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If left unchecked modeling uncertainties at small scales, due to poorly understood baryonic physics and
nonlinear structure formation, will significantly bias Stage IV cosmic shear two-point statistic parameter
constraints. While it is perhaps possible to run N-body or hydrodynamical simulations to determine the
impact of these effects this approach is computationally expensive; especially to test a large number of
theories of gravity. Instead we propose directly removing sensitivity to small-scale structure from the
lensing spectrum, creating a statistic that is robust to these uncertainties. We do this by taking a redshift-
dependent l-cut after applying the Bernardeau-Nishimichi-Taruya (BNT) nulling scheme. This reorganizes
the information in the lensing spectrum to make the relationship between the angular scale, l, and the
structure scale, k, much clearer compared to standard cosmic shear power spectra—for which no direct
relationship exists. We quantify the effectiveness of this method at removing sensitivity to small scales and
compute the predicted Fisher error on the dark energy equation of state, w0, for different k-cuts in the matter
power spectrum.
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I. INTRODUCTION

The cosmic shear signal is sensitive to the geometry and
density field of the low redshift Universe, precisely where
dark energy becomes important. This makes it an ideal
probe of gravity on cosmic scales. Cosmic shear is a
“clean” probe in the sense that it directly traces the density
field without having to assume a biased tracer model, as in
galaxy clustering studies [1]. Furthermore, cosmic shear
extracts information about both the Newtonian potential Ψ
and the curvature potential Φ [2].
Nevertheless cosmic shear comes with its own set of

unique theoretical challenges including the challenge of
shape measurements [3–5] and sensitivity to changes in
the small scale behavior of the matter power spectrum.
In this paper we propose a solution to the later of these
issues, the so-called small scale sensitivity problem, namely
that the shear signal is sensitive to poorly understood small
scale structure—down to k ¼ 7 hMpc−1 [6]. Modeling the
impact of baryons and nonlinear structure formation at
these scales, to the level of accuracy required for Stage IV
experiments [7–10]1,2,3, presents a formidable challenge.
To attempt to overcome this problem a large amount

of work has been devoted to the brute force N-body

simulation approach, which is used in all current shear
two-point statistic studies. In this paradigm, power spectrum
emulators [11,12] or calibrated halo model codes [13] are
trained on a large number ofN-body simulations, that sample
cosmological parameter space. Coupling the emulators to a
lensing code [14–16] to compute shear two-point statistics
enables rapid Markov Chain Monte Carlo (MCMC) para-
meter inference as in [17–19]. Nevertheless, current state-
of-the-art emulator codes are not sufficiently accurate for
Stage IV lensing surveys [6,13,20–22].
Although it may be possible to supplement the brute

force approach by marginalizing out the small scale
information, as proposed in [20], it is infeasible to run a
large number of N-body simulations to test all theories of
gravity, without using the untested assumption that non-
linear and baryonic feedback is cosmology and model
independent. Even if this was possible, the standard
approach is still far from ideal. Since cosmic shear is so
sensitive to small scales (∼50% of the information comes
from scales below kcut ¼ 1 hMpc−1 [6]), unknown or
unmodeled baryonic physics at even smaller scales could
easily bias the cosmological inference.
We propose a cleaner geometric solution to the small

scale sensitivity problem which efficiently cuts out the
lensing spectrum’s sensitivity to small scale structure,
allowing for a tuneable k-mode sensitivity. We refer to
this procedure as k-cut cosmic shear which has two parts.
First, we apply the Bernardeau-Nishimichi-Taruya (BNT)
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nulling scheme [23] which reorganizes the information
originally binned in the source plane to bins in the lens
plane, then since each bin labels a lens redshift range,
taking an angular scale cut also removes sensitivity to
large-k (small scales). See [24] for an alternative approach
that reduces sensitivity to small scales.
In the next section we review the BNT nulling scheme

(we refer the reader to [23], which provides the main
theoretical backbone of this work, for more details). Then
we introduce k-cut cosmic shear. In the remaining sections
we discuss its effectiveness and future prospects. The main
results are summarized in Figs. 1–4.

II. k-CUT COSMIC SHEAR

Suppose we wish to remove from the projected lensing
spectrum, Cl, contributions from structure smaller than
some scale, denoted by a k-mode. If we lived in a “shell
universe,” where all the matter lay at a distance r, then the
Limber relation [25] tells us that we could simply cut
angular scales l > kr. Unfortunately in the real Universe,
the lensing kernel is broad, so lenses across a wide range of
distances and scales contribute power to the same l-mode,
which means such a strategy will not work by itself [6].
We now review the steps of the Bernardeau-Nishimichi-

Taruya (BNT) [23] formalism which reweights the standard

dethgiewTNBdradnatS

k-cut (redshift-independent)

k-cut (redshift-dependent)

FIG. 1. The Fisher matrix predictions for the inverse error on the measured amplitude of each power spectrum cell, σ−1ðAÞ, using
different techniques. A given technique is sensitive to regions where σ−1ðAÞ is high. Top left: standard Cl approach. Top right: BNT
weighting with no l-cut. BNT reweighing alone should not change the total sensitivity and there is at most a 0.02% fractional in any cell
relative to the standard approach due to imprecisions in our numerical implementation. Center row: k-cut lensing with target kcut of the
form kcut ¼ Acut. Bottom row: k-cut lensing with target kcut of the form kcut ¼ Acutð1þ zÞ2. k-cut cosmic shear efficiently removes
sensitivity to the power spectrum above the desired k.
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tomographic Cl so that each bin contains information only
about the lenses inside a small redshift range. It is then a
simple extension to apply the Limber argument in each bin
to cut sensitivity to small scales.
To begin, suppose there are a discrete number of source

planes at radial distances ri. Then the weighted conver-
gence, κ̃, can be written as:

κ̃ ¼ 3ΩmH2
0

2c2

Z
ri

0

dr
δðrÞ
aðrÞwðrÞ ð1Þ

where δðrÞ and aðrÞ respectively give the local matter
overdensity and scale factor of the infinitesimal lens at the
radial distance r. Here:

wðrÞ ¼
X
i;ri>r

pi
ri − r
ri

; ð2Þ

where fpig are a set of weights [23].
If we now assume there are just three discrete source

planes: r1 < r2 < r3, then the key step in the BNT nulling
scheme is to construct constant weights pi so that wðrÞ ¼ 0
for r < r1. Clearly “lenses” at r0 > r3 do not contribute
to κ̃. Together these observations imply the weighted
convergence is only sensitive to lenses that lie in the radial
range r ∈ ½r1; r3�.
This argument is generalized in Sec. 2.2 of [23] to an

arbitrary number of source planes to construct a weighting
matrix,M, which has the property that for each tomographic
bin in theweighted lensing spectrum C̃l ¼ MClMT4 is only
sensitive to lensing structure in a small redshift range. The
shot noise spectrum, Nl, must also be consistently
reweighted and it is mapped to Ñl ¼ MNlMT . Crucially
the matrix, M, has detðMÞ ¼ 1, so the signal-to-noise
remains unchanged.
Now in each reweighted tomographic bin, i, if we choose

the minimum lens distance, rmin
i , cutting all l-modes such

that l > kcutrmin
i will remove sensitivity to all scales

smaller than kcut.
In our analysis, we use the formalism of Sec. 2.2 in [23]

to construct the BNT weight matrix, M, from 10 tomo-
graphic bins each containing the same number of galaxies.
The assumed radial distribution of galaxies nðzÞ is given in
the Appendix. Then for each BNT reweighed bin, i, rather
than cutting l > kcutrmin

i , we instead use the mean distance
to each weighted bin. This means that we do not have to cut
the first bin entirely. Although using the mean rather than
the minimum distance will not completely remove sensi-
tivity to all k above the target cut we show this has
negligible impact. We must also assume a fiducial

cosmology to go from the redshift, z, to co-moving distance
rðzÞ. This is given in the Appendix. Finally in the cross-
correlation between bins we take whichever l-cut is
smaller.
We refer to the joint procedure of BNT annulling

and applying a lens-redshift dependent angular scale cut
as k-cut cosmic shear.

III. FISHER MATRIX FORMALISM

We now review the Fisher matrix formalism that we use
to evaluate the sensitivity of the standard Cl analysis, BNT
cosmic shear, and k-cut cosmic shear to the matter power
spectrum and compare constraints on the dark energy
equation of state.
For a set of parameters fθig the Fisher matrix for cosmic

shear is given by:

Fαβ ¼
X
l

2lþ 1

2
Tr½C−1

l Cl;αC−1
l Cl;β�; ð3Þ

where Cl;α denotes the derivative with respect to para-
meter θα. This Cl includes both the signal and the noise
contribution defined in Eqs. (A1) and (A7) in the
Appendix. The lensing spectra are computed using
GLASS [15] which is integrated into the COSMOSIS [14]
modular cosmology package. Details of the lensing spectra
calculation are given in the Appendix.
To measure the sensitivity of cosmic shear to the matter

power spectrum, we follow the analysis of [6] which we
now review. First we divide the matter power spectrum
Pðk; zÞ, into logarithmically and linearly spaced grid cells
in k and z, respectively. We then compute the fractional
amplitude change in the power spectrum inside each grid
cell g:

Pgðk;z;AÞ≡
�ð1þAÞPðk;zÞ if ðk;zÞ in cellg
Pðk;zÞ otherwise

; ð4Þ

where A is a fixed small amplitude change. The two sided
derivative is

Cl;g ¼
Cl½Pgðk; z;AÞ� − Cl½Pgðk; z;−A�Þ

2A
; ð5Þ

where ; g denotes the derivative with respect to amplitude of
cell g. Putting this into Eq. (3) gives the Fisher matrix F for
the matter power spectrum grid cells. Then the sensitivity to
power spectrum cell g is defined by the inverse error,
σ−1ðAgÞ, given by:

σ−1ðAgÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF−1Þgg
q : ð6Þ

In a similar fashion we compute the error on Ωm, τ, Ωb,
H0, σ8 and w0 in a flat universe. We then compare the
relative change in marginalised constraints on the dark
energy equation of state w0 for a given analysis denoted by

4This applies to both the shear and convergence spectrum
because the two full-sky spectra are related by Cκκ

l ¼
l2ðlþ1Þ2

ðlþ2Þðlþ1Þlðl−1ÞC
γγ
l .
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σðw0Þ relative to the standard Cl analysis where we denote
the error as σfidðw0Þ. We do not compute the constraints on
wa because we have found that this can be sensitive to
exactly how the derivative is defined.

IV. RESULTS

Using the formalism presented in the previous section we
compute the sensitivity of different analyses to regions of
the matter power spectrum and compare the constraints on
the dark energy equation of state parameter w0. In particular
we consider:

(i) the standard cosmic shear Cl approach with a large
constant lmax;

(ii) a BNT reweighed Cl analysis with no l-cuts;
(iii) k-cut cosmic shear for target kcuts of the form kcut ¼

Acut (redshift independent) and kcut ¼ Acutð1þ zÞ2.
In the former case we use Acut ∈ ½0.64; 1.94; 3.38� as
representative. Meanwhile in the latter case we
consider Acut ∈ ½0.2; 0.6; 2� which roughly follows
the redshift evolution of the highest k-mode in the
linear regime, a k-value in the quasilinear regime,
and a k-value in the fully nonlinear regime.

Figure 1 shows the inverse error on the amplitude of
power spectrum cells for these six different cosmic shear
analyses. Cosmic shear is most sensitive to dark blue
regions.
With the standard Cl approach, shown in the top left,

∼50% of the signal comes from hard to model scales above
kcut ¼ 1 hMpc−1. The top right panel shows the case
where we have applied BNT re-weighting with no angular
scale cuts. As expected, this had no effect on the sensitivity
compared to the standard case.
Finally in the last two rows we plot the sensitivity of

k-cut cosmic shear with different target k-cuts. For all the
cuts considered the sensitivity to regions above the target
cut is dramatically reduced to essentially zero sensitivity.
This is true even when photometric redshift errors are
included, as is the case in our analysis.
The reduction in sensitivity to small scales is summa-

rized in Fig. 2. We plot the fraction of the matter power
spectrum information that comes from scales above the cut.
This is defined as the sum of the inverse errors [see Eq. (6)]
on the cells above the cut relative to sum over all cells.
For all the cuts we considered, never more than 5% of

the information comes from scales above the target cut with
k-cut cosmic shear. This is in contrast to the standard Cl
approach where up to 60% of the structure information
comes from scales above the target cut.
In Fig. 3 we plot the fraction of the power spectrum

information retained using different k-cuts, relative to the
standard approach. The information is defined as sum of the
inverse errors on the power spectrum cells. When we take
kcut ¼ 1.94 hMpc−1, 70% of the power spectrum informa-
tion is lost. For all cuts we considered, >35% of the power
spectrum information was lost. However, most of the

constraining power on the dark energy equation of state
is retained (see Fig. 4), because information about this
parameter comes from large scales (small-k) in the power
spectrum [26] and from the background geometry [6].
In Fig. 4 we show the k-cut cosmic shear Fisher

constraints on w0, relative to the standard Cl approach.

FIG. 2. Fraction of the information coming from above the
desired cut scale using the standard Cl approach and k-cut
cosmic shear. The information fraction is defined as the sum of
the inverse errors [see Eq. (6)] on the cells above the cut relative
to sum over all cells. k-cut cosmic shear removes nearly all
sensitivity to small scales, while in the standard analysis a
significant fraction of the signal comes from above the cuts.

FIG. 3. Fraction of the power spectrum information captured by
k-cut cosmic shear relative to the standard Cl approach. The
information is defined as the sum of the inverse errors [see
Eq. (6)] on the cells shown in Fig. 1. Although a large share of the
power spectrum information is lost using kcut cosmic shear, by
comparing with Fig. 4, we see that most of the information about
the dark energy equation of state, w0, is retained. For example,
when we take kcut ¼ 1.94 hMpc−1, the size of error on w0 only
increases by 50%, even though 70% of the power spectrum
information is lost.
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Cutting scales does result in some loss of constraining
power, but in all but the most extreme case that we
considered, this never degrades the constraint on w0 by
more than a factor of 2. For examples cutting scales above
kcut ¼ 1.94 hMpc−1 results in a 31% increase on the size
of the error. Meanwhile with the most aggressive cut that
was considered—where we removed sensitivity to all
nonlinear scales taking kcut ¼ 0.2ð1þ zÞ2—the size of
the error increases by a factor of 2.8.

V. OUTLOOK AND FUTURE PROSPECTS

We have shown that k-cut cosmic shear is a clean and
efficient way to remove sensitivity to small scales. Testing a
modified gravity model with k-cut cosmic shear would
require just three pieces of information from the theoret-
icians. These are

(i) The expansion history, that is the radial comoving
distance as a function of the redshift rðzÞ which
enters into the lensing kernel.

(ii) The matter power spectrum using any technique.
(iii) A breakdown scale kðzÞ above which the power

spectrum calculation is no longer sufficiently accu-
rate. Determining the breakdown scale is survey-
dependent and more work is needed in this area.

Crucially this method would not require a nonlinear model
for small-scale matter power spectra, or a baryonic feed-
back model etc., above the cutoff scale (in contrast to
standard cosmic shear).
There are a few additional considerations which must be

addressed before applying k-cut cosmic shear to data:
(i) Intrinsic alignments (IA): Since the IA signal is

generatedwith a different kernel from thegravitational

shear signal,k-cut cosmic shear does not remove small
scales from the IA contribution. Nevertheless this
should not be a major concern because the IA
contribution is (i) primarily sensitive to large scales
through tidal distortions induced bymassive halos and
(ii) already very subdominant to the shear signal.
Making this precise is left to a future work.

(ii) Covariance matrix: Testing each theory of gravity
may require cosmology dependent covariances [27].
Since k-cut cosmic shear is insensitive to small non-
Gaussian scales, it would be interesting to reexamine
whether analytic Gaussian-covariances are sufficient
when removing small scales, or if cheap log-normal
simulations [18,28] are sufficient. This may be a
further advantage of k-cut cosmic shear. Sidestep-
ping the issue altogether with likelihood-free meth-
ods also looks like a promising technique [29].

(iii) Mode coupling: In linear theory each k-mode evolves
independently, but nonlinear and baryonic correc-
tions couple k-modes smearing modeling errors
across a wide range in k. This is why the accuracy
of leading emulators and halo model codes only vary
slowly across a large range in k. For example the
stated accuracy of HALOFIT [11] is 5% for k ≤
1h Mpc−1 and 10% for k ≤ 10h Mpc−1. Meanwhile
COSMIC EMU [30] report 4% accuracy for k ∈
½0.1h Mpc−1; 10h Mpc−1� and HMCODE [13] report
5% accuracy for k ∈ ½0.1h Mpc−1; 10h Mpc−1�.
Nevertheless it is generally the case that small
k-modes are modeled less accurately than large-k
and it should still be possible to define a suitable cut
scale. However this issue is also a worry for standard
cosmic shear analyses.

Addressing these remaining issues should be a priority
since k-cut cosmic shear provides a way to enable a test of
gravity, free from issues of uncertain small-scale bias.
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APPENDIX: COMPUTATION OF THE COSMIC
SHEAR POWER SPECTRUM

The shear spectrum, Cγγ
l , is given by:

Cγγ
l ðηi; ηjÞ ¼

9Ω2
mH4

0

16π4c4
ðlþ 2Þ!
ðl − 2Þ!

Z
dk
k2

Gγ
lðη1; kÞGγ

lðη2; kÞ;

ðA1Þ

FIG. 4. Size of 1σ marginalized Fisher constraints on the dark
energy equation of state, w0, relative to the standard approach. In
all but the most extreme case, where a very aggressive k-cut is
used, a significant fraction of the sensitivity to small scales can be
cut without degrading the w0 constraint by more than a factor
of 2. As expected, applying the BNT transformation with no k-cut
does not result in a loss of information.
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where Ωm is the fractional energy density of matter, c is
the speed of light in vacuum and H0 is the value of the
Hubble constant today. ηi;j label tomographic bins i and j.
The G-matrix is

Gγ
lðηi; kÞ≡

Z
dzpdz0nðzpÞpðz0jzpÞ ×WiUlðr½z0�; kÞ

ðA2Þ
where r½z� is the comoving distance at a redshift z. The
weight function, Wi, is a top hat function over redshift bin
I. We assume 10 redshift bins with an equal number of
galaxies in each bin. The radial distribution of galaxies
denoted by nðzÞ is taken as:

nðzÞ ¼ ðz=zeÞ2e−ðz=zeÞ3=2 ; ðA3Þ
with ze ¼ 0.9=

ffiffiffi
2

p
. The Gaussian photometric smoothing

term, pðzjz0Þ, is:

pðzjzpÞ≡ 1

2πσzðzpÞ
e
−ðz−ccalzpþzbiasÞ2

2σzp ; ðA4Þ

with ccal ¼ 1, zbias ¼ 0 and σzp ¼ Að1þ zpÞwith A ¼ 0.05
[31]. Meanwhile the U-matrix is:

Ulðr½z�; kÞ≡
Z

r

0

dr0
ðr − r0Þ
aðr0Þrr0 jlðkr

0ÞP1=2ðk; r0Þ; ðA5Þ

where a is the scale factor, jlðkrÞ are the spherical Bessel
functions and Pðk; rÞ is the power spectrum. We use
CAMB [32] to generate the linear power spectrum,
HALOFIT [11] to generate the nonlinear part. We assume
a fiducial cosmology of ðΩm; Ωk; w0; Ωb; h0; ns; As; τÞ ¼
ð0.32; 0.0; ; −1.0; 0.04; 0.67; 0.96; 2.1 × 109; 0.08Þ thro-
ughout. We assume the Limber approximation for
l > 100 in which case the U-matrix becomes:

Ulðr; kÞ ¼
r − νðkÞ

kaðνðkÞÞrνðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

2ðlþ 1=2Þ
r

P1=2ðk; νðkÞÞ;

ðA6Þ

where νðkÞ≡ lþ1=2
k . Throughout we take lmax ¼ 5000. The

contribution to the spectrum caused by the random ellip-
ticity of galaxies, called the shot noise, is given by:

Nee
l ðη1; η2Þ ¼

σ2e
2π2ΔΩneff

; ðA7Þ

where σ2e is the variance of the intrinsic (unlensed)
ellipticities of the observed galaxies. We use σe ¼ 0.3
throughout [33]. In our analysis we assume the survey area,
ΔΩ, is 15 000 square degrees and we use an effective
number density of galaxies, neff , of 30 galaxies per arcmin2.
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