, without any reference to some physical reality. The
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primitive elements of the operational approach are the experimental procedures, i.e. lists of

instructions to be implemented in the laboratory, usually classified in preparation procedures,

transformation procedures and measurement procedures. More precisely, a physical theory has

to provide the rules to compute the probability p(k|P, T,M), of some outcome k, given the

preparation P, transformation T and measurement M on the system considered. According

to this approach, the only thing that matters about quantum mechanics is the Born rule, i.e.

p(k|ρ, ε,O) = Tr(ε(ρ)Πk), where the preparation procedure is associated with the quantum state

ρ, the transformation procedure with the completely-positive trace-preserving map ε and the

measurement procedure with the POVM {Πk}. Two experimental procedures, e.g. preparations,

P, P ′ are said to be equivalent if they provide the same statistics:

p(k|P, T,M) = p(k|P ′, T,M) ∀T,M. (3.4)

We denote with e(P ) the equivalence class of equivalent preparation procedures. Similarly,

we denote with e(M) the equivalence class for measurement procedures and with e(T ) the

equivalence class for transformation procedures.

A natural way of justifying why an operational theory works is to assume that there ex-

ist physical systems that are the subjects of the experiment. These systems have properties

independent on the fact that an experiment is performed and on the existence of an observer

that knows about them. According to the ontological model framework [34] the physical prop-

erties of the system are specified, at a given time, in the ontic state of the system, which

is represented by a point λ in a measurable set Λ. Ontological models are usually taken as

synonyms of hidden variable models. However, we adopt the former terminology because, in

principle, we could build an ontological model where none of the variables are hidden (see for

example [121]). The ontological model of an operational theory associates the experimental

procedures to probability distributions on the ontic space Λ. A preparation procedure P pre-

pares an ontic state of the system and is represented by a probability distribution µP (λ) over

the ontic space, µP : Λ → [0, 1] such that
∫
µP (λ)dλ = 1. A transformation procedure T is

represented by transition matrix ΓT (λ′, λ) over the ontic space, ΓT : Λ × Λ → [0, 1] such that
∫

ΓT (λ′, λ)dλ′ = 1. A measurement procedure M with associated outcomes labeled by k is
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represented by a set of indicator functions {ξM,k(λ)}k over the ontic space, ξM,k : Λ → [0, 1]

such that
∑

k ξM,k(λ) = 1. The ontological model framework reproduces the predictions of the

operational theory according to the law of classical total probability,

p(k|P, T,M) =

∫
dλ′dλξM,k(λ

′)ΓT (λ′, λ)µP (λ) (3.5)

for all P, T and M. As already mentioned, Spekkens’ theory is an example of ontological model,

where the ontic space is the phase space.

An ontological model of an operational theory is preparation non-contextual if µP (λ) =

µe(P )(λ) ∀P. An ontological model of an operational theory is transformation non-contextual

if ΓT (λ′, λ) = Γe(T )(λ
′, λ) ∀T. An ontological model of an operational theory is measurement

non-contextual if ξM,k(λ) = ξe(M),k(λ) ∀M,k. An ontological model of an operational the-

ory is universally non-contextual if it is non-contextual for all the experimental procedures.

When considering quantum mechanics, the equivalence classes of preparation procedures are

the density operators ρ describing the quantum states. The equivalence classes of transforma-

tion procedures are the completely-positive trace-preserving maps ε describing the quantum

transformations. The equivalence classes of measurement procedures are the POVM {Πk} de-

scribing the quantum measurements. It can be shown that a universally non-contextual ontolog-

ical model of quantum mechanics is impossible (even for just one qubit, unlike Kochen-Specker

no-go theorem 10) [34].

Examples of contexts for preparation procedures in quantum mechanics are the convex

decompositions of a non-rank-1 quantum state. Examples of contexts for transformation proce-

dures are the convex sums of unitaries that define certain completely-positive trace-preserving

maps. Examples of contexts for measurement procedures are the convex decomposition of

non-maximal measurements (i.e. POVM where at least one element is not rank 1). The con-

texts considered in the Kochen-Specker definition of contextuality, that only deals with sharp

measurements, are a particular kind of the ones considered here. More precisely, if we con-

sider projectors Pk, Pj and Pl with commutators [Pk, Pj ] = [Pk, Pl] = 0 and [Pj , Pl] 6= 0, the

non-rank-1 projector Pk has a common diagonalising basis with Pj and another one with Pl.

These two different bases provide two different convex decompositions of Pk. In light of this
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new definition of contextuality, the original definition by Kochen and Specker manifests a hid-

den assumption: the indicator functions ξM,k are always assumed to take values either 0 or 1.

This assumption is called outcome determinism. Kochen-Specker non-contextuality is Spekkens

non-contextuality for sharp measurements plus outcome determinism.

In conclusion, Spekkens’ contextuality generalizes the original notion of contextuality by

Kochen-Specker, separating it from the notion of outcome determinism and extending it to

unsharp measurements, preparations and transformations. Nevertheless, in the next subsection

the notion due to Kochen-Specker will be assumed when treating the literature regarding the

role of contextuality in state-injection schemes of quantum computation. One of the reasons

is that with the generalised notion, also simple classically simulatable theories, like one qubit

SQM, are contextual [122]. We will provide few examples of quantum computational advantages

related to the generalised notion of contextuality in the next chapter, subsection 4.1.2. Figure

3.3 depicts the relations between the notions of non-contextuality defined in this subsection.

3.1.3 Contextuality as a computational resource

In 2014, Howard et al. showed that the contextuality possessed solely by the magic state is

a necessary resource for UQC in state-injection schemes on qudits of odd prime dimensions

[54]. More precisely, they proved that a noisy input state must violate Cabello-Severini-Winter

inequality (equation (3.3)) in order to be distilled into a magic state. Therefore UQC via magic

states implies that the magic state manifests contextuality. The free part of the computation

is composed by stabilizer circuits and the inequality is built considering a scenario where the

vertices of the graph represent stabilizer rank-1 projectors.

This result triggered a whole field of research focused on studying the role of contextuality

in quantum computation. The main question that remains open is to find a result analogue to

Howard’s for qubits. As already discussed, multi-qubit SQM shows state-independent contex-

tuality, which means that the result of Howard et al. cannot be extended to the qubit case.

However, it is possible to restrict the free part of the computation to subtheories of SQM and

obtain analogous results to the qudit case. In 2015, Delfosse et al considered state-injection

schemes on rebits, where the free part is composed by the CSS circuits, presenting no state-

independent contextuality. More precisely, we define the CSS subtheory, that we denote with
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Figure 3.3: Schematic representation of the relations between different notions of
non-contextuality. The notion of non-contextuality due to Spekkens [34] generalises the
notion due to Kochen-Specker [33], separating it from the notion of outcome determinism
and extending it to unsharp measurements, preparations and transformations. Non-contextual
ontological models of quantum mechanics are impossible for both notions (and also for just
preparation and transformation non-contextuality, but not for measurement non-contextuality,
as proven in [34]). There exist examples of Kochen-Specker contextuality that, given a set of pro-
jective measurements, arise only for certain states. In this case we talk about state-dependent
contextuality (the usual example of this is the GHZ paradox). Violations of Cabello-Severini-
Winter (CSW) inequality quantify this contextuality. When the contextuality arguments hold
for any quantum state (e.g. in the Peres-Mermin (P-M) square) we talk of state-independent
contextuality. It results that qubit SQM is Kochen-Specker contextual, while odd dimensional
qudit SQM is not, due to the intrinsic difference in the structure of the Pauli groups in the two
cases.

(Sr, Tr,Mr), where Sr, Tr,Mr are the sets of allowed quantum states, transformations and

measurements respectively, as follows. The set Sr, a subset of the stabilizer states, is com-

posed by CSS states [87], i.e. stabilizer states |ψ〉 , whose corresponding stabilizer group S(|ψ〉)
decomposes into an X and a Z part; i.e. S(|ψ〉) = SX(|ψ〉) ∪ SZ(|ψ〉), where all elements of

SX(|ψ〉) and SZ(|ψ〉) are of the form X(x) and Z(p), respectively, where x, p ∈ Zn2 . CSS states
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are the eigenstates of the allowed observables belonging to the set Mr,

Mr = {X(x), Z(p)|x, p ∈ Zn2}. (3.6)

The set of allowed transformations is composed by the CSS preserving gates, subset of the

Clifford group Cn,2,

Tr = {g ∈ Cn,2|g |ψ〉 ∈ Sr,∀ |ψ〉 ∈ Sr}

=

〈
n⊗

i=1

Hi, CNOT (i, j), Xi, Zi

〉
,

(3.7)

where i, j ∈ {1, 2, . . . , n} and i 6= j. The universal quantum computation is reached by injecting

two particular magic states to the free subtheory of CSS rebits just described [55].

The proof that contextuality is a necessary resource for UQC injected with the magic states

is based on the construction of a contextuality witness similar to the Cabello-Severini-Winter

inequality, in the sense that they both consist of linear operators for which the range of ex-

pectation values allowed by quantum mechanics is strictly greater than the one allowed for

non-contextual ontological models. Moreover, they also developed a Wigner function that,

analogously to Gross Wigner function for odd qudit stabilizer states, is non-negative if and

only if it represents CSS states. It is defined as follows:

Ar(λ) =
1

2n

∑

T (λ′)∈A

(−1)[λ,λ′]Ŵ (λ′), (3.8)

where Ŵ (λ) = Z(p)X(x), λ = (x, p), and A = {Ŵ (λ)|x ·p = 0 mod 2}. The set A is the set of

inferred observables. “Inferred” means that these observables may not be directly measurable,

but they can be inferred by multiple measurements. For example, in the case of two qubits, the

setMr andA areMr = {II, IX, IZ,XI, ZI, XX,ZZ}, andA = {II, IX, IZ,XI, ZI, XX,ZZ,XZ,

ZX, Y Y }, i.e. the set of all rebits observables. Delfosse’s Wigner function shares most of the

properties that Gross’ Wigner function possesses, as defined in the previous chapter. How-

ever, it is not factorizable (equation (2.26)), i.e. it is composed by phase-point operators

of n qubits that are not given by the tensor products of the ones for the single qubit, e.g.
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Ar((0, 0), (0, 0)) 6= Ar(0, 0)⊗Ar(0, 0).

There is a strict relation between the notions of contextuality and negativity of the Wigner

functions (and more general quasi-probability representations). More precisely, as proven

in [123], the existence of a non-negative quasi-probability distribution representing a subtheory

is equivalent to the existence of a non-contextual ontological model for it. Therefore, finding a

non-negative Wigner function for a subtheory guarantees that it is non-contextual. The con-

verse is not true, as it may be that quasi-probability representations different from the Wigner

functions are non-negative even if the Wigner functions unavoidably show some negativity.

When restricted to Pauli measurements, in the case of qudits of odd dimensions, Delfosse et

al. proved that the negativity of the Wigner functions and Kochen-Specker contextuality are

equivalent notions [124]. This result does not hold for a single qudit, for which there are states

that fit in a non-contextual ontological model, even if no non-negative Wigner functions exist.

When considering more generic subtheories of multi-qubit SQM that represent the free part

of the computation, the obstacle to be avoided in order to find results showing contextuality

as a resource possessed solely by the magic state is again the presence of state-independent

contextuality. In 2017, Bermejo-Vega et al. showed that, with the condition that the free

part of the computation does not show state-independent contextuality, the contextuality of

the magic state is a necessary resource for universal quantum computation. The proof they

developed is quite different from the previous ones based on the construction of a contextuality

witness. It relies on a characterization of non-contextual ontological models of state-injection

schemes on qubits, which shows a contradiction if universality of the scheme and the non-

contextuality of the magic state are assumed. This result is also treated in the framework of

Raussendorf et al., which is based on Wigner functions [57]. We now describe this framework,

that will be crucial to state the results of this chapter.

3.1.4 Raussendorf et al framework and the 8-state model

As already mentioned and witnessed by the Wigner function of equation (3.8) used for the

state-injection scheme on rebits, in the case of qubits a Wigner function that shares all the

properties (in particular the non-negativity of the free part of the computation) of the Wigner

function defined in equation (2.22) by Gross does not exist. We now introduce a framework
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for Wigner functions that includes all the Wigner functions defined so far and that will provide

the bridge between subtheories of Spekkens’ toy model and subtheories of quantum mechanics.

This framework describes a class of Wigner functions parametrized by a function γ : Ω → Zq,

for some integer q. We start by redefining the Weyl operators of equation (2.11), that we now

denote as Ŵ γ(λ), taking into account the parameter γ,

Ŵ γ(λ) = wγ(λ)Z(p)X(x), (3.9)

where, as usual, the phase-space point is λ = (x, p) ∈ Ω, and wγ(λ) = iγ(λ) in the case of qubits

and wγ(λ) = e−2−1 2πi
d
γ(λ) in the case of qudits of odd dimensions. The Wigner function of a

quantum state ρ is defined as4

W γ
ρ (λ) = Tr(Aγ(λ)ρ), (3.10)

where the phase-point operator is

Aγ(λ) =
1

NΩ

∑

λ′∈Ω

χ([λ, λ′])Ŵ γ(λ′). (3.11)

The function χ is defined as χ(a) = (−1)a for qubits and χ(a) = e
2πi
d
a for qudits of odd

dimensions. We will omit the superscript γ in the future in order to soften the notation.

The normalisation NΩ is such that Tr(A(λ)) = 1. The operators X(x), Z(p) represent the

(generalised) Pauli operators of equations (2.12) and (2.13). The function γ, which is only

constrained by the requirement that the Weyl operators are Hermitian, will be specified in the

next section according to the subtheory the Wigner function non-negatively represents. The

above Wigner functions are quasi-probability distributions satisfying the properties of equations

(2.23), (2.24), (2.25) , but in general they do not satisfy the factorizability property of equation

(2.26). Moreover we now state again the most important property of the Wigner functions for

this chapter: the property of covariance for a unitary U (see equation (2.27)). It means that,

for all the allowed states ρ in the theory,

WUρU†(λ) = Wρ(Sλ + a), (3.12)

4The Wigner function associated to a measurement element Πk is defined analogously.
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where S is a symplectic transformation and a is a translation vector. This property guarantees

that the transformations in quantum mechanics correspond to symplectic affine transformations

in the phase space and it is not necessarily implied by the definition of the Wigner functions

above.

In [57] Raussendorf et al. considered only the case of state-injection schemes on qubits and

characterised the subtheories of qubit SQM for the free part of the computation that have

non-negative Wigner functions for states and measurements. They also imposed two further

requirements: the free measurements preserve the non-negativity of the Wigner function and

are tomographically complete, i.e. they allow to fully measure the density matrix ρ of any

n−qubit quantum state. 5 The first requirement ensures the “classicality” of the free part of

the computation, meaning that a classical simulation procedure of it can be implemented [57,

Section IV]. This also guarantees the absence of state-independent contextuality. In principle,

the requirement of positivity preservation under free measurements tends to restrict the number

of possible allowed observables in the subtheory. Therefore they also require tomographic

completeness, i.e. any state can be fully measured by the observables allowed in the free

part of the scheme, to be sure that the set of free observables is still large enough for the

state-injection scheme to function. Notice that, unlike the case of measurements, they allow

gates that introduce negativity in the Wigner functions, i.e. non-covariant gates, the reason

being that the gates can always be absorbed in the measurements without altering the outcome

distribution of the computation (so not affecting the classical simulation of the subtheory).

Given these assumptions, the choice of γ in the Wigner function of equation (3.10) uniquely

defines a non-contextual subtheory of qubit SQM for the free part of the state-injection scheme.

Before seeing how, let us recall, from [57], that the function γ uniquely specifies the function

β(λ, λ′), defined such that Ŵ (λ)Ŵ (λ′) = wβ(λ,λ′)Ŵ (λ+ λ′). More precisely,

β(λ, λ′) = γ(λ) + γ(λ′)− γ(λ+ λ′)− xp′, (3.13)

where λ = (x, p) and λ′ = (x′, p′). It results that the observable Ŵ (λ) preserves non-negativity

if and only if β(λ, λ′) = 0 ∀ λ′ s.t. [λ, λ′] = 0, as proven in [57, lemma 1]. Here below is the list

of instructions to obtain the non-contextual subtheory of qubit SQM, described by the sets of

5Tomographic completeness can also be checked via the condition stated in [57, Equation 17].
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quantum states S, transformations T and observables M, from the choice of γ and given the

two requirements described above.

1. The function γ uniquely defines the set of allowed observables, M = {Ŵ (λ) | β(λ, λ′) =

0 ∀ λ′ s.t. [λ, λ′] = 0}.

2. The set of allowed states S is given by the states corresponding to common eigenstates

of commuting observables in M.

3. The set of allowed gates is T = {U ∈ Cn,d| UρU † = ρ′ ∈ S ∀ ρ ∈ S}. This is a subset of

the Clifford unitaries.

With this framework, Raussendorf et al. proved that negativity and contextuality of the

magic states are necessary resources for UQC.

Another important work on non-negative representations of qubit SQM is due to Wallman

and Bartlett [83]. They exploited the broader formalism of the quasi-probability distributions to

find a non-negative representation and a non-contextual ontological model (in terms of measure-

ments and preparations) of one qubit SQM. They built the so-called 8-state model, where the

one-qubit quantum states (and measurement elements) are represented as uniform probability

distributions over an ontic space of dimension 8 (doubling the dimension of the standard phase

space) and the Clifford transformations – generated by the Hadamard H and phase gate S –

are represented by permutations over the ontic space. In the previous chapter, section 2.1.3, we

introduced in equation (2.31) the standard Wigner function for one qubit SQM firstly developed

by Wootters, Gibbons and then extensively studied by Galvao and collaborators [44,45,96,97].

In [97] it is shown that non-negative Wigner functions for one qubit stabilizer with the desired

properties (equations (2.23), (2.24), (2.25), (2.26) and (3.12)) can only be of two kinds: either

with phase point operators as in equation (2.31), with an even number of minuses, or with

phase-point operators obtained from A−(0, 0) = 1 +X + Y − Z by applying the X,Y, Z Pauli

operators by conjugation, thus having an odd number of minuses. We denote the two Wigner

functions with W+ and W− respectively. Both these Wigner functions fit in the framework

of Raussendorf et al. defined above, with the choice of γ as γ(λ) = p · x mod 4, and up to

the swapping of Z(p) and X(x) in the definition of the Weyl operators (equation (3.9)). The
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states that are non-negatively represented according to W+ and W− can be represented in the

quantum states space, i.e. the Bloch sphere (figure 3.4).

The idea of the 8-state model is to use a quasi-probability distribution that takes into

account both the Wigner functions W+ and W−. It is clear, as shown in the figure 3.4, that

the states that are non-negative in both the Wigner functions constitute the octahedron that

describes the stabilizer states in the Bloch sphere. The 8-state model has been recently proven

to be transformation contextual (as well as the one qubit SQM), since there are completely-

positive trace-preserving maps that are operationally equivalent, but unavoidably different at

the ontological level. For example, the completely depolarizing channel ε, defined such that

ε : ρ → I/2 ∀ρ, can be given by two decompositions, ε1 =
∑

P PρP, where P denotes a Pauli

operator, and ε2 =
∑

P (HP )ρ(HP ), where H is the usual Hadamard gate, that can always

be distinguished at the ontological level (they correspond to two different permutations) [122].

Transformation contextuality is here caused by the non-covariant gates (e.g the Hadamard

gate), thus suggesting a strict relation between the notions of transformation contextuality and

non-covariance.

The proposed and straightforward generalisation of the 8-state model to more than one

qubit consists of considering the distributions built from the tensor products of the phase-point

operators of the single qubit. The resulting subtheory of qubit SQM described by the model

is the one composed by all the product states of tensors of Pauli X,Y, Z observables and all

the local Clifford unitary gates (generated by local H and S). No entanglement is present.

Nevertheless it is possible to reach universal quantum computation from this subtheory by

performing measurement-based quantum computation [15] with a particular entangled cluster

state, as shown in [56,57].

The remainder of the chapter mainly reports the material contained in [49], which is a joint

work with Nadish De Silva and Dan Browne, and [50], which is a joint work with Dan Browne.
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Figure 3.4: Non-negative Wigner functions of one qubit SQM. The figure above shows
the states that are non-negative according to the two possible Wigner functions W+ and W−
for one qubit defined in [97]. The intersection of the two non-negative sectors in the Bloch
sphere forms the stabilizer octahedron. The idea behind the 8-state model of Wallman and
Bartlett [83] is to consider a quasi-probability distribution over an ontic space with twice the
dimension of the standard phase space and consider both the two Wigner functions.

3.2 Characterisation of Spekkens’ subtheories

3.2.1 Definition

A Spekkens’ subtheory is defined as a set of quantum states, transformations and measurements,

(S, T ,M), which satisfies the following conditions.

1. Subtheory. The set must be closed, which means that any allowed gate cannot bring from

one allowed state to a non-allowed one.

∀ U ∈ T , UρU † ∈ S ∀ρ ∈ S. (3.14)

2. Spekkens representability. There must be an operational equivalence between the subthe-

ory of quantum mechanics (S, T ,M), defined by sets of quantum states, transformations

and measurements, and a subtheory of Spekkens’ toy theory (Ss, Ts,Ms), defined by sets

of epistemic states, symplectic affine transformations and measurements as defined in the
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previous chapter (subsection 2.1.1).

The operational equivalence means that the statistics of the two subtheories (S, T ,M)

and (Ss, Ts,Ms) are the same. We state this equivalence by finding a non-negative Wigner

function that maps the states ρ and the measurement elements Πk in (S,M) to epistemic

states and measurement elements in (Ss,Ms), i.e.

Wρ(λ) =
1

N
Tr(ρA(λ)) =

1

N
δ(V ⊥+w)(λ); (3.15)

WΠk(λ) =
1

N ′
Tr(ΠkA(λ)) =

1

N ′
δ(V ⊥Π +rk)(λ). (3.16)

The N,N ′ are the normalisation factors so that
∑

λ∈ΩW (λ) = 1 for all the above Wigner

functions. Notice at this point that the measurement update rules defined in the previous

chapter (theorem 6) guarantee that also a state after a measurement is non-negatively

represented if the measurement and the original state have non-negative Wigner functions,

as they involve only sums and products of Wigner functions. Moreover we are considering

subtheories with duality between states and measurement elements, therefore it is enough

to check only the properties of the Wigner functions of states (or measurements) to

guarantee Spekkens representability.

The operational equivalence in terms of transformations is implied if the Wigner function

(3.15) satisfies the property of covariance (3.12) for the allowed unitaries U ∈ T , which

guarantees that the transformations in quantum mechanics correspond to transformations

that preserve the epistemic restriction in ST. Notice that the property of covariance

is defined in terms of Wigner functions and not directly in terms of the phase point

operators.6 Therefore we do not necessarily need to demand for the standard Wigner

function of the transformation, defined as WU (λ/λ′) = 1
N ′Tr(A(λ)UA(λ′)U †), to be non-

negative in all the elements, once the previous requirements, non-negativity and covariance

of Wρ, are satisfied. The transition matrix corresponding to the allowed permutation of

the phase points can be always found, as shown by the following lemma.

Lemma 4. Given a non-negative Wigner function representation, Wρ,Wρ′ , of any two

6This will make a difference only in the next subsection, where we consider factorisable Wigner functions for
the CSS rebit case.
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allowed states ρ, ρ′ ∈ S such that ρ′ = UρU †, where U ∈ T , and covariance holds, i.e.

Wρ′(λ) = Wρ(Sλ+a), there always exists a (non-negative) transition matrix PU : Ω×Ω→
[0, 1] representing the transformation U ∈ T ,

PU (λ/λ′) =
1

N ′′
δλ,Sλ′+a, (3.17)

where N ′′ is the normalisation factor, such that

Wρ′(λ) =
∑

λ′∈Ω

PU (λ/λ′)Wρ(λ
′). (3.18)

Proof. A matrix made of non-negative elements PU (λ/λ′) proportional to Kronecker

deltas always exists because it corresponds to the transition matrix representing the per-

mutation that brings Wρ to Wρ′ . More precisely, non-negative solutions PU (λ/λ′) to the

equations (3.18) for every λ, given the non-negative Wρ(λ
′),Wρ′(λ) defined in (3.10), al-

ways exist. For every fixed λ, the PU (λ/λ′) are vectors with all zero components apart

from one, i.e. they are proportional to Kronecker deltas. The covariance property (3.12)

guarantees that this permutation corresponds to a symplectic affine transformation on

the phase space points (independent on the state ρ that U is acting on).

The non-negative functions (3.15), (3.16) and (3.17) can be interpreted as probability

distributions and guarantee that the theories (S, T ,M) and (Ss, Ts,Ms) are operationally

equivalent, i.e. they provide the same statistics:

p(k) = Tr(ΠkUρU
†)

=
∑

λ∈Ω

WΠk(λ)
∑

λ′∈Ω

PU (λ/λ′)Wρ(λ
′).

(3.19)

To sum up, a Spekkens’ subtheory is a (closed) subtheory of quantum mechanics whose

states (and measurements) are represented by non-negative and covariant Wigner functions.

We say that a Spekkens’ subtheory is maximal if the set (S, T ,M) is such that by adding either

another state, gate or observable to the set of allowed states, transformations and observables

at least one of the conditions above is violated, i.e. it is no longer a subtheory or Spekkens-
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representable. We will also talk about minimal non-contextual subtheories of SQM meaning

those subtheories that can no longer be used for state-injection schemes after the removal of

just one object from them.

3.2.2 Examples

We now show that the known examples by Howard et al. [54] and Delfosse et al. [55] of state-

injection schemes with contextuality as a resource fit into the framework depicted in figure 3.1,

i.e. that the free parts of those schemes are Spekkens’ subtheories.

In the case of qudits of odd dimensions, as we already discussed in subsection 2.1.3, Gross’

theorem [43] guarantees that there is a non-negative Wigner representation of all stabilizer

states. This Wigner function is covariant and also Clifford transformations and Pauli mea-

surements are non-negatively represented. Thus Gross’ Wigner function proves the operational

equivalence, in odd dimensions, between SQM and the whole ST, as shown in the previous

chapter. Gross’ Wigner function is defined in equation (2.22) and corresponds to equation

(3.10) with the function γ given by γ(λ) = x · z. In the scheme of Howard et al. the free part of

the computation is given by SQM in odd prime dimensions, which, by Gross’ Wigner functions,

is a maximal Spekkens’ subtheory.7

In the case of rebits studied by Delfosse et al. the Wigner function of equation (3.8) is

always non-negative for CSS states and it is covariant for the CSS-preserving gates. In terms

of the definition provided in equation (3.10), the function γ is γ(λ) = 0. This choice guarantees

that the phase point operators are Hermitian. However the price to pay for the Hermitianity in

this case is the non-factorisability of the Wigner function (equation (2.26)). One may wonder

whether the non-factorisability of the Wigner function is necessary to treat the CSS case and

preserve the non-negativity and covariance. Here we show that it is not. We define a Wigner

function that, we argue, is more in line with the construction of ST, where the ontic space of n

systems is made by the cartesian products of individual systems’ subspaces. The non-negative,

covariant and factorisable Wigner function for the CSS theory is built out from the single-qubit

phase-point operators

Af (0, 0) = I +X + Z + iY. (3.20)

7Stabilizer quantum mechanics in odd dimensions is the unique maximal Spekkens’ subtheory, since it coincides
with the whole Spekkens’ theory.
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The phase point operators Af (0, 1), Af (1, 0), Af (1, 1) are given by applying the Pauli X,Y, Z

respectively by conjugation on Af (0, 0). The phase point operators of many qubits are given

by tensor products of the ones for single qubits Af (0, 0), Af (0, 1), Af (1, 0), Af (1, 1). Notice that

the phase point operators are not Hermitian; however the allowed observables are only present

in their Hermitian part (e.g. for the single qubit in I + X + Z). We now need to prove the

following lemma.

Lemma 5. The Wigner function of Delfosse et al. Wr(λ) = Tr(ρAr(λ)), given by (3.8), is

equivalent to the factorisable Wigner function Wf (λ) = Tr(ρAf (λ)), given by (3.20), for any

ρ ∈ Sr.

Proof. What we need to prove is actually that Ar(λ) = H(Af (λ)), where H(Af (λ)) indicates

the Hermitian part of the phase point operator Af (λ). The non-Hermitian part of Af (λ) has

zero contribution to the Wigner function. It is always composed by tensors of mixtures of Pauli

operators with an odd number of Y ’s, that never form allowed observables and so are never in

the stabilizer group of any ρ ∈ Sr. This implies that the non-Hermitian part of Af (λ) has no

contribution to the Wigner function as Pauli operators (apart from the identity) are traceless.

However the non-Hermitian part of Af (λ) is important since when its operators compose into

phase point operators for multiple qubits, they sometimes provide Hermitian operators that

contribute to the Wigner function. We know that Ar(λ) is defined as the sum of observables

Ŵ (λ), where λ = (x, p) such that x ·p = 0 mod 2. We can now see that also H(Af (λ)) is given

by the sum of observables subjected to the same condition of having zero inner product between

the components. This condition indeed singles out all the rebit observables, which are the only

ones we are interested in. Given an observable Ŵ (λ) = Z(p)X(x) in Af (λ), with λ = (x, p)

and x, p ∈ Znd , it is Hermitian if and only if Ŵ (λ) = Ŵ (λ)†. This means that

Ŵ (λ)† = X(x)Z(p) = (−1)x·pŴ (λ),

which holds if and only if x · p = 0 mod 2.

In conclusion, by using one of the above Wigner functions, (3.8) or (3.20) , given the duality

between states and measurement elements, the covariance and lemma 4, we can conclude that
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CSS rebits subtheory is Spekkens representable. Moreover, the definition of CSS-preserving

transformations guarantees the closure property and the fact that CSS states are the ones and

only ones with non-negative Wigner function [55] ensures that it is maximal. Therefore the

CSS rebit subtheory of quantum mechanics is a maximal Spekkens’ subtheory.

3.3 Spekkens’ subtheories as toolboxes for state-injection

We now prove that qubit stabilizer quantum mechanics can be obtained from a Spekkens’

subtheory, in the sense that within Spekkens’ subtheories it is possible to build a state-injection

scheme that injects all the objects of qubit stabilizer quantum mechanics that are not in the

subtheories. We need to understand which objects do we actually need to inject to reach the

full multi-qubit SQM from a Spekkens’ subtheory. We here state the list of instructions to

construct the maximal Spekkens’ subtheory that corresponds to a given choice of γ, in analogy

with the framework of [57] defined in subsection 3.1.4.8

1. The function γ uniquely defines the set of allowed observables, M = {Ŵ (λ) | β(λ, λ′) =

0 ∀ λ′ s.t. [λ, λ′] = 0}.

2. The set of allowed states S is given by the states corresponding to common eigenstates

of commuting observables in M.

3. The set of allowed gates is T = {U ∈ Cn,d| UρU † = ρ′ ∈ S ∀ ρ ∈ S, and WUρU†(λ) =

Wρ(Sλ + a) ∀ λ ∈ Ω}. This is a subset of the Clifford unitaries.

Let us point out that the above construction differs from [57] in that it does not require

tomographic completeness and it does require covariance of the Wigner functions. With respect

to the Wallman-Bartlett 8-state model [83] the difference holds for analogous reasons. We now

show that the implementation of all the non-covariant Clifford unitaries would boost Spekkens’

subtheories, composed by covariant Clifford gates, to the full qubit SQM.

8Notice that with the following construction a given γ provides the maximal Spekkens’ subtheory, but the
Wigner function from the same γ can, obviously, be used to represent any smaller subtheory of the maximal
Spekkens’ subtheory.
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Theorem 11. Qubit stabilizer quantum mechanics can be obtained from a Spekkens’ subtheory

via state-injection: all the possible non-covariant Clifford gates can be state-injected via a circuit

made of objects in the Spekkens’ subtheory.

Proof. In order to prove that qubit stabilizer quantum mechanics can be obtained from a

Spekkens’ subtheory via state-injection we need to show that all the objects needed for injecting

any non-covariant Clifford gate are present in at least one Spekkens’ subtheory. We recall that

in order to generate the whole Clifford group we need, in addition to the CNOT, also the

generators of the local single gates, e.g. the usual phase and Hadamard gates, S,H. Let us

consider the following subtheory, which corresponds to the CSS rebit subtheory, equations

(3.6) and (3.7), with no global Hadamard gates:

• The allowed observables are, analogously to equation (3.6), non-mixing tensors of X and

Z Pauli operators, M = {X(x), Z(p)|x, p ∈ Zn2}.

• The allowed gates are the ones generated by the CNOT and the Pauli rotations X,Z, i.e.

T = 〈CNOT (i, j), Xi, Zi〉 . (3.21)

• The allowed states are, as usual, the eigenstates of the allowed observables.

This is a smaller subtheory than CSS rebit (the difference being the absence of the global

Hadamard gate). It possesses all the objects needed for state-injection of non-covariant gates.

The Z observables and the CNOT gate are present. The correction gates are always Pauli gates,

as for any injected Clifford unitary U, even when U is non-covariant, UX⊗nU †, by definition of

a Clifford gate, gives back a Pauli gate. All the objects of this subtheory can be non-negatively

represented by the Wigner functions for the CSS rebit theory of the previous section and also

in ST, as shown in figure 3.5. Therefore this subtheory is closed and Spekkens representable,

i.e. a Spekkens’ subtheory, and it is possible for it to reach universal quantum computation via

state-injection, as proven in details in the next section.

We are here interested in showing that we can obtain the whole Clifford group via state-

injection. Once we have it, we can map any of the allowed states and observables to any other in

qubit SQM. The whole Clifford group can be achieved by first injecting the CZ gate, as shown
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Figure 3.5: Representation of a minimal non-contextual subtheory of qubit stabilizer
quantum mechanics in Spekkens’ theory. In the figure above the allowed pure states 3.5a,
observables 3.5b and gates 3.5c,3.5d of the non-contextual subtheory of qubit SQM considered
in the proof of theorem 11 are represented in ST. In figure 3.5a, 3.5c and 3.5d we have also
indicated the probability distributions associated to the epistemic states and how the gates act
on them. In the examples of figures 3.5c,3.5d we have considered the scenarios corresponding
to acting with X,Y on |0〉 , with Z on |+〉 and with CNOT on |+0〉 (thus obtaining the Bell

state |00〉+|11〉√
2

).

in figure 3.6, that also provides a construction for the Hadamard gate (figure 3.7) and then the

phase gate S. The correction gate for the state-injection scheme of the S gate is given by the

Pauli Y gate, which is present, up to a global phase, in our Spekkens’ subtheory as a composition

of X and Z Pauli rotations. Notice that, even if the state-injection, as defined in 3.1.1, allows

to only inject diagonal unitary gates, we can here obtain also all the non-diagonal ones since

we have obtained a generating set of gates for all the Clifford unitaries. The other peculiarity

of the Spekkens’ subtheory we are considering is that it is minimal, as we cannot remove any

object from it without denying the possibility of achieving universal quantum computation.

One could think of removing the X(x) observables, but these play a crucial role in obtaining

the Hadamard gate. Moreover Spekkens’ subtheories with observables given by tensors of a
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single Pauli operator and basis preserving gates do not allow any state-injection scheme to

inject objects outside of them.

�
| i

Z�

Z

|+i

|+i Z

CZ | iCZ · XaXb · CZ

Figure 3.6: CZ injection. The first injection of our scheme is the injection of the CZ |++〉
state, needed in order to perform the correction in the injection scheme for the CCZ gate and
to produce the Hadamard gate. In the figure above the correction is CZ ·XaXb ·CZ conditioned
on obtaining x, y outcomes from the Z measurements, where (−1)a = x and (−1)b = y. For
example if the outcomes are x = 1, y = −1, the correction is CZ · IX · CZ = XZ, which is an
allowed gate in our subtheory.

| i

Z

X

|+i H | i

Figure 3.7: Hadamard gate via CZ. The Hadamard gate can be obtained once the CZ gate
is available. Obtaining H from CZ and X measurements was originally shown in [125].

The above theorem guarantees that a state-injection scheme can always be recast in the

following structure: Spekkens’ subtheory + Magic state(s) → UQC. ST contains all the tools

to do state-injection of non-covariant Clifford gates that appear in qubit SQM and also in its

subtheories bigger than Spekkens’ subtheories as formalised in [57]. Notice that the current

approach looks at the minimal non-contextual subtheories of SQM such that we can still reach

universal quantum computation via state-injection. All the times these minimal subtheories

are Spekkens’ subtheories. In the next section we describe how the minimal subtheory of rebit
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SQM used in the proof of theorem 11, equations (3.6) and (3.21), can reach universal quantum

computation through the injection of CCZ magic states.

3.4 State-injection schemes with CCZ states

The idea of reaching fault-tolerant universal quantum computation by exploiting Toffoli gates,

or CCNOT - control control X, goes back to Peter Shor in 1997 [101]. It is known that the

Toffoli gate (enough for universal classical computation) and Hadamard gate allow one to reach

universal quantum computation [102,103], and, in a sense, this is the most natural universal set

of gates, since the Toffoli allows one to achieve all the classical operations, and just by adding

the Hadamard gate, which creates superposition, they lead to universal quantum computation.

The same result holds if we use the related CCZ, control control Z, gate instead of the Toffoli

gate. Other examples of fault tolerant universal quantum computation involving Toffoli state

distillation have been proposed [104–107]. We here propose a scheme of CCZ injection with

the fewest possible objects in the free part of the computation. We reach that by also injecting

the CZ state before the CCZ. The state-injection scheme is depicted in figure 3.8.

+CSS rebits with 
no global H.

CZ and CCZ 
magic states UQC

Non-contextual	part Injected	
contextuality/
negativity

Quantum
speed-up

Figure 3.8: Novel state-injection scheme based on CCZ injection. By injecting first the
CZ state and then the CCZ state we can boost the subtheory of rebit SQM made of observables
that are tensors of non-mixing Pauli I, X, Z, and the gates generated by CNOT and the Pauli
rotations X,Z to universal quantum computation.

The free part is the one described in the proof of theorem 11 and defined by the equations

(3.6) and (3.21). This is the subtheory of CSS rebits with no global Hadamard, thus it is

a Spekkens’ subtheory. The state-injection scheme works with two state-injections: first the

state CZ |++〉 (figure 3.6), where the correction is given by the CZ ·XaXb · CZ conditioned
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Figure 3.9: CCZ injection. The second injection of our scheme is the injection of the
CCZ |+ + +〉 state. In the figure above the correction is CCZ · XaXbXc · CCZ condi-
tioned on obtaining x, y, z outcomes from the Z measurements, where (−1)a = x, (−1)b = y
and (−1)c = z. For example if the outcomes are x = −1, y = 1, z = 1 the correction is
CCZ ·XII · CCZ = X · CZ, which is an allowed gate in our subtheory.

on obtaining x, y outcomes from the measurements of Z’s, where (−1)a = x and (−1)b = y.

Just to give an example, for outcomes x = 1, y = −1 the correction is CZ · IX · CZ = XZ.

Secondly, the injection of the state CCZ |+ + +〉 (figure 3.9), where the correction is given by

CCZ · XaXbXc · CCZ, with outcomes x, y, z of the measurments of Z’s such that (−1)a =

x, (−1)b = y and (−1)c = z, e.g. CCZ · XII · CCZ = X · CZ if the outcomes are −1, 1, 1.

Notice that the injection of the CZ allows also to obtain the Hadamard gate, as shown in figure

3.7. With Hadamard and CCZ gates we then have a universal set for quantum computation.

The contextuality, which is not present in the subtheory of CSS rebits, is clearly present after

the two injections that lead to universal quantum computation.

A few comments on the free part of the scheme are needed. As already said, it is minimal,

in the sense that it is not possible to remove any object from the free part of the computation

without denying the possibility of obtaining universal quantum computation via state-injection.

Also it is a strict subtheory of the CSS rebit, where we allow all the same objects apart from

the global Hadamard. We argue that this is desirable, since in principle the Hadamard gate is

a local gate; we want to keep only the entangling gates to have a global nature.
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3.5 Proofs of contextuality and state-injections

The Spekkens’ subtheory used for the CCZ state-injection scheme of the previous subsection

allows us to establish a relation between the different resources injected and different proofs

of contextuality. Proofs of contextuality like the Peres-Mermin square argument and the GHZ

paradox [46–48] defined in subsection 3.1.2 are not present within the Spekkens’ subtheory,

which, as we know, always represents the absence of any form of contextuality. We now explicitly

show how these cases are obtained after the injections that bring in either the CZ gate or the

S gate. We also show that the popular non-Clifford gate T (equation (3.2)), in addition to the

Peres-Mermin square argument and GHZ paradox (with the condition that we can apply the

T gate at least two times, as T 2 = S), also allows one to formulate the argument that brings

to the CHSH inequality maximum violation [59]. These examples demonstrate that specific

states injected to the minimal Spekkens’ subtheory treated here can be considered resources for

specific manifestations of contextuality.

• Peres-Mermin square [47]. Let us consider the free Spekkens’ subtheory of the CCZ

injection scheme supplemented with the injection of the CZ state. It allows us to construct

a circuit to perform the Peres-Mermin square argument (subsection 3.1.2) . While in our

original Spekkens’ subtheory we are only allowed to perform the observables in the first

two rows of the square, with the presence of the CZ we can obtain the last row too,

since CZ · XI · CZ = XZ, CZ · IX · CZ = ZX and CZ · XX · CZ = Y Y. Figure 3.10

shows a circuit where we can perform all the contexts of the Peres-Mermin square on an

arbitrary input state |ψ〉 by just using objects belonging to the Spekkens’ subtheory and

CZ injections.

We can obtain the Peres-Mermin square argument also with the injection of the S gate.

This time the observables considered in the square are IX,XIX,XX, Y I, IY, IY, Y X,XY,ZZ.

The ones containing Y can be obtained by applying S to the X observable, while the oth-

ers are already present in our Spekkens’ subtheory.

• GHZ paradox [46]. In order to obtain the GHZ paradox we need to be able to implement

the GHZ state |000〉+|111〉√
2

, already present in our Spekkens’ subtheory, and the mutually

commuting observables XXX,XY Y, Y XY, Y Y X. While the first observable XXX is
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Figure 3.10: Peres-Mermin square via Spekkens’ subtheories and CZ gates. The above
circuit provides a way of implementing all the contexts of the Peres-Mermin square. Each block
denoted by CZ corresponds to the injection scheme of figure 3.6 endowed also with a swap gate
(which is present in our Spekkens’ subtheory as it can be made of a series of three alternated
CNOT gates) in order to set the output state CZ |ψ〉 as a precise modification of the input state
|ψ〉 (and not of the ancillary resource state CZ |++〉). Each context can be selected according to
some combinations of the classical control bits a, b, c, d, e, α, β, γ that can take values in {0, 1}.
The value 0 indicates that the corresponding gate is not performed. The value 1 indicates that it
is performed. At the end of every grey block (labelled by numbers) we assume that we can read
the output outcome. The three row contexts of the Peres Mermin square are identified by the
variables (d, e), (a, b, c) and (α, β, γ, d, e) assuming value one, respectively. The three column
contexts are identified by (a, d, γ) (b, e, γ) and (c, d, e, γ). Notice that in the last case where we
implement the context XX,ZZ, Y Y, the measurement of XX is implemented by performing IX
first and then XI, and in this case we consider the outputs related to the blocks labelled by
3, 5, 6.

already present in our Spekkens’ subtheory, the others can be obtained either by local S

gate or CZ gate on two of the three single Pauli operators composing each observable.

• CHSH argument [59]. If we consider our Spekkens’ subtheory with the addition of the T

gate we can obtain the maximum quantum violation of the CHSH inequality (equation

(4.1)). The CHSH game is an example that shows neat computational advantages of

certain quantum strategies over classical ones – expressed by the violation of the CHSH

inequality – and it will be precisely defined in the next chapter (subsection 4.1.1). For
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the purpose of this section, we just need to know that by using the Bell state

|00〉 − |11〉√
2

, (3.22)

which is a −1 eigenstate of XX and +1 eigenstate of ZZ, and the observables

A0 = Y, A1 = X, B0 = TY T † =
Y −X√

2
, B1 = TXT † =

X + Y√
2

, (3.23)

the maximum quantum violation of the CHSH inequality in equation (4.1) is obtained,

as 〈A0B0〉 = 〈A0B1〉 = 〈A1B0〉 = −〈A1B1〉 = 1√
2
. Notice that the Bell state that we

consider is present in our Spekkens’ subtheory, and that the observables are provided by

the presence of the T gate.

3.6 Conclusion

In this chapter we have defined the subtheories of ST that are compatible with quantum me-

chanics. They are the closed subtheories of ST that have non-negative and covariant Wigner

function representations. SQM is the maximal Spekkens’ subtheory in odd dimensions, as it

corresponds to the full ST. This is not true for qubits, as SQM is contextual and the toy theory

does not reproduce its statistics. We have used Spekkens’ subtheories as a unifying framework

for known examples of state-injection schemes of quantum computation with contextuality as

an injected resource [54,55], in the sense that they fit into the scheme of figure 3.1, i.e. Spekkens’

subtheory + Magic states → UQC, where Spekkens’ subtheories represent the non contextual

part of the computation and the contextuality arises in the injection of the magic states. Even

more, we have proven, in theorem 11, that multi-qubit SQM can be obtained from a Spekkens’

subtheory via state-injection, as all the objects which do not belong to the subtheory but are

present in SQM (namely non-covariant gates) can be state-injected with a circuit made of ob-

jects in the Spekkens’ subtheory. This means that for quantum computation via state-injection

we only need to study Spekkens’ subtheories, i.e. the part of ST that coincides with quantum

mechanics, because we can always generate the whole Clifford group by injection and therefore

all the other state-injection schemes of quantum computation can be mapped to our framework
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by injection.

In order to prove theorem 11 we have constructed a Spekkens’ subtheory which is a strict

subtheory of the CSS rebit theory (used in [55]) and provides a novel state-injection scheme that

allows to reach UQC by injections of CZ and CCZ states. This subtheory is minimal, meaning

that it is not possible to remove any object from it without denying the possibility of reaching

UQC via state-injection. By analysing the different injection processes in the above scheme we

have also associated different proofs of contextuality to specific state-injections of non-covariant

gates. In particular we have explicitly shown how the CZ and S gates are resources for the

Peres-Mermin proof of contextuality and the GHZ paradox, and how the T gate, used in the

most popular state-injection schemes [53], is a resource also for the CHSH argument.

With respect to previous related works, we have often referred to Raussendorf et al ’s frame-

work [57] as the main reference, since it is very general and it includes, for example, also the

subtheory of multi-qubit SQM that arise from the 8-state model formulation of Wallman and

Bartlett [83]. Raussendorf et al ’s framework differs from our Spekkens’ subtheories as it requires

tomographic completeness and it does not demand for covariant Wigner functions. In this work

we have preferred the tools provided by Spekkens’ toy theory, which has a less abstract struc-

ture, it is an intuitive and fully non-contextual ontological model and it is intrinsically related

to non-negative and covariant Wigner functions, because, as we prove in theorem 11, they are

enough to treat state-injection schemes of quantum computation. In particular, the CSS rebit

subtheory with no global Hadamard considered in section 3.4 and 3.5 is useful for quantum

computation via state-injection despite the fact that it is covariant and not tomographically

complete, as shown in section 3.5.

Notice that the state-injection schemes we have considered are the ones developed in [51],

which means that we are not considering cluster state computation, unlike in [57]. An open

question is how to extend theorem 11 to these more general schemes. A suggestion in this

direction comes from the example of cluster state computation provided in [56] and [57]. It

consists of a non-contextual free subtheory made of tensors of X,Y, Z Pauli observables, their

product eigenstates and all the local Clifford gates, and the resource is a specific entangled

cluster state. The free subtheory in this case is not a Spekkens’ subtheory, as the S and

H gates are not covariant if we allow all the product eigenstates of tensors of X,Y, Z Pauli
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observables. However, if we remove these local gates we can still implement the computational

scheme (which never needs to use those gates indeed) and obtain UQC with the same resource

state. In the latter case the free part is now a Spekkens’ subtheory. Therefore this example can

be actually recast in our framework.

Finally, we point out that all previous works [56, 57, 83] look at the biggest non-contextual

subtheories of SQM that allow to perform state-injection schemes of computation with contex-

tuality as a resource. Here instead, we have focused also on the smallest free subtheories such

that it is still possible to reach UQC via state-injection.

We believe that the results presented here suggest some related future projects. The impor-

tance of the property of covariance highlighted by our result could inspire one to study further

its relationship with non-contextuality. A recent work on contextuality in the cohomological

framework could give the right tools to address this question [126]. In particular, covariance

seems to be strictly related to Spekkens’ transformation non-contextuality [34]. As an exam-

ple of this, the single qubit SQM, already argued to be not covariant, shows transformation

contextuality (even if a preparation and measurement non-contextual model for it - e.g. the

8-state model - exists) [122]. A big open question regards which notion of contextuality is

actually the proper resource for UQC as, for example, it is known that qubit SQM, despite

being contextual, is efficiently classically simulatable [84]. It would be desirable to match the

notion of non-classicality in quantum foundations, namely contextuality, with the notion of

non-classicality in quantum computation, e.g. non-efficient classical simulatability. Finally, we

think that it would be interesting to extend ST to obtain a psi-epistemic ontological model of

the multi-qubit SQM. Possibly some extensions of the 8-state model can achieve this. In this

case it would be interesting also to know which epistemic restrictions these models would imply.

This would also help us understand which notion of contextuality is more appropriate to be

considered as a resource for UQC.
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Chapter 4

Tsirelson’s bound and Landauer’s

principle in a single-system game

So far we have focused on Spekkens’ theory, which has been a powerful tool for applications also

in quantum computation. However, we now take a different approach. In the previous chapter

we studied the role of contextuality in state-injection schemes of quantum computation, where

it acts as a resource to achieve UQC. In this chapter we consider a more restricted scenario that

manifests quantum computational advantages, where contextuality (in its standard definitions

of section 3.1.2, [33, 34]) is not present.

Computational protocols where strategies based on quantum mechanics perform better than

classical strategies have long been an important focus of study. A well-known example is the

CHSH game [127], a way of recasting the Clauser-Horne-Shimony-Holt (CHSH) formulation

of Bell’s celebrated theorem [32, 59] into a game for which quantum strategies can provide an

advantage. The CHSH game is a game between two players, Alice and Bob, who are separated

and unable to communicate with each other, and a referee who asks them binary questions.

They win if the sum of their answers is equal to the product of the questions (arithmetic modulo

2). The bound on the performances of classical strategies is known as the Bell bound, while

in the quantum case the maximum winning probability is bounded by the so-called Tsirelson

bound [60]. The CHSH game can be generalised to modq arithmetic in the CHSHq game,

which has been studied in [64–67]. Naturally, a key focus of these studies has been to find
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the Bell bound and Tsirelson bound for these games. However, success has been limited.

Upper bounds on the Tsirelson bound given by a precise mathematical expression have been

provided in [67] when q is a prime or prime power, but these are not known to be tight.

Moreover, numerical analysis on lower and upper bounds suggest different values [66]. The

CHSH game is of great importance because the sensitivity of its optimal success probability

depending on the underlying physical model gives us a tool to distinguish different types of

theories experimentally, and allows us to test nature. It also reveals insights into a non-classical

feature of quantum mechanics (known colloquially as “non-locality”), which has proven to be

a resource for quantum technologies, such as device independent cryptography [61,63].

Other protocols showing similar features to the CHSH game exist [68,69]. In particular, in

quantum random access codes (QRACs),1 where Alice encodes m bits in n < m information

carriers to communicate to Bob the value of one of the bits (randomly chosen), the optimal

classical and quantum strategies are closely related to the ones used in the CHSH protocol and

provide the same bounds.

Inspired by these works, we here propose and investigate a single-system protocol, which is

a simple single-player variant of the CHSH game. To play the game, the player has a system in

a fixed initial state, two gates controlled by classical input bits and a measurement at the end

(figure 4.4). The task is to output a non-linear function – the product – of the input bits in

mod 2 arithmetic. Due to its similarity with the CHSH game we call it the CHSH* game. How-

ever, unlike the CHSH game that involves two space-like separated parties, the CHSH* game

cannot involve any non-locality argument to explain the computational advantages. Similarly,

it does not show any contextuality (at least in its usual formulations [33, 34]), as there are no

contexts as usually defined (the projective measurement is fixed, the system is, in principle, in

a fixed pure state and transformations are unitaries that do not form operationally equivalent

decompositions of a completely-positive trace-preserving map).

We study the probability of success of the CHSH* game in different settings. We first show

that, when the player applies unitary dynamics and projective measurements on a qubit system,

the maximum probability of success of the game is equal to Tsirelson’s bound; this is proven

via an explicit mapping from the strategies in the CHSH* game to the strategies in CHSH

1We will sometimes use the acronym RACs, instead of QRACs, to address the cases that, in principle, may
not use quantum resources.
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game (lemma 6). We then illustrate that the game is sensitive to a broad range of properties

of the system used, specifically whether the system is quantum or classical, what is the set of

operations allowed to the player (namely reversible versus irreversible and Clifford versus non-

Clifford) and what is the dimension of the system. We demonstrate that the Bell bound holds

for classical reversible strategies and quantum strategies involving only Clifford computation,

while the possibility of performing irreversible computation allows one to win the game with

certainty. Moreover, following Landauer’s assertion that only reversible operations are truly

fundamental, we show that bit erasure is a powerful tool for increasing the winning probability,

shedding light on the source of quantum advantage in this game. We finally conjecture that our

results also apply to the CHSH∗q game for any dimension q, by considering the case of q = 3.

In the reminder of the chapter we start by covering some background material on non-

locality and CHSH games, other protocols related to the CHSH game and Landauer’s principle

(section 4.1.1). In section 4.2 we then introduce the CHSH* game, its relation with the CHSH

game and its characterisation in terms of the system and gates used. Given the crucial role

of irreversible versus reversible computation for the performances of the protocol, we draw a

connection with Landauer’s principle in section 4.3. In the same section we also discuss the

presence of a new notion of contextuality in certain quantum strategies for the CHSH* game.

We briefly treat the case of the CHSH∗q game in section 4.4 and we sum-up and propose possible

future projects in the conclusion section.

4.1 Background

This section does not contain original material. The references that have been used will be

specified in the corresponding subsections.

4.1.1 Non-Locality and CHSH game

The philosophical consequences of quantum mechanics troubled many prominent physicists

since the early stages, as witnessed by the Einstein-Podolsky-Rosen (EPR) paper [36] in 1935,

that aimed at demonstrating the incompleteness of quantum mechanics. The EPR argument

is based on the assumptions of locality and realism (also known as local realism), that, in the

113



famous words by Einstein, can be summed up as “no spooky action at distance” and “the

moon is there even if no one is looking at it”. In 1964 John Stewart Bell, inspired by this work,

provided a mathematical precise formulation of these concepts and proved the inconsistency of

quantum mechanics with local realism [128]. This inconsistence can be stated as the violation

of the so-called Bell’s inequality. We now treat the Bell scenario as formulated in 1969 by

Clauser-Horne-Shimony-Holt [59].

Let us consider two parties, Alice and Bob, initially together and then taken apart to space-

like separated regions. Each party can measure one of two observables labelled by a, b ∈ 0, 1,

Aa=0, Aa=1 and Bb=0, Bb=1 respectively, with outcomes q for Alice’s observables and p for Bob’s

observables, where q, p ∈ {−1,+1} (figure 4.1). Freedom of choice of the measurements of Alice

and Bob is assumed. 2 We further assume locality, which means that an event can only be

affected by events happening within its past light-cone, i.e. there is no instantaneous (faster

than light) influence between the two parties that are space-like separated. Therefore the

outcomes of Alice’s observables do not depend on which measurement Bob chooses to perform

on his system and vice versa. We also assume realism, which here means that we assume the

ontological model framework, i.e. the outcomes of the measurement observables depend on some

set of pre-existing properties of each party’s system and they exist even if the measurements are

not performed. With the assumptions of local realism the values in {−1,+1} can be assigned

simultaneously to all four observables and this implies the following inequality, known as CHSH

inequality:3

| 〈A0B0〉+ 〈A1B0〉+ 〈A0B1〉 − 〈A1B1〉 | ≤ 2, (4.1)

where the angular brackets denote the expectation values of the outcomes associated to the

observables. This inequality can be used to test any operational theory. Let us consider

quantum mechanics. If Alice and Bob share a Bell state like the one of equation (3.22) and

the four observables are particular Hermitian operators like the ones in (3.23), then the above

inequality is violated (see section 3.5). Tsirelson [60] proved that the maximum violation, when

considering quantum mechanics, is 2
√

2. We stress that, despite entanglement being necessary

for providing the violation of CHSH inequality, it is not true that every entangled state can

2See [129] and [130] for the consequences of dropping it.
3This inequality actually belongs to a class of CHSH inequalities for this scenario [131].
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provide such a violation [132]. However, it has been proven that for every entangled state ρ1

there exists another state ρ2 not violating the CHSH inequality, such that ρ1 ⊗ ρ2 violates

it [133]. In this sense any entangled state actually encodes an amount of non-locality.

Bell’s theorem states that no local realistic theory is compatible with quantum mechanics.

They cannot provide the same statistics for outcomes of measurements distributed in space.

Moreover, in 2015 a loophole-free Bell experiment that confirms the validity of Bell’s theorem

was performed [134].

Figure 4.1: Bell’s scenario. The figure above schematically depicts Bell’s scenario, where two
space-like separated parties, Alice and Bob, each perform a measurement observable that they
can freely choose between two possible ones labelled by bits a for Alice and b for Bob. The
outcomes of the observables are denoted with q for Alice and p for Bob. In a local realistic
model these outcomes depend on some ontic states (hidden variables) here denoted with λ and
the choice of the observable.

Bell’s theorem is often colloquially restated as implying that quantum mechanics is non-

local. Furthermore, non-local correlations have been treated as an information-theoretic re-

source [135–137]. With (bipartite) non-local correlations we mean correlations that cannot be

given by the set of probabilities of the form

p(q, p|a, b) =
∑

λ

p(λ)p(q|a, λ)p(p|b, λ), (4.2)

where λ is the ontic state that, together with the choice of observables, influences the outcomes

q, p of Alice and Bob in a local realistic model. The main application in this direction concerns

the field of device independent quantum information processing, where the security of the
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protocols does not rely on any assumption about the properties of the device. In this setting

all the details of the devices are ignored and only the statistics of measurements matters.

Protocols like quantum key distribution [63, 138] and randomness generation [139, 140] can be

carried out with this approach. The former protocol shows that the cryptographic security

against general attacks by a postquantum eavesdropper (limited only by the impossibility of

superluminal signaling) is guaranteed by the violation of a Bell inequality. The latter protocol

exploits the non-locality of quantum systems to certify the presence of genuine randomness.

The Bell scenario just described can be recast into a game called the CHSH game (figure

4.2). In the CHSH game a referee uniformly asks questions a, b ∈ {0, 1} to Alice and Bob,

respectively, who agree on a strategy beforehand to then answer, when separated and unable

to communicate, with bits x, y ∈ {0, 1}, respectively. They win the game if x⊕ y = a · b mod 2.

Notice, with respect to the Bell scenario above, the notation here is such that q = (−1)x and

p = (−1)y.

a

x = x(a, �) y = y(b, �)

b

Referee

Alice Bob

Figure 4.2: CHSH game. In the CHSH game a referee asks binary questions, a, b, to Alice
and Bob, who answer with bits x, y. After the questions have been asked, they can no longer
communicate. They win the game if x⊕ y = a · b mod 2.

In game theory, the optimal success probability for a game is called its value, which we

denote by ω. The value of the CHSH game, ω(CHSH), depends upon the physics of the

systems exploited by Alice and Bob. Famously, if Alice and Bob employ only classical strategies,

the value of the CHSH game is ωC(CHSH) = 0.75. An optimal classical strategy consists of

always output x = 0, y = 0, thus winning 3 over 4 times (always except when the inputs are

a = 1, b = 1). On the other hand, if they have access to quantum resources, ωQ(CHSH) =

116



cos2(π8 ) ≈ 0.85. More precisely, an optimal strategy, as already mentioned in section 3.5,

involves the Bell state of equation (3.22) and the observables of equation (3.23). The value

0.85 can be found by noticing that the (weighted) expression in the CHSH inequality (4.1),

1
4(〈A0B0 +A0B1 +A1B0 −A1B1〉), represents the probability that Alice and Bob win minus

the probability that they lose. Since 〈A0B0〉 = 〈A0B1〉 = 〈A1B0〉 = −〈A1B1〉 = 1√
2
, the

probability of success is 1
2 + 1

2
√

2
≈ 0.85. The limitation on the value of the game for classical

systems is called a Bell inequality, and the value 0.75 is often called the Bell bound. The

fact that the value of the game when using quantum resources violates the Bell inequality, but

is nevertheless limited substantially below 1, was first noted by Tsirelson [60], and the value

cos2(π8 ) is known as Tsirelson’s bound. Popescu and Rohrlich [141] noted that in more general

theories than quantum mechanics, perfect strategies for the CHSH game that achieve a value of

1 could exist via a correlation now known as a Popescu-Rohrlich (PR) box, without violating

the no-signaling assumption between Alice and Bob.

The CHSH game can be generalised to arithmetic modulo q, where a, b, x, y ∈ Zq. The

so-called CHSHq game was first introduced by Buhrman and Massar in 2005 [64]. It was

defined for q being prime or prime power and studied for the case of q = 3. They found

the Bell bound to be 2
3 ≈ 0.66 and an upper bound on Tsirelson’s bound which reads as

1
3 + 2

3
√

3
≈ 0.71823. In 2009, Liang et al. [66] developed a numerical analysis for lower and upper

bounds (see [66, Table III]). In the case of q = 3 they agree on the value of 0.7124 for the

Tsirelson bound. This is confirmed also by the lower bound analytically found by Ji et al. one

year earlier [65], 1
3 + 2

3
√

3
· cos( π18) ≈ 0.7124. However, an analytic proof of the actual value of

Tsirelson’s bound does not exist and, in 2015, Bavarian and Shor [67], exploiting new tools from

incidence geometry and arithmetic combinatorics, provided analytic proofs of upper bounds on

Tsirelson’s bounds for any prime or prime power q that agree with the upper bound provided

by Buhrman and Massar for q = 3 (and in line with the q = 2 case known to be tight [60]):

ωQ(CHSH) ≤ 1

q
+
q − 1

q
√
q
. (4.3)

The question on the tightness of this bound for q > 2 remains still open.
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4.1.2 Other related games

There exist protocols related to the CHSH game, where the computational advantages that arise

when exploiting quantum strategies can be associated to the presence of non-classical features

different from non-locality. One of those protocols goes under the name of quantum random

access codes (QRACs). It first appeared in a paper by Wiesner published in 1983 [142] and

was then rediscovered by Ambainis et al. in [143] and studied by Galvao in his PhD thesis [68]

in 2002. Let us imagine that Alice encodes m bits in n < m information carriers that she

sends to Bob, who wishes to learn the value of a single bit among the m ones (without Alice

to know which one) with a probability at least p (figure 4.3). We denote this scheme with the

notation m → n. They have to agree on a particular efficient encoding to maximise the least

probability of success. QRACs have been generalized and studied also considering qudits of

arbitrary dimensions [144].

Alice Bob

Figure 4.3: Quantum random access codes. QRACs consist of Alice encoding m bits in
n < m information carriers that she sends to Bob. He wants to know the value of one of the m
bits, but Alice does not know which one. Their goal is to come up with an encoding strategy
to maximise the least probability of success.

Let us focus, for simplicity, on the 2 → 1 protocol. It turns out that, analogously to

the CHSH game, the optimal classical strategy succeeds with probability ωC(QRAC) = 0.75,

while the optimal quantum strategy achieves ωQ(QRAC) = cos2(π8 ) ≈ 0.85. A strategy for

the former consists of Alice sending the bit 0 to encode the bits 00, the bit 1 to encode the

bits 11 (thus succeeding with probability 1 in these two cases) and sending the bit 0 (or 1)

for encoding 01 and 10 (thus succeeding with probability 0.5 in these two cases). Therefore,

on average, the probability of success is 1
4(1 + 1 + 0.5 + 0.5) = 0.75. An optimal strategy for

the quantum case consists of Alice sending a qubit in the state |ψ00〉 = Rz(
π
4 ) |+〉 = T |+〉 to
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encode the bits 00, in the state |ψ01〉 = Rz(
7π
4 ) |+〉 = T † |+〉 to encode the bits 01, in the state

|ψ10〉 = Rz(
3π
4 ) |+〉 = ST |+〉 to encode the bits 10, in the state |ψ11〉 = Rz(

5π
4 ) |+〉 = S†T † |+〉

to encode the bits 11. Here Rz(θ) represents a rotation of angle θ around the z-axis in the usual

Bloch sphere representation of the qubit and S = Rz(
π
2 ) and T = Rz(

π
4 ) are the gates already

defined in equations (2.19) and (3.2). This means that the states above lie in the XY plane of

the Bloch sphere. Bob then needs to measure on the X basis if he wants to know the first bit,

and on the Y basis if he wants to know the second bit (the positive eigenvalues are associated

to the bit 0 and the negative ones to the bit 1). The probability of obtaining the outcome

corresponding to the correct bit is therefore cos2(π8 ) ≈ 0.85 for each of the four cases above.

This strategy is strictly related to the one described in details in section 4.2 and depicted in

figure 4.9.

We have just seen that 2 → 1 QRACs turn out to be related to the CHSH game as they

provide the same bounds and, as we will further advocate in the next section, the optimal

classical and quantum strategies are strictly related to the ones used in the CHSH protocol.

Indeed, these facts will also hold for the CHSH* game that we present in this chapter (section

4.2).4 The source of non-classicality here derives from the fact that Bob uses non-commutative

measurements and that the states sent by Alice “lie” in between these two measurements (figure

4.9). This possibility is not achievable when using only classical resources. Moreover, slight

modifications of the protocol, where in the optimal quantum strategy Alice prepares her states

with local projective measurements on an entangled state, show the presence of contextuality

as a necessary resource for the quantum advantage [68].

We now describe a protocol similar to QRACs that again resembles the CHSH* game we

treat in this chapter, even if, unlike the CHSH* game, it shows preparation contextuality as a

necessary resource for the quantum computational advantage [69]. This protocol is called parity

oblivious multiplexing (POM) and it was firstly introduced in 2009 by Spekkens et al [69]. Let us

take the QRACs previously defined. Let us denote the m−bit string that Alice possesses with x

and, instead of requiring the information carriers to be n systems (bits or qubits), let us impose

a different constraint, called parity obliviousness: Alice cannot communicate to Bob the parity

of the m−bit string x. More formally, let s ∈ Par, where Par = {r ∈ {0, 1}m | ∑i ri ≥ 2}, i.e.

4Similar connections exist also with other protocols like quantum dense coding and remote state preparation,
as shown in [68].
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Par is the set of m−bit strings with at least two bits in the state 1; Alice cannot transmit to

Bob any information about the s-parity, i.e. s · x =
⊕

i sixi, where ⊕ denotes the sum modulo

2. Let us denote the bit that Bob outputs as b. The integer y denotes which of the m bits b

should correspond to, and xy the actual bit in Alice’s string.

The optimal classical probability of success satisfies p(b = xy) ≤ m+1
2m , as the only classical

encoding that transfers some information to Bob without violating the parity obliviousness

consists of encoding only a single bit xi. Given that y is chosen at random, any bit xi would

perform the same. Therefore Alice and Bob can agree on Alice always sending x1 and Bob

outputting b = x1. The probability of success is given by the probability that y = 1, which

is 1
m , and the probability that Bob outputs correctly (at random, with probability 0.5) in the

other cases where y 6= 1, that occur with probability (m−1)
m . For this optimal classical strategy

we obtain p(b = xy) = 1
m + (m−1)

2m = m+1
2m , as already stated. When m = 2, this amounts to

ωC(POM) = 0.75, like the Bell bound of the CHSH game and QRACs. Spekkens et al proved

the following theorem.

Theorem 12. The optimal success probability in m−bit parity oblivious multiplexing of any

operational theory that admits a preparation non-contextual ontological model satisfies p(b =

xy) ≤ m+1
2m .

This theorem means that preparation contextuality is a necessary resource for performing

the m−bit parity oblivious multiplexing protocol with higher success probability than classical

strategies. The proof is based on first showing that for preparation non-contextual ontolog-

ical models, parity obliviousness at the operational level implies parity obliviousness at the

ontological level. More formally, parity obliviousness at the operational level can be written

as ∀s ∀M ∀k ∑x|x·s=0 p(Px|k,M) =
∑

x|x·s=1 p(Px|k,M), where Px is a preparation proce-

dure implemented by Alice and M is the measurement of Bob with outcome k performed

to provide the output b = k. Parity obliviousness at the ontological level can be written as

∀s ∑x|x·s=0 p(Px|λ) =
∑

x|x·s=1 p(Px|λ), where λ is the hidden variable prepared by Px. Then,

it is enough to realise that λ provides a classical encoding of x without any information about

the s-parity, which, as already shown, means that P (b = xy) ≤ m+1
2m . Thus, even if Bob could

perfectly determine λ, the two parties could not achieve a better performance than ωC(POM).

Let us now consider, for simplicity, the case of 2−bit parity oblivious multiplexing. It turns
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out that, by using the same optimal quantum strategy of 2 → 1 QRACs, the probability of

success is again ωQ(POM) = cos2(π8 ) ≈ 0.85. It can be shown that it is the maximal one [69].

Notice that, when Bob measures on X or Y basis, he cannot gain any information about the

parity, as the parity 0 and parity 1 mixtures are represented by the same quantum state (and

so the same probability), 1
2ρ00 + 1

2ρ11 = I
2 = 1

2ρ01 + 1
2ρ10, where ρij = |ψij〉 〈ψij | and |ψij〉 are

the states defined previously.

4.1.3 Landauer’s principle

We conclude the background section by briefly reviewing Landauer’s principle. In 1961 Rolf

Landauer [70] formulated his famous principle that we here state verbatim from [145].

Landauer’s principle. Any logically irreversible manipulation of information, such as the era-

sure of a bit or the merging of two computation paths, must be accompanied by a corresponding

entropy increase in non-information-bearing degrees of freedom of the information-processing

apparatus or its environment.

The principle arose because Landauer noticed that the logical states of the computation

(e.g. logical bits) evolve sometimes irreversibly, with a single logical state resulting from sev-

eral logical states. This irreversible operation of the information-bearing-degrees of freedom is

associated to a decrease in entropy and, considering the reversibility of Hamiltonian/unitary

dynamics (that preserves the entropy), it must therefore be compensated by a rise in the entropy

of the non-information-bearing degrees of freedom (e.g. physical bits) and the environment.

Landauer’s principle assumes that irreversible operations are not fundamental. We can always

imagine an irreversible operation as a reversible operation plus erasure of some information (or

a copy of this information stored in another system), where the erasure consists of an increase

in entropy. More precisely, we associate the erasure of a single bit with an increase in entropy

of kT log2 2, where k is the Boltzmann constant and T the temperature of the system and

environment.

The remainder of the chapter mainly treats the content of [58], which is a joint work with

Luciana Henaut, Dan Browne, Shane Mansfield and Anna Pappa.
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4.2 The CHSH* game

We now describe the CHSH* game (illustrated in Fig. 4.4). A single player has in her possession

a single system of dimension d, that can be classical or quantum. She is given a specification

of the state preparations, transformations and measurements that she is allowed to employ

and in the course of the game, she is also provided with two uniformly random bits a and

b. Choosing from the allowed operations, the player must specify in advance an initial state,

controlled operations Aa and Bb and a final two-outcome measurement M . Once the player

receives a and b, the corresponding operations are implemented in sequence and measurement

M is performed, returning outcome c. The player wins the game when c = a · b mod 2. We

are interested in finding the value ω(CHSH*) of this game, which corresponds to the average

winning probability of the best possible strategies:

ω(CHSH*) = max
all strategies

1

4

∑

a,b∈Z2

p(c = a · b | a, b).

a · b

a b

Aa BbSystem

Figure 4.4: CHSH* game. An initial system is subjected to controlled transformations, with
control bits a and b, respectively, and then measured. The goal is to maximise the probability
that the value of the output is the product of the values of the input bits (arithmetic modulo
2).

4.2.1 Relationship with the CHSH game

In this chapter we will study the CHSH* game in a variety of settings (see Fig. 4.5), where we

make different assumptions about the physics of the system available to the player. First, we

consider the case where the player’s system is a single qubit in the unitary setting, meaning

that all transformations applied during the game are unitary. We further assume that the

final measurement is a projective two-outcome measurement. In this setting, similarly to the
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quantum cases in the CHSH game, 2 → 1 QRACs and 2−bits parity oblivious multiplexing,

the optimal success probability is bounded by the Tsirelson bound, as shown by the following

proposition.

Name of setting System Type Initial states Transformations Measurements ω(CHSH*)

Unitary Quantum Any Any unitary gate Any two-outcome PVM cos2(π8 )

Clifford Quantum Pauli eigenstates Clifford group gates Pauli measurements 0.75

Reversible Classical Classical Any Reversible gates n/a 0.75

Irreversible Classical/Quantum Any Any Any 1

Figure 4.5: Several settings for the CHSH* game. The four d = 2 settings we study with
the CHSH* game. The value of the game is dependent on the setting and the dimension d of
the system.

Proposition 2. The value of the CHSH* game with a d = 2 quantum system in the unitary

setting is cos2(π8 ).

This result follows directly from the following lemma.

Lemma 6. For every strategy in the CHSH* game in the unitary setting with d = 2, we can

derive an equivalent strategy for the two-player CHSH game such that both strategies lead to the

same average success probability.

Proof. We prove this explicitly. We first consider the CHSH* game and assume without loss of

generality that the initial state is |+〉 and the measurement is the Pauli X observable (whose

positive eigenvalue is associated to the output bit 0 and the negative to the output bit 1). A

strategy thus consists of optimally choosing the gates A0, A1, B0, B1.

In Fig. 4.7, we show how, given a strategy for the CHSH* game, we can construct a strategy

for the CHSH game. The key ingredient is a teleportation protocol that uses entanglement

shared via the CNOT gate to teleport the effect of gate Aa from one site (Alice’s) to another

spatially separated site (Bob’s). Since operations Aa are unitary, it holds that

ATa ⊗ I
( |00〉+ |11〉√

2

)
= I⊗Aa

( |00〉+ |11〉√
2

)
.

The teleported state on Bob’s side after Alice measures her qubit is AaZ
x |+〉 , where Z is the

Pauli Z. The bits x and y are Alice’s and Bob’s outputs respectively. In order to prove the

lemma, we will show that the success probabilities for obtaining c = a · b in the CHSH* game
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and x⊕ y = a · b in the CHSH game are equal, i.e.:

∑

a,b

Pr (c = a · b|a, b) =
∑

a,b

Pr (x⊕ y = a · b|a, b).

We proceed by showing that the terms in the above sums are pairwise equal, i.e. for every

a, b ∈ {0, 1},
Pr (c = a · b | a, b) = Pr (x⊕ y = a · b | a, b).

In the case that x = 0 this holds trivially; and when x = 1, this reduces to showing that

| 〈+|BbAa |+〉 |2 = | 〈−|BbAa |−〉 |2

| 〈−|BbAa |+〉 |2 = | 〈+|BbAa |−〉 |2,

which is necessarily true for any 2× 2 unitary gate.

To see that Lemma 6 implies Proposition 2 we recall that Tsirelson’s bound upperbounds the

CHSH game at probability cos2(π8 ) ≈ 0.85. A strategy which achieves this success probability

involves the following gates: A0 = I, A1 = S,B0 = T †, B1 = T. Indeed, the probability of

success in this case is given by

psuc =
1

4

∑

a,b∈Z2

p(c = a · b | a, b)

=
1

4

[
| 〈+|B0A0 |+〉 |2 + | 〈+|B1A0 |+〉 |2

+ | 〈+|B0A1 |+〉 |2 + (1− | 〈+|B1A1 |+〉 |2)

]

=
1

4

∑

a,b∈Z2

[1
2

+ (−1)a·b
cos(θab)

2

]
,

(4.4)

where the angle θab is the overall phase resulting from the application of BbAa = Rz(θab) on

the input state |+〉 . With the choice of gates above we obtain psuc = cos2(π8 ) ≈ 0.85. Figure

4.6 shows the states BbAa |+〉 and the values of the probabilities p(c|a, b) for the four possible

input bits a, b.

The unitaries of the optimal strategy just described are the gates mapping between the
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a b

0 0

0

0

1

1

1 1

0.85

0.85

0.85

0.85

0.15

0.15

0.15

0.15

a · b mod 2

0

0

0

1

BbAa |+i = RZ(✓ab)

T † |+i = RZ(�⇡
4

) |+i

ST † |+i = RZ(
⇡

4
) |+i

ST |+i = RZ(
3⇡

4
) |+i

T |+i = RZ(
⇡

4
) |+i

Figure 4.6: Optimal quantum strategy for the CHSH∗ game. The table above reports the
state, BbAa |+〉 , before the measurement on the X basis and the probability p(c|a, b) for each
input bits a, b in the optimal quantum strategy, given by gates A0 = I, A1 = S,B0 = T,B1 = T †.
For every input bits a, b the probability of obtaining a · b mod 2 is cos2(π8 ) ≈ 0.85.

observables typically used to attain the Tsirelson bound in the CHSH game when the parties

share a Bell pair. This strategy is also strictly related to the optimal strategies used in other

tasks involving one qubit, like 2→ 1 QRACs [68] and 2−bits parity oblivious multiplexing [69]

defined in subsection 4.1.2. Lemma 6 demonstrates a tight link between Tsirelson’s bound for

the CHSH game and the value of the CHSH* game in the above setting.

a

b

Aa Bb c
<latexit sha1_base64="dH/5ouAzGwbHNs4b529AlentnSk=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWarFepujV3BrJMvIJUoUCjV/nq9hOWxSgNE1TrjuemJsipMpwJnJS7mcaUshEdYMdSSWPUQT47dEJOrdInUaJsSUNm6u+JnMZaj+PQdsbUDPWiNxX/8zqZia6CnMs0MyjZfFGUCWISMv2a9LlCZsTYEsoUt7cSNqSKMmOzKdsQvMWXl4l/Xruuec2Lav2mSKMEx3ACZ+DBJdThDhrgAwOEZ3iFN+fReXHenY9564pTzBzBHzifPzTgjLs=</latexit><latexit sha1_base64="dH/5ouAzGwbHNs4b529AlentnSk=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWarFepujV3BrJMvIJUoUCjV/nq9hOWxSgNE1TrjuemJsipMpwJnJS7mcaUshEdYMdSSWPUQT47dEJOrdInUaJsSUNm6u+JnMZaj+PQdsbUDPWiNxX/8zqZia6CnMs0MyjZfFGUCWISMv2a9LlCZsTYEsoUt7cSNqSKMmOzKdsQvMWXl4l/Xruuec2Lav2mSKMEx3ACZ+DBJdThDhrgAwOEZ3iFN+fReXHenY9564pTzBzBHzifPzTgjLs=</latexit><latexit sha1_base64="dH/5ouAzGwbHNs4b529AlentnSk=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWarFepujV3BrJMvIJUoUCjV/nq9hOWxSgNE1TrjuemJsipMpwJnJS7mcaUshEdYMdSSWPUQT47dEJOrdInUaJsSUNm6u+JnMZaj+PQdsbUDPWiNxX/8zqZia6CnMs0MyjZfFGUCWISMv2a9LlCZsTYEsoUt7cSNqSKMmOzKdsQvMWXl4l/Xruuec2Lav2mSKMEx3ACZ+DBJdThDhrgAwOEZ3iFN+fReXHenY9564pTzBzBHzifPzTgjLs=</latexit><latexit sha1_base64="dH/5ouAzGwbHNs4b529AlentnSk=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWarFepujV3BrJMvIJUoUCjV/nq9hOWxSgNE1TrjuemJsipMpwJnJS7mcaUshEdYMdSSWPUQT47dEJOrdInUaJsSUNm6u+JnMZaj+PQdsbUDPWiNxX/8zqZia6CnMs0MyjZfFGUCWISMv2a9LlCZsTYEsoUt7cSNqSKMmOzKdsQvMWXl4l/Xruuec2Lav2mSKMEx3ACZ+DBJdThDhrgAwOEZ3iFN+fReXHenY9564pTzBzBHzifPzTgjLs=</latexit>

X<latexit sha1_base64="od3efEfProDBo/UueZvfo0/ONKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa7V6l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gAkP4yw</latexit><latexit sha1_base64="od3efEfProDBo/UueZvfo0/ONKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa7V6l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gAkP4yw</latexit><latexit sha1_base64="od3efEfProDBo/UueZvfo0/ONKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa7V6l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gAkP4yw</latexit><latexit sha1_base64="od3efEfProDBo/UueZvfo0/ONKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa7V6l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gAkP4yw</latexit>|+i
<latexit sha1_base64="+LJ1eAjaZVC2JB5/8HolPQh5/NQ=">AAAB/nicbVDLSgNBEJyNrxhfq4IXL4NBEISwK4J6C3rxGMGYQDaE2UlvMmR2dpnpFUKSg7/ixYOKV7/Dm3/j5HHQxIKGoqqb7q4wlcKg5307uaXlldW1/HphY3Nre8fd3XswSaY5VHkiE10PmQEpFFRRoIR6qoHFoYRa2LsZ+7VH0EYk6h77KTRj1lEiEpyhlVruQSAhQjo8pYEWnS4GmqmOhJZb9EreBHSR+DNSJDNUWu5X0E54FoNCLpkxDd9LsTlgGgWXMCoEmYGU8R7rQMNSxWIwzcHk/hE9tkqbRom2pZBO1N8TAxYb049D2xkz7Jp5byz+5zUyjC6bA6HSDEHx6aIokxQTOg6DtoUGjrJvCeNa2Fsp7zLNONrICjYEf/7lRVI9K12V/LvzYvl6lkaeHJIjckJ8ckHK5JZUSJVwMiTP5JW8OU/Oi/PufExbc85sZp/8gfP5A+hflZg=</latexit><latexit sha1_base64="+LJ1eAjaZVC2JB5/8HolPQh5/NQ=">AAAB/nicbVDLSgNBEJyNrxhfq4IXL4NBEISwK4J6C3rxGMGYQDaE2UlvMmR2dpnpFUKSg7/ixYOKV7/Dm3/j5HHQxIKGoqqb7q4wlcKg5307uaXlldW1/HphY3Nre8fd3XswSaY5VHkiE10PmQEpFFRRoIR6qoHFoYRa2LsZ+7VH0EYk6h77KTRj1lEiEpyhlVruQSAhQjo8pYEWnS4GmqmOhJZb9EreBHSR+DNSJDNUWu5X0E54FoNCLpkxDd9LsTlgGgWXMCoEmYGU8R7rQMNSxWIwzcHk/hE9tkqbRom2pZBO1N8TAxYb049D2xkz7Jp5byz+5zUyjC6bA6HSDEHx6aIokxQTOg6DtoUGjrJvCeNa2Fsp7zLNONrICjYEf/7lRVI9K12V/LvzYvl6lkaeHJIjckJ8ckHK5JZUSJVwMiTP5JW8OU/Oi/PufExbc85sZp/8gfP5A+hflZg=</latexit><latexit sha1_base64="+LJ1eAjaZVC2JB5/8HolPQh5/NQ=">AAAB/nicbVDLSgNBEJyNrxhfq4IXL4NBEISwK4J6C3rxGMGYQDaE2UlvMmR2dpnpFUKSg7/ixYOKV7/Dm3/j5HHQxIKGoqqb7q4wlcKg5307uaXlldW1/HphY3Nre8fd3XswSaY5VHkiE10PmQEpFFRRoIR6qoHFoYRa2LsZ+7VH0EYk6h77KTRj1lEiEpyhlVruQSAhQjo8pYEWnS4GmqmOhJZb9EreBHSR+DNSJDNUWu5X0E54FoNCLpkxDd9LsTlgGgWXMCoEmYGU8R7rQMNSxWIwzcHk/hE9tkqbRom2pZBO1N8TAxYb049D2xkz7Jp5byz+5zUyjC6bA6HSDEHx6aIokxQTOg6DtoUGjrJvCeNa2Fsp7zLNONrICjYEf/7lRVI9K12V/LvzYvl6lkaeHJIjckJ8ckHK5JZUSJVwMiTP5JW8OU/Oi/PufExbc85sZp/8gfP5A+hflZg=</latexit><latexit sha1_base64="+LJ1eAjaZVC2JB5/8HolPQh5/NQ=">AAAB/nicbVDLSgNBEJyNrxhfq4IXL4NBEISwK4J6C3rxGMGYQDaE2UlvMmR2dpnpFUKSg7/ixYOKV7/Dm3/j5HHQxIKGoqqb7q4wlcKg5307uaXlldW1/HphY3Nre8fd3XswSaY5VHkiE10PmQEpFFRRoIR6qoHFoYRa2LsZ+7VH0EYk6h77KTRj1lEiEpyhlVruQSAhQjo8pYEWnS4GmqmOhJZb9EreBHSR+DNSJDNUWu5X0E54FoNCLpkxDd9LsTlgGgWXMCoEmYGU8R7rQMNSxWIwzcHk/hE9tkqbRom2pZBO1N8TAxYb049D2xkz7Jp5byz+5zUyjC6bA6HSDEHx6aIokxQTOg6DtoUGjrJvCeNa2Fsp7zLNONrICjYEf/7lRVI9K12V/LvzYvl6lkaeHJIjckJ8ckHK5JZUSJVwMiTP5JW8OU/Oi/PufExbc85sZp/8gfP5A+hflZg=</latexit>

(a)

a

b

Bb
X<latexit sha1_base64="od3efEfProDBo/UueZvfo0/ONKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa7V6l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gAkP4yw</latexit><latexit sha1_base64="od3efEfProDBo/UueZvfo0/ONKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa7V6l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gAkP4yw</latexit><latexit sha1_base64="od3efEfProDBo/UueZvfo0/ONKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa7V6l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gAkP4yw</latexit><latexit sha1_base64="od3efEfProDBo/UueZvfo0/ONKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa7V6l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gAkP4yw</latexit>

|+i
<latexit sha1_base64="+LJ1eAjaZVC2JB5/8HolPQh5/NQ=">AAAB/nicbVDLSgNBEJyNrxhfq4IXL4NBEISwK4J6C3rxGMGYQDaE2UlvMmR2dpnpFUKSg7/ixYOKV7/Dm3/j5HHQxIKGoqqb7q4wlcKg5307uaXlldW1/HphY3Nre8fd3XswSaY5VHkiE10PmQEpFFRRoIR6qoHFoYRa2LsZ+7VH0EYk6h77KTRj1lEiEpyhlVruQSAhQjo8pYEWnS4GmqmOhJZb9EreBHSR+DNSJDNUWu5X0E54FoNCLpkxDd9LsTlgGgWXMCoEmYGU8R7rQMNSxWIwzcHk/hE9tkqbRom2pZBO1N8TAxYb049D2xkz7Jp5byz+5zUyjC6bA6HSDEHx6aIokxQTOg6DtoUGjrJvCeNa2Fsp7zLNONrICjYEf/7lRVI9K12V/LvzYvl6lkaeHJIjckJ8ckHK5JZUSJVwMiTP5JW8OU/Oi/PufExbc85sZp/8gfP5A+hflZg=</latexit><latexit sha1_base64="+LJ1eAjaZVC2JB5/8HolPQh5/NQ=">AAAB/nicbVDLSgNBEJyNrxhfq4IXL4NBEISwK4J6C3rxGMGYQDaE2UlvMmR2dpnpFUKSg7/ixYOKV7/Dm3/j5HHQxIKGoqqb7q4wlcKg5307uaXlldW1/HphY3Nre8fd3XswSaY5VHkiE10PmQEpFFRRoIR6qoHFoYRa2LsZ+7VH0EYk6h77KTRj1lEiEpyhlVruQSAhQjo8pYEWnS4GmqmOhJZb9EreBHSR+DNSJDNUWu5X0E54FoNCLpkxDd9LsTlgGgWXMCoEmYGU8R7rQMNSxWIwzcHk/hE9tkqbRom2pZBO1N8TAxYb049D2xkz7Jp5byz+5zUyjC6bA6HSDEHx6aIokxQTOg6DtoUGjrJvCeNa2Fsp7zLNONrICjYEf/7lRVI9K12V/LvzYvl6lkaeHJIjckJ8ckHK5JZUSJVwMiTP5JW8OU/Oi/PufExbc85sZp/8gfP5A+hflZg=</latexit><latexit sha1_base64="+LJ1eAjaZVC2JB5/8HolPQh5/NQ=">AAAB/nicbVDLSgNBEJyNrxhfq4IXL4NBEISwK4J6C3rxGMGYQDaE2UlvMmR2dpnpFUKSg7/ixYOKV7/Dm3/j5HHQxIKGoqqb7q4wlcKg5307uaXlldW1/HphY3Nre8fd3XswSaY5VHkiE10PmQEpFFRRoIR6qoHFoYRa2LsZ+7VH0EYk6h77KTRj1lEiEpyhlVruQSAhQjo8pYEWnS4GmqmOhJZb9EreBHSR+DNSJDNUWu5X0E54FoNCLpkxDd9LsTlgGgWXMCoEmYGU8R7rQMNSxWIwzcHk/hE9tkqbRom2pZBO1N8TAxYb049D2xkz7Jp5byz+5zUyjC6bA6HSDEHx6aIokxQTOg6DtoUGjrJvCeNa2Fsp7zLNONrICjYEf/7lRVI9K12V/LvzYvl6lkaeHJIjckJ8ckHK5JZUSJVwMiTP5JW8OU/Oi/PufExbc85sZp/8gfP5A+hflZg=</latexit><latexit sha1_base64="+LJ1eAjaZVC2JB5/8HolPQh5/NQ=">AAAB/nicbVDLSgNBEJyNrxhfq4IXL4NBEISwK4J6C3rxGMGYQDaE2UlvMmR2dpnpFUKSg7/ixYOKV7/Dm3/j5HHQxIKGoqqb7q4wlcKg5307uaXlldW1/HphY3Nre8fd3XswSaY5VHkiE10PmQEpFFRRoIR6qoHFoYRa2LsZ+7VH0EYk6h77KTRj1lEiEpyhlVruQSAhQjo8pYEWnS4GmqmOhJZb9EreBHSR+DNSJDNUWu5X0E54FoNCLpkxDd9LsTlgGgWXMCoEmYGU8R7rQMNSxWIwzcHk/hE9tkqbRom2pZBO1N8TAxYb049D2xkz7Jp5byz+5zUyjC6bA6HSDEHx6aIokxQTOg6DtoUGjrJvCeNa2Fsp7zLNONrICjYEf/7lRVI9K12V/LvzYvl6lkaeHJIjckJ8ckHK5JZUSJVwMiTP5JW8OU/Oi/PufExbc85sZp/8gfP5A+hflZg=</latexit>

Alice

Bob

X<latexit sha1_base64="od3efEfProDBo/UueZvfo0/ONKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa7V6l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gAkP4yw</latexit><latexit sha1_base64="od3efEfProDBo/UueZvfo0/ONKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa7V6l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gAkP4yw</latexit><latexit sha1_base64="od3efEfProDBo/UueZvfo0/ONKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa7V6l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gAkP4yw</latexit><latexit sha1_base64="od3efEfProDBo/UueZvfo0/ONKI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWa7V6l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns0Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroKci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpmxD8BZfXib+ee265jUvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gAkP4yw</latexit>
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(b)

Figure 4.7: Mapping of the CHSH* game to the CHSH game. Fig. 4.7a shows the single
qubit scheme, with the initial qubit in state |+〉 , controlled gates Aa, Bb, measurement on the
X basis and output c. Figure 4.7b shows the corresponding CHSH game, where Alice and Bob
share a Bell pair, and apply gates ATa , Bb to their systems to obtain measurement results x and
y respectively.
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4.2.2 Further settings

The proof of Lemma 6 relied on the fact that the transformations are unitary, and that the

system in the CHSH* game had dimension 2. We will now study the game in other settings,

and see that its value is strongly setting-dependent.

First, we relax the restriction that transformations must be unitary by considering the ir-

reversible setting. We now allow irreversible transformations, such as the ERASE map, which

maps any qubit state to the state |0〉 . This may be achieved via a Z measurement and condi-

tional X correction. Introducing irreversible transformations has a dramatic effect on the value

of the CHSH* game.

Proposition 3. The value of the CHSH* game with a d = 2 classical or quantum system in

the irreversible setting is 1.

Proof. Proof is via explicit example. Let the initial state be |0〉 and let A0 = I, A1 = X, B0 =

ERASE, B1 = I. The final measurement is in the Z basis. Considering the 4 cases, we see

that the output c will always be 0 unless both a and b are 1. Thus this strategy always wins

the game. Every element of the strategy presented in this proof can be achieved in a classical

system, hence we can conclude that this maximum value of 1 can be achieved even with no

quantum dynamics at all.

This increase in the value of the game depends crucially on the irreversibility of the ERASE

map. As we see directly, if we restrict logic operations to be reversible, we find that the value

of the game is reduced.

Proposition 4. The value of the CHSH* game with a d = 2 classical system in the reversible

setting is 0.75.

Proof. To show that the value is at least 0.75, it suffices to describe a protocol which attains

this success probability. This is given by the trivial protocol where the input bit is set to 0

and gates Aa and Bb are the identity, and thus the output is always 0. To see why this cannot

be exceeded, we observe that all reversible one-bit functions are linear functions. The closest

linear function to a · b is the constant function f(a, b) = 0. This result can also be found by

just enumerating all the possible classical strategies.
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So far we have studied the CHSH* game with a variety of restrictions on the system and we

have found values of the game of 0.75, cos2(π8 ) and 1, depending on the setting. These precisely

match the Bell bound, Tsirelson bound and PR-box value of the CHSH game. We now show

that the CHSH* game is sensitive to further restrictions. We denote the Clifford setting as

the setting where the initial system is a pure stabilizer state, all transformations are unitary

Clifford and the measurement is a Pauli observable (definitions provided in subsection 2.1.2).

Proposition 5. The value of the CHSH* game with a d = 2 quantum system in the Clifford

setting is 0.75.

Proof. The state BbAa |+〉 before the measurement is an eigenstate of Pauli operators, which,

when measured on the Pauli X operator, will always yield one of the possible outcomes with

probability 0, 0.5 or 1. Therefore the probability of success for any choices of input bits a and b

will always take one of eight possible values in {0, 1
8 , . . . ,

7
8 , 1}. Since the maximum probability

of success of our protocol is about 0.85 in the less restricted unitary setting, we conclude that

the maximum attainable probability of CHSH* in the Clifford setting is 0.75.

We see that restricting the CHSH* game to the Clifford setting gives a success probability

equal to the reversible classical setting. This, again, resembles the CHSH game, where if states,

operations and measurements are similarly limited, the Bell inequality value of 0.75 cannot be

surpassed. We now show that when diagonal non-Clifford gates are available, one can always

do better than this bound.

Proposition 6. For a quantum system with d = 2, in the Clifford setting but with the addition

of any pair of non-Clifford gates Rz(ε) and Rz(ε)
†, with ε ∈ (0, π2 ), the value of the CHSH*

game is greater than 0.75.

Proof. The proof is via explicit construction. We adopt a strategy similar to the optimal

quantum strategy in the unitary setting, where replacing T with Rz(ε) and T † with R†z(ε),

achieves a probability of success psuc greater than 0.75:

psuc =
1

4

[(
1

2
+

cos(ε)

2

)
+

(
1

2
+

cos(−ε)
2

)

+

(
1

2
+

cos(π2 − ε)
2

)
+

(
1− 1

2
− cos(π2 + ε)

2

)]
.
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This probability is always greater than 0.75 when ε ∈ (0, π2 ), and attains a maximum of cos2(π8 )

when ε = π
4 as expected (see figure 4.8).

0.5 1.0 1.5

0.76

0.78

0.80

0.82

0.84

0.75

⇡ 0.85

0 ⇡/4 ⇡/2 "

Figure 4.8: Success probability varying ε ∈ (0, π2 ). Any pair of non-Clifford gates Rz(ε)
and Rz(ε)

†, with ε ∈ (0, π2 ), allow us to win the CHSH* game with probability greater than the
classical value ωC(CHSH∗) = 0.75. Notice that the argument works the same for ε outside the
interval (0, π2 ) by rotating the controlled gates accordingly.

Figure 4.9 provides a geometrical comparison of optimal strategies in the three reversible settings

we have considered.

Having seen that the value of the CHSH* game allows us to distinguish between various set-

tings with systems of dimension 2, we will now consider systems of higher dimension, beginning

with dimension 3.

Proposition 7. For d-dimensional quantum or classical systems, in the reversible setting with

d ≥ 3, there always exists a perfect strategy (i.e. the value of the game is 1).

Proof. We provide a qutrit strategy, and note that this can always be embedded into systems

of dimension greater than 3. Without loss of generality we suppose that the system is prepared

in the state |0〉, and the strategy consists of the gates A0 = I, A1 = X,B0 = I, B1 = X. The

generalised Pauli X acts as X |i〉 = |i+ 1〉 , where i ∈ {0, 1, 2} and the sum is mod3. The

measurement is given by the PVM {|0〉 〈0| + |1〉 〈1| , |2〉 〈2|}. If we associate the outcome 0 to

the first element of the measurement and the outcome 1 to the second, we obtain a · b mod 2
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Figure 4.9: Geometrical analysis of the protocol. The figure shows the state space of two
bits (vertices of the big black square), one qubit (XY plane of the Bloch sphere) both in the
optimal winning strategy (the vertices of the red square) and restricted to Clifford computation
(the vertices of the tilted green square), and one bit (the edges of the brown line). Notice that
the measurement at the end of the protocol corresponds to the collapse of a state to the X axis.
This geometrical representation provides an intuition of why the different settings give different
values ω(CHSH∗). Two bits are needed to obtain the non-linear function with probability 1.
This can be seen also as one of the two bits being erased in accordance with Landauer’s principle
(i.e. the irreversible setting). In the unitary setting, the single qubit in the optimal quantum
strategy can be seen as two bits where the erasure is just partial (the red square can be seen
as a smaller version of the black square). The Clifford setting does not allow more possibilities
than the reversible classical setting – it indeed provides a value of 0.75 – even if the stabilizer
qubit can reach more states than the single bit (as a curiosity, notice that the single stabilizer
qubit corresponds to knowing one bit and being completely ignorant about the other, exactly
like the epistemic states of ST in subsection 2.1.1). Outputting a random bit would correspond
to the origin (that can be seen as an infinitesimally small square), which would always provide
a success probability of 0.5.

with probability 1. Notice that this strategy can equally be applied in the case of a classical

trit, using the obvious analogous state and reversible gates.

This shows that, if the operations on the system are restricted to reversible gates, the

CHSH* game is a dimensional witness, as it can witness when the dimension of the system is

at least 3.
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4.3 Sources of computational advantages

We now analyse what are the physical reasons for the different performances of the protocol in

the settings that we considered. We first develop an analysis in terms of Landauer’s principle and

then we discuss the presence of contextuality for quantum strategies that achieve a probability

of success higher than the Bell bound.

4.3.1 Connection to Landauer’s principle

We have seen that under the assumption that only reversible gates are employed, the CHSH*

game acts as a witness that distinguishes quantum and classical systems, and systems of different

dimension. How reasonable is it to restrict the operations to reversible transformations? As

described in subsection 4.1.3, it was first argued by Landauer that irreversible operations are not

fundamental and that every irreversible classical operation on logical bits must be accompanied

by a rise in the entropy of the non-information bearing degrees of the system or its environment

[70]. This holds because in order to build an irreversible gate out of fundamentally reversible

operations, we need to discard or erase information.

We have seen that erasure is a powerful tool that allows to win the CHSH* game with

certainty. Reversible classical and quantum settings lead to distinct lower values for the game.

This can be seen as a reflection of the non-classical nature of quantum information storage and

measurement.

Moreover, following Landauer’s approach, in the optimal strategy presented for the irre-

versible setting, winning the game with certainty requires the erasure of one bit for only one

of the four input combinations of a and b. On average, the heat generated by the protocol is

therefore 1
4kT log2 2. With similar considerations, we can imagine an optimal quantum strategy

in the unitary setting as implementing a partial erasure. We can quantify the heat generated

by this partial erasure as, on average, 1
40.41kT log2 2 corresponding to the probability of success

1
4 + 1

4 + 1
4 + 1

4(
√

2−1) ≈ 0.85. In other words, to increase the winning probability for the game in

the classical reversible setting to unity, 1
4kT log2 2 information would need to be erased, whereas

to do so for the unitary setting only 1
40.59kT log2 2 must be erased.

We can interpret the success probability as how much the chosen setting allows us to learn
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about the irreversible function a · b. The quantum resource in this protocol is the qubit’s ability

to simulate two classical bits (one of which is going to be erased). This is made even more

explicit in Figure 4.9, which compares the state spaces of a pair of bits, a single qubit and a

single bit. In particular, in the optimal quantum strategy the single-qubit state space (that

mimics the two-bit state space) encodes the four possible input combinations as four quantum

states. The measurement then extracts one bit of information. Since the four states are not all

pairwise orthogonal, the system is not storing two independent bits prior to the measurement

and can therefore perform better than the reversible classical and Clifford settings.

4.3.2 Connection to Contextuality

We have already argued that the CHSH* game never shows non-locality and contextuality in

its standard definitions due to Kochen-Specker [33] and Spekkens [34] defined in subsection

3.1.2. We here report a notion of transformation non-contextuality, recently introduced by

Mansfield and Kashefi in [71], where the contexts are sequences of transformations. They

called it sequential transformation non-contextuality (STNC) and it refers to the fact that the

same transformation in different sequences of transformations must have the same ontological

representation. More precisely, if we consider a finite sequence C = (Ui)
t
i=1 of unitaries Ui, the

ontological representation of the unitary ΓUi , is the same in any other sequence of unitaries C ′,

ΓUi(C) = ΓUi(C′). (4.5)

We are here also assuming that the sequential composition is reflected at the ontological level,

i.e. ΓUt...U1 = ΓUt ◦· · ·◦ΓU1 . Despite being different from the other notions of non-contextuality,

STNC still encodes the same counterfactual spirit of them, where pre-existing properties asso-

ciated to each experimental procedure (here unitary transformations) must not depend on the

contexts (here sequences) they belong to.

This notion of contextuality is useful as a resource for computational advantages in some

particular computational models, called l2−TBQC.5 l2-TBQC is a computational model con-

sisting of a classical control computer that can only perform mod2-linear computation, and

5TBQC stands for transformation-based quantum computation, in analogy with MBQC [15].
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it can interact with a resource (possibly quantum) to enhance its computational power. The

CHSH* protocol is an example of l2-TBQC protocol. The natural ontological model to asso-

ciate to l2−TBQC has ontic space Zn2 for some n ∈ N and transformations that are mod2−
linear. Since unitaries must be represented by invertible functions at the ontological level, this

implies that their action must correspond to addition of vectors in Zn2 , e.g.

ΓU (λ) = λ+ u

for some u ∈ Zn2 . We call this ontological model as l2−ontological model.

In [71] Mansfield and Kashefi proved that in a l2-TBQC protocol sequential transformation

contextuality (with the assumption of l2−ontology) is necessary to enable quantum advantage

over classical resources for the task of probabilistically computing any non-linear function.

Of course, if we drop the assumption of l2−ontology the result does not hold, as already

an ontological model for classical physics – which is intrinsically sequential transformation

non-contextual – can reproduce a protocol that performs non-linear functions (which concerns

problems belonging to the complexity class P ). The point here is to impose natural restrictions

on generic ontological models that reflect the artificial nature of the computation encoded by

the protocol (in this case the restriction to mod 2 linear computation). The result is that either

the natural assumption of STNC or the here natural assumption of l2−ontology is incompatible

with quantum mechanics.

This work is relevant to the CHSH* game, since the result above applies to the CHSH*

game too, which therefore shows sequential transformation contextuality. The result above can

also be stated in our case as the following no-go theorem: a sequential transformation non-

contextual l2−ontological model cannot in general reproduce the performance of the CHSH*

game in the unitary setting.

Lastly, we report an interesting connection between contextuality and the entropic costs

associated to the (partial) erasures considered in the previous subsection.6 Let us define with

Landauer’s Erasure (LE) the fraction of erasure (in terms of the unit – kT log2 2 – of bit

erased) associated to a given strategy that performs better than the optimal reversible classical

6This part refers to some preliminary results developed mainly with Shane Mansfield and still not contained
in any published work.
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strategy. More formally, let us define, in accordance with [120], the average distance between

two boolean functions f, g : Zn2 → Z2 as d(f, g) = 1
2n |{i ∈ 2n|f(i) 6= g(i)}|, i.e. the fraction of

the number of inputs for which the two functions differ. We also define the non-linearity ν(f)

of a function f : Zn2 → Z2 as the distance between the function f and the closest Z2-linear

function g : Zn2 → Z2,

ν(f) = min
g
{d(f, g)|g : Zn2 → Z2 is Z2-linear}. (4.6)

The Landauer’s erasure, LE ∈ [0, 1], associated to the probability of success of a strategy for

the task of computing a non-linear function f, is defined as

LE =
psuc − prevsuc

ν(f)
, (4.7)

where prevsuc denotes the probability of success of the optimal reversible classical strategy. For

example, in the CHSH* game, when considering the optimal quantum strategy, the Landauer’s

erasure is LE =
cos2(π

8
)−0.75

0.25 = 0.41, which corresponds to the quantity already discussed in

the previous subsection. Notice that this value represents an upper bound on the Landauer’s

erasures for the quantum strategies (unitary setting). Moreover, the definition (4.7) can be

rearranged in the relation

pfail ≥ (1− LE)ν(f), (4.8)

considering that prevsuc = 1−ν(f) and that the probability of failure is pfail = 1−psuc. The reason

for doing this is that the relation (4.8) above is exactly the same relation for the contextual

fraction (CF) – a way of quantifying contextuality in the sheaf-theoretic approach [119] –

in [120, Theorem 3], pfail ≥ (1 − CF )ν(f). We leave the study of the relation between these

two quantities for future reasearches. However, we suggest that the analogy of these two

relations can lead to possible applications. In realistic scenarios involving reversible quantum

computation and actual irreversible processes, we can consider a relation involving both the

contributions due to the contextualilty and to the erasures: pfail ≥ (1 − CF − LE)ν(f). This

consideration suggests a way of measuring the amount of contextuality (CF) in the computation,

as, after n rounds of the experiment, the probability of failure is known and the average entropic
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cost (encoded by LE) can be measured. Moreover, it seems that the notions of erasure and

contextuality are interchangeable in these scenarios by rebalancing the amount of computation

which is quantum and the one which is purely irreversible.

4.4 Generalisation to higher dimensions

We have introduced the CHSH* game as a modification of the CHSH game from two players

to one player. It is natural to consider a similar one-player modification of the modq CHSHq

game. We call such a game the CHSH∗q game. We leave the full investigation of the CHSH∗q for

future work, but make some preliminary observations here.

An interesting question is whether Lemma 6 can be extended to a correspondence between

strategies for the single qudit and CHSHq games. The current proof of the lemma does not

directly generalise to systems of higher dimension since it utilises some special properties of 2x2

unitary matrices.

Nevertheless, we conjecture that the correspondence between the Tsirelson bound for the

CHSHq game and the quantum value for the CHSH∗q game in the unitary setting holds for

arbitrary dimensions. We here provide a support towards the validity of the conjecture, by

focusing on the case of q = 3. The CHSH∗3 game requires that the player’s final measurement

outputs c = a·b (mod 3), for inputs a, b, c ∈ {0, 1, 2}. For a classical trit with reversible gates, the

value of the game (coinciding with the known Bell bound [64–67]) is ωC(CHSH∗3 ) = 2/3. This

can be found by listing all the possibilities for the different input values. One way to obtain it is

to start with the trit in the state 0 and apply the gates A0 = A1 = B0 = B2 = I, A2 = B1 = X.

Suppose now that we have a qutrit system prepared in state

T3 |+〉 = T3
|0〉+ |1〉+ |2〉√

3
,

where the gate T3 = diag(1, w−1/3, w−2/3) is the dimension-3 equivalent of the non-Clifford gate

T , and w = exp(2πi
3 ). Let us choose the following control gates:

A0 = B0 = I, A1 = B2 = V,A2 = B1 = W,
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where V = diag(1, w, w) and W = diag(1, 1, w). Measuring the system in the X basis gives

a success probability psuc ≈ 0.71. This strategy is inspired by the one used to obtain the

Tsirelson bound for the CHSH3 game in [65], thereby providing support for the conjecture that

there exists a mapping from the CHSH∗q game to CHSHq game for q ≥ 2.

4.5 Conclusion

In this chapter we have introduced the CHSH* game, a single player game inspired by the

CHSH game. We have showed that the optimal success probability for the CHSH* game, called

the value of the game, depends on many properties of the system available to the players.

Defining these properties via settings, we have showed that the value of the game depends on

the irreversibility, or otherwise, of the transformations available to the players, the quantum or

classical nature of the system and the system dimension.

Furthermore, we have seen that the values obtained are equal to the Bell and Tsirelson

bounds in the CHSH game (and the perfect strategies embodied by PR boxes). In particular,

for the unitary quantum setting, Lemma 6 shows that any unitary strategy in CHSH* can

be mapped to a quantum strategy in the CHSH game. This correspondence gives a new

perspective on Tsirelson’s bound, which arises due to the absence of irreversible transformations

and the limited ability of quantum strategies with unitary gates and projective measurements

to simulate erasure.

We have seen that in the more restricted Clifford setting, the value obtained is no better than

the reversible classical setting, reflecting the crucial role of non-Clifford computation to obtain

better than classical performance in quantum computation. We have shown that, under the

assumption of reversible transformations, the CHSH* game acts as a dimensional witness, since

any initial state of dimension d > 2 can in principle win the game with certainty. However, the

restriction to reversible operations is not a limitation. In accordance with Landauer’s principle,

implementing irreversible transformations at the microscopic level requires ancillary bits which

must then be erased. The presence of exactly these hidden ancilliary bits is detected by our

protocol.

We have noted a similarity between the optimal unitary strategy for the CHSH* game and

135



2→ 1 QRACs (and 2−bits parity oblivious multiplexing). The latter have also been proposed

as dimensional witnesses [146]. It is therefore important to emphasise the differences between

RACs and the CHSH* game. The CHSH* game is able to detect the hidden information

needed to implement irreversible gates. However, irreversible gates provide no advantage for the

implementation of RACs. This means that a dimensional witness based on the RAC protocol

will be blind to this kind of hidden information. Following Landauer’s approach, we have

asserted that the ability to detect irreversible dynamics should be an important desideratum

for quantum dimensional witnesses. This has not been considered in prior work.

We have conjectured our results to hold also for the generalisation of the protocol to modq

arithmetics. We have supported this by examining the q = 3 case in the single system scenario,

for which we have shown the validity of the Bell bound and we have further provided a strategy

to achieve Tsirelson’s bound. The validity of this conjecture may open the way to easier

approaches for deriving Tsirelson’s bounds in modq arithmetics, by using our single-system

protocol as a tool for proving tightness.

In light of Landauer’s principle, we have further considered the entropic costs of the erasure

associated with the CHSH* game. The lack of such an erasure operation in unitary quantum

mechanics was a barrier to winning the game deterministically. Via the correspondence with

Tsirelson’s bound proven in Lemma 6, we have demonstrated a link between the reversibil-

ity in fundamental operations embodied by Landauer’s principle, and the non-unity value of

Tsirelson’s bound. This work shows that Tsirelson’s bound can be seen as arising from the

restricted physics of a unitarily evolving single qubit system.

Finally, we have shown that theorem 1 in [71] applies to the CHSH* game, thus demonstrat-

ing that, by assuming only reversible computation, sequential transformation contextuality is

necessary for our protocol to achieve a probability of success higher than the Bell bound. Other

forms of contextuality have been studied from the single-particle perspective [69], but they do

not apply here. Our work shows that assumptions of reversibility in transformations can have

a dramatic effect on the capabilities of the system, motivating further study of the relationship

between non-classicality and irreversible dynamics, as suggested by some considerations on the

connection between the entropic costs associated to the erasures and contextuality.
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Chapter 5

Summary and outlook

The heresy of one age becomes the orthodoxy of the next.

H. Keller, Optimism

Quantum technologies are already available in the market and universal quantum computers

are a dream believed to become true in few decades. Nevertheless, it is still unknown which

physical principles are responsible for the quantum computational speed-up. In this thesis we

have tried to take a step closer to the understanding of this crucial matter, by studying notions

of non-classicality that act as resources for computational advantages. We have mainly focused

on contextuality, which emerges as an inherent non-classical feature from studies in quantum

foundations, like Spekkens’ toy theory. The latter indeed shows that almost all the other

phenomena usually associated to quantum mechanics can be reproduced in the phase-space

formalism of classical mechanics with a restriction on what can be known about the reality – a

sort of uncertainty principle built in the symplectic structure of classical physics.

In chapter 2 we have endowed the toy theory with measurement update rules and we have

generalised it to systems of arbitrary finite dimensions, non-prime too. A complete formulation

of the model has allowed us to fully study its operational equivalence with subtheories of

quantum mechanics. In the case of odd dimensional systems, we have proven that ST and SQM

share analogous structural properties and, more importantly, they reproduce the same statistics

of outcomes. This is proven by using the tool of Gross’ Wigner functions, which non-negatively
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represent odd qudit SQM. An elegant manifestation of the operational equivalence of the three

theories arises when comparing their measurement update rules, which have been provided

for Gross’ Wigner functions too. Given the importance of SQM in quantum computation,

the hope is that its representation in ST can open the way to the generalization of results

based on SQM to the non-prime case. A possible example is the result due to Howard et al

in [54], demonstrating contextuality – in its original definition due to Kochen-Specker [33] –

to be necessary for state-injection schemes of computation on qudits of odd prime dimensions.

Moreover, the way we have treated the coarse-graining observables in ST may give suggestions

on how to characterise SQM in non-prime dimensions, which still lacks of an unambiguous

mathematical formulation [77].

In the important case of qubits, the operational equivalence between ST and SQM does not

hold, due to the contextual character of qubit SQM. We therefore dedicate chapter 3 to identi-

fying which subtheories of qubit SQM are operationally equivalent to subtheories of ST. These

are the subtheories that can be represented by non-negative and covariant Wigner functions.

We have used this definition to group in the same scheme the known results on state-injection

schemes of universal quantum computation with contextuality as a resource for odd prime qu-

dits [54] and rebits [55], where the non-contextual free part of the computation is represented

by a Spekkens’ subtheory, and the contextuality comes in with the magic states. Furthermore,

we have proven that the multi-qubit SQM can be obtained from a Spekkens’ subtheory by

circuits of state-injections made of objects only belonging to the Spekkens’ subtheory. This

result has also shown us a Spekkens’ subtheory for the non-contextual free part of a novel

state-injection scheme with CZ and CCZ magic states. In this scheme different manifestations

of contextuality can be associated to different state-injections. The property of covariance of

the gates composing the free part of the computation is the main difference between our frame-

work and other similar works [57, 83]. This property is necessary because it guarantees that

the epistemic restriction is satisfied when the gates are applied. However, a classical simulation

protocol based on non-negative Wigner functions for some non-covariant subtheories of qubit

SQM exists [57]. This fact questions the role of covariance and its relation to other notions of

classicality referring to transformations, like the positivity preservation of the Wigner functions

and transformation non-contextuality (recently shown to be violated in one-qubit SQM [122]).
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Stepping back from the classical simulations based on Wigner functions – that can always

be associated to psi-epistemic ontological models – Gottesman-Knill theorem [84] shows that

n-qubit SQM, despite manifesting contextuality [46, 47], can be efficiently simulated by a clas-

sical computer. This highlights the need to distill which contextuality and, more in general,

which notions of non-classicality in quantum foundations match the notion of non-classicality

in quantum computation, i.e. non-efficient classical simulatability.

The results above show that contextuality provides a justification of the quantum compu-

tational power only in particular schemes of computation and the question of whether simi-

lar results hold in other models is still open. In chapter 4 we have focused on a restricted

computational scenario that shows quantum advantages and it is free of contextuality (in its

standard versions, [33] and [34]) as well as non-locality, the other feature that is usually consid-

ered as inherently non-classical and proven to be a resource in several information processing

tasks [61, 63, 135–140]. We have considered a single-system protocol subjected to controlled

gates and a fixed measurement – the CHSH* game – that computes a non-linear function in

arithmetic modulo 2 with different success probabilities depending on the settings considered.

In particular, in the classical reversible setting it achieves the Bell bound and in the quan-

tum unitary setting it achieves Tsirelson’s bound, via a direct mapping to the popular CHSH

game. If restricted to Clifford computation, it cannot perform better than the classical re-

versible case, while the possibility of using non-Clifford gates provides strategies that overcome

the Bell bound, since they allow to exploit the more powerful non-classical storage of quan-

tum systems. Moreover, by allowing irreversible gates, the non-linear function can be obtained

with certainty. The crucial role of irreversibilty has suggested an analysis of the performances

in terms of Landauer’s principle, that associates entropic costs to erasures of information. A

new notion of contextuality – sequential transformation contextuality [71] – has been proven

to be necessary for the quantum computational speed-up and we have depicted an interesting

connection between Landauer’s erasures and the contextual fraction, that can possibly trigger

further studies. An open question regards the tightness of the Tsirelson bound in the CHSHq

game for q > 2. We have conjectured that the mapping with our CHSH∗q game holds also for

q > 2 by analysing the q = 3 case, where the alleged optimal quantum strategy inherited from

the CHSH3 game provides the same upper bound. Preliminary analyses seem to show that
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the optimal quantum strategies in the CHSH∗q game manifest similar patterns in terms of the

gates when varying q, thus suggesting a possible direction to study the tightness of Tsirelson’s

bounds in the CHSHq game for arbitrary q using the CHSH∗q game.

Coming back to the original question of where does the quantum computational speed-up

originate, the present work suggests that the answer is not to be expected to come from a single

feature (e.g. a given notion of contextuality), but it depends on the scenario considered. For a

more satisfactory answer, a possible solution would be to develop a novel and inclusive notion of

non-classicality that manifests itself in different forms depending on the computational scenario.

Most, if not all, of the features considered as inherently non-classical in quantum foundations

– the ones deriving from no-go theorems [32, 33, 147, 148] – share the characteristic to require

fine-tunings, i.e. they require that properties that are always valid at the operational level – like

locality, non-contextuality and no-retrocausality – do not hold at the ontological level (thus also

providing nature with a conspiratorial connotation). It would be desirable to formally define a

notion of fine-tuning in order to subsume all the current notions of non-classicality. Hopefully,

with this notion we will be able to match the notions of non-classicality in quantum foundations

and quantum computation, thus possibly find results for universal quantum computation also

concerning the sufficiency (in correspondence of a certain amount of fine-tuning), and not just

the necessity. We believe that understanding what is really peculiar about quantum theory

and what explains the quantum computational power is crucial to unveil the mysterious nature

of quantum reality, build new quantum technologies and solve open problems in theoretical

physics, like developing the quantum version of gravity.
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