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Abstract

This survey presents an overview of the advances around Tverberg’s
theorem, focusing on the last two decades. We discuss the topologi-
cal, linear-algebraic, and combinatorial aspects of Tverberg’s theorem
and its applications. The survey contains several open problems and
conjectures.

1 Introduction

Tverberg’s theorem has been a cornerstone of combinatorial convexity for
over fifty years. Its impact and influence is only comparable to that of the
famous and classic theorems of Carathéodory and Helly. This gem lies at
the crossroads of combinatorics, topology, and linear algebra, and continues
to yield challenging and interesting open problems. Its states the following.

Theorem 1.1 (Helge Tverberg 1966 [Tve66]). Given (r−1)(d+1)+1 points
in Rd, there is a partition of them into r parts whose convex hulls intersect.

More formally, given X ⊂ Rd of (r − 1)(d + 1) + 1 points, there is a
partition X = X1∪· · ·∪Xr such that

⋂r
j=1 convXj 6= ∅. Such a partition is

r = 4, d = 2

Figure 1: An example of a Tverberg partition. The partition is not unique.
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called a Tverberg partition. The number of points in this result is optimal,
as a dimension-counting argument shows. In fact, if X is in general enough
position and in the partition X = X1 ∪ . . . ∪Xr we have 1 ≤ |Xj | ≤ d + 1
for every j, then

⋂r
j=1 aff Xj is a single point if |X| = (r−1)(d+ 1) + 1, and

is empty if |X| ≤ (r − 1)(d+ 1).
The last decade has seen an impressive sequence of results around Tver-

berg’s theorem. The purpose of this survey is to give a broad overview
of the current state of the field and point out key open problems. Other
surveys covering different aspects of Tverberg’s theorem can be found in
[Eck79, Eck93, Mat02, BBZ16, DLGMM17, BZ17].

The paper is organized as follows. In sections 2 and 3 we describe the
topological and colorful versions of Tverberg’s theorem, which have received
the most attention in recent years. In sections 4 and 5 we discuss a large
number of variations and conjectures around Tverberg’s theorem. In Section
6 we describe some applications of Tverberg’s theorem. Finally, in Section 7
we present Tverberg-type results where the settings have changed dramati-
cally, such as Tverberg for convexity spaces or quantitative versions. In that
last section, we focus mostly on results which are related to geometry.

1.1 Interlude: a short history of Tverberg’s theorem

An early predecessor of Tverberg’s theorem is Radon’s lemma from 1921
[Rad21, Eck79]. Radon used it in his proof of Helly’s theorem. It says that
any set X of d+ 2 points in Rd can be split into two sets whose convex hulls
intersect. So it is the case r = 2 of Tverberg’s theorem. Its proof is simple:
the d+ 2 vectors in X have a nontrivial affine dependence

∑
x∈X α(x)x = 0

and
∑

x∈X α(x) = 0. The sets X1 = {x ∈ X : α(x) ≥ 0} and X2 = {x ∈ X :
α(x) < 0} form a partition of X and their convex hulls intersect, as one can
easily check.

Another result linked to this theorem is Rado’s centerpoint theorem.
This states that for any set X of n points in Rd, there is a point p such
that any closed half-space that contains p also contains at least

⌈
n
d+1

⌉
points

of X. The standard proof of this result uses Helly’s theorem. Tverberg’s
theorem implies it in few lines: setting r =

⌈
n
d+1

⌉
, there is a partition of

X into r parts X1, . . . , Xr and a point p ∈ Rd such that p ∈
⋂r
j=1 convXj .

Then p is a centerpoint of X: every closed halfspace containing p contains
at least one point from each Xj .

In a paper entitled “On 3N points in a plane” Birch [Bir59] proves that
any 3N points in the plane determine N triangles that have a point in
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common. His motivation was the (planar) centerpoint theorem. Actually,
he proves more, namely the case d = 2 of Tverberg’s theorem and states the
general case as a conjecture.

Tverberg’s original motivation was also the centerpoint theorem and he
learned about Birch’s result and conjecture only later. He proved it first for
d = 3 in 1963, and in full generality in 1964. Here is, in his own words,
how he found the proof: “I recall that the weather was bitterly cold in
Manchester. I awoke very early one morning shivering, as the electric heater
in the hotel room had gone off, and I did not have an extra shilling to feed
the meter. So, instead of falling back to sleep, I reviewed the problem once
more, and then the solution dawned on me!” [Tve01].

1.2 Proof methods

By now there are several proofs of Tverberg’s theorem, two by Tverberg
himself [Tve66, Tve81], one by Tverberg and Vrećica [TV93], by Roudneff
[Rou01a], by Sarkaria [Sar92], and by Zvagelskii [Zva08]. We explain here
two of them. The first (due to Roudneff) cleverly chooses a function whose
minimum is taken on a Tverberg partition.

Proof by Roudneff. We assume that the points of X are in general
position (the coordinates are algebraically independent, say). Assume P =
{X1, . . . , Xr} is an r-partition of X with 1 ≤ |Xj | ≤ d + 1 and define the
function

f(x,P) =
r∑
j=1

dist2(x, convXj).

Here dist is the distance given by the Euclidean norm, which is denoted by
‖ · ‖. For fixed P the function f is convex on Rd. It tends to infinity as
‖x‖ → ∞ so it attains its minimum. Then there is a partition, say P, where
the minimum of the function f(x,P) is the smallest; let it be µ. We are going
to show that µ = 0, which clearly suffices. Assume on the contrary, that
µ > 0 and is reached at z ∈ Rd. Denote by yj the (unique) point in convXj

with dist(z, convXj) = ‖z − yj‖. The function x 7→
∑r

1 ‖x − yj‖2 takes its
minimum also at x = z so its gradient at x = z is zero:

∑r
1(z − yj) = 0.

Note that z = yj is possible but cannot hold for all j since µ > 0.
Define Yj ⊂ Xj for j = 1, . . . , r via yj ∈ relint conv Yj . We claim

that
⋂r

1 aff Yj = ∅. Otherwise there is a point v ∈
⋂r

1 aff Yj . Let 〈·, ·〉
denote the standard scalar product, so 〈x, x〉 = ‖x‖2, for instance. Then
〈z − v, z − yj〉 > 0 if yi 6= z (because yj is the closest point to z in conv Yj)
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and 〈z − v, z − yj〉 = 0 if yj = z. Summing these inequalities and equalities
gives 〈z − v,

∑r
1(z − yj)〉 > 0, contradicting

∑r
1(z − yj) = 0.

The dimension counting argument mentioned in the introduction shows
now that

∑r
1 |Yj | ≤ (r − 1)(d + 1) so one point of X, say x, is not used in

any Yj . This is the point where the general position of X is used. We can
decrease the value µ if 〈x−yj , z−yj〉 > 0 for some j with yj 6= z because by
adding x to Yj there appears a point on the segment [x, yj ] ⊂ conv(Yj ∪{x})
that is closer to z than yj . Thus 〈x− yj , z − yj〉 ≤ 0 must hold for every j.
Summing these inequalities gives

0 ≥
r∑
1

〈x− yj , z − yj〉 =
r∑
1

〈
(x− z) + (z − yj), z − yj

〉
=

〈
x− z,

r∑
1

(z − yj)
〉

+
r∑
1

〈z − yj , z − yj〉 = 0 + µ > 0,

a contradiction.
Proof by Sarkaria. This proof has two ingredients. One is the so-called

Colorful Carathéodory theorem of the first author [Bár82]. Carathéodory’s
classical theorem [Car07] says in essence that being in the convex hull has a
very finite reason. Precisely, if A ⊂ Rd and a ∈ convA, then a ∈ convB for
some B ⊂ A with |B| ≤ d+ 1. In the colorful version there are d+ 1 sets or
“colors” A1, . . . , Ad+1 ⊂ Rd and a ∈

⋂d+1
i=1 convAi. A transversal of the sets

A1, . . . , Ad+1 is simply a set with a point ai ∈ Ai for every i.

Theorem 1.2. Assume A1, . . . , Ad+1 ⊂ Rd and a ∈
⋂d+1
i=1 convAi. Then

there is a transversal {ai ∈ Ai : i ∈ [d+1]}, such that a ∈ conv{a1, . . . , ad+1}.

The colorful version contains the original one: simply take Ai = A for
every i.

The second ingredient is Sarkaria’s tensor trick [Sar92]. We explain it in
the form given in [BO97]. It begins with an artificial tool: choose vectors
v1, . . . , vr ∈ Rr−1 so that their unique (up to a multiplier) linear dependence
is v1+· · ·+vr = 0. Now let X = {x0, x1, . . . , xn} be the set of (r−1)(d+1)+1
points given in Tverberg’s theorem, so n = (r − 1)(d + 1). With xi and vj
we associate the tensor

xi,j = vj ⊗ (xi, 1) ∈ Rn,

the tensor xi,j can be thought of as an (r − 1) × (d + 1) matrix as well.
Note that we moved to the n-dimensional space because xi,j ∈ Rn, while
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Figure 2: The colorful Carathédory theorem in dimension two. Every color
class contains the origin in its convex hull. The figure shows a colorful
transversal that preserves this property.

the original points xi are in Rd. Observe that the origin is in the convex
hull of the set

Ai = {xi,1, xi,2, . . . , xi,r}

for every i. The Colorful Carathéodory theorem applies now in Rn and
gives, for every xi, a tensor xi,j(i) with 0 ∈ conv{x0,j(0), x1,j(1), . . . , xn,j(n)}.
Thus 0 ∈ Rn can be written as a convex combination of the tensors xi,j(i):

0 =
n∑
i=0

αixi,j(i) =
n∑
i=0

αivj(i) ⊗ (xi, 1)

=
r∑
j=1

vj ⊗

 ∑
i:j=j(i)

αi(xi, 1)

 =
r∑
j=1

vj ⊗

 ∑
xi∈Xj

αi(xi, 1)

 ,

where Xj := {xi ∈ X : j(i) = j}. These sets form a partition of X into
r parts. There is a vector u ∈ Rr−1 orthogonal to v3, . . . , vr such that
〈u, v1〉 = 1. Then 〈u, v2〉 = −1 because of the condition v1 + · · · + vr = 0.
Multiplying the last equation by u from the left gives

∑
xi∈X1

αi(xi, 1) =∑
xi∈X2

αi(xi, 1). It follows then that∑
xi∈X1

αi(xi, 1) =
∑
xi∈X2

αi(xi, 1) = . . . =
∑
xi∈Xr

αi(xi, 1).

Reading the last coordinate here shows that α :=
∑

xi∈X1
αi =

∑
xi∈X2

αi =
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. . . =
∑

xi∈Xr
αi > 0. (Actually α = 1/r.) Then

p :=
1
α

∑
xi∈X1

αixi =
1
α

∑
xi∈X2

αixi = . . . =
1
α

∑
xi∈Xr

αixi

is a point in the convex hull of each Xj : X1, . . . , Xr is the required partition.

There is more to Sarkaria’s method than just this proof. To see this let
X1, . . . , Xr be finite (or compact) sets in Rd. What condition guarantees
that

⋂r
1 convXj = ∅? There is a classical necessary and sufficient condition:

Theorem 1.3. Under the above conditions,
⋂r

1 convXj = ∅ if and only if
there are closed halfspaces D1, . . . , Dr with Xj ⊂ Dj for every j ∈ [r] such
that

⋂r
1Dj = ∅.

The proof is easy. One direction is trivial. In the other direction the
case r = 2 is just the separation theorem for convex sets, and induction on
r works for r > 2.

Here comes another necessary and sufficient condition from Arocha et
al [ABB+09]. First define X =

⋃r
1Xj , here either X is a multiset or we

assume that the sets Xj are disjoint. For x ∈ X denote, as before,

x = vj ⊗ (x, 1) if x ∈ Xj and set X = {x : x ∈ X}.

Here the vectors vj ∈ Rr−1 are the same as before.

Theorem 1.4. Under the above conditions,
⋂r

1 convXj 6= ∅ if and only if
0 ∈ convX.

The proof is essentially the same as above, starting with the convex
combination of the vectors in X representing the origin:

0 =
∑
x∈X

α(x)x =
r∑
j=1

∑
x∈Xj

α(x)vj ⊗ (x, 1)

=
r∑
j=1

vj ⊗
∑
x∈Xj

α(x)(x, 1).

After this factorization the arguments are analogous to the previous proof.
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2 Topological versions

We start with a different formulation of Radon’s theorem. Given a set X of
d+2 points in Rd, there is a (d+1)-dimensional simplex ∆d+1 with vertex set
V and an affine map f : Rd+1 → Rd such that f(V ) = X. Proper faces of the
simplex are mapped to the convex hull of the corresponding points of X. So
Radon’s theorem says, in this setting, that there are disjoint (proper) faces
of ∆d+1 whose f -images intersect, see Figure 3. What happens if f : ∆d+1 →
Rd is not affine, but only continuous? The answer is the following theorem
of Bajmóczy and Bárány from 1979 [BB79], where skelk ∆d+1 denotes the
k-dimensional skeleton of ∆d+1.

Theorem 2.1 (Topological Radon). If f : skeld ∆d+1 → Rd is continuous,
then the simplex has two disjoint faces σ1, σ2 with f(σ1) ∩ f(σ2) 6= ∅.

IR2

∆3 ⊂ IR3

Figure 3: Radon’s theorem, affine and topological versions in R2

In other words, the d-skeleton of the (d+1)-simplex cannot be embedded
in d-space without mapping two points from disjoint faces to the same point
in Rd. Actually, this holds for any (d + 1)-dimensional polytope, not only
for the simplex. In this form the result is used (and proved in a slightly
more general form) by Lovász and Schrijver [LS89] in connection with the
Colin de Verdiére number of graphs. The proof of Theorem 2.1 uses the
Borsuk-Ulam theorem.

The famous non-embeddability theorem of Van Kampen and Flores [Kam33,
Flo34] says that the d-skeleton of the (2d + 2)-dimensional simplex cannot
be embedded in R2d. The particular case of d = 1 is half of Kuratowski’s
theorem on planar graph: the complete graph K5 on five vertices is not pla-
nar. Sarkaria [Sar91] realized in 1991 that there is some connection between
the topological Radon theorem and the Van Kampen and Flores theorem.
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Recently it has been shown by Blagojević, Frick and Ziegler [BFZ14] that
the topological Radon theorem implies Van Kampen-Flores. The same im-
plication is mentioned (somewhat implicitly) in Gromov [Gro10] as well.
The proof is by the constraint method, a powerful new technique that has
several further implications. Here is how it goes in the given case.

Proof. Assume that there is a map f : skeld ∆2d+2 → R2d that sends
any two points from disjoint faces of skeld ∆2d+2 to distinct points in Rd.
Extend this map to the 2d+1 skeleton of ∆2d+2 continuously (but otherwise
arbitrarily) and define a new map

g : skel2d+1 ∆2d+2 → R2d+1

where the first 2d coordinates of g(x) coincide with those of f(x) and the
last coordinate of g(x) is simply the distance of x from the skeld ∆2d+2.
Since g is continuous, the topological Radon shows now that for some two
points, say x1 and x2 from pairwise disjoint faces of ∆2d+2, g(x1) = g(x2).
So f(x1) = f(x2) and dist(x1, skeld ∆2d+2) = dist(x2, skeld ∆2d+2). But as
x1 and x2 belong to disjoint faces, one of these faces is of dimension at most
d, so the last components of both g(x1) and g(x2) are equal to zero, that is,
both x1, x2 ∈ skeld ∆2d+2.

Of course Tverberg’s theorem can be reformulated the same way: if
f : skeld ∆n → Rd is an affine map and n = (r − 1)(d + 1), then there are
disjoint faces F1, . . . , Fr of ∆n such that

⋂r
1 f(Fj) 6= ∅. This statement is

equivalent to Tverberg’s theorem. The continuous version, a question of the
first author from 1976, had been a conjecture for almost 40 years. On the
positive side, the following is known.

Theorem 2.2 (Topological Tverberg). If f : skeld ∆n → Rd is a continuous
map, n = (r − 1)(d + 1), and r is a prime power, then there are disjoint
faces F1, . . . , Fr of ∆n such that

⋂r
1 f(Fj) 6= ∅.

The case when r is prime was proved by Bárány, Shlosman, Szűcs [BSS81]
in 1981, and the prime power case by Özaydin [Öza87] in 1987 in an unpub-
lished yet influential paper, see also [Vol96]. We now give the sketch of the
proof for the case when r is prime.

Proof. Assume f : skeld ∆n → Rd is a counterexample. Consider the
r-fold deleted product D(n, r) of ∆n, that is, the set of r-tuples (x1, . . . , xr)
where the points xj come from disjoint faces of ∆n. Then the map F :
D(n, r)→ Rdr defined by

F (x1, . . . , xr) = (f(x1), . . . , f(xr))
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avoids the diagonal {(x, . . . , x) ∈ Rdr : x ∈ Rd}. Note that the cyclic group
Zr acts on the spaces D(n, r) and Rdr: its generator ω maps (x1, . . . , xr) ∈
D(n, r) to (x2, . . . , xr, x1) and (z1, . . . , zr) ∈ Rdr to (z2, . . . , zr, z1). More-
over, F is Zr-equivariant:

F (ω(x1, . . . , xr)) = ω(F (x1, . . . , xr)).

Actually, the symmetric group Sr on r elements acts on D(n, r) and Rdr

equivariantly as well but, for this proof, the action of its subgroup Zr suffices.
The orthogonal complement of this diagonal is W (n, r) = {(x1, . . . , xr) ∈
Rdr : x1 + . . . + xr = 0} which is in fact isomorphic to Rd(r−1); its unit
sphere is S(W (n, r)). Consider the chain of maps

D(n, r)→ Rdr \ diagonal→W (n, r) \ {0} → S(W (n, r))

whereRdr →W (n, r) is the orthogonal projection onto the subspaceW (n, r)
and the map W (n, r) → S(W (n, r)) sends x ∈ W (n, r), x 6= 0 to x/‖x‖ ∈
S(W (n, r)). The composition is a map G : D(n, r) → S(W (n, r)) which is
again Zr-equivariant. In addition, the action of Zr is free on bothD(n, r) and
S(W (n, r)), meaning that the orbit of any point in D(n, r) and S(W (n, r))
consists of r distinct points. This is because r is prime. In this case Dold’s
theorem, an extension of the Borsuk-Ulam theorem, applies: there is no Zr-
equivariant map from an (n− r)-connected space to an (n− r)-dimensional
space provided the action is free on both spaces [Dol83]. Here S(W (n, r)) is
(n − r)-dimensional trivially, and, as shown in [BSS81], D(n, r) is (n − r)-
connected.

This proof is a typical example of the configuration space - test map
scheme (consult [Mat02] and the references therein for more on this method).
When this is applied for the prime power r = pk case of the topological Tver-
berg theorem, the map G : D(n, r)→ S(W (n, r)) is equivariant with respect
to the abelian group (Zp)k but the action is not free. What Özaydin [Öza87]
observes is that it is fixed point free (i.e., no point is fixed by all group el-
ements) and so some algebraic topology machinery still works and excludes
the existence of such a map. Özaydin goes one step further and shows that,
if r is not a prime power, then there is a map D(n, r)→ S(W (n, r)) which is
equivariant under the symmetric group Sr. Consequently, the configuration
space - test map scheme fails badly here. So what comes next? Is there a
topological Tverberg Theorem for non-prime r? This had been “one of the
most challenging problems in this field” according to Matoušek, and “a holy
grail of topological combinatorics” according to Kalai. This question had
remained open for almost forty years.
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In 2010, in a groundbreaking paper, Gromov [Gro10] states that “The
topological Tverberg theorem, whenever available, implies the (generalized)
Van Kampen-Flores theorem”. This implication holds for any r, prime or
not. Gromov also gives a proof (or rather a sketch of proof) in three lines.
A detailed proof can be found in [BFZ14]. Surprisingly, this remark of
Gromov went completely unnoticed.

The generalized Van Kampen-Flores theorem is due to Sarkaria [Sar91]
when r is prime and to Volovikov [Vol96] when r is prime power. It says the
following.

Theorem 2.3 (Generalized Van Kampen-Flores). Let d ≥ 1 be an integer,
let r be a prime power, let k ≥ (r− 1)d/r be an integer, N = (d+ 2)(r− 1),
and let f : ∆N → Rd be a continuous map. Then there exist r pairwise
disjoint faces σ1, . . . , σr in the k-skeleton of the simplex ∆N whose f -images
overlap: f(σ1) ∩ . . . ∩ f(σr) 6= ∅.

The proof, rediscovered by Blagojević, Frick, and Ziegler [BFZ14] is al-
most identical to the previous proof for the case r = 2. It has two ingredients:
one is the topological Tverberg theorem, the other is the constraint method
(or the pigeonhole principle). The proof also works when r is not a prime
power and shows that if the generalized Van Kampen-Flores theorem fails,
then so does the topological Tverberg.

Unaware of Gromov’s remark connecting the topological Tverberg and
the generalized Van Kampen-Flores theorems, Mabillard and Wagner started
working on extending the Whitney trick [Whi44] to an r-fold Whitney trick.
Their hope was that the method, when combined with Özaydin’s exam-
ple, would give a counterexample to the topological Tverberg conjecture in
the non-prime power case. What they proved is the following remarkable
result [MW15].

Theorem 2.4. Let K be an (r − 1)`-dimensional simplicial complex where
r ≥ 2, ` ≥ 3 are integers, and let D(K, r) denote the r-fold deleted product
of K. Then the following two statements are equivalent:

• there exists an Sr-equivariant map D(K, r)→ S(W (r`, r)),

• there exists a continuous map f : K → Rr` such that the f -images of
any r disjoint faces of K have no point in common.

Mabillard and Wagner almost succeeded in finding a counterexample
to the topological Tverberg conjecture: what was missing was an example
where the generalized Van Kampen-Flores theorem fails. It was Florian
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Frick [Fri15] who realized that the above theorem and Özaydin’s example
combined with the constraint method (or Gromov’s remark), gives a coun-
terexample for every non-prime power r. A more detailed description, with
further applications of the constraint method is presented in [BFZ17].

The specific example in [Fri15] is with r = 6 and d = 19, so there is a
continuous map from the 19-skeleton of ∆100 to R19 such that the images of
any 6 disjoint faces have no point in common. Subsequently this was further
improved, by Avvakumov, Mabillard, Skopenkov, and Wagner [AMSW15]
to a map ∆65 → R12 with the same property. Moreover, Mabillard and Wag-
ner [MW15] came up with another counterexample without using Gromov’s
or Blagojević et al. reduction.

There is hope for positive topological results related to Tverberg’s the-
orem if r is not a prime power. Even though Tverberg partitions may not
exist, strong intersection properties of the images of disjoint faces of ∆n

under a map f : ∆n → Rd can be obtained [Sim16]. If we are allowed to use
more points, a topological version of Birch’s theorem is still open.

Problem 2.5. Decide if the following statement is true. If f : skeld ∆n →
Rd is a continuous map, n = r(d + 1) − 1, then there are disjoint faces
σ1, . . . , σr of ∆n such that

⋂r
j=1 f(σj) 6= ∅.

This was first presented as Conjecture 5.5 in [BFZ14], where it is also
explained that n = (r − 1)d − 1 is the smallest value where the conjecture
could conceivably be true.

3 Colorful versions

One intriguing family of variations of Tverberg-type theorems is the colorful
versions of Tverberg’s theorem. The goal is to restrict to partitions of a
set X of points where some pairs of points are required to be in different
parts. This is usually achieved by coloring the points with few colors, and
asking that no part in the partition has more than one point of any color.
Motivation came from the halving plane problem as explained in Section 6.
The main open problem of this kind is the following variant of a conjecture
by Bárány and Larman [BL92].

Conjecture 3.1 (Colored Tverberg theorem). Let r, d be positive integers.
Let t = t(d, r) be the smallest positive integer, if exists, such that for any
d+1 sets F1, F2, . . . , Fd+1 of t points each in Rd, considered as color classes,
there are r disjoint sets X1, . . . , Xr of X = ∪d+1

i=1Fi such that
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r = 3, d = 2

Figure 4: A colorful Tverberg partition.

• each Xj has exactly one point of each Fi and

• the convex hulls of the sets Xj intersect.

Then, for any r, d, the number t(d, r) exists and is equal to r.

In the original conjecture in [BL92] each color class is of size at least r,
and the question is whether there is an integer n(d, r) with the following
property. If the union of the color classes is of size n(d, r), then there are
disjoint sets X1, . . . , Xr ⊂ ∪d+1

i=1Fi satisfying the two conditions above. This
conjecture is still open in general, but clearly n(d, r) = r(d+1) if t(d, r) = r.

A partition as above is called a colorful Tverberg partition. The first
result of this kind was obtained by Bárány, Füredi, and Lovász, showing
that t(2, 3) ≤ 7 [BFL90]. In the paper containing Conjecture 3.1, Bárány
and Larman showed that it is true for d = 2 and any r. Lovász proved
the case r = 2 and any d, also known as the colorful Radon theorem, using
the Borsuk-Ulam theorem. His proof appears in [BL92]. Here we include a
linear-algebraic proof of the colorful Radon theorem, from [Sob15].

Proof. If we are given F1, . . . , Fd+1 pairs of points in Rd, we can name
their elements arbitrarily Fi = {xi, yi} for each i. Consider the d+ 1 vectors
of the form xi−yi. Since we have more than the dimension, they must have
a non-trivial linear dependence,

d+1∑
i=1

αi(xi − yi) = 0.

If there is any αi < 0, we can swap the names of xi and yi and the sign of
αi without breaking the linear dependence. Once all signs are non-negative,
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we can assume by scaling that their sum is 1, as they were not all zero. A
simple manipulation of the linear dependence gives

d+1∑
i=1

αixi =
d+1∑
i=1

αiyi.

Thus, the partition A = {x1, . . . , xd+1}, B = {y1, . . . , yd+1} satisfies the
requirements.

The existence of t(d, r) was first settled by Živaljević and Vrećica [ŽV92],
showing that t(d, r) ≤ 2r− 1 if r is a prime number, which implies t(d, r) ≤
4r − 3 for all r. The proof is topological, and extends to the topological
version of the colorful Tverberg theorem.

One thing to be noted about Conjecture 3.1 is that it does not imply
Tverberg’s theorem directly. For colorful versions of other classic results,
such as Carathéodory’s theorem or Helly’s theorem, when the color classes
are equal we recover the original result [Bár82]. However, there is a theorem
by Blagojević, Matschke and Ziegler, also called the optimal colorful Tver-
berg, which generalizes both Tverberg’s theorem and the Bárány-Larman
conjecture. They proved the following theorem and its topological analogue.

Theorem 3.2 (Optimal colorful Tverberg [BMZ15, BMZ11]). Let r be a
prime number, n = (r − 1)(d + 1) + 1, and X be a set of n points in Rd.
Suppose that they are colored with c colors so that each color appears at most
r − 1 times. Then, there is a partition of X into r parts X1, . . . , Xr so that
each Xj has at most one point of each color and their convex hulls intersect.

This implies Conjecture 3.1 when r+1 is a prime number in the following
way. Given F1, . . . , Fd+1 sets of r points each in Rd, add an extra point p0 of
a new color. Then, we can apply Theorem 3.2 to the total set of r(d+ 1)+ 1
points. This gives us a partition into r + 1 parts, and we can simply drop
the part containing p0 and redistribute its points to have a partition as in
Conjecture 3.1.

Problem 3.3. Does Theorem 3.2 hold for all r > 1?

Problem 3.4. Is there a non-topological proof of the colorful Tverberg the-
orem for r ≥ 3?

The constraint method by Blagojević, Ziegler, and Frick [BFZ14], men-
tioned in Section 2 also gives colorful Tverberg’s results. We showcase here
how it implies the bound t(d, r) ≤ 2r − 1 when r is a prime power. The
reader may notice that both the statement and the proof carry on through
the topological setting.
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Theorem 3.5. Let r be a prime power and n = (2r−2)(d+1)+1. Suppose
that the vertices of ∆n−1 are colored with d+1 colors, each of which appears
at most 2r − 1 times. Then, for any continuous function f : ∆n−1 → Rd,
there are points x1, . . . , xr ∈ ∆n−1 in pairwise vertex-disjoint faces such that
each xi is contained in a face that has at most one point of each color and
f(x1) = . . . = f(xr).

Proof. For each color i, let Mi be the simplicial complex of faces of
∆n−1 with at most one vertex of color i. We can then define

fi :∆n−1 → R

fi(x) = dist(x,Mi).

We can use these functions to extend f : ∆n−1 → Rd to a new function
f̃ = (f, f1, . . . , fd+1) : ∆n−1 → R2d+1. Notice that n = (2r− 2)(d+ 1) + 1 =
(r − 1)(2d+ 2) + 1. Then, we can apply the colorful Tverberg theorem and
find x1, . . . , xr ∈ ∆n−1 points contained in vertex-disjoint faces such that
f(x1) = . . . = f(xr) and fi(x1) = . . . = fi(xr) for each i. However, since
there are at most 2r − 1 vertices of color i, one of the xj must be in Mi.
This implies that all xj are in Mi, as desired.

If we have fewer than d + 1 color classes in the colorful Tverberg theo-
rem, we cannot guarantee the existence of a colorful Tverberg partition into
r parts for sufficiently large r. This follows simply because colorful sim-
plices have positive co-dimension. However, when the co-dimension is not a
problem, a similar proof to the one above yields the following result and its
natural topological version [VŽ94, BFZ14].

Theorem 3.6. Let r, d, c be positive integers such that d > r(d + 1 − c)
and r is a prime power. For any c sets F1, . . . , Fc of 2r − 1 points each in
Rd, considered as color classes, we can find r colorful sets X1, . . . , Xr whose
convex hulls intersect.

On the other hand, there are some benefits of increasing the number
of color classes in Conjecture 3.1. In the proof we presented for colorful
Radon, a careful reader may notice that we did not only find two colorful
intersecting simplices, but they used the same coefficients for the convex
combination that witnesses the intersection. If we seek this for colorful
partitions with r > 2, then (r − 1)d + 1 color classes are sufficient and
necessary [Sob15]. The topological version of this statement also holds when
r is a prime power[BFZ14].

A different way to generalize Tverberg’ theorem stems from the following
result by A. Pór [Pór97].
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Theorem 3.7. Given r sets X1, . . . , Xr ⊂ Rd, we have that
⋂r
j=1 convXj 6=

∅ if and only if for every set A ⊂
⋃r

1Xj of at most (r− 1)(d+ 1) + 1 points,
we have

⋂r
j=1 conv(A ∩Xj) 6= ∅.

The case r = 2 is Kirchberger’s theorem [Kir03]. A colorful version of
this result was proven in [ABB+09], which generalizes both Pór’s result and
Tverberg’s theorem.

Theorem 3.8. Given positive integers r, d, let n = (r−1)(d+1)+1. We are
given n sets G1, G2, . . . , Gn which are colorful, using r colors. Let X1, . . . , Xr

be the colors classes. Then, if every transversal Y = {y1, . . . , yn}, where
yi ∈ Gi for all i, satisfies that

r⋂
j=1

conv(Y ∩Xj) = ∅,

there must be a set Gi such that

r⋂
j=1

conv(Gi ∩Xj) = ∅.

The result above implies Tverberg’s theorem if each Gi consists of r
copies of a point ai, all of different colors. It implies Pór’s result if for all
i, j we have Gi ∩Xj = Xj .

Recently, it has been observed that some classic colorful theorems in
combinatorial geometry can be generalized by using matroids instead of
color classes. Examples are Kalai and Meshulam’s generalization of colorful
Helly [KM05] or Holmsen’s generalization of colorful Carathéodory [Hol16].
Such a version exists for Tverberg’s theorem, as was proven by Bárány,
Kalai, and Meshulam [BKM17].

Theorem 3.9. Let d be a positive integer, M be a matroid of rank d+1 and
b(M) the maximal number of pairwise disjoint bases of M . Then, for any

continuous map from the matroidal complex of M to Rd there are
⌈√

b(M)

4

⌉
disjoint independent sets whose images under f intersect.

Given a set S whose elements are colored with d+1 colors, we can define
the matroid M on S by saying that a subset is independent if it has at most
one element of each color. An application of Theorem 3.9 to M yields results
along the lines of Conjecture 3.1. However, being able to use any matroid
gives much more flexibility. More on this result can be seen in [BHZ17].
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Yet another way to impose conditions on Tverberg’s theorem is using
a graph. We say that a graph G on N vertices is an r-Tverberg graph for
Rd if the following holds. For any set of N points in Rd representing the
vertices of G, there is a Tverberg partition of the points into r parts so that
each part is an independent subset of G. Conjecture 3.1 can be rephrased as
saying that the disjoint union of d+ 1 complete graphs Kr is an r-Tverberg
graph for Rd. Sparser graphs than this one are known to be r-Tverberg
graphs, as the following result by Hell shows [Hel08b].

Theorem 3.10. Let r be a prime power. Then, every graph for which each
connected component either

• has cardinality smaller than r+2
2 ,

• is a complete bipartite graph K1,l for l < r − 1,

• is a path (if r > 3), or

• is a cycle (if r > 4)

is an r-Tverberg graph for Rd.

4 The structure of Tverberg partitions

Once the existence of Tverberg partitions has been established, the next
step is to have a better understanding of their structure. One way is to
relax the conditions on the partition, such as asking for the convex hulls of
the parts to have a transversal low-dimensional affine subspace (as opposed
to a point in common) or for the parts to have pairwise intersection. Another
is to strengthen the conclusion of the theorem, such as guaranteeing many
Tverberg partitions, seeking partitions which are resistant to changes in the
point set, or determining the dimension of the set of points which witness
the intersection of a Tverberg partition.

4.1 Sierksma’s conjecture

One of the most notable open problems around Tverberg’s theorem is to
give a lower bound for the number of Tverberg partitions we can find in any
set of (r− 1)(d+ 1) + 1 points. Tverberg’s theorem shows that at least one
partition always exists, but in general there is hope for much more. This
was formalized by Sierskma with his now famous conjecture [Sie79].

16



Conjecture 4.1. Every set of (r − 1)(d + 1) + 1 points in Rd has at least
(r − 1)!d different Tverberg partitions.

It is also known as “the Dutch cheese conjecture” since Sierksma promised
a Dutch cheese as a prize for a solution. The number (r − 1)!d cannot be
improved. A simple example is to take the vertices of a simplex, and cluster
r − 1 points near each vertex and one final vertex in the barycenter of the
simplex. The number of Tverberg partitions can be easily counted to be
(r − 1)!d. A large (and very different) family of examples exhibiting this
bound have been constructed by White [Whi17]. Actually White answers
the following question of Perles.

Every Tverberg partition X1, . . . , Xr (of a set X ⊂ Rd with n = (r −
1)(d + 1) + 1 elements) defines a partition of [n] into r integers k1, . . . , kr
where ki = |Xi| for all i. Of course ki ∈ [d + 1]. Call this partition of [n]
the signature of this Tverberg partition of X. Perles asked whether, given
such a partition of [n], is there a set X ∈ Rd of n elements such that the
signature of every Tverberg partition of X has the given partition of [n].
This was answered in the affirmative by the following interesting theorem
by White.

Theorem 4.2. Assume d ≥ 1, r ≥ 2 and n = (r − 1)(d + 1) + 1. Given
integers k1, . . . , kr with ki ∈ [d + 1] for every i ∈ [r] and k1 + . . . + kr = n,
there is a set X ∈ Rd such that the signature of every Tverberg partition of
X coincides with the multiset {k1, . . . , kr}.

It is not hard to see that the number of these Tverberg partitions is
(r− 1)!d. There are further families of examples achieving this lower bound
in Sierksma’s conjecture. This is explained in detail in Section 5.

It is also an interesting question if Sierksma’s bound holds for the topo-
logical versions when r is a prime power. As for lower bounds, Vučić
and Živaljević proved by topological methods that one can always find

1
(r−1)!(r/2)(r−1)(d+1)/2 Tverberg partitions if r is a prime number [VŽ93],
which extends to the topological version of the problem. In rough terms
this is the square root of the lower bound conjectured by Sierksma. This
was extended to prime powers by Hell [Hel07]. The only non-trivial case of
the conjecture which has been verified is d = 2, r = 3 by Hell [Hel08b].

If r is not a prime power, then we must restrict ourselves to the affine
version of the problem. In this case, the best bound is that (r−d)! Tverberg
partitions exist [Hel08a]. Bounds for the number of partitions in the colorful
case (namely, for instances of Theorem 3.2) and for general Birch partitions
(when we use r(d+ 1) points instead of (r − 1)(d+ 1) + 1) can be found in
[Hel14, Hel08a].
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4.2 The Tverberg-Vrećica conjecture

As mentioned in Section 1, one motivation for Tverberg’s theorem is the
centerpoint theorem, where one finds a point that is “very deep” in some
finite set X ⊂ Rd. One of the ways to generalize this theorem is to get a
version that works simultaneously for many point sets. This is shown in the
following result, proven independently in [Dol92, ŽV90].

Theorem 4.3. Let 0 ≤ k ≤ d − 1 be integers. Given k + 1 finite sets
X1, . . . , Xk+1 of points in Rd, there is a k-dimensional affine subspace L
such that any closed half-space containing L also has at least

|Xm|
d− k + 1

points of Xm, for every m ∈ [k + 1].

Note that the case k = 0 is the centerpoint theorem. The other end,
the case k = d − 1 is the discrete version of the classic ham-sandwich the-
orem. The latter is a consequence of the Borsuk-Ulam theorem and says
the following. Given d nice probability measures µ1, . . . , µd in Rd, there is
a hyperplane that splits the space into two halfspaces H+ and H− so that
µi(H+) = µ(H−) = 1/2 for every i ∈ [d]. (A measure µ on Rd is nice if
µ(h) = 0 for every hyperplane h.)

Just like Tverberg’s theorem is a discrete version of the centerpoint the-
orem, one may wonder if there is a discrete analogue of the theorem above.
This was conjectured by Tverberg and Vrećica [TV93].

Conjecture 4.4. Let 0 ≤ k ≤ d be integers. Suppose that we are given
integers r1, r2, . . . , rk+1 and sets X1, . . . , Xk+1 of points of Rd. If for each
m ∈ [k+1] we have |Xm| = (rm−1)(d−k+1)+1, then we can partition each
Xm into rm parts Xm

1 , . . . X
m
rm in such a way that there is a k-dimensional

affine subspace that intersects conv(Xm
j ) for all m ∈ [k + 1] and j ∈ [rm].

The case k = 0 is Tverberg’s theorem, and k = d follows from taking
L = Rd. Tverberg and Vrećica proved the case k = d − 1 in [TV93] and
a slightly weaker form of the case k = d − 2. The conjecture has also
been verified by Karasev when all rm are powers of the same prime p and
p(d−k) is even [Kar07], which extends two prior results [Ž99, Vre03]. These
generalizations work in the topological version of the conjecture.

There is a colorful version of the Tverberg-Vrećica conjecture. To see
this, we consider the elements of each Xm to be colorful. We ask for the
partition of each Xm to satisfy that no two points of the same color are in
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the same part. In the special case when r1 = . . . = rm = p for some prime
number p, either p(d−k) is even or k = 0, and each Xm is a colorful set such
that no color class has more than p − 1 points, Blagojević, Matschke, and
Ziegler proved in [BMZ11] the corresponding result for the Tverberg-Vrećica
problem. This effectively generalizes Theorem 3.2. The constraint method
also yields results for the Tverberg-Vrećica conjecture [BDZ16].

Theorem 4.3 is not optimal for a single set, and the depth of the affine
subspace can be improved, as shown by Magazinov and Pór [MP16] for
k = 1. There is a nice conjecture by Bukh, Matoušek, and Nivasch in this
direction [BMN10].

Conjecture 4.5. Let 0 ≤ k < d be integers. Given a finite set X of points
in Rd, there is a k-dimensional affine subspace L such that any closed half-
space containing L also has at least

|X|(k + 1)
d+ k + 1

points of X.

Conjecture 4.5 is known for k ∈ {0, d−2, d−1}. This conjecture and the
results by Magazinov and Pór beg the question of whether the Tverberg-
Vrećica conjecture can be improved in the same way for a single set. In
other words, we present the following new conjecture.

Conjecture 4.6. Let r, k, d be integers such that 0 ≤ k < d. Then, for any
finite set X of points in Rd such that⌈

|X|(k + 1)
d+ k + 1

⌉
≥ r

there is a partition of X into r sets X1, . . . , Xr and a k-dimensional affine
subspace L such that L intersects each of convX1, . . . , convXr.

The case k = 0 is Tverberg’s theorem and the case k = d−1 follows easily
by taking a halving hyperplane of X for L and pairing points of opposite
sides of L to form the partition. A halving hyperplane is a hyperplane that
has at least |X|/2 points of X on both sides. Note that if |X| is odd, the
halving hyperplane contains at least one of the points, which can be taken
as a singleton in the partition.

Next we prove a version of the above conjecture with k = d − 2 using
|X| =

(
2d−1
d−1

)
r + O(d) points and the original method by Birch [Bir59].

The case k = d− 2 of Conjecture 4.5, proved in [BMN10], gives us an affine
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flat L of dimension d− 2 such that any half-space that contains it also has
|X|(d−1)

2d−1 −O(d) = r points of X.
Notice that L⊥ is a 2-dimensional space and L ∩ L⊥ is a single point p.

Denote by X∗ the projection of X onto L⊥. We can order the points of X∗

clockwise around p and assign to them labels from {1, 2, . . . , r} in such a
way that if x∗ has label i, then the next point has label i+1 modulo r. This
gives us the partition of X that we wanted. Indeed, if all the points with
label j are separated strictly from p, then there is a closed half-plane H+

that contains all of them but not p. Then, the complement H− is an open
half-plane that contains p but has at most r−1 points of X∗, a contradiction.

Given a finite set of points in Rd, finding affine transversals to the con-
vex hulls of its subsets in general is an interesting problem. Consider the
following instance. Instead of seeking partitions that have a low-dimensional
transversal, what if we seek a transversal to all sets of a given size? Given
d, λ, k the following two parameters were introduced in [ABMRA11].

First, m(d, λ, k) is the maximum positive integer n such that for any
subset of n points in Rd there is an affine subspace of dimension λ that
intersects all the convex hulls of its subsets of cardinality k.

Second, M(d, λ, k) is the minimum positive integer n such that for every
subset of n points in general position in Rd there is no affine subspace of
dimension λ that intersects all the convex hulls of the subsets of cardinality
k. The value of M(d, λ, k) is known to be (d − λ) + 2k + 1 − min{k, λ}
[ABMRA11], but the value of m(d, λ, k) is still open. The conjecture from
Arocha et. al is the following (see also [CMSM+17] for related results).

Conjecture 4.7. For k, d positive integers and 0 ≤ λ ≤ d we have m(d, λ, k) =
(d− λ) + k + d kλe − 1.

4.3 Reay’s conjecture

Tverberg’s theorem gives us a partition of a set of (r − 1)(d+ 1) + 1 points
into r sets whose convex hulls all intersect. If we instead ask for the convex
hulls of every k parts to intersect, it is not clear if a smaller number of points
would be sufficient. It was conjectured by Reay that this is not the case,
even for k = 2 [Rea79].

Conjecture 4.8. There is a set (r + 1)(d − 1) points in Rd such that for
any partition of them into r parts, there are two parts whose convex hulls
are disjoint.

For general k it brings the following problem.
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Problem 4.9. Given positive integers r, k, d such that r ≥ k ≥ 2, find the
smallest integer R(d, r, k) such that the following holds. For any R(d, r, k)
points in Rd there is a partition of them into r parts X1, . . . , Xr such that
the convex hull of every k of them intersect.

Reay’s conjecture can be written as R(d, r, k) = R(d, r, r) = (r − 1)(d+
1) + 1 for k ≥ 2. The best current general bound is R(d, r, k) is R(d, r, k) ≥
r
(
k−1
k · d+ 1

)
[ACF+16]. Reay’s conjecture is known to be true for k ≥ d+3

2

or if d < rk
r−k − 1, along a few other specific instances [PS16].

4.4 Tverberg with tolerance

Tverberg’s theorem also admits very robust versions, which resist the re-
moval of points. The first extension of this kind was proven by Larman
[Lar72], also known as Radon’s theorem with tolerance.

Theorem 4.10. Given 2d+3 points in Rd, there is a partition of them into
two parts A,B such that for any point x we have

conv(A \ {x}) ∩ conv(B \ {x}) 6= ∅.

In other words, removing any single point won’t break the Radon par-
tition. This result has been shown to be optimal for 1 ≤ d ≤ 3 by Larman
and for d = 4 by Forge, Las Vergnas and Schuchert [FLVS01]. The best
lower bound for this result is that at least

⌈
5d
3

⌉
+ 3 points are needed, which

was proven by Ramı́rez-Alfonśın using Lawrence oriented matroids [RA01].
Extending Larman’s result to partitions into more parts leads to a the

following problem.

Problem 4.11. Let r, t, d be positive integers. Determine the smallest inte-
ger N = N(r, t, d) such that any set X of N points in Rd can be partitioned
into r parts X1, . . . , Xr such that for any set C of at most t points of X we
have

r⋂
j=1

conv(Xj \ C) 6= ∅.

A surprising fact about this problem is that for fixed, r, d we have N =
rt + o(t), which was first discovered by Garćıa-Coĺın, Raggi and Roldán-
Pensado [GCRRP17] using geometric Ramsey-type results.

The current best bounds for this result are as follows. N = rt + Õ(
√
t)

for large t and fixed r, t [Sob16b], where the Õ hides only polylogarithmic
factors. This bound is polynomial in all variables if the Õ term is expanded,
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and is proved using the probabilistic method combined with Sarkaria’s tech-
nique.

For small t, the bound above falls short of an earlier bound N ≤ (r −
1)(d + 1)(t + 1) + 1 [SS12]. The only case when the optimal number is
known is d = 1, N(r, t, 1) = rt + 2r − 1, by Mulzer and Stein [MS14], who
studied algorithmic versions of the problem. Mulzer and Stein’s bound for
d = 2, N(r, t, 2) ≤ 2(rt + 2r − 1) is also the best known for some values
of r, t. For general lower bounds, using points in the moment curve gives
N(r, t, d) ≥ r(t+ bd/2c+ 1) [Sob15].

The topological version of the problems with tolerance remains open,
even the cases with t = 1. Tverberg with tolerance also has colorful versions,
as in Conjecture 3.1. If we impose conditions on the partitions based on the
colors, it is natural to also impose conditions on the points removed. We
define Ncol(r, t, d) as the smallest integer such that, for any Ncol sets of r
points each (considered as color classes), there is a partition of them into r
colorful sets X1, . . . , Xr with the following property. Even if we remove any
t color classes, the convex hulls of what is left in each Xj still intersect. It
is known that for r, d fixed, and r ≥ 3 we have Ncol(r, t, d) ≤ t(1.6 + o(1)),
and Ncol(2, t, d) ≤ t(2 + o(1)) [Sob16b]. However, it may be that fewer color
classes are needed.

Conjecture 4.12. For r, d fixed, we have Ncol(r, t, d) = t(1 + o(1)).

If we want to remove a larger proportion of points while still having a
Tverberg partition, we need several partitions. The number of partitions
needed was determined in [Sob17].

Theorem 4.13. Let ε > 0 be a real number and r, d,m be positive integers
such that ε > (1 − 1/r)m. Then, for all finite sets X ⊂ Rd of sufficiently
large cardinality, we can find m partitions of X into r sets each, such that
for any subset of at least ε|X| points of X, at least one of the partitions
induces a Tverberg partition.

The condition on ε is sharp. This result follows from extending the prob-
abilistic approach of [Sob16b]. The case m = 1 is essentially the statement
N(r, t, d) = rt + o(t). It can be interpreted as a version with tolerance
(1− ε)|X|.

4.5 Dimension of Tverberg points

Assume X ⊂ Rd, and r is a positive integer, and define Tr(X) as the set of
points which are in the intersection of the convex hulls of some r-Tverberg
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X T1(X) T2(X)

Figure 5: This figure shows dim(T1(X)) = 2 and dim(T2(X)) = 1 for a set
X of five points in the plane. For this set, T3(X), T4(X), T5(X) are empty.
Notice that

∑5
s=1 dim(Ts(X)) = 2+1+(−1)+(−1)+(−1) = 0, as expected

from Conjecture 4.14. The example also agrees with Conjecture 4.16 with
d = 2, r = 2, k = 1.

partition of X. Thus Tr(X) is simply the union of all
⋂r

1 convXi taken
over all r-partition of X. The size or dimension of Tr(X) is another way to
quantify Tverberg partitions. Here we do not assume that X is in general
position, Tr(X) is interesting even in that case.

For a set A ⊂ Rd, we consider dim(A) the Hausdorff dimension of A, with
the convention dim(∅) = −1. With this definition the following conjecture
was made by Kalai in 1974 [Kal00].

Conjecture 4.14 (Cascade conjecture). For any finite set X of points in
general position in Rd we have

|X|∑
s=1

dim(Ts(X)) ≥ 0.

This conjecture implies Tverberg theorem. Indeed, if |X| = (r − 1)(d+
1) + 1 and has no r-Tverberg partitions, then dim(Ts(X)) ≤ d for s < r an
dim(Ts(X)) = −1 for all s ≥ r, which means that the sum above would be
at most −1. A weaker version is also open.

Conjecture 4.15 (Weak cascade conjecture). For any finite set X of points
in general position in Rd we have

|X|∑
s=1

dim(conv Ts(X)) ≥ 0.

Here dim(conv T ) is the usual dimension of conv T or aff T . Another
conjecture in this direction was formulated by Reay [Rea68] shortly after
Tverberg published his result.
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Conjecture 4.16. Let k, d, r be integers such that 0 ≤ k ≤ d. Then, for
any set X of (r− 1)(d+ 1) + k+ 1 points in Rd in general position we have

dim(Tr(X)) ≥ k.

The case k = 0 is Tverberg’s theorem. Reay proved his conjecture when
the points are in strongly general position, but believed that just general
position (i.e. no d + 1 points of X lie in a hyperplane) should be enough.
The conjecture has been proved for d ≤ 8 and any k, r, for r ≤ 8 and any
d, k and for d = 24, k = 1 and any d, see [Rou01a, Rou01b, Rou09].

We note that for sets of points in general position, Conjecture 4.14 and
Conjecture 4.16 are equivalent.

Proof. Assume first that Conjecture 4.16 holds, and let X be a set of n
points in general position in Rd. Then, there are non-negative integers r, k
such that n = (d+1)(r−1)+k+1 with k ≤ d. Then, by Conjecture 4.16 we
have dim((Ts(X)) = d for s ≤ r−1, dim(Tr(X)) ≥ k and dim((Ts(X)) = −1
for s ≥ r + 1 by the general position assumption. Therefore

|X|∑
s=1

dim(Ts(X)) ≥ d(r − 1) + k + (−1)(n− r)

= (d+ 1)(r − 1) + k + 1− n = 0.

If we now assume 4.14, and X is a set of (d+ 1)(r− 1) + k+ 1 points in
general position, note that dim(Ts(X)) ≤ d for s < r, and dim(Ts(X)) = −1
for s > r by the general condition assumption. Therefore

0 ≤
|X|∑
s=1

dim(Ts(X))

≤ d(r − 1) + dim(Tr(X)) + (−1)(|X| − r)
= dim(Tr(X))− k.

This implies that Kalai’s cascade conjecture holds for sets of points in
sufficiently general position, and for points in general position where Roud-
neff has proven Reay’s conjecture.
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4.6 Finding Tverberg partitions

Centerpoints and notions of depth are key concepts in data analysis. Cen-
terpoints often play the role of high-dimensional median. For an n-point set
in Rd, there are algorithms that find a centerpoint in time O(nd−1), which
is believed to be optimal [Cha04].

In general, it is computationally difficult to verify the depth of a point in
data set. However, given a Tverberg partition X1, . . . , Xr with a point p in
the convex hull of each Xj ,the depth of p is at least r, clearly. This a lower
bound can be verified in polynomial time: simply check that p ∈ convXj

for each j. This implies that r is a lower bound for the depth of p in the set
of points.

Given a set of n points in Rd, finding Tverberg partitions into
⌈

n
d+1

⌉
parts in polynomial time is out of reach for current algorithms, and an in-
teresting open problem by itself. To achieve fast algorithms, we have to pay
the price of reducing the number of parts in our partition. There is a de-
terministic algorithm by Miller and Sheehy that gives a Tverberg partition
with r =

⌈
n

(d+1)2

⌉
in nO(log d) time [MS10]. Using a lifting argument in com-

bination with Miller and Sheehy’s algorithm, a deterministic algorithm that
gives a Tverberg partition with r =

⌈
n

4(d+1)3

⌉
that runs in time dO(log d)n

was produced by Mulzer and Werner [MW13]. This is linear in n for any
fixed dimension.

For non-deterministic arguments, one can compute Tverberg points with
r =

⌈
n

d(d+1)2

⌉
with a probability ε > 0 of failure fixed in advance [RS16].

This algorithm is weakly polynomial in all variables n, d, log(1/ε).
The algorithmic versions of other variations of Tverberg’s theorem are

also interesting. For instance, for Tverberg’s theorem with Tolerance, Mulzer
and Stein showed how the two deterministic algorithms described above
could be adapted to that setting [MS14]. If one is willing to have non-
deterministic arguments, the results in [Sob16b] show that by randomly
assigning each point to one of X1, . . . , Xr independently, we can bound the
probability of failure efficiently.

5 Universal Tverberg partitions

Assume X ⊂ Rd, and |X| = (r− 1)(d+ 1) + 1. A natural question is which
r-partitions of X are Tverberg partitions. One case when this structure is
completely known is when the points of X come from the moment curve
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. . .1 2 r − 1 r r + 1 . . .︸ ︷︷ ︸
M1

2r − 2
2r − 1

2r

︸ ︷︷ ︸
M2

. . . 3r − 3 3r − 2

︸ ︷︷ ︸
M3

︸ ︷︷ ︸
(r − 1)(d+ 1) + 1. . .

. . .
Md+1︸ ︷︷ ︸

Figure 6: All blocks Mi are of length r and share one element with Mi−1.
In a special r-partition of [n] (n = (r − 1)(d+ 1) + 1), all the r elements of
each block are in different parts of the partition.

m(t) = (t, t2, . . . , td) ∈ Rd, t ≥ 0 and are far apart from each other. Note
that the points m(t1),m(t2), . . . ,m(tN ) on the moment curve are ordered
by t1 < t2 < . . . < tN . In order to understand the structure of Tverberg
partitions it is better to work with sequences (a1, . . . , aN ) of points in Rd

(instead of sets X ⊂ Rd). So in this section we work with sequences.
We start with the simplest case: that of Radon partitions. Consider

d + 2 points m(t1), . . . ,m(td+2) on the moment curve with t1 < . . . <
td+2. It is well-known (see for instance Grünbaum’s book [Grü03] or Ma-
toušek’s [Mat02]) that there is a unique Radon partition in this case, namely,
one set is X1 = {m(ti) : i odd} and the other one is X2 = {m(ti) : i even}.
That is, the Radon partition is just two interlacing sets, meaning that on
the moment curve between two consecutive points of X1 (resp X2) there is a
point of X2 (and X1). It is also known that this is the universal Radon par-
tition: for every d ∈ N there is N ∈ N such that any d-dimensional (general
position) vector sequence a1, . . . , aN contains a subsequence ai1 . . . , aid+2

with i1 < i2 < . . . < id+2 such that their unique Radon partition is the
interlacing sets X1 = {aij : j odd} and X2 = {aij : j even}. The moment
curve shows that this is the unique universal Radon partition.

What is the corresponding statement for Tverberg partitions?
We need some definitions for partitions of sequences. For k ∈ [d+ 1] we

define the block Mk as the set of consecutive integers Mk = {(r−1)(k−1)+
1, (r − 1)(k − 1) + 2, . . . , rk − 1}. The blocks almost form a partition of [n]
with n = (r−1)(d+1)+1, only the elements r, 2r−1, 3r−2, . . . , rd−(d−1)
are covered twice, namely by M1,M2, M2,M3, etc, Md,Md+1. See Figure
6. We Call an r-partition I1, . . . , Ir of [n] special if |Ij ∩Mk| = 1 for every
j ∈ [r] and every k ∈ [d+ 1].

Now let 0 < t1 < . . . < tn be a rapidly increasing sequence of real
numbers, meaning that, for every h ∈ [n− 1], th+1/th is at least as large as
some (large) constant cd,r,h depending only on d, r, h. Consider the set X of
points in Rd in the moment curve, X = {m(t1), . . . ,m(tn)}.
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1 2 3 4 5 6 7 8 9︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸M1 M2
M3 M4

Figure 7: A special partition for d = 3, r = 3. In this example I1 =
{1, 5, 8}, I2 = {2, 4, 7}, I3 = {3, 6, 9}. Note that each Ij has exactly one
element of each Mi.

It is clear that a partition P = {I1, . . . , Ir} of [n] induces the partition
Q = {X1, . . . , Xr} of X via Xj = {m(ti) : i ∈ Ij} and vice versa. Note that
when r = 2, that is Radon partitions, each block contains two elements and
the special partitions are exactly the interlacing ones. It was observed by
Bárány and Pór, and by Mabillard and Wagner (both unpublished), that
the Tverberg partitions into r parts of the point set X = {m(t1), . . . ,m(tn)}
can be explicitly described: assuming that the constants cd,r,h are suitably
large, Q is a Tverberg partition of X if and only if Q is induced by a special
partition P of [n].

It is known (and easy to check) that the number of special partitions of
[n], which is then the same as the number of Tverberg partitions of X, is
equal to (r− 1)!d when X = {m(t1), . . . ,m(tn)} and the sequence t1, . . . , tn
is rapidly increasing. So this is another example achieving the lower bound
in Skiersma’s conjecture.

A similar example was given by Bukh, Loh, and Nivasch in [BLN16],
but instead of the moment curve, they use the “diagonal of the stretched
grid”, for the exact definition see [BLN16]. The example is again a sequence
X = {a1, . . . , an} of points in Rd with the property that the partition Q =
{X1, . . . , Xr} of X is a Tverberg partition if and only if the corresponding
partition P = {I1, . . . , Ir} of [n] is special. Here, of course, Xj = {ai :
i ∈ Ij} again. The example also achieves the lower bound in Sierksma’s
conjecture, as one can easily check.

Which Tverberg partitions must always appear in every set X ⊂ Rd of
large enough cardinality (when X is in general position)? In other words,
consider an r-partition P of [n]. Given a sequence a1, . . . , aN of N points
in Rd with N large enough, can one always find a subsequence b1, b2, . . . , bn
where P induces a Tverberg partition? If such a partition always exists,
then P is called unavoidable: the name indicates that such a partition is
always present in a long enough sequence. The previous examples show
that an unavoidable partition has to be a special partition of [n]. Bukh,
Loh and Nivasch showed in [BLN16] that in low dimensions (d = 1, 2) the
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unavoidable partitions are exactly the special ones, and conjectured that in
high dimensions the same statement holds. Shortly after, Pór characterized
such partitions P in all dimensions [Pór18], answering positively the con-
jecture in [BLN16]. Actually, Pór proved the following universality theorem
for Tverberg partitions of vector sequences.

Theorem 5.1 (Universal Tverberg partitions). Given integers d ≥ 1, r ≥ 2
and m ≥ n = (r − 1)(d + 1) + 1, there is an integer N with the following
property. Every sequence a1, . . . , aN ∈ Rd of vectors in general position
contains a subsequence b1, . . . , bm such that for every subsequence bi1 , . . . , bin
with 1 ≤ i1 < i2 < . . . < in ≤ m, the Tverberg partitions are exactly the
ones induced by the special partitions of [n].

6 Applications of Tverberg’s theorem

An early application, actually the motivation for both Birch [Bir59] and
Tverberg, was Rado’s centerpoint theorem, described in Section 1.1. The
set C(X) of center points for a given set X ∈ Rd is a convex set that
contains every Tverberg point. It is known, however, that the convex hull
of the Tverberg points does not coincide with C(X) [Avi93].

Another geometric application is the so called first selection lemma. It
states the following.

Theorem 6.1. Given a set X of n points in Rd (in general position), there
is a point z ∈ Rd which is contained in the convex hull of at least cd

(
n
d+1

)
of the

(
n
d+1

)
possible (d + 1)-tuples of X, here cd ≥ (d + 1)−d is a constant

depending only on d.

This result was proved by Boros and Füredi [BF84] for d = 2, the general
case by Bárány [Bár82]. The exact value of the constant cd is known only
for d = 2 [BMN11] and [BF84], where c2 = 2/9. The proof in [Bár82] shows
cd ≥ (d+ 1)−d. It is known [BMN11] that cd ≤ (d+1)!

(d+1)d+1 . There was a slight
improvement by Wagner [Wag03]. In a remarkable paper Gromov [Gro10]
gives an exponential improvement by showing that

cd ≥
2d

(d+ 1)(d+ 1)!
∼ ed

(d+ 1)d+1
.

In fact, Gromov proves the following stronger, topological statement: for
every continuous map f : skeld ∆n−1 → Rd there is a point in Rd whose
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preimage intersects at least

2d
(d+ 1)(d+ 1)!

(
n

d+ 1

)
faces of dimension d. Theorem 6.1 is the special case when f : skeld ∆n−1 →
Rd is an affine map. Surprisingly, the topological proof gives a better con-
stant. A simplified proof appeared in [Kar12].

Problem 6.2. What is the order of magnitude of the constant cd? Does
(d + 1)d+1cd exhibit exponential or superexponential growth? Also, are the
constants for the topological and affine versions of the problem equal?

One seminal application of Tverberg’s theorem is the weak ε-net theorem
for convex sets [ABFK92].

Theorem 6.3. Let d be a positive integer and ε > 0 a real number. Then,
there is a constant n = n(d, ε) such that for each finite set X of points in Rd,
there is a set P of n(d, ε) points such that for each Y ⊂ X with |Y | ≥ ε|X|,
we have

P ∩ conv Y 6= ∅.

This is a very strong result on the combinatorial properties of convex
sets. The reader may verify that the equation n(d, d/(d + 1)) = 1 is the
centerpoint theorem. The weak ε-net theorem for convex sets is proved by
repeatedly using the first selection lemma to greedily construct the set P , one
point at a time. If one applies Gromov’s topological extension of Theorem
6.1 instead of the first selection lemma, we obtain a topological version of
Theorem 6.3 [MS17]. The weak ε-net theorem was a key component of
the proof of Hadwiger-Debrunner (p, q) conjecture [?] (cf. [ABFK92]), a
celebrated result in combinatorial geometry.

Another application of Tverberg’s theorem, or rather of its colorful ver-
sion, concerns halving planes. In this case Tverberg’s theorem helped to
locate the key question in the following way. A halving plane of a finite set
X ⊂ R3 of points in general position is a plane spanned by three points of X
that has equally many points of X on either side of it. (So |X| = n is odd.)
While the first author was working with Füredi and Lovász on establishing
upper bounds on the number of halving planes they encountered the follow-
ing question: given a set X ⊂ R2 of n points in general position, a crossing
is the intersection of the lines spanned by x, y and by u, v where x, y, u, v
are distinct points from X. It is evident that there are 1

2

(
n
2

)(
n−2

2

)
∼ n4

crossings. How many of them are contained in a typical triangle spanned
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by points in X? A direct application of Tverberg’s theorem combined with
a double counting argument shows that the number of crossings is again of
order n4. This was the first step in establishing an O(n3−ε) bound on the
number of halving planes. The proof uses the supersaturated hypergraph
lemma of Erdős and Simonovits [ES83], and that is why a special version of
Tverberg’s theorem, a colorful variant was needed cf. [BFL90]. The method
was extended to higher dimensions in [ABFK92]. This is how the halving
plane question lead to the colorful Tverberg theorem. The moral is that
when working on a question in combinatorial convexity it is always good to
check what Tverberg’s theorem says in the given situation.

Another application of the colorful Tverberg theorem is a result by
Pach [Pac98] on homogeneous selection:

Theorem 6.4. Assume we are given sets C1, . . . , Cd+1 ⊂ Rd (considered
as colors classes) that have the same size |Ci| = n for all i ∈ [n]. Then
there are subsets Qi ⊂ Ci with |Qi| ≥ cdn and a point z ∈ Rd such that
z ∈ conv{x1, . . . , xd+1} for every transversal x1 ∈ Q1, . . . , xd+1 ∈ Qd+1.
Here cd > 0 is a constant depending only on d.

There are further geometric applications of Tverberg’s theorem in [BN17]
and in quantum correcting codes [KLV00].

Here is a purely combinatorial result, originally a theorem of Lind-
ström [Lin72] that turned out to be a consequence of Tverberg’s theorem.

Theorem 6.5. Assume n, r > 1 are integers and set N = (r − 1)n + 1.
If A1, . . . , AN are non-empty subsets of an n-element set, then there are
non-empty and disjoint subsets J1, . . . , Jr of [N ] such that

⋃
i∈J1

Ai = · · · =⋃
i∈Jr

Ai.

The geometric proof, found by Tverberg himself [Tve71], transfers this
purely combinatorial partition problem to convex geometry.

Proof. We assume that the ground set is [n], that is Ai ⊂ [n]. Associate
with each set Ai the vector

ai =
χAi

|Ai|
where χAi is the characteristic vector of Ai. So ai is in Rn but it lies, in
fact, in the affine subspace S where the sum of the coordinates is equal to
one. This subspace is a copy of Rn−1. We can apply Tverberg’s theorem to
the points a1, . . . , aN ∈ S. This gives us a partition I1, . . . , Ir of [N ] and a
point a ∈ S with

a ∈
r⋂

h=1

conv{ai : i ∈ Ih}.
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The common point a ∈ S ⊂ Rn is a non-zero vector in Rn with non-negative
coordinates. Let J ⊂ [n] be the set of non-zero coordinates of a. It is easy
to see that for a suitable subset Jh of Ih, J is the union of Ai with i ∈ Jh
for every h ∈ [r].

The result above can be extended to bound the number of such parti-
tions, effectively proving the analogue of Sierksma’s conjecture in tropical
geometry [GM10].

There is a recent and very powerful application of the topological Tver-
berg theorem, due to Frick [Fri17b, Fri17a]. One of the first examples of a
combinatorial problem solved with topological methods is Lovász’s ground-
breaking proof [Lov78] of Kneser’s conjecture. He used the Borsuk-Ulam
theorem to establish a lower bound on the chromatic number of Kneser
graphs. Since then, topological methods have been used to bound the chro-
matic number of graph and hypergraphs.

The connection between Tverberg type results and Kneser hypergraphs
was first noted and used by Sarkaria in 1990 [Sar90] and [Sar91]. Going
much further, Frick elucidates the underlying connection between intersec-
tion patterns of finite sets and topological statements, via Tverberg-type
theorems. This creates a dictionary between the two types of results. To
state just one theorem of this kind, let L be a simplicial complex and K ⊂ L
be a subcomplex. Denote by KN r(K,L) the r-uniform hypergraph whose
vertices are the inclusion-minimal faces of L that are not contained in K
and whose hyperedges are the r-tuples of vertices when the corresponding
faces are pairwise disjoint.

For example, if r = 2, L = ∆4 and K = skel0 ∆4 = [5], then KN r(K,L)
is the 1-skeleton of ∆4, that is, the Petersen graph (see Figure 8). If r = 2,
L = ∆n−1 and K = skelk−2 ∆n−1, then the vertices of KN2(K,L) are the
k-tuples of [n], with two connected if they are disjoint. This is exactly the
Kneser graph of k-subsets of [n].

The general principle behind the constraint method developed in [BFZ14]
is then used to prove the following result [Fri17b].

Theorem 6.6. Assume d, k ≥ 0 and r ≥ 2 are integers. Let L be a simplicial
complex such that for every continuous map g : L→ Rd+k there exist disjoint
faces σ1, . . . , σr of L such that g(σ1)∩ . . .∩g(σr) 6= ∅. If χ(KN r(K,L)) ≤ k
for some subcomplex K of L, then for every continuous map f : K → Rd

there are r pairwise disjoint faces σ1, . . . , σr of K such that f(σ1) ∩ . . . ∩
f(σr) 6= ∅.

This result can be used in two directions: establishing the upper bound
χ(KN r(K,L)) ≤ k proves the existence of an r-fold intersection point for
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{1, 2} {3, 4}

{2, 3}

{4, 5}

{3, 5}

{2, 4}{1, 3}
{1, 5}

{1, 4}

{2, 5}

Figure 8: A labeled figure of KN2(skel0 ∆4,∆4). The vertices are pairs of
integers in [5] and there is an edge between two pairs if they are disjoint.

every continuous map f : K → Rd, and exhibiting a continuous map
f : K → Rd without such an r-fold intersection gives the lower bound
χ(KN r(K,L)) ≥ k + 1. The theorem relates intersection patterns of con-
tinuous images of faces in a simplicial complex to intersection patterns of
finite sets. It implies, generalizes, and unifies several earlier results of this
type, including those by Lovász [Lov78], Dol’nikov [Dol88], Alon, Frankl,
Lovász [AFL86] and Kř́ıž [Kř́ı92].

7 Tverberg-type results in distinct settings

7.1 Convexity spaces and S-convexity

Many variations of Tverberg’s theorem appear if we change the underlying
space we are using. For example, consider the following integer version of
Tverberg’s theorem.

Theorem 7.1 (Integer Tverberg). Given r, d positive integers, there is an
integer L = L(r, d) such that for any set of L points in Rd with integer
coordinates there is a partition of the set into r parts L1, . . . , Lr such that the
intersection of their convex hulls contains a point with integer coordinates.

The exact values of L(r, d) are not known, even for r = 2. The existence
of L(r, d) follows from results by Jamison [Jam81], as was noted by Eckhoff
[Eck00]. The number of points needed is much larger than in the non-integer
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case. For instance, we have the lower bound L(r, d) > (r−1)2d. To see this,
take r − 1 copies of each vertex of the hypercube [0, 1]d. This lower bound
may not always be optimal. For r = 2, Onn proved 5

42d + 1 ≤ L(2, d) ≤
d(2d−1) + 3 [Onn91]. The case d = 3 remains interesting, with L(2, 3) ≤ 17
being the best upper bound [BB03]. The best general upper bound up to
date is L(r, d) ≤ (r − 1)d2d + 1 [DLLHRS17b].

Problem 7.2. Determine the value L(2, 3), or improve the current bounds
11 ≤ L(2, 3) ≤ 17.

To state properly Tverberg’s theorem in abstract terms we only need
two ingredients. First is Cd, the family of all sets in Rd that are considered
convex, and the second is to be able to compute convex hull; i.e., an operator
conv : 2R

d → Cd with a few properties. Thus, given a ground set Y , a way to
axiomatize convexity is to have an operator conv : 2Y → 2Y which satisfies
the following.

• conv(convA)) = convA for all A ⊂ Y ,

• A ⊂ convA for all A ⊂ Y ,

• A ⊂ B ⊂ Y implies convA ⊂ convB,

• For a countable sequenceA1 ⊂ A2 ⊂ . . . ⊂ Y we have that ∪∞i=1 conv(Ai) =
conv (∪∞i=1Ai).

We say that the pair (Y, conv) is a convexity space. A central questions
of convexity spaces is the following.

Problem 7.3. Given a convexity space (Y, conv) and a positive integer t,
determine the value of rt (if it exists) such that for any X ⊂ Y of rt points
there is a partition of X into t parts X1, . . . , Xt such that

t⋂
j=1

convXj 6= ∅.

The reason for the conflicting notation with our use of the variable r is
that, in the context of convexity spaces, the number rt above is called the t-th
Radon number. A classic conjecture by Eckhoff was that for any convexity
space with a finite r2 we have rt ≤ (t − 1)(r2 − 1) + 1. In other words,
it asked if Tverberg’s theorem follows from Radon for purely combinatorial
reasons. Hopes for this were dashed by an example, presented by Boris Bukh
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in an unpublished preprint, that constructs a convexity space with r2 = 4
and rt ≥ 3(t− 1) + 2 [Buk10]. It remains open whether rt can be bounded
as a function that is linear in both r2 and t, which is enough for several
applications.

General convexity spaces are outside the scope of this survey. The inter-
ested reader should consult Eckhoff’s survey [Eck00] on the subject, which
also discusses convexity spaces where Eckhoff’s conjecture is known to hold.
We focus on convexity spaces which are closely related to convexity in Rd.

An example is S-convexity, which generalizes the integer case. Given a
set S ⊂ Rd, we say that a set A ⊂ S is S-convex if A = S ∩ convA, where
conv(·) denotes the usual convex hull in Rd. Given A ⊂ S, we define the
S-convex hull convS(A) as the intersection of all S-convex sets B such that
A ⊂ B.

A Tverberg-type theorem for S would simply be the existence of a num-
ber TS(r, d) such that for any setX of TS(r, d) points of S, there is a partition
of them into r sets X1, . . . , Xr such that

r⋂
j=1

convS(Xj) 6= ∅.

It turns out that the existence of such theorems relies on whether there is
a Helly-type theorem for S-convexity [DLLHRS17b]. An S-convexity Helly
theorem simply says that there is a natural number h(S) such that, for any
finite family of convex sets in Rd, if the intersection of any h(S) or fewer
of them contains a point of S, then the intersection of the whole family
contains a point of S. The existence of Tverberg-type theorems is given by
the following theorem.

Theorem 7.4. If convS has a Helly theorem with Helly number h(S), then
it has a Tverberg theorem. Moreover, TS(r, d) ≤ h(S)d(r − 1) + 1 for all r.

This result implies the upper bound for integer Tverberg if we use
Doignon’s theorem, which says that h(Zd) = 2d [Doi73, Sca77, Bel76]. If
we have a quantitative Helly for S, i.e., a natural number hk(S) such that,
for any finite family of convex sets in Rd, if the intersection of any hk(S)
of them contains at least k points of S, then the intersection of the whole
family contains at least k points of S, then we also obtain a similar Tverberg
theorem, where now

⋂r
j=1 convS(Xj) contains at least k points of S. The

related Helly-type results on S-convexity are described in [ADLS17].
Although S-convexity often gives worse bounds than the classic setting,

it is interesting that in some cases the asymptotic behavior of variations of
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Tverberg’s theorem remains the same. For example, we can naturally ask
for a version of Tverberg with tolerance, Problem 4.11, makes sense in the
integer lattice. We get the following result.

Theorem 7.5. Let r, t, d be positive integers, where r, d are fixed. Then,
there is a number L(t) = rt + o(t) such that the following holds. Given a
set X of L(t) points with integer coordinates in Rd, there is a partition of
X into r sets X1, . . . , Xr such that for any for any C ⊂ X of cardinality
at most t, the convex hulls conv(X1 \ C), . . . , conv(Xr \ C) have a common
point with integer coordinates.

For a proof, we only need to follow the methods of [GCRRP17] verba-
tim. When they require the usage of a centerpoint, we simply need to use
an integer point of depth 2−d, which exist as a consequence of Doignon’s
theorem. It is interesting that for this version the linear-algebraic methods
that use Sarkaria’s technique fail completely.

7.2 Tverberg-type theorem on families of sets.

It is possible to prove Tverberg-type results if we are dealing with families
of subsets of Rd instead of just points. In this case, we have to replace the
convex hulls by other operators, or require a conclusion stronger than the
intersection of the convex hulls being non-empty. For example given a family
F of d+ 1 hyperplanes in general position, we denote by ∆(F) the simplex
whose faces are given by F . Then, we have the following Tverberg-type
result by Karasev [Kar08, Kar11].

Theorem 7.6. Let r, d be positive integers such that r is a prime power.
Let F be a family of r(d+ 1) hyperplanes in general position in Rd. Then,
there is a partition of F into r sets F1, . . . ,Fr of d + 1 hyperplanes each
such that

r⋂
j=1

∆(Fj) 6= ∅

For this result there is also a corresponding discrete version of a center-
point theorem for hyperplanes. Given a family of hyperplanes F and a point
p ∈ Rd, we define the depth of p in F as the minimum number of members
of F that a ray starting from p can hit. This was introduced in [RH99],
and it was conjectured that every finite family F of hyperplanes in general
position in Rd has a point p at depth greater than or equal to |F|/(d+ 1).
Theorem 7.6 implies that the answer is affirmative when |F|/(d + 1) is a
prime power.
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Problem 7.7. Does Theorem 7.6 hold if r is not a prime power?

Another family of variations appear if we have a family of convex sets
which are large (i.e., they have large volume, large diameter, many lattice
points, etc...) and we want to partition them so that the intersection of the
convex hull of the parts is also a large convex set. We call these quantitative
versions of Tverberg’s theorem. Take for example the following Tverberg-
type theorem for the diameter [Sob16a].

Theorem 7.8. Let r, d be positive integers and ε > 0 a real number. Then,
there is a number M = M(r, d, ε, diam) such that the following holds. Given
a family X of M intervals of length 1 in Rd, there is a partition of X into r
subfamilies X1, . . . , Xr such that the diameter of ∩rj=1 conv(∪Xj) is at least
1− ε. Moreover, M is linear in r.

The loss of diameter ε is necessary for this result. An equivalent state-
ment can be proved for other functions [RS17], such as the volume. It is
unclear if the loss ε is still necessary in that setting.

Problem 7.9. Given r, d, determine if there is a number M(r, d, vol) such
that the following holds. For any family C of M convex sets in Rd, each of
volume at least one, there is a partition of C into r subfamilies C1, . . . , Cr
such that

vol

 r⋂
j=1

conv
(⋃
Cj
) ≥ 1.

Other interpretations of quantitative Tverberg appear in [DLLHRS17b,
DLLHRS17a]. In those results, we are given a family of n “large” convex
sets K1, . . . ,Kn, and we seek a transversal y1 ∈ K1, . . . , yn ∈ Kn that admits
a (usual) Tverberg partition but where the intersection of the convex hulls
of the parts is also “large”.

We can also significantly change the convexity in the conclusion of Tver-
berg’s theorem. As mentioned in the introduction, if a subset X of Rd with
|X| = (r − 1)(d+ 1) + 1 is in sufficiently general position, then for a parti-
tion of X into r sets X = X1 ∪ . . . ∪Xr 1 ≤ |Xj | ≤ d + 1 for every j, then⋂r
j=1 aff Xj is a single point.

Tverberg’s theorem simply says that we can always find a partition such
that, if {p} =

⋂r
j=1 aff Xj , the coefficients of the affine combination of Xj

that give p are non-negative. It turns out that sometimes we can prescribe
some of those coefficients to be negative [BS17].
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Theorem 7.10. Let X be a subset of Rd of (r − 1)(d + 1) + 1 points in
sufficiently strong general position. Let M ⊂ X be a set of points such that
conv(M) ∩ conv(X \M) = ∅. Then, there is a partition of X into r parts
X1, . . . , Xr such that in the affine combinations that witness

⋂r
j=1 aff Xj 6= ∅,

either

• all the coefficients for M are negative and all the coefficients for X \M
are positive, or

• all the coefficients for M are positive and all the coefficients for X \M
are negative.

Corollary 7.11. Assume that, under the conditions of the previous theorem,
|M | < r. Then in the affine combinations that witness

⋂r
j=1 aff Xj 6= ∅, all

the coefficients for M are negative and all the coefficients for X \M are
positive.

However, if we require k coefficients be negative, but we do not prescribe
which k points will carry the negative coefficients, the values of k for which
this is possible is an open problem.

Problem 7.12. Find all triples of integers d, r, k for which the following
holds. Given a subset X of Rd of (r−1)(d+1)+1 point in sufficiently general
position, there is a partition of X into r parts X1, . . . , Xr such that among
the affine combinations that witness

⋂r
j=1 aff Xj 6= ∅, exactly k coefficients

are negative.
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Alfonśın, Transversals to the convex hulls of all k-sets of dis-
crete subsets of Rn, J. Combin. Theory, Ser. A 118 (2011),
no. 1, 197–207.

[ACF+16] M. Asada, R. Chen, F. Frick, F. Huang, M. Polevy,
D. Stoner, L. H. Tsang, and Z. Wellner, On Reay’s relaxed
Tverberg conjecture and generalizations of Conway’s thrackle
conjecture, arXiv preprint arXiv:1608.04279 (2016).

[ADLS17] N. Amenta, J. A. De Loera, and P. Soberón, Helly’s the-
orem: new variations and applications, Algebraic and geo-
metric methods in discrete mathematics, Contemp. Math.,
vol. 685, Amer. Math. Soc., Providence, RI, 2017, pp. 55–95.

[AFL86] N. Alon, P. Frankl, and L. Lovász, The chromatic number
of Kneser hypergraphs, Trans. Amer. Math. Soc. 298 (1986),
no. 1, 359–370.

[AMSW15] S. Avvakumov, I. Mabillard, A. Skopenkov, and U. Wagner,
Eliminating higher-multiplicity intersections, III. Codimen-
sion 2, arXiv preprint arXiv:1511.03501 (2015).

[Avi93] D. Avis, The m-core properly contains the m-divisible pints
in space, Pattern recognition Letters 14 (1993), 703–705.

[Bár82] I. Bárány, A generalization of Carathéodory’s theorem, Dis-
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[BFZ14] P. V. M. Blagojević, F. Frick, and G. M. Ziegler, Tverberg
plus constraints, Bull. Lond. Math. Soc. 46 (2014), no. 5,
953–967.

[BFZ17] , Barycenters of Polytope Skeleta and Coun-
terexamples to the Topological Tverberg Conjec-
ture, via Constraints, J. Europ. Math. Soc. (2017),
http://arxiv.org/abs/1510.07984, to appear.
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[BKM17] I. Bárány, G. Kalai, and R. Meshulam, A Tverberg type the-
orem for matroids, Journey Through Discrete Mathematics.
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Handbook of convex geometry, Vol. A, B, North-Holland,
Amsterdam, 1993, pp. 389–448.

[Eck00] , The partition conjecture, Discrete Math. 221 (2000),
no. 1-3, 61–78.
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[Pór97] A. Pór, Colorful theorems in convexity, 1997, diploma thesis,
Eötovös University, Budapest.
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