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Abstract4

Point-counting data are a mainstay of petrography, micropalaeontology and palynology. Conventional5

statistical analysis of such data is fraught with problems. Commonly used statistics such as the arithmetic6

mean and standard deviation may produce nonsensical results when applied to point-counting data. This7

paper makes the case that point-counts represent a distinct class of data that requires different treatment.8

Point-counts are affected by a combination of (1) true compositional variability and (2) multinomial counting9

uncertainties. The relative significance of these two sources of dispersion can be quantified by a chi-square10

statistic and -test. For datasets that pass the chi-square test for homogeneity, the ‘pooled’ composition is11

shown to represent the optimal estimate for the underlying population. It is obtained by simply adding12

together the counts of all samples and normalising the resulting values to unity. However, more often than13

not, point-counting datasets fail the chi-square test. The overdispersion of such datasets can be captured14

by a random effects model that combines a logistic normal population with the usual multinomial counting15

uncertainties. This gives rise to the concept of a ‘central’ composition as a more appropriate way to average16

overdispersed data. Two- or three-component datasets can be displayed on radial plots and ternary diagrams,17

respectively. Higher dimensional datasets may be visualised and interpreted by Correspondence Analysis18

(CA). This is a multivariate ordination technique that is similar in purpose to Principal Component Analysis19

(PCA). CA and PCA are both shown to be special cases of Multidimensional Scaling (MDS). Generalising this20

insight to multiple datasets allows point-counting data to be combined with other data types such as chemical21

compositions by means of 3-way MDS. All the techniques introduced in this paper have been implemented22

in the provenance R-package, which is available from http://provenance.london-geochron.com.23
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1 Introduction24

The mineralogical composition of silicilastic sediments can be determined by tallying the occurrence of various25

minerals in a representative sample of (200-400, say) grains (Dryden, 1931; Van der Plas and Tobi, 1965; Weltje,26

2002). Similarly, the fossil content of a deep sea sediment core may be characterised by tabulating the relative27

abundances of various species among >100 randomly selected specimens (Patterson and Fishbein, 1989; Buzas,28

1990; Fatela and Taborda, 2002). Or palaeobiological environments may be reconstructed by tabulating the29

relative frequency of different types of pollen in a palaeosol or charcoal (Barkley, 1934; Clark, 1982; Weng et al.,30

2006).31

32

These are all examples of multivariate counting experiments, in which the unknown proportions of different33

species of minerals, fossils or pollen are estimated by counting a finite number of randomly selected items from34

a representative sample. Despite the widespread use of this type of data in the Earth Sciences and related fields,35

their statistical analysis is demonstrably underdeveloped.36

37

For example, there currently exists no agreed method to average multi-sample point-counting datasets, or38

to quantify point-counting data dispersion. Traditionally, these operations were done by taking the arithmetic39

mean and standard deviation, respectively. Unfortunately, this may easily produce nonsensical results. For40

example, Weltje (2002) shows that the common practice of using ‘2-sigma’ confidence bounds around the arith-41

metic mean can produce physically impossible negative values when applied to petrographic point-counts.42

43

To solve these problems, Weltje (2002) argues that point-counts should be treated as compositional data,44

which are defined as “vectors representing parts of a whole that only carry relative information” (Pawlowsky-45

Glahn and Buccianti, 2011). According to this definition, compositional data can be renormalised to a constant46

sum (e.g., 100% if the composition is expressed as percentages, or 1 if fractions are used) without loss of infor-47

mation. Aitchison (1982, 1986) shows that the statistical analysis of such data is best carried out using a simple48

logratio transformation.49

50

To illustrate this approach, let {ai, bi, ci} be a three-component dataset, where ai+bi+ci = 1 for 1 ≤ i ≤ m.51

Then this dataset can be mapped to a bivariate Euclidean data space as follows:52

ui = ln(ai/ci) and vi = ln(bi/ci) (1)
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After performing the desired statistical analysis (such as calculating averages and confidence regions) on53

the transformed data {ui, vi}, the results can be mapped back to the ternary diagram by means of an inverse54

logratio transformation:55

ai =
exp[ui]

exp[ui] + exp[vi] + 1
,

bi =
exp[vi]

exp[ui] + exp[vi] + 1
, and

ci =
1

exp[ui] + exp[vi] + 1

(2)

This procedure yields geologically meaningful (geometric) means and confidence regions. Weltje (2002)’s56

adoption of logratio statistics to point-counting data represents a huge improvement over the ‘crude’ statistics57

employed previously. But it does not solve all our problems. There are two crucial differences between point58

counts and the classical compositional data discussed by Aitchison (1982, 1986).59

60

First, point-counting data are associated with significant (counting) uncertainties, which are ignored by61

classical compositional data analysis. For a single sample, this uncertainty is adequately described by multi-62

nomial counting statistics (Section 6 of Weltje, 2002). But for larger datasets comprised of multiple samples,63

existing procedures to construct confidence regions (as discussed in Section 7 of Weltje, 2002) are inadequate64

because they lump together the ‘observational’ dispersion caused by counting statistics and the true ‘geological’65

dispersion. Bloemsma and Weltje (2015) describe a method to disentangle these two sources of uncertainty66

in a logratio context. They show that deconvolution of (spectroscopic) count data into a scale vector and a67

proportions matrix significantly improves multivariate analysis.68

69

Second, point-counting data often contain zero values, which are incompatible with the log-ratio transforma-70

tion defined in Equation 1. This problem also applies to the aforementioned approach by Bloemsma and Weltje71

(2015). These authors circumvented the occurrence of sporadic zeros by replacing them with small positive72

numbers. This and alternative ‘imputation’ strategies are further discussed by Mart́ın-Fernández et al. (2003).73

When the number of zeros is small, imputation is considered to have a minimal influence on the data covariance74

structure. However, some point-counting datasets are dominated by zeros. So the presence of such values is not75

a cosmetic problem, but a fundamental characteristic of this particular data type. The statistical treatment of76

point-counting data needs to address this issue at a deeper level.77
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78

The present paper solves these long standing problems using established statistical methods adopted from79

other disciplines. Much of the paper is based on the work of Galbraith (2005) in fission track geochronology.80

The fission track method is based on the ratio of the number of spontaneous 238U-tracks to the number of81

neutron-induced 235U-tracks per unit area in accessory minerals such as apatite or zircon. This is equivalent82

to a simple two-component point-counting problem. Section 2 uses this equivalence to derive the concept of83

a ‘pooled composition’. We will show that the latter represents the most reliable (in terms of accuracy and84

precision) average of homogeneous point-counting data.85

86

The analytical uncertainty of individual point-counting proportions may greatly vary between samples. Sec-87

tion 3 introduces Galbraith (1988)’s radial plot as a graphical means of visualising such ‘heteroscedastic’ data.88

Originally developed for fission track data, the radial plot can also be used to display point-counting ratios,89

which frequently occur in the Earth Sciences. Radial plots allow a visual assessment of the degree to which90

counting uncertainties can explain the observed scatter between multiple ratio estimates. Section 4 presents a91

formal statistical test to make this assessment more quantitative.92

93

The pooled composition is only applicable to samples that pass this chi-square test for sample homogeneity.94

Multi-sample datasets that fail the chi-square test are said to be ‘overdispersed’ with respect to the counting un-95

certainties. The degree of overdispersion may be quantified by means of a continuous mixture model (Section 5).96

This model leads to the concept of a ‘central composition’ as a better alternative to the pooled composition of97

Section 2. Section 6 generalises the continuous mixture model from two to three (or more) components.98

99

Finally, Section 7 introduces Correspondence Analysis (CA) as a useful ordination technique for multivariate100

point-counting data. CA is closely related to compositional Principal Component Analysis (PCA). But unlike101

the latter method, it does not suffer from the zero counts problem.102

103

All the techniques discussed above will be illustrated with a combination of synthetic and real examples.104

The methods of Sections 2-6 will use the two datasets shown in Table 1. Data 1 consists of 20 random samples105

of 23–94 items each, which were drawn from a discrete trinomial distribution with 45% of component a, 45% of106

component b and 10% of component c. Data 2 comprises a further 20 samples that were drawn from a continuous107

distribution whose mode is the same as that of Data 1, but which adds 100% of dispersion around this mode.108
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Thus, Data 2 has two sources of dispersion (counting error and true population dispersion), whereas Data 1109

only has one (counting error). Note that both datasets contain fewer counts per sample than is customary in110

real world applications. But they are nevertheless realistic if we consider them to be ternary subcompositions111

of higher dimensional datasets.112

113

Data 1 Data 2
# a b c R # a b c R
1 16 18 4 38 1 23 24 5 52
2 25 17 3 45 2 60 24 7 91
3 18 18 0 36 3 45 43 12 100
4 7 14 3 24 4 2 53 4 59
5 12 10 3 25 5 8 32 10 50
6 32 30 13 75 6 53 21 23 97
7 35 38 13 86 7 1 6 3 10
8 20 20 7 47 8 2 17 1 20
9 10 9 3 22 9 10 10 4 24
10 29 36 5 70 10 2 35 3 40
11 34 34 9 77 11 29 21 3 53
12 22 47 12 81 12 2 13 0 15
13 9 9 2 20 13 3 9 0 12
14 37 36 13 86 14 34 1 0 35
15 46 25 16 87 15 28 19 4 51
16 50 37 7 94 16 49 11 3 63
17 28 34 8 70 17 0 72 2 74
18 39 50 6 95 18 55 28 13 96
19 44 36 10 90 19 7 8 3 18
20 28 21 4 53 20 20 5 2 27
C 541 539 142 N = 1222 C 433 452 90 N = 987

Table 1: Two synthetic ternary point-counting datasets. Data 1 was drawn from a single multinomial distri-
bution with population proportions of 45%, 45% and 10% for components a, b and c, respectively. Data 2
was drawn from a continuous mixture of multinomial distributions whose true proportions were drawn from a
bivariate logistic normal distribution with a geometric mean of 45% for a and b, 10% for c, and 100% dispersion
with a correlation coefficient of -0.5 between the two logratio dimensions. R, C and N refer to the row, column,
and total sums, respectively.

2 The pooled composition114

Let us partition a population of objects (such as minerals, fossils or pollen) into two classes. Let θ be the true115

fraction of the first class, and (1 − θ) the true fraction of the second class, respectively. Suppose that we have116

collected m representative samples of randomly selected items from this population. For each of these samples,117

let ni1 represent the number of items belonging to the first class and ni2 the number of items belonging to118

5



the second class (for 1 ≤ i ≤ m). Further let ni• be the total number of counts in the ith sample so that119

ni• ≡ ni1 + ni2. The probability of observing ni1 and ni2 given ni• then follows a binomial distribution:120

p(ni1, ni2|ni•) =

(
ni•
ni1

)
θni1(1− θ)ni2 (3)

The true value of θ is unknown but can be estimated (as θ̂) by jointly considering all m samples and121

maximising their summed log-likelihood (Lp):122

Lp =

m∑
i=1

[
ln

(
n•i
ni1

)
+ ni1 ln(θ) + ni2 ln(1− θ)

]
= constant + n•1 ln(θ) + n•2 ln(1− θ)

(4)

where n•1 ≡
∑m
i=1 ni1 and n•2 ≡

∑m
i=1 ni2. Equation 4 is maximised if θ̂ = n•1/(n•1 + n•2). In other words,123

the maximum likelihood solution is found by pooling all the counts together. A 100(1−α)% confidence interval124

for θ is given by:125

n•1
n•1 + (n•2 + 1)Fα2(n•2+1),2n•1

< θ <
(n•1 + 1)Fα2(n•1+1),2n•2

n•2 + (n•1 + 1)Fα2(n•1+1),2n•2

(5)

where Fαa,b denotes the 100(1-α)-percentile of an F-distribution with a and b degrees of freedom. The same126

equation can be used to construct a confidence interval for θi by replacing n•1 with ni1 and n•2 with ni2.127

128

Let us consider the binary subcomposition comprised of a and b in samples 11 and 13 of Data 1 as an129

example. For sample 11, a = b = 34 so that θ̂ = 0.5± 0.11. For sample 13, a = b = 9 so that θ̂ = 0.5± 0.21. In130

other words, although the binomial parameter estimates of these two samples are the same, the width of their131

95% confidence intervals differ by a factor of two. In statistical terms, this is called heteroscedasticity. The132

following section of this paper will introduce a graphical means of visualising such data.133

3 A radial plot for point-counting ratios134

In many Earth Sciences applications, it is not so much the absolute proportions but the ratios between bi-135

nary (sub)compositions that are of interest. For example, in the context of heavy mineral analysis the ap-136

atite/tourmaline, monazite/zircon, and TiO2/zircon ratios (e.g., Morton and Hallsworth, 1994), and the epi-137
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dote/garnet ratio (Heroy et al., 2003) have all be used to indentify the provenance of sediments. In micropalaeon-138

tology, the ratio of benthic to planktonic foraminifera has been used as a productivity index (e.g., Berger and139

Diester-Haass, 1988). And in palynology, the arboreal/non-arboreal pollen ratio is widely used as an index of140

landscape openness (e.g., Herzschuh, 2007).141

142

Given an estimate of the binomial parameter, θ̂, such ratios can be simply obtained as θ̂/(1− θ̂). The cor-143

responding 100(1 − α)% confidence intervals can be calculated using Equation 5. Applying this to samples 11144

and 13 of Data 1 as an example, we obtain a/b-ratio estimates of 1.00 +0.53/-0.35 for for sample 11, and 1.00145

+1.43/-0.58 for sample 13. So like the binomial parameter estimates, also the ratio estimates are heteroscedas-146

tic. A radial plot is a graphical device that was specifically designed to display such data.147

148

Given a set of paired counts {ni1, ni2} (for 1 ≤ i ≤ m), the radial plot is a scatter diagram that sets out149

(zi − z◦)/si against 1/si, where150

zi = arcsin
(√

(ni1 + 3/8)/(ni• + 3/4)
)
,

z◦ = arctan
(√

n•1/n•2

)
, and

si = 1/
(

2
√
ni• + 1/2

) (6)

Precise measurements plot towards the right hand side of this plot and imprecise measurements to the left.151

The actual n1i/n2i-ratio is proportional to the slope of a line connecting the ith data point to the origin. The152

corresponding values are shown on a circular scale shown at some convenient radial distance away from the origin.153

154

Figure 1.i shows a radial plot for the first two components (a and b) of Data 1. Samples 11 and 13 of155

Data 1 have been highlighted. Recall that the estimated a/b-ratio of sample 11 has the same value but twice156

the precision of sample 13. Therefore, sample 11 plots at the same angle, but towards the right of sample 13.157

158

Figure 1.ii displays the a/b-ratios of Data 2. Let us have a closer look at samples 2 and 7, which are marked159

in black on this diagram. The total number of grains counted in these two samples are n2• = 60 + 24 = 84,160

and n7• = 1 + 6 = 7, respectively (Table 1). So sample 2 is twelve times larger than sample 7, allowing a more161

precise a/b-ratio estimate. Sample 2 therefore plots to the right of sample 7, causing the 95%-confidence interval162
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for the former sample to be narrower than that of the latter. Projecting the two samples onto the radial scale163

yields a ratio of a/b = 2.5 + 1.7/− 1.0 for sample 2 and a/b = 0.17 + 1.20/− 0.16 for sample 7.164

165

The dispersion of the data with respect to the counting uncertainties can be visually assessed by comparing166

the vertical scatter of the data with a confidence band of two standard errors wide drawn on either side of the167

origin. If approximately 95% of the data plot within this interval, then the data are compatible with a homo-168

geneous composition. This is the case for Data 1, which can therefore be safely averaged using the pooled ratio169

(Figure 1.i). In contrast, the a/b-ratios of Data 2 significantly scatter beyond the ‘2-sigma’ confidence region170

(Figure 1.ii). In this case the pooled average should be abandoned in favour of a heterogeneous model (Section 5).171

172

In conclusion, the radial plot is a useful device to visually assess the dispersion of point-counting ratios. The173

next section of this paper introduces a formal statistical test to make this assessment more quantitative.174

st
an

da
rd

is
ed

 e
st

im
at

e

a+b

0.01
0.05

0.1

0.5

1

5
10

25
−2

0
2

0 20 40 60 80 100

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

central ratio = 0.80 ± 0.34
MSWD = 16 , p(χ2)= 0

dispersion =110 %

1/6

2.5 + 1.7
- 1.0

+ 1.20
- 0.16

a+b

st
an

da
rd

is
ed

 e
st

im
at

e

0.6

0.8

1

1.2

1.4

1.6
1.8

−2
0

2

0 20 40 60 80 100

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

pooled ratio = 1.00 ± 0.10
MSWD =1.4, p(χ2)=0.13i. ii. a/b

a/b

13 11
7

2

central ratio = 1.00 ± 0.14

Figure 1: Radial plots of the binary subcompositions a and b for Table 1. i) approximately 95% of the samples
in Data 1 plot within a symmetric ‘2-sigma’ band around the origin. These data are therefore compatible with a
single homogeneous population. The pooled composition then is the best estimate for the average composition
(Section 2). ii) the a/b-ratio of each sample can be obtained by projecting the corresponding scatter point
onto the radial scale. The black dots mark samples 2 (right) and 7 (left) of Data 2. Projecting a ‘2-sigma’
error bar onto the same scale yields the 95% confidence intervals of a/b = 2.5 + 1.7/ − 1.0 for sample 2 and
a/b = 0.17 + 1.20/− 0.16 for sample 7, respectively. In contrast with Data 1, the a/b-ratios of Data 2 do not fit
within a ‘2-sigma’ band. In this case the data are more adequately described by a random effects model with
two parameters: the central ratio and the dispersion.
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4 A chi-square test for compositional homogeneity175

In order for the pooled composition to be a meaningful description of the detrital population, all samples must176

be derived from a single true composition. In other words, any observed differences in the ni1/ni2-ratios must177

be due to binomial counting statistics alone. The validity of this assumption can be verified by calculating the178

chi-square statistic:179

χ2
stat =

1

n•1n•2

m∑
i=1

[ni1n•2 − ni2n•1]
2

ni•
(7)

If χ2
stat is greater than the 100(1−α)-percentile of a chi-square distribution with (m−1) degrees of freedom,180

then the null hypothesis of compositional homogeneity is rejected on a 100(1 − α)% confidence level, where α181

is usually taken to be 0.05.182

183

An alternative way to quantify the dispersion of the data with respect to the expected counting fluctuations184

is to divide χ2
stat by the number of degrees of freedom. This parameter is known as the ‘reduced chi-square185

statistic’, but is also frequently referred to as the ‘Mean Square of the Weighted Deviates’ in the Earth Sciences186

(Wendt and Carl, 1991):187

MSWD ≡ χ2
stat/(m− 1) (8)

If the observed scatter is entirely due to binomial counting statistics, then the MSWD is expected to take188

values close to unity. This is the case for Data 1, which is characterised by an MSWD of 1.4 and a p-value189

of 0.13. The latter value is well above the 0.05 cutoff, making the pooled composition the most appropriate190

average. The pooled a/b-ratio of Data 1 is 1.00 ± 0.10, which agrees with the known ratio of 1.00 (Section 1).191

192

MSWD values significantly greater than one indicate the presence of excess scatter beyond the binomial193

counting statistics. This is the case for Data 2, which yields an MSWD-value of 16 and a p-value close to zero.194

In this situation, the pooled average is not the most appropriate estimator for the population average and a195

more realistic model must be used. An example of one such model is given in Section 5.196
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5 Continuous mixtures197

Datasets that fail the chi-square test for homogeneity are incompatible with a single binomial population.198

Instead their binomial population parameter θ may be drawn from a continuous distribution. Suppose that θ199

is drawn from a logistic normal distribution with geometric mean µ and coefficient of variation σ, and define200

β ≡ ln

(
θ

1− θ

)
∼ N (µ, σ2) (9)

where N (µ, σ2) stands for “the normal distribution with mean µ and variance σ2”. Note that β is a logratio201

similar to those defined in Equation 1. Given the usual m sets of point-counts {ni1, ni2} and maximising the202

log-likelihood function Lc203

Lc =

m∑
i=1

ln


(
ni•
ni1

) ∞∫
−∞

exp [βni1]

(exp [β] + 1)
ni•

exp

[
− 1

2

(
β−µ
σ

)2]
σ
√

2π
dβ

 (10)

yields two estimates µ̂ and σ̂ whose approximate standard errors may be obtained by inverting the Hessian204

matrix of second derivatives of Lc. The integrals in Equation 10 cannot be evaluated analytically, but a quick205

numerical solution is provided by Galbraith and Laslett (1993). The ‘central’ composition is then defined as:206

θ̂ =
exp[µ̂]

exp[µ̂] + 1
(11)

which is akin to the inverse logratio transformation defined in Equation 2. The central a/b-ratio for Data 2 is207

0.80± 0.34 (Figure 1.ii), which again agrees with the true ratio of 1.00 that was reported in Section 1.208

209

The dispersion estimate σ̂ quantifies the geological variability of the underlying population. This is just as210

useful a quantity as the central value itself. It estimates the relative spread of the underlying population without211

the binomial counting errors. For example the coefficient of variation (standard deviation divided by mean) of212

the a/b-ratio measurements for Data 2 is ∼260%. This is far greater than the ∼110% dispersion estimated by213

the random effects model. The latter estimate is much closer to the true dispersion of the underlying population,214

whose value is 100% (Section 1).215

216

It is useful to note that, for samples that pass the chi-square test for sample homogeneity, the pooled ratio217

is the same as the central ratio. This is indeed the case for Data 1, which yields a pooled ratio of 1.00 ± 0.10218
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and a central ratio of 1.00 ± 0.14. The larger 95% uncertainty interval of the latter is due to the loss of one219

degree of freedom that is required to estimate σ̂.220

6 Ternary models221

The statistical models presented in the previous sections can be generalised from two to three or more com-222

ponents. This is trivial for homogeneous populations such as Data 1, whose pooled composition is shown in223

Figure 2.i. For heterogeneous populations such as Data 2, the continuous mixture model of Section 5 can be224

generalised by defining two population parameters β1 ≡ ln[θ1]− ln[1− θ1 − θ2] and β2 ≡ ln[θ2]− ln[1− θ1 − θ2].225

Assuming that β1 and β2 are drawn from a bivariate normal distribution with mean M and covariance matrix226

Σ, the three-component equivalent to Equation 10 becomes227

Lt =

m∑
i=1

ln

{
ni•!

ni1!ni2!ni3!

∞∫
−∞

∞∫
−∞

exp [β1ni1 + β2ni2]

(exp [β1] + exp [β2] + 1)
ni•

exp
[
− 1

2 (B −M)
T

Σ−1 (B −M)
]

2π
√
|Σ|

dβ1dβ2

} (12)

where {ni1, ni2, ni3} are the ternary counts of the ith sample, with ni1 + ni2 + ni3 = ni• for 1 ≤ i ≤ m;228

B =

 β1

β2

 ; M =

 µ1

µ2

 ; and Σ ≡

 σ2
1 σ1,2

σ1,2 σ2
2


in which σ1 and σ2 are the standard deviations of β1 and β2, and σ1,2 is their covariance. Equation 12, like229

Equation 10, does not have an analytical solution and requires numerical integration for each sample. The fast230

algorithm of Galbraith and Laslett (1993) can be used to estimate µ1, µ2, σ1 and σ2 so that only the covariance231

σ1,2 remains to be found. The central composition is then estimated by substituting µ̂1 for ui and µ̂2 for vi in232

Equation 2. Figure 2.ii applies this model to Data 2, showing the central composition as a black square and233

using the dispersion estimate Σ̂ to define a 95% confidence region for the underlying population (red line).234

235

The definition of β1 and β2 that is used in Equation 12 is consistent with the logratio approach of Equation 1.236

However other parameterisations are possible as well. For example, we could define three logistic population237

parameters (βi ≡ ln[θi] − ln[1 − θi] for 1 ≤ i ≤ 3) to ensure compatibility with the bivariate random effects238
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model of Section 5. These alternative parameterisations are interchangeable with each other and can easily be239

converted to each other.240
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Figure 2: Statistical analysis of ternary point-counting data. i. Data 1 is sampled from a homogeneous
population, whose mean is given by the pooled composition shown as a black square. ii. Data 2 is derived from
a continuous mixture (see the caption of Table 1 for details). Its estimated central composition is shown as a
black square, and the 95% confidence envelope corresponding to its dispersion parameters as a red contour line.
The dashed black contour marks the true dispersion region for the population, also shown at 95% confidence.

7 Correspondence analysis241

The previous sections of this paper have shown that binary or ternary datasets can be visualised as radial plots242

and ternary diagrams, respectively. These two-dimensional graphics are useful for interpreting point-counting243

data, but cannot so easily be applied to higher dimensional datasets. In this section, we will consider the general244

case of a K-component dataset X contained in an [m×K]-matrix. We will explore some strategies to display245

such a dataset as a two-dimensional graphic.246

247

Principal Component Analysis (PCA, Pearson, 1901) is an ordination techniques that is commonly used for248

exploratory data analysis of multi-dimensional datasets. PCA is a two step process. First, the data are ‘centred’249

by subtracting the arithmetic mean composition from each column. Second, the centred data are decomposed250

into an orthogonal set of K principal components. Plotting the first two principal components against each251
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other then yields the desired two-dimensional data projection.252

253

Unfortunately, PCA cannot readily be applied to compositional data or point-counting data. This is because254

the first step involves taking an arithmetic mean, which we have already shown to be problematic in Section 1.255

Subjecting the data to a logratio transformation prior to PCA analysis solves this problem (Aitchison, 1983).256

But this solution generally does not work for point-counting data due to its inability to handle zero count257

data. This issue is aggravated by the tendency for high dimensional datasets to contain more zeros than lower258

dimensional datasets do.259

260

Correspondence Analysis (CA, Greenacre, 1984) fixes these issues by explicitly treating the data as counts.261

CA is a multivariate ordination technique that is conceptually similar to PCA. To understand the relationship262

between the two methods, it is useful to point out that PCA and CA are both special case of another exploratory263

data analysis method called Multidimensional Scaling (MDS, Kruskal and Wish, 1978; Vermeesch, 2013). Given264

a table of pairwise ‘dissimilarities’ between samples, MDS produces a map in which similar samples plot close265

together and dissimilar samples plot far apart.266

267

PCA is a special case of MDS in which the dissimilarities are Euclidean distances. CA is another special268

case of MDS in which the dissimilarities are chi-square distances (Legendre and Gallagher, 2001; Greenacre,269

2005):270

dij =

√√√√ K∑
k=1

X••
X•k

(
Xik

Xi•
− Xjk

Xj•

)2

(13)

where dij is the dissimilarity between samples i and j (with 1 ≤ i, j ≤ m); X•k =
∑m
i=1Xik; Xi• =

∑K
k=1Xik;271

Xj• =
∑K
k=1Xjk; and X•• =

∑m
i=1

∑K
k=1Xik. In the case of PCA, the principal components are obtained by272

linear combination of the original variables. The weightings of these variables can be displayed together with273

the transformed data as a biplot (Aitchison and Greenacre, 2002). The same principle can be applied to CA274

(Figure 3).275
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8 Examples276

All the methods discussed in this paper were added to the provenance package of Vermeesch et al. (2016).277

Written in the statistical programming language R, provenance comes with a query-based user interface that278

does not require any programming skills. Alternatively, the full functionality of the package can also be accessed279

via the command line, as demonstrated in the following tutorial.280

281

Point-counting data can be read from a .csv file using the read.counts function. For example, to read the282

second dataset from Table 1:283

data2 <- read.counts('data2.csv')284

Plotting the ratios of the first two variables (a/b) as a radial plot (Figure 1.i):285

radialplot(data2,num='a',den='b')286

where num and den are optional arguments denoting the names of the numerator and denominator compo-287

nent, respectively. Plotting the full dataset on a ternary diagram and constructing its 95% confidence region288

(Figure 2.ii):289

# create a ternary data object:290

tern <- ternary(data2)291

# show the data on a ternary diagram292

# as white circles without data labels:293

plot(tern,pch=1,labels=NA)294

# add the 95% confidence region:295

ternary.ellipse(tern,alpha=0.05)296

where everything that follows a hash character (‘#’) is a comment and is ignored. Next, let us consider a real297

dataset of heavy mineral counts from Namibia published by Vermeesch et al. (2016). The following code snippet298

calculates the central composition for these data:299

HM <- read.counts('HM.csv')300

avg <- central(HM)301

The variable avg contains a [5 × 15] table in which each column corresponds to a mineral species, and the302

rows contain (1) the central value for the binomial parameters (θi for 1 ≤ i ≤ 15) for those minerals; (2) the303

14



standard error for the binomial parameters; (3) the overdispersion parameter for the binary composition pa-304

rameter ln[θi]−ln[1−θi]; (4) the MSWD value for each binary subcomposition; and (5) the corresponding p-value.305

306

Next, we will perform a correspondence analysis of the Namib data. But before doing so, it is important307

to point out that CA is most sensitive to the least abundant components. To mitigate the effects of this308

phenomenon, it is useful to pre-process the data. The following code snippet selects the most abundant minerals309

(epidote, garnet, amphibole and clinopyroxene) from the datasets and amalgamates the ultra-stable minerals310

(zircon, tourmaline and rutile), which have similar petrological significance:311

HM2 <- amalgamate(HM,ztr=c('zr','tm','rt'),ep='ep',312

gt='gt',amp='amp',cpx='cpx')313

The resulting data object (HM2) still contains a number of zero values, but is no longer dominated by them.314

The actual CA calculation then proceeds as follows:315

# perform the calculations:316

ca <- CA(HM2)317

# show the results as a biplot:318

plot(ca)319

The biplot (Figure 3) displays the samples in black and the minerals as red arrows. The tight clustering320

of samples N1, N2, N3, N10, N12, N14, T8 and T13 reflects the compositional similarity between these sam-321

ples, which were all derived from the coastal parts of the Namib Sand Sea (Vermeesch and Garzanti, 2015).322

In contrast, inland samples N4, N5, N8 and N9 plot elsewhere, indicating that they have a different compo-323

sition. This is due to a combination of provenance and hydraulic sorting effects (Vermeesch and Garzanti, 2015).324

325

The configuration of the mineral labels provides further insight into the factors that cause the dispersion326

of the samples on the biplot. For example, the orientation of the red arrows shows that samples N8 and327

N9 are enriched in garnet and ultra-stable minerals, whereas sample N5 is enriched in epidote relative to the328

coastal samples. The arrows for epidote and clinopyroxene point in opposite directions, indicating that these329

two minerals are anti-correlated with each other. In contrast, the arrow for garnet is perpendicular to that of330

epidote. This indicates that garnet and epidote are uncorrelated with each other.331
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Figure 3: Correspondence analysis of heavy mineral compositions from Namibia (Vermeesch et al., 2016) shown
as a biplot. Samples are shown in black, minerals in red.

9 Discussion and conclusions332

It is common practice in sedimentary petrography, palaeontology and palynology to report the relative abun-333

dances of minerals, fossils or pollen as percentages. Unfortunately, by doing so one loses the ability to quantify334

the statistical uncertainty of the underlying point-counting data. Normalisation of point-counts also compro-335

mises the ability to deal with missing (zero) components.336

337

The statistical methods reviewed in this paper are built on the recognition that point-counts represent a338

distinct class of data. This new data class shares aspects with, but is fundamentally different from Aitchison339

(1986)’s compositional data. Compositional data only carry relative information (Pawlowsky-Glahn and Buc-340

cianti, 2011), and the absolute abundances of their components are irrelevant. In stark contrast with this, for341

point-counting data the absolute abundances do matter, because they control the precision of the estimated342
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compositions (Bloemsma and Weltje, 2015).343

344

This observation leads to a first recommendation, which is to report the total number of counts for each345

sample in published data tables. This allows the recovery of the raw point-counting data. Those data can then346

be further analysed using the techniques introduced in this paper.347

348

Compositional data and point-counting data are closely related to each other. In fact, point-counting data349

are underlain by compositional populations. These populations can be constrained using a combination of multi-350

nomial and logratio statistics.351

352

If the data are underlain by a single, fixed composition, then the point-counting data follow a multinomial353

distribution. In this case, the fixed composition of the underlying population can be estimated by pooling all354

the data together (Section 2). However, this simple scenario rarely occurs in the real world. Provided that355

a dataset is large enough, virtually all populations are overdispersed with respect to the multinomial point-356

counting uncertainties (Section 4).357

358

For two-component systems, the degree of overdispersion can be visually assessed on a radial plot (Section 3).359

The dispersion may then be quantified using a three parameter continuous mixture model (Section 5), which360

can be generalised to three (or more) components (Section 6). The continuous mixture model assumes that361

the point-counting data are underlain by a logistic normal distribution. Although more realistic than the ho-362

mogeneous population assumed by the pooled composition, the continuous mixture model is still a very simple363

approximation to real geological scenarios.364

365

Correspondence Analysis was introduced as an effective tool for exploratory analysis of more complex and366

higher dimensional datasets (Section 7). It does not seek to capture the data in a simplified analytical form.367

Instead, CA distills the salient similarities and differences between samples as a two-dimensional ‘map’, and368

which the variables can also be shown. Such biplots can provide valuable geological insights that would be369

difficult to obtain otherwise.370

371

CA is closely related to Principal Component Analysis. PCA can be applied to compositional data and372

uses Aitchison’s Euclidean logratio-distance as a measure to compare the (dis)similarities between samples. In373

17



contrast, CA uses the chi-square distance (Equation 13), which makes it immune to the zero-count problem.374

Once we recognise the close affinity between the Aitchison distance and compositional data on the one hand, and375

between the chi-square distance and point-counting data on the other hand, then it is possible to add further376

complexity to our statistical analysis.377

378

For example, Vermeesch and Garzanti (2015) introduce a technique called 3-way multidimensional scaling379

to combine different datasets together for the purpose of sedimentary provenance analysis. Using the insights380

gained from this paper, we could use the Aitchison distance to compare the major and trace element compositions381

of different samples, and the chi-square distance to compare their bulk petrography and heavy mineral counts.382
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