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ABSTRACT

In Information Retrieval, test collections are usually built
using the pooling method. Many pooling strategies have
been developed for the pooling method. Herein, we ad-
dress the question of identifying the best pooling strategy
when evaluating systems using precision-oriented measures
in presence of budget constraints on the number of docu-
ments to be evaluated. As a quality measurement we use
the bias introduced by the pooling strategy, measured both
in terms of Mean Absolute Error of the scores and in terms of
ranking errors. Based on experiments on 15 test collections,
we conclude that, for precision-oriented measures, the best
strategies are based on Rank-Biased Precision (RBP). These
results can inform collection builders because they suggest
that, under fixed assessment budget constraints, RBP-based
sampling produces less biased pools than other alternatives.
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1. INTRODUCTION

Traditional evaluation of information retrieval systems re-
lies on the idea of a controlled test collection, comprising
of documents, information need statements synthesized into
queries, and relevance assessments that capture the relev-
ance relations between documents and information needs.
Due to the large scale of modern test collections, it is infeas-
ible to assess every document in the collection for relevance
to a query. Instead, documents for which relevance assess-
ments are required are selected from document rankings gen-
erated by systems for the queries in the test collection [6].
This method of selection of documents for relevance assess-
ment is called pooling. The assumption behind pooling is
that if a large enough variety of (good) systems contribute
results for pooling and pools are sampled at large enough
depths, then the pool should contain the almost totality of
relevant documents and thus provide reliable evaluations.

Different pooling strategies exist that influence the num-
ber of documents that are required to be assessed, the type
of measures that can be used to evaluate the systems, the
bias of the collection towards specific systems or retrieval
techniques and features and thus the reusability of the test
collection to evaluate systems that did not contribute to the
pool. A standard pooling strategy, called fixed-depth pool-
ing, consists of using all documents retrieved by systems
up to a cut-off depth k. Alternative pooling strategies ex-
tend the fixed-depth strategy by sampling documents from

this pool to create smaller pools, or by combining sampled
portions of document rankings (strata) to form stratified
pools. Finally, more sophisticated pooling strategies have
also been proposed. For example, in this paper we consider
the strategies proposed by Moffat et al. [5], aimed at redu-
cing the volume of required relevance assessments and based
on RBP.

Pool size affects assessment budget, with larger pools in-
volving larger costs. Under budget constraints, it is vital
to limit the size of pools, without compromising the qual-
ity of the evaluation and the reusability of the collection.
In fact, small pools may be affected by large bias and may
render the collection unsuited to evaluate systems that did
not participate in the pool. Previous work has investigated
the influence of pooling bias on inferred measures and preci-
sion at fixed cut-off (P@n) when pooling with fixed-depth,
uniform sampling, and stratified pooling strategies [7, |4].
Other work has examined alternative pooling methods and
how to correct bias towards unpooled systems |12, 3, |5} |8].

In this paper, we focus on controlling the balance between
the cost of relevance assessments required by specific pooling
strategies (and thus the pool size) and the bias introduced by
different pooling strategies (and thus the reliability and re-
usability of the test collection). Specifically, we consider the
setting where a fixed budget for relevance assessments has
been given. We then empirically investigate which strategy
among (a) a standard constrained pooling strategy and (b)
Moffat et al.’s pooling strategies (5], would manifest a lower
bias.

The results of our empirical investigation demonstrate
that the least bias is obtained when we use information
generated in the assessment process itself. This result is
of interest for researchers building new test collections be-
cause it suggests that, under fixed budget constraint for rel-
evance assessment, they should prefer RBP-based sampling
over the alternatives investigated in this work because it re-
turns pools with less bias towards specific systems.

2. BACKGROUND

In this section we introduce the pooling strategies ana-
lyzed in this paper. The first two are variations of the most
common fixed-depth at k (Depth@k), already described in
the introduction. The remaining three pooling strategies
were developed by Moffat et al. [5]. First, let us fix the
notations and the shared elements required among all of the
following strategies, R, is the set of runs to be pooled and
N is the maximum number of documents to be judged.



We start with the variants of Depth@k. Despite its com-
mon use in practice, Depth@k does not allow to impose a
fixed number of documents to be judged. For this reason, we
explore two possible variants, Take@QN and Take+QK &N
that allows to fix such a constraint:

Take@N (strategy 7'): This strategy is the most common-
ly adopted in practice if a fixed pool size is required (e.g.,
due to budget constraints) and is based on the rank at
which documents have been retrieved. It starts assigning
to every retrieved document d the highest rank p to which
d has been retrieved by R, then it continues taking the
first N documents with the highest p and pools them. The
main drawback of this strategy with respect to DepthQk
is that it does not guarantee fairness among all the pooled
runs. In Depth@k all the runs contribute equally to the
pool with their first k& documents, here some runs can get
more judged documents than others.

Take+@K&N (strategy T+): This strategy aims to ad-
dress the lack of fairness of the previous strategy by in-
troducing a non-deterministic selection of the documents
to be judged. It may be thought of as an application
of the Stratified pooling strategy [|9]. The Stratified
strategy defines multiple strata, each characterized by a
depth and a sample rate. Each document is assigned to
a stratum based on the rank at which it has been re-
trieved first, then sampled based on the sample rate of the
stratum. By definition, this strategy guarantees fairness
because it forces a constant number of pooled documents
per run. The Take+QK& N strategy defines a stratifica-
tion of two strata, where K is its maximum depth. For
the first stratum we fix a sample rate r1 = 1.0 and depth
k1 as deep as the number of documents to be judged does
not overcome the imposed limit of N judgments. If we
call N** and N¥ the estimated pooled documents for a
DepthQk strategy at depth k1 and K, the second stratum
is characterized by k2 = K — k1 and sample rate ro =
(N — N*)/(N¥ — N*1), which makes the stratification
able to reach, in expectation, N, the number of documents
to be judged.

In the above strategies, documents that have been re-
trieved on top by at least one run are more likely to be
pooled, but no distinction is made if a document has been
retrieved by multiple runs or just by one. If we were to
apply this last distinction as a mere pooling strategy we
would count how many runs have retrieved a certain doc-
ument, and pool the most retrieved ones. Such a strategy
would have the effect of over-emphasizing the importance
of highly retrieved documents with respect to the uniquely
retrieved ones, thereby rewarding conformity and creating
collections with the strongest pool bias possible due to the
systematic avoidance of documents that have been uniquely
retrieved by a single run. But if this distinction is combined
with information about the rank at which the documents
were retrieved, as pointed out by Moffat et al. [5], it may
lead to pooling strategies that are more effective in selecting
documents to pool, because it would select documents that
provide more benefit to the final result.

Before describing the three variants of this strategy, let us
review some terminology. Moffat et al. [5] defined base RBP
as the RBP calculated on the assumption that unjudged
documents are non-relevant. It is a lower threshold to the

real RBP value which would have been obtained had all
documents been judged. For instance, if RBP is defined as:

RBP = (1—p)Zui-pi’1 (1)

where u; € [0,1] U {?} denotes the relevance judgment of
the document at position ¢ (taking values between 0 and 1 if
judged and ? if unjudged) and p € ]0,1[ is a constant, then
the base RBP is:

bo=(1—p) > wi-p " (2)
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As a complement, the paper also defined residual RBP as:

er=0-p) Y p! (3)
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For a run r, b, + e, is therefore the maximum RBP value
that could be obtained by that run (i.e., if all unjudged
documents are actually relevant). Given these definitions,
the following pooling strategies can be formalized:

RBPBasedAQN&p (strategy A): To every retrieved d
in every pooled run r € R, is associated a score equal to
the RBP residual, in Eq. , which is a function of the
rank p to which d has been retrieved in r and a parameter
p, fixed in advance:

era=(1—p)p’dt (4)

Then, a weight is assigned to every retrieved d, which is
calculated by summing up all the scores obtained in the
pooled runs R, as follows:

wq = Z Cr,d (5)

TER)

Finally, the first N documents with highest weight are in-
cluded in the pool. This strategy rewards documents that
have been retrieved by multiple runs at high ranks, but
it has the drawback of leaving runs’ residuals free (uncon-
strained), which may be undesirable.

RBPBasedB@QN&p (strategy B): Like strategy A, but
the weighting function is calculated by multiplying the RBP
gain-based score with the current residual of r from which
d comes:

Wy = Z Cr.d - €r (6)

rER)p

This pooling strategy, with respect to the others, adapts
the weights wq at every pooled document, due to the in-
clusion in the weighing schema of the residuals, which are
in function of the current set of judged documents. This
strategy is characterized by N sequential re-weighting stages
in which at each stage the document with the highest wq
is pooled. It is worth mentioning that the re-weighting is
independent of the actual judgment of the document.

RBPBasedC@N&p (strategy C): Like strategy B, but
the weighting function is calculated taking into account also
the current RBP score of the run r:

Wa = Z Crd " €r: (br + er/2)3 (7)
TER)

This strategy rewards the runs that have retrieved more
relevant documents.



Note that pooling strategies B and C' are adaptive, in
that they select the next document to pool according to the
relevance assessments done up to that point.

3. EXPERIMENTS & RESULTS

To determine which of the examined pooling strategies
produces a test collection with lower bias we use a set of
15 test collections selected from TREC: 7 test collections
from the Ad-Hoc track, 3 from the Web track, and 5 from
more domain specific IR tracks: Genomics, Robust, Legal,
Medical and Microblog. Each collection was created using a
DepthQk pooling strategy; this allows us to create synthetic
pools with the pooling strategies examined here. In partic-
ular this is done for the only pooled runs R, C R of the test
collections, for which the pooling strategy guarantees the
complete judgment of the first k documents. To measure the
bias that a new run would have observed if it had not been
part of the construction of the pool, we simulate its absence
performing a leave-one-organization-out approach for which
at each iteration a new synthetic pool is generated exclud-
ing all the runs submitted by the organization for which the
selected run belongs to. The bias measures used, as in a pre-
vious study [3| |4], are: 1) Mean Absolute Error (MAE), 2)
System Rank Error (SRE), and 3) System Rank Error with
Statistical Significance (SRE*). MAE is the mean, over all
the runs, of the absolute difference between the score of a
run when it is and is not part of the pool. SRE is the sum,
over all the runs, of the difference in ranks between the run
when it is and is not part of the pool. SRE* is like SRE,
but the difference is counted only if the runs in between are
statistically different (Tukey’s test, p < 0.05).

Herein, we experiment with a real case study where we
have a budget that allows the collection builder to judge a
maximum of 10,000 documents (N). We also assume that
the measures targeted by the evaluation task are P@Q10 and
RBP with p = 0.80 (this is a common setting for p). We
test all the pooling strategies with fixed N = 10,000. For
strategy T+, we fixed K to 20. For strategies A, B and C,
two instantiations of p have been tested, p = 0.80 (in line
with the setting for the RBP evaluation measure), indicated
by A%, B% and C® in Tab. [l] and p = 0.73, indicated by
A™  B™ and C™ in Tab. 1| (this value was found to correlate
best with observed user behavior, see Zhang et al. [10]).

4. DISCUSSION & CONCLUSION

In Tab. [T we observe that the best performing pooling
strategy is RBPBasedCQN&p with p = 0.80 (C*), which
sometimes matches the performance of the same strategy
but with p = 0.73 (C™). This is an expected result since
this strategy uses the most information. However, although
this is the best performing strategy, it presents several lim-
itations when used for building test collections in practice:

1. If the test collection builders require that relevance labels
for a document are aggregated across judgements from
multiple assessors, then the use of this pooling strategy
puts an additional burden on the collection builders. This
is because the strategy requires information about the
relevance of documents already assessed to decide which
documents to pool next (i.e., the strategy is adaptive).
This in turns requires that the assessment process is co-
ordinated such that the selection and assessment of the
next document to assess cannot start until all assessors
have judged the current document: this may happen at

different times due to different assessor cognitive abilities,
workload, and work scheduling.

2. A per-topic parallelization of the assessment exercise is
not possible (i.e., the practice of distributing documents
that are retrieved for the same topic across multiple as-
sessors to speed up assessment). However, this limita-
tion could be potentially mitigated, to a certain extent,
by parallelizing the process across topics (i.e., exclusively
assign each topic to an assessor, but assigning different
topics to different assessors).

3. The third limitation is introduced by the impossibility of
randomizing the pooled documents in order to mitigate
assessment bias coming from the judgment of documents
in order of their predicted relevance. This bias is usually
overcome by the standard pooling strategies by random-
izing the pooled documents before presenting them to the
assessors.

These limitations make the RBP BasedCQN &p strategy of
difficult practical application.

The second best strategy is RBPBasedAQN&p (A®)
with p = 0.80. This strategy does not present the previ-
ous limitations since all the documents to be assessed are
pooled with no required human intervention. The peculiar-
ity of this strategy is that it rewards documents that have
been retrieved by multiple runs at high ranks, yet it does
minimize pool bias.

In summary, this paper examined a number of strategies
aimed at selecting documents for relevance assessment un-
der fixed budget constraints while minimizing pool bias. The
empirical results demonstrate that variants A and C' of Mof-
fat et al.’s strategies [5], a static and an adaptive strategy
based on RBP, should be preferred over traditional fixed-
depth or stratified pooling when deciding upon the pooling
strategy to be used to form a new test collection under fixed
assessment budget constraints. However, due to the lim-
itations introduced by the strategy C, we recommend in
practice the strategy A.

The software used to create and analyze the pooling strat-
egies examined in this paper are made available on the web-
site of the first author.
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Table 1: Results obtained using only the pooled runs (R,) of each test collection (C). Pool bias measures,
MAE, SRE and SRE* (the lower the values, the better; bold values are the best for the test collection),
computed on five pooling strategies (S) via leave-one-organization-out. |R| total number of run of the test
collection;
documents; |Q"| number of documents judged relevant; |Q;,| number of documents judged relevant for the
synthetic pool, and; |QZL\ number of documents non-judged for the synthetic pool.

O| number of organizations; k depth of the original pool;

T'| number of topics; Q number of judged
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