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Abstract11

Pressure-impulse (or p-I) diagrams are developed for fully-clamped elastic-plastic beams
subjected to pulse-pressure loading with varying degree of negative phase. Unlike tradi-
tional p-I diagrams, the loading parameter space are instead divided into régimes, corre-
sponding to the three modes of deformation (I, II and III) observed in blast experiments.
The effects of pulse shape, beam aspect ratio and negative phase loading on the isodamage
curves that delineate the different régimes are investigated. In addition, it is further demon-
strated that contour lines of structural performance (maximum deflection, total work done,
partitioned energy and saturated) can also be incorporated into the non-dimensionalised
pressure-impulse space to provide further information for the design, and assessment, of
elastic-plastic beams to blast loading.
Keywords: Pressure-impulse diagram, deformation régimes, negative phase, saturated12

impulse13

1. Introduction14

The pressure-impulse, or p-I for brevity, diagram is a useful design tool that allows quick15

assessment of the dynamic response of a structural component (typically its final state16
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rather than the response history) to a specified load case. They are typically generated17

using a simplified single-degree-of-freedom (SDOF) model, whereupon once the maximum18

displacement (or permissible damage level) has been defined, the p-I space is divided into19

region(s), corresponding to different régimes, which gives the combinations of load and20

impulse that are safe or, would otherwise, cause failure (or a specific damage level). A large21

body of literature already exists on various aspects of constructing p-I diagrams and their22

features, the majority of which is based on a maximum structural deflection criterion, i.e.23

it assumes that a structure always deforms in mode I (Abrahamson and Lindberg, 1976;24

Li and Meng, 2002a,b; Dragos and Wu, 2013; Hamra et al., 2015; Ma et al., 2007; Tsai25

and Krauthammer, 2017). However, experiments by Menkes and Opat (1973) have showed26

that a fully clamped beam subjected to a blast load can develop three different modes of27

deformation: mode I - large inelastic deformation; mode II - tensile-tearing at the support;28

mode III - shear-band localisation. Unlike in mode I, failure (this is accompanied by complete29

detachment from the supports) occurs in modes II and III. Hitherto, no work has been done30

to incorporate information relating to modes II and III deformation in existing p-I diagrams.31

Nomenclature

B width of beam
D damage variable
E Young’s modulus
Eb
S, Em

S , Es
S bending, membrane, shear energy absorbed at the support

EP total work done
H thickness of beam
I+, I− positive and negative impulse
I∗ non-dimensional impulse
I∗sat non-dimensional saturated impulse
L half length of beam
M bending moment
M0 fully plastic bending moment
N membrane force
N0 fully plastic membrane force
p(t) overpressure time-history
pc fully plastic collapse force per unit length
p0 peak overpressure
p∗ p0/pc
Q transverse shear force
N0 fully plastic transverse shear force
t time
td, t−d positive and negative phase duration
t1, t2 time when plastic hinge form at support and mid-span of beam
t3 time when beam motion ceases or damage occurs

2
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wi generalised transverse displacements
WB mid-span deflection
W0 maximum mid-span deflection
WS plastic shear sliding distance at support
α decay coefficient
β ratio of the plastic work absorbed through shearing deforma-

tion to the total plastic work done
βc critical value of β to separate mode II and III
εeff effective strain
εd effective strain at the onset of damage
εr rupture strain
φi(x) admissible mode functions
ωs state variable for shear criterion
ρ density of beam
σY static yield strength
ξ position of the travelling plastic hinge

32

In this paper, we develop p-I diagrams, using the model of a fully-clamped ductile beam33

system by Yuan et al. (2016), to account for the three different modes of deformation and34

negative phase loading. In addition, we will demonstrate how contour lines of structural35

performance (maximum deflection, total work done, partitioned energy and saturated) can36

also be incorporated into the loading parameters space to provide further information for37

the design, and assessment, of elastic-plastic beams to blast loading.38

The outline of this paper is as follows: Section 2 summarises key features of the ductile beam39

model in Yuan et al. (2016) and the generation of pulse-pressures with varying negative40

phase; p-I diagrams are generation in Section 3 and effects of negative phase loading on41

the isodamage curves discussed; and, finally Section 4 shows how contour lines of structural42

performance can be incorporated into the diagrams.43

2. Method44

A succinct summary of key features of the ductile beam model by Yuan et al. (2016) is given45

here. Its predictive capabilities had previously been successfully validated against results46

from blast experiments and three-dimensional finite element simulations. For completeness,47

we also review how pulse-pressures with both the positive and negative phases are generated;48

and, the selection criteria for the loading parameters to be represented in the new p-I49

diagrams.50
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Figure 1: Schematic of the ductile beam system (Yuan et al., 2016).

2.1. Structural model - a summary51

Figure 1 shows a schematic of the ductile beam system which comprises a slender beam52

(made of a rate-independent, elastic perfectly-plastic material) supported at each end by53

three springs, one rotational and two axials. The two torsional ‘elasto-plastic’ springs model54

the end rotation of the beam and the subsequent formation of plastic hinges. Both axial and55

vertical springs have ‘rigid-plastic’ characteristics to model plastic stretch and plastic shear56

sliding at the support, respectively. A pulse-pressure loading p(t), see Section 2.2, impinges57

normally, and uniformly, over the full span of the beam regardless of its subsequent transverse58

‘in-plane’ motion.59

The deformation of the beam is divided into three phases - see Fig. 2 - according to the60

sequence of hinge formation: (a) Phase 1 (0 < t ≤ t1) - no plastic hinge forms anywhere along61

the beam; (b) Phase 2 (t1 < t ≤ t2) - a stationary plastic hinge forms at the support on each62

end of the beam; (c) Phase 3 (t2 < t ≤ t3) - plastic hinge A travels towards, and coalesce63

with, an existing stationary hinge at the mid-span, ending in a final three-hinge collapse64

configuration. In each phase, the transverse beam deflection is approximated as a sum of n65

generalised displacements wi(t) and admissible mode functions φi(x). Once the total strain66

energy V of each phase is derived, the governing equations of motions for the beam system67

are obtained by substituting the Lagrangian into the well-known Euler-Lagrange equation68

– details are given in Yuan et al. (2016). It must be emphasised that the analytical model69

does not consider the subsequent elastic rebound beyond the maximum mid-span deflection70

(at t = t3) - the justification for this is provided in Section 2.3.71

The structural model implements gradual softening of the non-dimensional bending moment72

M̄ , membrane force N̄ and transverse shear force Q̄ as a function of effective strain εeff .73
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Figure 2: Schematic of the transverse displacement (WB) profile for the right-half of the ductile beam system
in Yuan et al. (2016). (a), (b) and (c) depicts Phases 1, 2 and 3 deformation, respectively. Subscripts S and
B denote support and beam member, respectively; whilst, M , N and Q are generalised stresses.

The effective strain εeff can be expressed as follows74
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where WB and WS are transverse displacement at the mid-span of the beam and plastic75

shear sliding distance at the support, respectively; H is thickness and L is half length of the76

beam.77

Initiation of ductile damage follows a criterion given by78

ωd = εeff

εd
= 1 (2)
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where ωd is a state variable that increases monotonically with effective strain εeff , and εd79

is the effective strain at damage initiation (or damage strain). Beyond this, progressive80

softening of the generalised stresses occur in accordance to the following evolution law:81

|M̄ | = |M̄ f |(1−D), N̄ = N̄ f (1−D) and Q̄ = Q̄f (1−D) (3)

where M̄ = M/M0, N̄ = N/N0 and Q̄ = Q/Q0 are the non-dimensional fully plastic gener-82

alised stresses; M0 = σYBH
2/4, N0 = σYBH and Q0 = 2σYBH/3

√
3 are the fully plastic83

bending moment, in-plane membrane force and transverse shear force, respectively; M̄ f , N̄ f84

and Q̄f are the non-dimensional generalised stresses at the onset of damage, respectively;85

σY is the static yield strength; and, B is the width of the beam. The model assumes, for86

simplicity, a linear evolution of the damage variable D with effective strain εeff given by87

D = εeff − εd
εr − εd

(4)

where εr is the rupture strain of the beam material. All the generalised stresses reduce to88

zero when D = 1 at which point failure (or complete severance from its supports) occurs. If89

the structural system fails before all its initial kinetic energy is expended, then the severed90

beam member would acquire a residual kinetic energy at the point of severance. Parts of this91

are absorbed through further plastic deformation as the beam continues to deform until it92

reaches a rigid permanent set whilst the remaining as translational kinetic energy. However,93

the current analytical model does not consider how this residual kinetic energy is expended94

beyond failure – it is not required for the purpose of this work.95

The three distinct deformation régimes identified by Menkes and Opat (1973) are delineated
according to the following criteria:

Mode I : D < 1, ωs < 1 (5a)
Mode II : D = 1, ωs < 1 (5b)

Mode III : D = 1, ωs ≥ 1 (5c)

where the state variable ωs is given by96

ωs = β

βc
. (6)

In Eq 6, β is the ratio of the plastic work absorbed through shearing deformation to the97

total plastic work done and βc (=0.45) is a critical value delineating the transition between98

modes II to III. Table 1 lists the material properties for the Aluminium 6061-T6 beams that99

were modelled; they are rate-insensitive.100

It must be emphasised that we have adopted the term ‘deformation régimes (or modes)’ in101

place of the more widely-used ‘damage régimes (or modes)’ in conventional literature. This102

is to avoid unnecessary confusion associated with use of a damage variable D (Eq. 5) and103

the state variable ωs (Eq. 6) as criteria to delineate different modes of deformation.104

6
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Table 1: Material properties of the Aluminium (6061-T6) beam (Menkes and Opat, 1973)

Density, Young’s modulus, Static yield Poisson’s Damage Rupture
ρ (kg/m3) E (GPa) strength, σY (MPa) ratio strain, εd strain, εr

2686 69 283 1/3 0.38 0.5

2.2. Generating pulse-pressures with varying negative phase105

The ductile beam model of Yuan et al. (2016) is sufficiently general to accommodate different106

pressure profiles p(t) such as linearly-decaying, triangular, rectangular etc – it had also been107

adapted to study fluid-structure interactions in underwater explosions (Yuan et al., 2017)108

and air blasts (Yuan et al., 2018). Here, the ‘modified Friedlander equation’ (Friedlander,109

1946; Baker, 1973) will be used to generate the pulse-pressure p(t), allowing both positive110

and negative phases of a blast pulse to be captured, as follows:111

p(t) = p0(1− t

td
)e−

αt
td , 0 < t <∞ (7)

where p0 is peak value of the positive overpressure, td is duration of the positive phase and112

α (α ≥ 0) is the decay coefficient that determines the pulse-shape. Note that α = 0 gives a113

linearly-decaying pressure pulse; whilst α > 0 gives an exponentially decaying pressure-time114

history with differing severity of its negative phase that depends on α.115

Figure 3a plots the pressure time-history for different decay coefficient α ranging from 0 to116

5. In every curve, the pressure decays monotonically to zero at time t = td - this is known117

as the positive phase of a blast pulse. It is then followed by a period of under-pressure118

– ‘negative suction phase’ – before pressure recovery to zero at time t = td + t−d , with119

the notable exception of α = 0 where there is no negative phase, in other words, t−d = 0.120

Integrating Eq. 7 with respect to time, gives the positive I+ and negative I− impulses as121

follows:122

I+ =
∫ td

0
p(t)dt =

{
I0/2 if α = 0

I0(e−α + α− 1)/α2 if α > 0 (8)

and123

I− =
∫ ∞

td

p(t)dt =
{

0 if α = 0
−I0e−α/α2 if α > 0 (9)

where I0 = p0td is the reference impulse. α is a critical parameter that controls the proportion124

of negative impulse (of the negative phase) to positive impulse (corresponding to the positive125

phase) for a given p(t) (Baker et al., 1983). Figure 3b shows how the impulses corresponding126

to I+ and I− changes with α. Notice that the overall impulse I+ + I− does not increase127

monotonically with α because of how its corresponding I+ and I− changes. In this paper,128
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Figure 3: (a) Non-dimensional pressure time-history for different decay coefficients α; (b) corresponding
impulses of the positive and negative phases of each pressure-time history in (a). Time td + t−d corresponds
to the instant when the non-dimensional pressure in the negative suction phase reaches p/p0 = −10−3.

the values of α = 0, 1, 2, 5 were chosen for the following reasons: α = 0 corresponds to an129

extreme case of linear decaying profile; α = 1 gives the most realistic pressure profile which130

is supported by experimental evidence (Jacinto et al., 2001); and, α = 2 and 5 are included131
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for the purpose of comparison.132

In general, the pulse-pressure generated in a blast can be crudely classified as either impulsive133

(i.e. t3 > td) or non-impulsive (i.e. t3 ≤ td). This depends on whether the time t = t3,134

corresponding to either cessation of beam motion (for mode I) or failure (in modes II or135

III deformation), occurs after (i.e. t3 > td) or before (i.e. t3 ≤ td) the end of the positive136

phase. Intuitively, it is obvious that the negative phase should only affect the maximum137

transient deflection of a beam subjected to impulsive loading, and only for a finite duration138

of t3− td according on the aforesaid criteria to delineate the two loading régimes. Therefore,139

it is unnecessary to incorporate the impulse corresponding to the entire negative phase (I−)140

when constructing a pressure-impluse diagram. In light of this, it is reasonable to choose141

the positive peak overpressure p0 and positive impulse I+ as the parameters to define the142

loading parameters space, which can be non-dimensionalised as follows:143

p∗ = p0

pc
(10)

and144

I∗ = I+

H
√
σY ρ

(11)

where pc = 4M0/L
2 is the fully plastic collapse force per unit length (Jones, 2012). Even145

though the negative impulse I− is omitted from the p∗-I∗ diagram, it is instructive to note146

that it is easily deduced using the following ratio (by re-arranging Eqs. 8 and 9)147

I−

I+ = − e−α
e−α + α− 1 , for α > 0. (12)

The extent to which negative phase loading affects the structural performance of a ductile148

beam in the impulsive régime of a p-I diagram is to be discussed later in section 4.4.149

2.3. Justifications of assumption150

In this paper, we are concerned primarily with pulse-pressure loadings that are sufficiently151

intense to cause beam severance from its supports. If severance does not occur during152

the initial forward motion of a beam, then its subsequent temporal mid-point response,153

irrespective of whether negative phase loading is considered, would typically resembles that154

shown in Fig. 4 (see [- - -] and [- - -]), where the first peak corresponds to the maximum mid-155

span deflection and the first trough is a consequence of elastic rebound. This subsequent156

partial unloading and re-loading eventually dies out due to material damping. Results157

of three-dimensional FE simulations plotted in Fig. 4 were obtained, using an identical158

numerical set-up described in Yuan et al. (2016), for a beam with geometric and loading159

parameters given in the caption. Note that the vertical dashed red line [- - -] denotes the end160

of the positive loading phase (at t/td = 1). The pressure pulses (with and without negative161

phase) were imposed on the structure without considering fluid-structure interactions (Yuan162

9
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et al., 2017, 2018) but this is not expected to alter the qualitative trend of the results shown163

here.164

t/td

0 2 4 6 8 10

W
B/H

0

1

2

3

4

t/td=1

Analytical prediction
FE (with negative phase)
FE (without negative phase
i.e. after p(t)<0, p(t)=0)

first trough

3.9 4.0

3.8

Figure 4: Comparison of analytical and FE predictions of the temporal mid-span deflection of a beam.
The beam has dimensions of 0.203 (2L) × 6.35 ×10−3 (H) × 25.4 ×10−3 (B) m and is subjected to a
pulse-pressure loading of α = 1, p∗ = 20 and I∗ = 0.37.

Figure 4 shows that the analytical prediction [ ] of the maximum mid-span deflection by165

Yuan et al. (2016) – a pulse-pressure with negative phase loading was imposed – is in good166

agreement with the results by FE ( [- - -] and [- - -]). It is clear that the presence of negative167

phase loading has an effect of increasing the displacement of the first trough relative to the168

initial peak; however, this effect is relatively minor and it can reasonably be assumed that169

if a beam survives its initial forward motion without severance, then it is unlikely to fail170

in the subsequent reverse motion. Since the primary concern of this work is to construct171

régime boundaries, corresponding to modes I→II and II→III, that involves beam severance,172

the analytical model by Yuan et al. (2016) is applicable here even though it did not consider173

unloading and re-loading effects associated with elastic rebound.174

3. Pressure-impulse diagrams175

3.1. Key features of p∗-I∗ diagram176

Figure 5 presents a p∗-I∗ diagram for a typical aluminium (6061-T6) beam tested by Menkes177

and Opat (1973). Here, as in Shen and Jones (1992) and Yuan et al. (2016), a linear-decaying178

pressure pulse with α = 0 is used which considers only a positive phase. Two isodamage179

curves divide the p∗-I∗ space into deformation régimes (mode I: large inelastic deformation;180

mode II: tensile-tearing at the support; mode III: shear-band localisation) that develop in181

10
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Figure 5: A p∗-I∗ diagram that divides the loading parameters space into deformation régimes (modes I,
II and III) for a typical aluminium beam (0.203 (2L) × 6.35 ×10−3 (H) × 25.4 ×10−3 (B) m) tested in
Menkes and Opat (1973). -.-.- indicates the impulsive and non-impulsive asymptotes.

ductile beams under blast loading. Each isodamage curve shares broadly similar features182

to existing p-I diagrams in the literature which, unlike the present study, uses a simple183

maximum deflection criterion (SDOF model) to construct their boundaries (Li and Meng,184

2002a) as follows: (1) there is a vertical and a horizontal asymptote that corresponds to185

an impulsive and a non-impulsive loading régime, respectively (they are often known as186

impulsive and non-impulsive asymptotes); and (2) between these two asymptotes, there is a187

one-to-one correspondence between p∗ and I∗ for any monotonically decaying pressure pulse.188

In addition, the predicted impulsive asymptotes correspond to the critical non-dimensional189

impulses for mode I→II and II→III transitions (0.44 and 0.82, respectively) and they agree190

well with existing experimental results (0.49 and 0.87, respectively) in Menkes and Opat191

(1973).192

3.2. Effects of decay coefficient α193

Figure 6 shows a typical non-dimensional p∗-I∗ diagram for various decay coefficient α194

ranging from 0 to 5 for a beam of aspect ratio L/H = 16 (the beam has identical dimensions195

to the one in Fig. 5). Recall that α = 0 corresponds to a linearly-decaying pressure pulse196

without a negative phase. It is instructive to note that the magnitude of the negative phase197

impulse I− (using Eq. 12) is -1, -0.12 and -0.002 times its positive counterpart for α=1, 2 and198

5, respectively. In general, the presence of a negative phase leads to an expansion of the mode199

I régime space by shifting (or tilting) the impulsive asymptote (for mode I→II transition)200

11
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Figure 6: Non-dimensionalised p∗-I∗ diagram for a beam subjected to a pulse-pressure with different values
of α. The beam has dimensions of 0.203 (2L) × 6.35 ×10−3 (H) × 25.4 ×10−3 (B) m.

rightwards. This is because a negative loading phase decelerates the beam, leading to a201

lower maximum mid-span deflection compared to its linearly-decaying counterpart. Hence,202

the biggest shift in the mode I→II impulsive asymptote is observed for α=1 by virtue of203

its corresponding I−; strictly speaking, they cannot now be regarded as an asymptote. On204

the other hand, increasing α leads to contraction of the mode III régime space caused by205

a shift (‘diagonally’ upwards) in the isodamage curve for II→III transition. Note that the206

two isodamage lines corresponding to α = 0 define a lower bound for deformation régimes207

for all other pulse-pressures with a negative phase, i.e. α = 1, 2, 5. It is worth emphasising208

that the negative impulse I− is not reflected within the non-dimensionalised impulse p∗-I∗209

diagram but it is easily deduced using Eq. 12 once α (>0) is known.210

Below are some observations regarding the sensitivity of the isodamage curve for mode I→II211

transition to α, as shown in Fig. 6:212

(1) For α = 1, the critical impulse I∗ at mode I→II transition increases monotonically with213

p∗ in the impulsive régime. By contrast, it remains an invariant if α = 0 as shown in Fig.214

5. As a result, for certain values of I∗ (say 0.6), increasing the non-dimensional pressure215

p∗, say, from 20 to 80 switches the deformation mode of the beam from II→I, making it216

‘safer’ (by remaining in mode I) when subjected to a pulse-pressure with a considerable217

negative phase. This is easily rationalised by noting that a beam is inevitably subjected to218

a period of negative phase loading in the impulsive régime (i.e. t3 > td) that causes it to219

decelerate. Increasing p∗ for a given I∗ would allow the beam to enter the negative phase220

earlier (reducing td) resulting in a somewhat lower maximum beam deflection (this will be221

12
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shown later in Fig. 8) and less overall impulse transmitted to the beam (this will be shown222

later in Fig. 12).223

(2) Increasing α (excluding the case of α = 0) tilts the isodamage curve for the impulsive224

loading régime towards to the right, leading to an expansion of the mode I régime space, for225

reasons already given above.226

(3) In the non-impulsive régime, however, reducing α leads to a contraction of the mode I227

régime space, see figure inset. As noted previously, this is not a consequence of the negative228

phase since the maximum beam deflection is reached before the end of the positive phase229

in the non-impulsive régime. Instead, it is due to the effects of pulse-shape. Increasing α230

leads to a reduction in the positive phase duration td for a given I∗ (see Fig. 3b), which231

leads inevitably to a higher maximum beam deflection in mode I, and this is consistent with232

previous findings by Yuan et al. (2016) and Xue and Hutchinson (2003).233

In general, the decay coefficient α affects both the negative phase and shape of a pressure234

pulse and they, in turn, have a significant influence over a beam’s structural response in the235

impulsive and non-impulsive régime of a p∗-I∗ diagram, respectively.236

3.3. Effects of aspect ratio L/H237

Figures 7a and 7b show p∗-I∗ diagrams for beams of different aspect ratio L/H (but with238

identical cross-sectional area) subjected to a linearly decaying (α = 0) and an exponentially239

decaying (α = 1) pulse-pressure with negative phase, respectively. In both cases, the shifts240

in their isodamage lines within the p∗-I∗ space are largely similar depending on L/H. As the241

aspect ratio of a beam increases, its impulsive asymptote (corresponding to the transition242

from mode I→II) shifts leftward, whereas its non-impulsive counterpart shifts upward. The243

implication is that a longer beam would be ‘safer’ (remaining in mode I) when subjected to244

non-impulsive loading, but is more likely to lose its integrity at the support (in mode II)245

under impulsive loading. Reducing the aspect ratio of a beam tends to trigger an earlier246

onset of mode III deformation since transverse shear plays a dominant role in shorter beams247

whenever complete detachment occurs at its supports.248

4. Design maps249

In this section, we construct design maps that incorporate contour lines of structural per-250

formance (maximum deflection, total work done, partitioned energy and saturated impulse)251

into the non-dimensionalised pressure-impulse space. Any pair of p∗ and I∗ uniquely locates252

a point in the 2D space. From the map, one is able to determine the deformation régime253

in addition to information (by interpolation using two known values, if required) needed to254

assess structural performance. Alternatively, it enables a designer to determine the critical255

non-dimensional pressure p∗ that delineates different deformation régimes, and the corre-256

sponding structural performance, for a given non-dimensional impulse I∗. These charts are257

potentially useful for the preliminary blast assessment of structures by designers. All results258
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Figure 7: p∗-I∗ diagrams for beams of different L/H but with identical cross-sectional area of 6.35 ×10−3

(H) m × 25.4 ×10−3 (B) m.
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shown are for beams of dimensions 0.203 (2L) × 6.35 ×10−3 (H) × 25.4 ×10−3 (B) m259

subjected to either a linearly-decaying (α = 0) or an exponentially decaying pulse-pressure260

(α = 1) pressure pulse.261

4.1. Transverse mid-span deflection and plastic shear sliding distance262

(a) α = 0 (b) α = 1

Figure 8: Contours of non-dimensional maximum deflection W0/H and plastic shear sliding distance WS/H
superimposed on the loading parameters space for (a) α = 0 and (b) α = 1. mode I; mode II; mode
III.

Figures 8a and 8b show design maps that incorporates information on the non-dimensional263

transverse beam deflection – maximum mid-span deflection W0/H and plastic shear sliding264

distance WS/H at the support – within the p∗-I∗ space for α = 0 and α = 1, respectively.265

In mode II and III régimes, increasing the non-dimensional pressure p∗ (for a fixed I∗),266

or impulse I∗ (for a fixed p∗), leads to a monotonic reduction of W0/H and a monotonic267

increase of WS/H. Furthermore, Fig. 8b shows that for certain I∗ (say I∗ = 0.6), reducing268

the non-dimensional pressure p∗ from, say, 80 to 20 would have led to a higher mid-span269
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deflection of W0/H and plastic shear sliding distance WS/H. This explains the shift in270

deformation régime from mode I → II alluded to earlier in Fig. 6 - see Section 3.2.271

It is interesting to note that the contour corresponding to W0/H = 5.3 in Figs. 8a and 8b272

is nearly coincident with the isodamage curve for mode I→II transition. This is consistent273

with the findings of Yuan et al. (2016) and Shen and Jones (1992) where it had been shown274

that the maximum W0/H is reached during the transition from mode I→II. Therefore, a275

simple maximum displacement failure criterion (as is commonly employed in the literature)276

is equally capable of predicting the same isodamage curve for mode I→II transition com-277

pared to the damage criterion (Eqs. 5b) used here. However, the maximum displacement278

failure criterion in existing literature cannot accurately predict W0/H beyond its mode I→II279

transition as the beam is considered to have failed at the same maximum displacement.280

4.2. External work done281

We introduce a non-dimensional transmitted energy from the pulse-pressure to the beam282

system – defined as the ratio of the external work done to the beam EP to the reference283

energy E+ – as follows:284

ĒP =
EP

(
,
∫ t3

0
p(t)

[ ∫ L

0
Ẇ (x, t)dx

]
dt
)

E+
(
, (I+)2/2m

) (13)

where time t = t3 corresponds to either the cessation of beam motion or at the instant285

of failure (i.e. complete detachment from the supports). It is instructive to note that the286

ratio ĒP provides a measure of the ‘impulsiveness’ in a beam’s response, with ĒP = 1287

corresponding to the extreme case of a ‘zero-period’ impulsive loading where the structure288

may be assumed to acquire an instantaneous velocity. Contour plots of ĒP is incorporated289

into the loading parameters space, for α = 0 and α = 1, in Figs. 9a and 9b. It is evident290

that either increasing I∗ or reducing p∗ causes the beam to respond in an increasingly291

‘non-impulsive’ manner and has a dramatic effect of reducing (monotonically) the energy292

transmitted to the beam by the pulse-pressure loading. In addition, for the same combination293

of p∗ and I∗, ĒP is smaller for α = 1 (Fig. 9b) compared to α = 0 (Fig. 9a). This294

is unsurprising since negative phase loading in an exponentially decaying pressure pulse295

(α = 1) produces ‘negative’ increment of work, leading to less external work done on the296

structure compared to its linearly-decaying counterpart.297

4.3. Partitioning of energy298

The components of plastic work absorbed at the supports through bending, membrane299

stretch and shear can be non-dimensionalised as follows:300

Ēb
S = Eb

S

Es
S + Eb

S + Em
S

, Ēm
S = Em

S

Es
S + Eb

S + Em
S

, and Ēs
S = β = Es

S

Es
S + Eb

S + Em
S

(14)
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(a) α = 0

(b) α = 1

Figure 9: Contours of non-dimensional external work done ĒP super-imposed on the loading parameters
space for (a) α = 0 and (b) α = 1. mode I; mode II; mode III.
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0.
45

0.
45

0.45

(a) α = 0 (b) α = 1

Figure 10: Contours of non-dimensional plastic energy absorbed at the support through bending Ēb
S , mem-

brane stretch Ēm
S and transverse shear displacement Ēs

S superimposed on the loading parameters space.
mode I; mode II; mode III.
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where Es
S, Eb

S and Em
S are, respectively, the shear, bending and membrane strain energies301

absorbed at the supports. Note that Ēb
S + Ēm

S + Ēs
S = 1. Figures 10a and 10b plot contours302

of the three components of plastic work at the supports for α = 0 and α = 1. It is evident303

from both figures that membrane stretch and transverse shear play key roles in inducing304

modes II and III deformation, with negligible contributions from bending - this is consistent305

with existing literature (Yuan et al., 2016; Yu and Chen, 2000; Li and Jones, 2000; Shen and306

Jones, 1992). In mode III, reducing either p∗ or I∗ (or both) causes a monotonic increase307

of Ēm
S ; the reverse occurs for Ēs

S. This is because a lower p∗ or I∗ would result in a higher308

mid-span deflection W0/H and a lower plastic sliding distance WS/H (as seen previously in309

Fig. 8), leading to a higher energy absorbed through membrane stretch and a lower energy310

dissipated through transverse shear, respectively.311

4.4. Saturated impulse312

Since the non-dimensional impulse in the p∗-I∗ space is expressed as a function of the positive313

impulse I+ in Eq 11, it does not provide a true measure of the actual impulse imparted314

to the beam. This is because any further loading after the cessation of beam motion, or315

beyond complete failure (detachment from supports), would not increase a beam’s maximum316

transverse deflection. Hence, it can be misleading if one uses the peak overpressure p0 and317

positive impulse I+ in design since the actual impulse that affects permanent deformation318

could be less than the positive impulse I+. This is known as a ‘saturation phenomenon’.319

The physical origin of this phenomenon was first investigated by Zhao et al. (1994) and320

Zhu and Yu (1997): since the load-carrying capacity of a beam or plate is greatly enhanced321

by the membrane forces induced by large deflection and if it is subjected to a pressure322

pulse with a sufficiently long duration, only an early part of the pulse contributes to its323

maximum deflection; the rest of the loading pulse causes no further increase. A series of324

papers – Zhao et al. (1994, 1995), Zhu and Yu (1997), Zhu et al. (2017), Bai et al. (2018)325

– have extensively documented this saturation phenomenon, including saturated deflection326

and saturated impulse, for various pulse shapes and different structural elements.327

Here, we define the saturated impulse Isat as the critical impulse beyond which the deflection328

of a beam would no longer increase under further loading given by329

Isat =
∫ t3

0
p(t)dt (15)

and this is the impulse imparted to the beam before it reaches maximum deflection. Again,330

it is worth emphasising that, at the point of severance (in modes II or III), a beam is331

assumed to have reached its maximum transverse deflection – this is a consequence of the332

model assumption. In reality, its transverse deflection could increase after severance if it333

had acquired sufficient residual kinetic energy. Here, however, we are only concerned with334
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Figure 11: Contours on error (∆I∗
sat) that would arise if saturation phenomenon is ignored. mode I;

mode II; mode III.
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Figure 12: Contours of non-dimensional saturated impulse I∗
sat superimposed on the loading parameters

space. mode I; mode II; mode III.
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the maximum deflection at the point of severance. The saturated impulse can be non-335

dimensionalised as follows:336

I∗sat =
∫ t3

0

p(t)
H
√
σY ρ

dt. (16)

It is worth noting that a saturation phenomenon is only observed if I∗ > I∗sat; hence, it is337

helpful to define a ratio338

∆I∗sat = I∗ − I∗sat
I∗

, (17)

as a measure of the error that would arise if saturation phenomenon is not considered when339

calculating the maximum beam deflection. ∆I∗sat must be greater than zero; otherwise,340

impulse saturation does not occur.341

Contours of ∆I∗sat are embedded into the p∗-I∗ space in Figs. 11a and 11b. Likewise, its342

corresponding non-dimensional saturated impulse I∗sat are shown in Figs. 12a and 12b. The343

locus of points connecting t3 = td now divides the pressure-impulse space into an impulsive344

(t3 > td) and a non-impulsive (t3 ≤ td) régime. Notice that both régimes span all three345

modes of deformation. It is evident from Figs. 11a and 11b that a saturation phenomenon346

can only exists (since ∆I∗sat needs to be greater than zero) in the non-impulsive régimes if347

α = 0 as expected; by contrast, it can occur in either régimes if α = 1. It is instructive to348

note that ∆I∗sat in impulsive régime (see Fig 11b) provides a measure of the non-dimensional349

negative impulse imparted to the beam, this causes it to decelerate, which result in a non-350

vertical impulsive asymptote discussed earlier in Fig. 6. In general, the further a pair of351

p∗-I∗ is located from the locus of points connecting t3 = td, the greater will be the error that352

would arise if impulse saturation is not taken into account - this applies to both α = 0 and353

α = 1.354

Figures 12a and 12b reveal that the non-dimensional saturated impulse I∗sat is discontinuous355

across the boundary separating modes I and II. The critical I∗sat is 0.44 in the impulsive régime356

and 0.6 in the non-impulsive régime. Interestingly, both critical values are independent of357

α, i.e. they are pulse-shape insensitive. The reason why the critical I∗sat is higher in the358

non-impulsive régime (0.6) compared to its impulsive counterpart (0.44) because, for a359

given saturated impulse, a beam subjected to impulsive loading will always have a higher360

maximum deflection compared to its non-impulsive counterpart (Xue and Hutchinson, 2003;361

Yuan et al., 2016). Although the deflection W0/H in mode III is, in general, less than in362

mode II (comparing Figs. 8a and 8b), it necessitates a greater saturated impulse to induce363

a mode III deformation; this is evident by comparing I∗sat in mode III to that in mode II364

régime).365
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5. Conclusions366

Non-dimensional p∗-I∗ diagrams were developed for a beam of 0.203 (2L) × 6.35 ×10−3 (H)367

× 25.4 ×10−3 (B) m, by using a more realistic structural model, that separates the loading368

parameter space in accordance to the modes of deformation observed in blast experiments.369

It was found that the isodamage curves, delineating the régimes, are sensitive to the decay370

coefficient α and aspect ratio L/H of the beam. The two isodamage curves corresponding371

to α = 0 define a lower bound for deformation régimes for all other pulse-pressures with372

a negative phase. Reducing the decay coefficient α or aspect ratio L/H leads to greater373

margin of safety (i.e. the beam remains in mode I) under impulsive loading; while the374

reverse occurs for non-impulsive loading. Increasing α or L/H has the dramatic effect375

of shrinking the loading parameter space associated with mode III deformation régime.376

In addition, it was demonstrated that contour lines of structural performance (maximum377

deflection, total work done, partitioned energy and saturated) can also be incorporated378

into the non-dimensionalised pressure-impulse space to provide further information for the379

design, and assessment, of structures to blast loading.380
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