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ABSTRACT 

This case study examines selective Pittsburgh compound-B (PiB) binding to an 

intracerebral light-chain amyloidoma using a 90-minute dynamic [11C]PiB-PET scan 

and brain biopsy tissue. Parametric non-displaceable binding potential (BPND) images 

showed negligible specific binding in the amyloidoma, while relative tracer delivery 

(R1) was adequate. Histology of the tissue revealed strong colouring with congo-red, 

thioflavin-S, and X-34, indicating presence of amyloid. However, immunological 

staining with 6F/3D revealed absence of amyloid-β and histofluorescence of 6-CN-

PiB, a highly fluorescent derivative of PiB, was negligible. These results suggest that 

PiB does not detect the atypical amyloid pathology associated with an intracerebral 

light-chain amyloidoma. 
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INTRODUCTION 

The development of positron emission tomography (PET) amyloid ligands such as 

[11C]Pittsburgh compound-B (PiB) [1], have provided a non-invasive tool to assess 

amyloid-β (Aβ) pathology in vivo. PiB has been shown to bind strongly to fibrillary 

Aβ40-42 [2,3], and elevated binding of [11C]PiB is consistently observed in patients 

with sporadic Alzheimer’s disease (AD) [4], even in very early stages of the 

disease.[5] However, several studies reported undetectable levels of [11C]PiB PET 

retention in subjects with histologically detectable, albeit non abundant, Aβ pathology 

at time of autopsy or biopsy.[6-8] In addition, there are exceptional cases where 

[11C]PiB retention was low in patients clinically diagnosed with AD [9-11], even in 

the presence of heavy cortical Aβ deposition in post-mortem tissue.[10] Furthermore, 

in contrast to findings in APP duplication, Swedish APP mutation and presenilin-1/2 

mutation carriers who all show levels of [11C]PiB retention typical of late-onset AD 

[12, 13], patients with the “Arctic” APP mutation display very low [11C]PiB retention, 

while cerebrospinal fluid levels of Aβ1-42 indicate presence of amyloid pathology.[14] 

An explanation for this discrepancy is offered by histological examination in “Arctic” 

APP carriers which revealed that amyloid depositions in these patients are mainly 

characterized by non-fibrillary amyloid pathology, such as protofibrils and 

oligomers.[15.16] In vitro and animal studies have shown that, at nanomolar 

concentrations administered to the living human brain, [11C]PiB does not bind equally 

to all isoforms [2,17-19] and conformations [3,20] of amyloid equally. 

Here we present a case of a 52 year-old woman with an intracerebral light-

chain amyloidoma, a form of solitary localised, tumoral amyloidosis.[21-23] The 

diagnosis of intracerebral amyloidoma is made on the basis of histological 

examination of biopsy material, which is obtained through an invasive procedure. We 
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examined whether the atypical form of amyloid pathology found in intracerebral 

amyloidoma can also be visualized in vivo with [11C]PiB-PET imaging, by 

quantitatively assessing [11C]PiB binding in combination with histology from a brain 

biopsy performed during life. 

 

MATERIALS AND METHODS 

Case description 

The 52 year-old patient was referred to the hospital because of an epileptic seizure. Her 

past medical history was uneventful. However, in the period leading up to the epileptic 

seizure, a remarkable change in personality was observed with a lack of initiative. 

Magnetic resonance imaging (MRI) revealed an intracranial solid neoplasm within the 

white matter of the right frontal lobe with both high and low intensities on T1 (Figure 

1A) and FLAIR (Figure 1B). Administration of gadolinium showed a patchy enhancement 

of the lesion and spectroscopic examination revealed low N-acetyl aspartate and high 

choline levels, without lipids or lactate. All observations considered, the most probable 

diagnosis was an intracerebral amyloidoma.[21-23] Brain biopsy was performed to 

confirm this suspicion, which indeed revealed histological evidence for light-chain 

amyloidosis (not shown).[24] [11C]PiB and [18F]FDG-PET scans were performed two 

years after the diagnosis was made, and the remains of the brain biopsy were examined 

with additional histological stains. All procedures performed were in accordance with 

the ethical standards of the institutional research committee and with the 1964 Helsinki 

declaration and its later amendments. Informed consent was obtained from all 

individual participants included in the study. 
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PET imaging 

A 90-minute dynamic [11C]PiB-PET scan protocol was performed using an ECAT 

EXACT HR+ scanner (CTI/Siemens, Knoxville, TN, USA). PET sinograms were 

corrected for dead time, tissue attenuation, decay, scatter, and randoms. Next, data 

was reconstructed using a standard filtered back projection algorithm and a Hanning 

filter with a cut‐off at 0.5 times the Nyquist frequency. A matrix size of 256x256x63 

was used, resulting in a voxel size of 1.2x1.2x2.4 mm and spatial resolution of 

approximately 7 mm full width at half‐maximum at the center of the field of view. An 

MR image was aligned to the PET image using a mutual‐information algorithm and 

PVE‐lab, a software program that uses a probability map [25], was used to project 

PET data onto the structural MRI. PET data were analyzed using receptor parametric 

mapping with fixed efflux rate constant (RPM2) [26], generating parametric non-

displaceable binding potential (BPnd) and R1 images using cerebellar gray matter as 

reference tissue. R1 represents the relative tracer delivery to the target tissue and 

provides an indication of flow. Furthermore, a standardized uptake value ratio (SUVr, 

60-90 minute) image was generated using cerebellar gray matter as reference. 

Detailed information on scanning protocol and data analysis procedures are described 

elsewhere.[26]  

We visually assessed the amyloidoma on [11C]PiB-R1, BPnd and SUVr images. 

Furthermore, [11C]PiB-R1, BPnd and SUVr values were also assessed quantitatively by 

manually delineating the amyloidoma on MRI and calculating these parameters within 

the amyloidoma using an volume-of-interest (VOI) delineation tool. This VOI tool is 

built in-house and is used to manually draw VOI on MRI or PET images. The tool 

provides with a binary image of VOI that can be superimposed onto the PET scan to 

extract the time activity curve i.e the average activity in the VOI over time.  
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R1, BPnd and SUVr values within the volume of the amyloidoma were 

compared with values in a contralateral VOI, which matched the size and anatomical 

location of the amyloidoma (Figure 2). Finally, for the [18F]FDG PET scan we 

generated a SUVr image for the interval between 45-60 minute using cerebellar gray 

matter as the reference region.[26]  

 

Histology 

The tissue of the amyloidoma acquired by brain biopsy during life was examined 

using staining for congo-red and thioflavin-S, and immunologic staining for amyloid-

β (using the monoclonal antibody 6F/3D [27]). Tissue from the amyloidoma was then 

additionally assessed using histofluorescence of 6-CN-PiB [28] (a highly fluorescent 

derivative of PiB), and X-34 [29] (a highly fluorescent derivative of congo red). As a 

reference, histofluorescence of 6-CN-PiB and X-34 was also assessed in frontal 

cortical tissue sections from an end-stage Alzheimer’s disease (AD) patient as a 

“positive control”. 

 

RESULTS 

PET imaging 

[18F]FDG revealed a large hypometabolic region in the right frontal lobe extending 

beyond the location of the amyloidoma (Figure 1C). [11C]PiB-PET showed low binding 

in cortical areas with relatively high uptake in the subcortical white matter (Figure 

1D,E), similar to patterns observed in most healthy controls.[1] At the location of the 

amyloidoma, within the white matter, [11C]PiB binding was low, as indicated by both 

BPND (Figure 1D) and SUVr (Figure 1E)  images. BPND within the volume of the 

amyloidoma (8.60 mL) was 0.24, whilst BPND within the volume of the contralateral 



 

 

7 

VOI (6.57 mL) was 0.46. Corresponding SUVr values for amyloidoma and 

contralateral VOI were 1.33 and 1.44, respectively. Furthermore, the R1 image showed 

that tracer delivery to the amyloidoma (Figure 1F), was only slightly lower than to the 

contralateral VOI (0.44 and 0.56, respectively).  

 

Histology 

The brain biopsy tissue was clearly positive with congo-red (Figure 3A) and thioflavin-

S staining (Figure 3B), indicating presence of amyloid. However, immunological 

staining with 6F/3D revealed that there was no amyloid-β present in the amyloidoma 

tissue (Figure 3C). Additional histological examinations revealed a prominent staining 

of amyloid with X-34, similar as in the AD “positive control” (Figure 3D,E), again 

indicating the presence of amyloid. However, 6-CN-PiB was at background levels 

compared with the robust plaque staining in the same region of the AD case (Figure 

3F,G).  

 

DISCUSSION 

Our results indicate that [11C]PiB does not bind cerebral amyloid pathology associated 

with a light-chain intracerebral amyloidoma. Quantitative analysis revealed that 

[11C]PiB binding was negligible, despite tracer being delivered to the tissue. 

Furthermore, histological examination of brain biopsy tissue revealed a convincing 

explanation for the lack of [11C]PiB binding, as the strong colouring with congo-red, 

thioflavin-S and X-34 were suggestive of presence of amyloid, but the lack of 6F/3D 

staining indicated that there was no fibrillary amyloid-β pathology present. 

Furthermore, in keeping with the [11C]PiB-PET findings we observed no 

histofluoresence of 6-CN-PiB in the amyloidoma tissue. These results highlight that 
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PiB selectively binds to fibrillar Aβ pathology [2,3], and does not detect the atypical 

amyloid pathology found in this case of intracerebral amyloidoma. 

To date, only one other study assessing accordance between in vivo amyloid 

imaging and histology in intracerebral amyloidoma has been published.[30] Contrary 

to our findings, PET imaging with [18F]Florbetapir (a different amyloid-β tracer) 

revealed slightly increased uptake in the region of the amyloidoma and histology 

showed weak staining for amyloid-β. One explanation for this discrepancy could be 

the heterogeneity between subjects (e.g. the absence or presence of fibrillary amyloid-

β in the amyloidoma) as previous literature has described cases of intracerebral 

amyloidoma with histological evidence for amyloid-β (see [23] for a review). More 

likely, however, are factors associated with the pharmacokinetics of the different 

tracers. [18F] amyloid imaging ligands tend to show higher nonspecific uptake in 

white matter [31], which may, due to the location of the amyloidoma (within the 

white matter), have convoluted interpretation of results. In addition, two studies 

[32,33] have reported PiB detection of systemic light-chain amyloidosis. One study 

assessed in vivo [11C]PiB-PET binding in the heart [32] and the other assessed in 

vitro [3H]PiB binding in the liver and spleen [33].  However, the affinity of [3H]PiB 

for systemic amyloid was 448 ± 185nM in these systemic tissues; compared to 3.84 ± 

0.04nM in AD brain [33].  Such low-affinity binding would not be expected to be 

detectable with in vivo brain PET. 

Strengths of the present study include the implementation of a dynamic PET 

scan, which enabled us to assess tracer delivery (R1) and [11C]PiB binding in a 

quantitative manner.[26] Furthermore, the study is unique in combining dynamic 

[11C]PiB-PET with histological examination of biopsy material. Some limitations of 

the present study also need to be taken into account. Localized amyloidosis, 
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characteristic of the amyloidoma, rarely affects the brain.  Consequently, literature on 

this topic is sparse, with only around 30 cases having been described.[21-23, 30] This 

paucity of available literature, in combination with the heterogeneity in clinical and 

radiological presentations across cases, prevents us from making any conclusions 

about intracerebral amyloidoma in general.  

Taken together, our results highlight the selective binding of [11C]PiB to 

fibrillary Aβ and indicate that [11C]PiB does not bind to amyloid pathology associated 

with light-chain intracerebral amyloidoma.  
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FIGURES 

 

Fig. 1 Axial T1, FLAIR, [18F]FDG-SUVr and [11C]PiB BPnd, SUVr and R1 PET 

images of the amyloidoma 

T1 (A) and FLAIR (B) images show the intracerebral amyloidoma in the right frontal 

lobe. FDG-PET (C) shows hypometabolism at the location of the amyloidoma. BPnd 

(D) and SUVr (E) images reveal lack of PiB-binding in the amyloidoma, while the R1 

(pseudo-flow; F) image indicates that tracer is being delivered to the amyloidoma.  

FDG – Fluodeoxyglocose, FLAIR – fluid-attenuated inversion recovery, MRI – 

magnetic resonance imaging, PiB – Pittsburgh compound B, BPnd – non-displaceable 

binding potential, SUVr – standardized uptake values ratio. 
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Fig. 2 Amyloidoma and contra-lateral volume of interest  

In the left panel, the manual delineation of the amyloidoma is presented in red and the 

contra-lateral volume-of-interest is presented in blue. The right panel displays time-

activity curves of the amyloidoma and contra-lateral volume of interest. 

kBq/cc – kilobecquerel per cubic centimeter 
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Fig. 3 Histological staining, immunohistochemistry and histofluorescence in 

sections from the amyloidoma and additional histofluorescence in frontal cortex 

of an end-stage AD “positive control” 

Congo-red (A) and thioflavin-S (B) stainings indicated presence of amyloid but 6F/3D 

immunohistochemistry (C) revealed no indication for Aβ pathology. Additional, X-34 

histofluorescence in different sections of the biopsy material (D) again revealed 

presence of amyloid, similar as in the AD positive control (E). However, absence of 

histofluorescence with 6-CN-PiB in the amyloidoma (F), in contrast to the AD 

positive control (G), reveals lack of PiB binding.  

Scale bar = 75μm  

 

 

 

Figure 2. X-34 (A,B) and 6-CN-PiB (C,D) histofluorescence

in sections from the amyloidoma (A,C) and in frontal cortex 

sections from a positive control case with Alzheimer’s 

disease (B,D). Scale bar = 75 μm.
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