1		System	ic endotox	aemia in peritone	eal dialysis patients
2					
3					
4	¹ Ali M Sh	endi MD, ²N	athan Davi	es PhD, ³ Andrew	Davenport FRCP
5					
6	¹ Renal Div				
7	•	ent of Inter		ie	
8		Iniversity, E	•••		
9		e for Liver &	& Digestive	Health	
10	•	e Hospital			
11	_	ical School			
12		tre for Nep	hrology		
13	,	e Hospital			
14		y College Lo	ndon		
15		Hill Street			
16	London N	W3 2PF			
17					
18		for correspo	ondence		
19	Ali M She			ali.shendi@zu	-
20	Nathan Davies nathan.davies@ucl.ac.uk				
21	Andrew Davenport andrewdavenport@nhs.net			port@nhs.net	
22				- .	
23	contact		davenport	@nhs.net	
24		re for Neph	rology		
25	Royal Free Hospital,				
26	University College London				
27	Rowland Hill Street,				
28	London N				
29	tel 44-2074726457				
30	fax 44-2073178591				
31					
32	Funding: I	None			
33					
34	short titl	e endoto	xaemia in p	eritoneal dialysi	s patients
35					
36	key word:	•	eal dialysis		icodextrin
37		nutritic	on bioi	mpedance	
38					
39					
40	word cou				
41		body	142	8	
42		Tables	1		
43		refere	nces 21		
44		. 1	6 11 · ·	r · · · ·	
45	The authority	ors have no	contlicts o	t interest	

46 <u>Abstract</u>

40	ADSTRUCT
47 48	Previous reports have linked systemic endotoxaemia in dialysis patients to
49	increased markers of inflammation, cardiovascular disease and mortality. Many
50	peritoneal dialysis (PD) patients use acidic, hypertonic dialysates which could
51	potentially increase gut permeability resulting in increased systemic
52	endotoxaemia. However, the results from studies measuring endotoxin
53	peritoneal dialysis (PD) patients have been discordant. As such we measured
54	systemic endotoxin in a cohort of 55 PD outpatients attending for routine
55	assessment of peritoneal membrane function; mean age 58.7±16.4 years, 32
56	(58.2%) male, 21 (38.2%) diabetic, median duration of PD treatment 19.5 (13-31)
57	months, 32 (58.2%) using 22.7 g/L dextrose dialysates, and 47 (85.5%)
58	icodextrin. The median systemic endotoxin concentration was 0.0485 (0.0043-
59	0.103) EU/ml. We found no association between endotoxin levels and patient
60	demographics, markers of inflammation, serum albumin, N-terminal pro-brain
61	natriuretic peptide, extracellular volume measured by bioimpedance, blood
62	pressure, peritoneal dialysis prescriptions or peritoneal membrane transporter
63	status, or medications. The measurement of endotoxin can be affected by
64	failure to effectively release protein bound endotoxin prior to analysis on the
65	one hand, and on the other by contamination when taking blood samples,
66	processing and storing the samples. Additionally, the presence of fungal eta -
67	glucan from fungal cell walls and the use of different assays to analyse
68	endotoxin can also give differing results. These factors may help to explain the
69	disparate results reported in different studies. Our study would suggest that

70	exposure to peritoneal dialysates does not affect systemic endotoxaemia, and
71	that endotoxin is not a major cause of inflammation in adult PD outpatients.

72

73

74 Introduction

75 76 Patients with chronic kidney disease (CKD), especially dialysis patients 77 are at increased risk of inflammation [1], which drives muscle wasting, 78 malnutrition, and vascular calcification, cumulating in an increased risk of 79 mortality [1,2]. There are many potential sources of inflammation, including 80 direct inflammatory effects of uraemic toxins, to increased peri-odontal disease 81 due to underlying kidney bone mineral disease, absorption of toxic products 82 from the gastrointestinal biome, contamination of dialysis fluids and catheter 83 related infections. As circulating i cytokines and other inflammatory mediators are normally cleared by the kidney, then patients with CKD would be expected to 84 85 have elevated levels [3]. 86 There has been recent interest in circulating endotoxin as a cause of 87 inflammation in kidney dialysis patients [4,5]. Endotoxins are complex 88 lipopolysaccharides, ranging in size from 10 to 1000 kDa (larger masses form due 89 to hydrophobic aggregation), present in the cell wall of gram negative bacteria. 90 Endotoxins trigger activation of the innate immune system, as well as activating 91 monocytes and macrophages through their CD14/Toll like receptor 4 complex

92 activation. As endotoxins are such potent activators of inflammation, there are

natural host defence mechanisms designed to rapidly bind and detoxify any

94 circulating endotoxin.

95	Previous reports have linked circulating endotoxin levels with
96	hypertension and extracellular volume overload [6,7] and systemic inflammation
97	[5,6], whereas other reports have shown no association with volume status, or
98	markers of systemic inflammation [4]. In view of the differing reports we set
99	out to measure endotoxin and volume status in a cohort of peritoneal dialysis
100	(PD) patients.
101	

101

102 Methods

103 We measured plasma endotoxin in adult PD patients attending for peritoneal membrane assessment [8]. Patients who had peritonitis or PD 104 105 catheter exit site infection or hospital admission in the preceding three months 106 were excluded. In addition to standard laboratory biochemical measurements, 107 we measure brain-natriuretic peptide (NT-proBNP) (Roche Integra, Roche 108 diagnostics, Lewes, UK), and C reactive protein (CRP) with an assay with a 109 detection limit <1.0 mg/L [9]. Blood samples for endotoxin were collected 110 aseptically into sterile heparinised tubes, and plasma separated by 111 centrifugation and stored at -80°C until assayed. All phlebotomy equipment, 112 pipette tips and Eppendorf storage tubes were checked for endotoxin 113 contamination, and all apparatus had no detectable endotoxin (<0.0005 EU/ml). 114 Samples were assayed using endochrome-K lysate (Charles River Laboratories, 115 France) with manufacturer supplied depyrogenated equipment, and the kinetic

chromogenic limulus amoebocyte lysate analysed using FLUOstar Omega 116 117 microplate readers with MARS data analysis software (BMG Labtech, 118 Offenburg, Germany) and read at 405 nm and compared to standard curves [10]. 119 Extracellular water (ECW) and body composition were measured using multifrequency bioelectrical impedance (MFBIA) (InBody 720, Seoul, South 120 121 Korea) [11], after patients had emptied their bladder and peritoneal dialysate 122 drained out [12,13], 123 Patients provided informed consent for this observational study which was approved by London Camden and Islington research ethics committee 124

125 (13/LO/0912) and registered (ISRCTN70556765). All patient data was

126 anonymised.

127

128 <u>Statistical analysis</u>

129 Data is presented as mean ± standard deviation, median (interguartile range), or percentage. Data was analysed using D'Agostino & Pearson normality 130 131 test, and standard statistical tests; t test and Mann Whitney U test, ANOVA, 132 Kruskal Wallis and Chi square test, with appropriate post hoc corrections for 133 multiple testing (Tukey or Dunn) and Spearman correlation. For multivariable 134 models, nonparametric data was log transformed if required. Statistical analysis 135 used Prism 7.0 (Graph Pad, San Diego, USA) and SPSS 24 (IBM SPSS Statistics, 136 Armonk, New York, USA). Statistical significance was taken as p<0.05. 137

157

138 <u>Results</u>

139	We measured endotoxin in 55 patients (table 1). The median endotoxin		
140	concentration was 0.0485 (0.0043-0.103) EU/ml, with endotoxin undetectable		
141	(<0.005 Eu/ml) in 12 patients. There was no difference in endotoxin levels		
142	according to primary renal disease (table 1). There were no statistically		
143	significant correlations between endotoxin concentrations and any of the		
144	variables in table 1.		
145	Neither multivariable models or binary logistic models (above and below		
146	median) showed any significant association between endotoxin concentrations		
147	and potential variables of interest (serum albumin, NT-proBNP, CRP, systolic		
148	blood pressure, pulse pressure, ECW, body composition, Davies Co-morbidity		
149	grade, primary renal disease, residual renal function, peritoneal membrane		
150	transporter status or peritoneal or total urea clearance).		
151			
152	Discussion		
153	The results from previous studies reporting on systemic endotoxaemia in		
154	peritoneal dialysis patients have been discordant, both in terms of the		
155	circulating concentrations reported and association with systemic inflammation		
156	and outcomes. We report a median circulating endotoxin concentration of 0.05		
157	Eu/ml, which compared to reports of as low as 0 Eu/ml [14], up to 15.9 Eu/ml		
158	[15]. Generally, PD patients from South East Asia have been reported to have		
159	greater endotoxin levels [16] than those from Western Europe [18].		

Studies have used assays from different manufacturers, with varying
detection limits from 0.005 to 0.01 to 1 Eu/ml [5,10,15]. As such this may

partially explain some of the differences reported between studies. These 162 assays were originally developed to detect very low levels of endotoxin in water 163 164 as part of sterility quality control procedures. As endotoxin is such a potent 165 activator of inflammation, plasma endotoxin is highly regulated by binding to albumin and other proteins such as lipopolysaccharide binding protein, and 166 intestinal alkaline phosphatase to minimise free plasma endotoxin. Measuring 167 168 endotoxin therefore requires heat pre-treatment of samples to ensure that all 169 endotoxin is freed from plasma protein and so becomes available for measurement. On the other hand, samples may be contaminated by addition of 170 171 exogenous endotoxin from numerous sources including phlebotomy equipment, 172 blood sampling tubes, storage tubes. More recently it has been recognised that the most common assay, the limulus Amoebocyte Lysate (LAL) assay is not 173 endotoxin-specific and can be activated by $(1\rightarrow 3)$ - β -glucan, a component of 174 175 fungal cell walls leading to false positive signals [19]. Fungal peritonitis is more 176 commonly reported from South East Asia than Europe [20,21], and differences 177 in environmental exposure to fungi may account for the much higher endotoxin 178 levels reported from Hong Kong and Taiwan [15,16]. 179 Previous observational studies in dialysis patients have differed, with 180 reports that patients with higher plasma endotoxin levels have better survival [18], whereas others described a greater incidence of cardiovascular disease 181 182 and increased mortality [4]. We found no association between volume status and 183 NT-proBNP, which is in keeping with previous European studies [4,17]. Studies in 184 a highly selected small group of elderly patients with chronic kidney disease

suggested that endotoxin levels were positively associated with systemic blood 185 pressure and vascular stiffness [7], whereas we found no association with blood 186 187 pressure and endotoxin levels, and similarly others have shown no association 188 between cardiac magnetic resonance and pulse wave velocity findings with 189 endotoxin levels [4,17]. Similarly, there have been varying results reporting an 190 association between systemic endotoxin levels and markers of inflammation, with 191 studies reporting a positive association with CRP [5,18] and monocyte 192 chemoattractant protein-1 [15], whereas others have reported no association with CRP [7], or the inflammatory cytkines interleukin-6 and tumour necrosis 193 194 factor alpha [14]. The largest study reporting a positive association between 195 endotoxin and CRP, also reported a negative association with albumin, and yet 196 patients with the greatest endotoxin levels had greater survival [18]. As assays 197 are designed to measure total endotoxin following protein denaturation, and as 198 any free endotoxin is rapidly bound in plasma by albumin, this may explain why 199 the majority of published studies (and our own) have failed to demonstrate any 200 association between endotoxin levels in healthy PD outpatients and inflammation. 201 This is supported by one study which measured circulating bacterial DNA, and 202 could only demonstrate that endotoxin levels could only account for 203 approximately 5% of the predicted levels from the observed bacterial DNA [16]. 204 We found no association between the amount of peritoneal dialysis urea 205 clearance, peritoneal transporter status, use of hypertonic glucose dialysates or 206 icodextrin and systemic endotoxin levels, which is in keeping with previous 207 reports [18].

208	Previous studies have differed widely in reporting endotoxin levels in			
209	kidney dialysis patients, with some reporting similar levels for PD and			
210	hemodialysis patients [4] and others that PD patients have much lower values			
211	[14]. Small, but highly detailed studies have failed to demonstrate an effect of			
212	endotoxin levels on blood flow in the abdomen in PD patients, or vascular			
213	stiffness or vascular permeability with increased extracellular fluid [17]. Our			
214	study reports much lower endotoxin levels than previously reported by earlier			
215	observational studies [5,8,16]. We were unable to demonstrate any association			
216	between systemic endotoxin levels and markers of inflammation of extracellular			
217	volume excess, in keeping with more recent reports [17]. Whether these			
218	differences in reports relate to the methods used to take blood samples, sample			
219	processing, contamination with fungal eta - glucan and different assays remains to			
220	be determined. However, our study would suggest that systemic endotoxaemia is			
221	not the major cause of inflammation in PD patients.			
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237	The authors have no conflict of interest The data presented in this paper has not been previously published in part or full form Dr Mohamed Ali was in receipt of an International Society of Nephrology			
238	training scholarship			

239	References
240	1. Kalantar-Zadeh K1, Ikizler TA, Block G, Avram MM, Kopple JD.
241	Malnutrition-inflammation complex syndrome in dialysis patients: causes
242	and consequences. Am J Kidney Dis. 2003;42(5):864-81
243	2. Hung R, Wong B, Goldet G, Davenport A. Differences in Prevalence of
244	Muscle Wasting in Patients Receiving Peritoneal Dialysis per Dual-Energy
245	X-Ray Absorptiometry Due to Variation in Guideline Definitions of
246	Sarcopenia. Nutr Clin Pract. 2017;32(4):539-544
247	3. Andres-Hernando A, Dursun B, Altmann C, Ahuja N, He Z, Bhargava R,
248	Edelstein CE, Jani A, Hoke TS, Klein C, Faubel S. Cytokine production
249	increases and cytokine clearance decreases in mice with bilateral
250	, nephrectomy. Nephrol Dial Transplant. 2012;27(12):4339-47
251	4. McIntyre CW, Harrison LE, Eldehni MT, Jefferies HJ, Szeto CC, John
252	SG, Sigrist MK, Burton JO, Hothi D, Korsheed S, Owen PJ, Lai KB, Li PK.
253	Circulating endotoxemia: a novel factor in systemic inflammation and
254	cardiovascular disease in chronic kidney disease. Clin J Am Soc Nephrol.
255	2011;6(1):133-41
256	5. Szeto CC, Kwan BC, Chow KM, Lai KB, Chung KY, Leung CB, Li PK.
257	Endotoxemia is related to systemic inflammation and atherosclerosis in
258	peritoneal dialysis patients. Clin J Am Soc Nephrol. 2008;3(2):431-6
259	6. Hassan MO, Duarte R, Dix-Peek T, Vachiat A, Naidoo S, Dickens C,
260	Grinter S, Manga P, Naicker S. Correlation between volume overload,
261	chronic inflammation, and left ventricular dysfunction in chronic kidney
262	disease patients. Clin Nephrol. 2016 Supplement 1;86 (2016)(13):131-135
263	7. John SG, Owen PJ, Harrison LE, Szeto CC, Lai KB, Li PK, McIntyre CW.
264	The impact of antihypertensive drug therapy on endotoxemia in elderly
265	patients with chronic kidney disease. Clin J Am Soc Nephrol. 2011
266	;6(10):2389-94
267	8. NKF-DOQI CLINICAL PRACTICE GUIDELINES FOR PERITONEAL
268	DIALYSIS ADEQUACY. Assessment of Nutritional status. AmJKidDis
269	2007; 30(3 Suppl 2), S125-9
270	9. Booth J, Pinney J, Davenport A. N-terminal proBNPmarker of cardiac
271	dysfunction, fluid overload, or malnutrition in hemodialysis patients? Clin
272	J Am Soc Nephrol. 2010;5(6):1036-40
273	10. Wong J, Davies N, Jeraj H, Vilar E, Viljoen A, Farrington K. A
274	comparative study of blood endotoxin detection in haemodialysis
275	patients. J Inflamm (Lond). 2016;13:24. doi: 10.1186/s12950-016-0132-5
276	11. Fürstenberg A, Davenport A. Assessment of body composition in
277	peritoneal dialysis patients using bioelectrical impedance and dual-energy
278 270	x-ray absorptiometry. Am J Nephrol. 2011;33(2):150-6

Davenport A. Effect of intra-abdominal dialysate on
 bioimpedance-derived fluid volume status and body composition
 measurements in peritoneal dialysis patients. Perit Dial Int.
 2013;33(5):578-9

283	13	. Davies SJ, Davenport A. The role of bioimpedance and biomarkers
284		in helping to aid clinical decision-making of volume assessments in dialysis
285		patients. Kidney Int. 2014;86(3):489-96
286	14	Lemesch S, Ribitsch W, Schilcher G, Spindelböck W, Hafner-
287		Gießauf H, Marsche G, Pasterk L, Payerl D, Schmerböck B, Tawdrous M,
288		Rosenkranz AR, Stiegler P, Kager G, Hallström S, Oettl K, Eberhard K,
289		Horvath A, Leber B, Stadlbauer V. Mode of renal replacement therapy
290		determines endotoxemia and neutrophil dysfunction in chronic kidney
291		disease. Sci Rep. 2016;6:34534. doi: 10.1038/srep34534. PMID:
292		27698480
293	15	Wu CL, Wu HM, Chiu PF, Liou HH, Chang CB, Tarng DC, Chang CC.
294		Associations between the duration of dialysis, endotoxemia, monocyte
295		chemoattractant protein-1, and the effects of a short-dwell exchange in
296		patients requiring continuous ambulatory peritoneal dialysis. PLoS One.
297		2014;9(10):e109558 PMID: 25286027
298	16.	
299		Szeto CC. Circulating bacterial-derived DNA fragments as a marker of
300		systemic inflammation in peritoneal dialysis. Nephrol Dial Transplant.
301		2013;28(8):2139-45
302	17	
303		Costigan C, Francis S, Lai KB, Szeto CC, Gowland P, McIntyre C.
304		Endotoxemia in Peritoneal Dialysis Patients: A Pilot Study to Examine the
305		Role of Intestinal Perfusion and Congestion. Perit Dial Int. 2017 1-
306		2;37(1):111-115
307	18.	
308		CB, Li PK. Endotoxemia is associated with better clinical outcome in
309		incident Chinese peritoneal dialysis patients: a prospective cohort study.
310		Perit Dial Int. 2010;30(2):178-86
311	19	
312		Endotoxemia in Stable Hemodialysis Patients an Artefact? Limitations of
313		the Limulus Amebocyte Lysate Assay and Role of (1–3)- $\beta\text{-}D$ Glucan. PLoS
314		One. 2016;11(10):e0164978 PMID: 27764208
315	20.	. Davenport A, Wellsted D; Pan Thames Renal Audit Peritoneal
316		Dialysis Group. Does antifungal prophylaxis with daily oral fluconazole
317		reduce the risk of fungal peritonitis in peritoneal dialysis patients? The
318		Pan Thames Renal Audit. Blood Purif. 2011;32(3):181-5
319	21	. Wong PN, Lo KY, Tong GM, Chan SF, Lo MW, Mak SK, Wong AK.
320		Prevention of fungal peritonitis with nystatin prophylaxis in patients
321		receiving CAPD. Perit Dial Int. 2007;27(5):531-6
322		
323		
324		
325		
326		
327		

329 composition and laboratory investigations Results expressed as integers, mean

330 ±standard deviation, median (interquartile range) or percentage.

331

variable	
Male gender	32 (58.2%)
Age years	58.7 ±16.4
Diabetic	21 (38.2)
Ethnicity White/Asian/Black	20(36.4%);12(21.8%);23 (41.8%)
Months of peritoneal dialysis treatment	19.5 (13 - 31)
Endotoxin levels : primary renal disease	
Diabetic nephropathy	0.036 (<0.005-0.158) Eu/mL
Hypertensive renal disease	0.049 (0.013-0.075) Eu/mL
glomerulonephritis	0.078 (0.017-0.107) Eu/mL
Interstitial nephritis	0.042 (0.019-0.114) Eu/mL
Vasculitis	0.045 (0.022-0.076) Eu/mL
PD mode CAPD/APD/CCPD	16(29.1%);8(14.5%);31(56.4%)
Icodextrin L/day	2.0 (1.15-2.0)
Icodextrin usage	47 (85.5%)
22.7 g/L dextrose L/day	4.5 (0 - 8.4)
22.7 g/L dextrose usage	32 (58.2%)
Weekly urinary Kt/Vurea	0.68 (0.09 - 1.98)
Weekly peritoneal Kt/Vurea	1.31 (0.88 -1.83)
4 hour dialysate creatinine/serum creatinine	0.74 ±0.12
Combined urinary urea and creatinine	3.0 (0.3 - 7.9)
clearance ml/min	
Systolic blood pressure mmHg	143 ± 27.1
Pulse pressure mmHg	35.7 ±16.2
Intracellular water L	22.9 ±5.2
Extracellular water L	14.8 ±3.4
Weight kg	74.5 ± 16.5
Skeletal muscle mass kg	27.6 ± 6.8
Fat mass kg	23.4 ± 9.9
Body mass index kg/m²	26.6 ± 5.0
Protein nitrogen accumulation g/kg/day	0.97 <u>+</u> 0.27
Glycated haemoglobin mmol/mol	34.4 (32.2 - 46.4)
Haemoglobin g/L	108 ±20.4
Serum albumin g/L	38.1 ±3.5
Serum corrected calcium mmol/L	2.34 ±0.14
Serum phosphate mmol/L	1.58 ±0.42
C reactive protein g/L	2.0 (1.0-8.0)
Blood glucose mmol/L	5.8 (4.8 - 8.2)
Serum sodium mmol/L	136 ±4.3
Serum potassium mmol/L	4.3 ±0.5

Serum urea mmol/L	19.9 ±5.5
Serum creatinine umol/L	739 (523 - 1075)
N terminal probrain natriuretic peptide	2233 (894 - 6317)
pg/mL	
Number of anti-hypertensive medications	1 (0.25 - 2.0)
Patients prescribed anti-hypertensives	40 (72.7%)
prescription calcium binders tablets/day	0 (0-3)
prescription non-calcium binders tablets/day	0 (0-2.7)
Davies co-morbidity grade	1 (0-1)