Title: Metabolic rate of major organs and tissues in young adult South Asian women

Running title: Tissue-specific metabolic rate in South Asian women

- Authors: Meghan K. Shirley¹ Owen J. Arthurs^{1,2} Kiran K. Seunarine¹ Tim J. Cole¹ Simon Eaton¹ Jane E. Williams¹ Chris A. Clark¹ Jonathan C.K. Wells¹
- Affiliations: ¹UCL Great Ormond Street Institute of Child Health, London, UK ²Department of Radiology, Great Ormond Street Hospital, London, UK

Corresponding author:

Meghan Shirley, PhD Childhood Nutrition Research Centre UCL Great Ormond Street Institute of Child Health 30 Guilford Street London WC1N 1EH UK

Email: megkshirley@gmail.com

ABSTRACT

3

4 5 **Background/Objectives:** Major organ- and tissue-specific metabolic rate (K_i) 6 values were initially estimated using *in vivo* methods, and values reported by 7 Elia¹ were subsequently supported by statistical analysis. However, the majority 8 of work to date on this topic has addressed individuals of European descent, 9 whereas population variability in resting energy metabolism has been reported. 10 We aimed to estimate K_i values in South Asian females. 11

12 Subjects/Methods: This cross-sectional study recruited 70 healthy young 13 women of South Asian ancestry. Brain and organs were measured using 14 magnetic resonance imaging, skeletal muscle mass by dual-energy X-ray 15 absorptiometry, fat mass by the 4-component model, and whole-body resting 16 energy expenditure by indirect calorimetry. Organ and tissue K_i values were 17 estimated indirectly using regression analysis through the origin. Preliminary 18 analysis suggested overestimation of heart mass, hence the modeling was 19 repeated with a literature-based 22.5% heart mass reduction. 20 21 **Results:** The pattern of derived K_i values across organs and tissues matched 22 that previously estimated *in vivo*, but the values were systematically lower.

23 However, adjusting for the overestimation of heart mass markedly improved the 24 agreement.

25

26 **Conclusions:** Our results support variability in K_i values among organs and 27 tissues, where some are more metabolically 'expensive' than others. Initial

findings suggesting lower organ/tissue K_i values in South Asian women were
likely influenced by heart mass estimation bias. The question of potential ethnic
variability in organ- and tissue-specific energy metabolism requires further
investigation.

32

33 34

36

35 INTRODUCTION

37 Resting energy expenditure (REE) is an important index of individual and 38 population energy requirements. Whole-body REE (or, equivalently, resting 39 metabolic rate) can be viewed as the sum of specific energy expenditures of 40 individual body organs and tissues, which demonstrate considerable variability in 41 magnitude. In 1992, for example, Elia¹ published tissue-specific expenditure, or 42 K_i values (kcal/kg/day) for the brain, heart, kidneys, liver, skeletal muscle mass 43 (SMM), adipose tissue (AT), and a residual tissue component, based on arterio-44 venous catheterization studies. Whereas the energy expenditure of the heart and 45 kidneys was estimated to be 440 kcal/kg/day, the equivalent metabolic rate of 46 muscle at rest was just 13 kcal/kg/day. The relative contribution of different 47 organs and tissues to whole-body lean mass therefore has major implications for 48 total REE.

49

50 Measuring organ/tissue K_i values by *in vivo* arterio-venous methods in human 51 subjects is technically difficult, ^{2,3} and has not subsequently been reported in the 52 literature. With the use of indirect calorimetry and imaging methods, a number of 53 authors have collected REE and organ size data and utilized indirect statistical

models to assess the applicability of Elia's K_i values in various cohorts of adult
men and women.³⁻⁷ In 2010, Wang and colleagues developed a stepwise
univariable regression method, and reported validation of Elia's values in young
adults recruited in Kiel, Germany.³

58

59 Ethnicity and/or geography-related REE variability has long been discussed in 60 the literature, with, for example, the suggestion that tropical and non-tropical peoples differ in average REE.⁸⁻¹¹ Evidence also suggests ethnic differences in 61 organ and tissue mass (e.g. smaller organ size in African Americans¹² and South 62 Asians^{13,14} than Europeans). Adjusting for tissue mass has been shown to 63 reduce ethnic differences in REE.^{12,15-17} However, the method developed by 64 Wang et al.³ to assess organ and tissue-specific resting energy rates has not 65 66 been replicated in non-European populations. The present study aimed to utilize 67 indirect calorimetry, state-of-the-art body composition methods, and the statistical 68 method developed by Wang and coworkers to assess the applicability of Elia's K_i 69 values to young women of South Asian ancestry.

- 70
- 71

72 MATERIALS AND METHODS

73

74 Participants

75

Power analysis demonstrated that at an alpha level of 0.05, a sample size of 70
would yield 80% power to detect a correlation of 0.33, which represents a
medium effect size.¹⁸

We sought to recruit in London, UK women of South Asian (Indian, Pakistani,
Bangladeshi, Sri Lankan) ancestry; aged 20-28 years; healthy; nulliparous; termborn; with body mass index (BMI) in the range 17-28 kg/m². Determination of
ethnicity was based on subjects' self-identification and confirmed by maternal
and paternal grandparents also being Indian, Pakistani, Bangladeshi or Sri
Lankan. The age range and single sex were chosen to avoid phenotypic
variability associated with sexual dimorphism, pubertal growth, and aging.

87 Individuals born at ≥37 weeks' gestation were recruited to control for the 88 possibility that variability in body composition and/or metabolism outcomes would 89 have developed in association with pre-term birth. Individuals were excluded if 90 they reported health conditions with the potential to affect growth or metabolism; 91 smoking; or contraindications for magnetic resonance imaging (MRI). The BMI 92 range was set to avoid very underweight or obese women. In general, Asian populations demonstrate lower median BMI compared to non-Asians,¹⁹ and 93 94 increased adiposity or altered metabolism may occur below a BMI of 30 kg/m², ^{19,20} therefore the upper BMI cutoff for recruitment was set at 28 kg/m². 95 96 97 Flyers, posters and online advertisements were used in recruitment. Data were

98 collected from March 2015 to May 2016 at UCL Great Ormond Street Institute of

99 Child Health and Great Ormond Street Hospital for Children NHS Trust, London,

100 UK. Ethical approval was granted by the Camden and Kings Cross NHS

101	Research Ethics Committee of the Health Research Authority. Upon joining the
102	study all participants gave written, informed consent.
103	
104 105	Height and weight
106	Duplicate measures of height were taken to the nearest 0.1cm using a wall-
107	mounted stadiometer (Holtain, Dyfed, UK), with subjects standing barefoot.
108	Weight was taken in duplicate to the nearest 0.01kg.
109	
110 111	Fat mass and skeletal muscle mass
112	Fat mass (FM) was derived using the 4-component model of body composition
113	assessment, as described previously. ²¹ Dual-energy X-ray absorptiometry (DXA;
114	Lunar Prodigy, GE Medical Systems, Madison, WI, USA) was used to quantify
115	SMM. Subjects underwent a scan of approximately 5 minutes' duration, with the
116	mass of lean, non-fat tissue in the arms and legs provided directly by the DXA
117	system software (Encore, v14.10.022). The basis for using these data as a
118	measure of whole-body SMM, and further details of the method, have been
119	described previously. ²²
120	
121 122	Resting energy expenditure
123	A Deltatrac II indirect calorimeter (Datex-Engstrom Corp, Helsinki, Finland) was
124	used to measure subjects' whole-body REE in a post-absorptive state, in a
125	thermoneutral environment. Subjects were not measured at a specified point in
126	their menstrual cycle. However, day-of-cycle at data collection (estimated using

127	subject-reported information on recent menstruation and general cycle length)
128	was found not to be associated with measured REE, and thus rejected as a
129	potential confounder.
130	
131	Following gas calibration of the metabolic cart, O_2 consumption and CO_2
132	production were assessed continuously for 25 minutes as subjects rested,
133	supine, on a hospital cot under a ventilated plastic canopy. Using these data,
134	REE was calculated in kcal/24hr units using the equation of Weir: (3.941 x VO_2)
135	+ (1.106 x VCO ₂). ²³
136	
137	MRI acquisition
138	High-resolution 3D imaging of the brain, chest and abdomen was undertaken
140	using a 3T Siemens Magnetom Prisma scanner (Siemens, Erlangen, Germany).
141	The following were acquired: a T1-weighted MPRAGE sequence for brain
142	volume (TR = 2000ms, TE = 2.74ms, flip angle = 8°, voxel size = 1.0 x 1.0 x
143	1.0mm isotropic, slices = 240, duration = 5min); a T2-weighted, turbo spin echo
144	SPACE sequence for the abdomen (TR = 2000ms, TE = 220ms, flip angle =
145	variable, voxel size = 1.5 x 1.5 x 1.5mm isotropic, slices = 144, duration = 7min);
146	and for the chest, a T2-weighted TrueFISP sequence with breath-hold (TR =
147	475ms, TE = 1.53ms, flip angle = 47°, voxel size = 1.5 x 1.5 x 4.0mm, gap = 0,
148	slices = 42, duration = 20sec).
149	
150	

151 Brain and body organ volumes

153	To derive brain volume (summed cerebral and cerebellar gray and white matter,
154	and subcortical structures including the amygdala, hippocampus, pallidum,
155	thalamus and striatum), T1-weighted MR images were processed and
156	segmented with FreeSurfer (v5.3) and FIRST (FMRIB Software Library v5.0), as
157	described in detail elsewhere. ²⁴⁻²⁶ Specifically, FIRST was used to segment
158	subcortical structures, due to limitations of FreeSurfer for this purpose.
159	
160	The heart, kidneys and liver were manually segmented by MKS from raw MRI
161	data using the open-source OsiriX DICOM viewer (v8.5).27 Regions of interest
162	were drawn around the organs of interest in contiguous image slices in each
163	subject dataset. The software automatically calculated organ volume by summing
164	the voxels in the regions of interest and multiplying by the slice thickness.
165	Duplicate organ volumes were derived on different days, and averaged. The
166	technical error of measurement ²⁸ for the duplicate measures was 1.9% for the
167	heart, 1.1% for the left kidney, 0.7% for the right kidney, and 0.7% for the liver.
168	
169	Preliminary analysis demonstrated unexpectedly high values for heart mass in
170	comparison with published data. ^{5,29,30} Heart mass/volume measurement bias
171	may vary across autopsy/dissection or in vivo MRI protocols, thus potentially
172	resulting in outcomes which are not comparable across studies. Moreover,
173	preliminary statistical modeling indicated that Elia's K_{i} values lay outside the 95%

174	confidence intervals	(Cls)	associated with ou	ur organ/tissue	K _i values,	which	could
-----	----------------------	-------	--------------------	-----------------	------------------------	-------	-------

be due to our overestimation of heart mass relative to Elia's protocol.

176

177	Few studies have	compared MRI	with autopsy	-derived o	organ volumes,	however
-----	------------------	--------------	--------------	------------	----------------	---------

- 178 one such study by Prodhomme and colleagues³¹ reported MRI-derived heart
- 179 volume in infants at post-mortem imaging to be 22.5% greater on average than
- 180 'real heart volume' measured at autopsy. As we could not change our
- 181 measurement protocol for heart mass, we explored the effect of reducing
- 182 measured heart mass by 22.5%, to see how it affected the K_i values.
- 183

184 Statistics

185

186 Brain, heart, liver and kidney volumes were converted to mass using the

187 following published density values in g/cm³: 1.036 (brain); 1.06 (heart and liver);

188 and 1.05 (kidneys).³²

189

190 We followed the statistical approach developed by Wang and colleagues³ to

191 assess the applicability of Elia's published K_i values. First, body mass was

192 treated as the sum of 7 body components:

193

$$BM = M_{brain} + M_{heart} + M_{liver} + M_{kidneys} + M_{SMM} + M_{FM}$$
(1)
+ $M_{residual}$

194

195 where *M* is the mass of the specific body component. In contrast to Wang et al.,³

196 we used a measure of FM, rather than AT. Previous authors have used FM

rather than AT in similar models.^{5,33} Residual mass comprises tissues including
blood, bone, skin, stomach and intestines, connective tissue, and lungs.^{3,4} It was
calculated as body mass minus the sum of masses for brain, heart, liver, kidneys,
SMM and FM.

201

202 By definition, whole-body REE is the sum of the products of each body

203 component mass and its corresponding K_i value:

204

$$REE = \Sigma(K_i \times M_i) \tag{2}$$

205

where K_i is the specific resting metabolic rate in kcal/kg/day for body component *i*, and M_i is the mass of the component in kilograms. Hence the resting energy

208 expenditure for organ *i* is given by

209

$$REE_{i} = REE - \sum_{-i} (K_{i} \times M_{i})$$
^(2a)

210

211 where the summation omits element *i*.

212

213 Energy expenditure for each organ/tissue was calculated using measured

214 masses and Elia's K_i values, for example:

$$REE_{brain} = REE - (200M_{liver} + 440M_{heart} + 440M_{kidneys}$$
(3)
+ 13M_{SMM} + 4.5M_{FM} + 12M_{residual})

Following Wang et al.³, least-squares univariable regression through the origin
was then used to estimate K_i:

219

$$REE_{brain} = K_{brain} \times M_{brain} + residual variance$$
(4)

220

The estimate of K_i could then be compared with Elia's value, of e.g. 240

kcal/kg/day for brain. These steps (Equations 3 and 4) were repeated for each

223 organ and tissue.

224

225 Statistical analyses were performed using the R language for statistical

computing³⁴ in RStudio (v1.1.419) with two-tailed significance tests at an alpha

227 level of 0.05.

228

229

230 RESULTS

231

232 Seventy women were recruited, the majority of them students attending

233 universities in and around London. Fifty-one percent of the sample reported

- 234 Indian ethnicity, 11% Pakistani, 11% Bangladeshi and 11% Sri Lankan; the
- remainder reported mixed South Asian ancestry.

237	Two subjects misreported their height and weight at recruitment, resulting in a
238	measured BMI range of 17-30 kg/m ² . One subject reported a gestational age of
239	34 weeks; all other participants were born at 37-42 weeks' gestation.
240	Table 1 details descriptive characteristics for the sample. Heart mass was
241	missing for one subject, and REE for two subjects.
242	
243	[Table 1 near here]
244	
245	Table 1 also presents previously published average organ masses for five all-
246	female cohorts and one mixed-sex cohort for comparison with the current study.
247	Our average liver mass was smaller, and heart mass larger, than the results of
248	Illner et al., ⁵ Grandmaison et al., ²⁸ and Davis et al., ²⁹ whilst kidney mass was
249	similar across studies. Our average heart mass was approximately double that
250	reported in two female South Asian cohorts ^{35,36} and nearly double that of the
251	mixed-sex cohort of Wang et al. ³ Age, height, weight, FM and SMM differed
252	somewhat across the cohorts (in particular the mixed-sex cohort ³ , as would be
253	expected), although BMI averages were similar.
254	
255	Table 2 shows organ/tissue K_{i} value estimates and their associated 95% CIs.
256	
257	[Table 2 near here]
258	
259	Table 2 also provides results from the sensitivity analysis, where measured heart
260	mass was reduced by 22.5% (ref. 31). With this reduction, mean heart mass was

261	0.41 \pm 0.07 kg. Our K _i values better matched Elia's when using adjusted heart
262	mass, as shown in Figure 1.
263 264 265	[Figure 1 near here]
266	Finally, Figure 2 is a pie chart demonstrating the percentage contribution of each
267	of the 7 organs and tissues to total REE, following calculation of the products of
268	K_i and $M_i.$ The contribution of brain and liver to REE is roughly double that of fat
269	and the kidneys, which demonstrate the smallest contribution of the 7 body
270	components.
271	[Figure 2 near here]
272	
273	
274	
275	
276	
277	DISCUSSION
278	
279	This study has extended the analysis by Wang and colleagues ³ to test the
280	applicability of Elia's 1 K $_{\rm i}$ values to young South Asian women in the UK. Our K $_{\rm i}$
281	values demonstrated a similar pattern to Elia's, in that they ranked the organs
282	and tissues in the same order (i.e. values for heart, kidney, brain and liver were
283	larger than those for SMM, which was in turn larger than FM). However, our
284	values were significantly lower.

Of the internal organs measured for this study, the heart was the most difficult to extract from MR images using manual segmentation due to relatively ambiguous boundaries with surrounding tissues. As this may have led to over-estimation of MRI heart volume, we tried reducing our estimates by 22.5% based on previously published data.³¹ The latter study involved infants at post mortem and hence was not ideally matched to the present study of adults. However, it does provide clear evidence of the bias in heart volume based on MRI.

293

294 Our average heart mass was greater than that reported in previous female 295 cohorts of both South Asian and European ethnicity, and also greater than that 296 reported in a mixed-sex cohort (see Table 1). These comparisons would suggest 297 that heart mass in our cohort is double that reported for South Asian women of 298 similar age, and nearly double that for males and females of European origin 299 (who, as noted above, have been suggested to in fact have larger organ size on average than South Asians).^{13,14} At the same time, the comparison studies 300 301 demonstrated larger values than ours for the brain and the liver, and similar values for the kidneys.^{3,5,29,30,36} 302

303

Of course, comparisons among these studies also have limitations. The studies in South Asian women (both from the Chandigarh region of Northwest India) rely on autopsy data, which may be particularly difficult to compare with MRI studies due to differences in technique and protocol. With respect to the heart, MRI and 'real' volume outcomes may differ due to the presence of blood in the

ventricles.^{31,37} Comparing MRI studies to one another may similarly be difficult 309 310 when variation exists in sample size, body size/composition, and the software 311 and protocols utilized to extract organ mass. Our average measured heart mass. for example, was 77% larger than that reported by Illner et al.⁵ and Wang et al.³, 312 but just 21% larger than that reported by Davis and colleagues.³⁰ Finally, it is 313 314 problematic to compare body composition between an all-female sample and a 315 mixed-sex sample, although this was done here with a focus on heart mass to 316 consider the possibility of overestimation.

317

318 Assuming that heart mass was overestimated using our protocol, we explored

319 whether reducing heart mass by 22.5% (ref. 31) altered the results of our K_i value

analysis. Indeed, repeating Wang et al.'s analysis following heart mass

321 adjustment yielded K_i values very similar to Elia's published values.

322

323 Reports from the 1930s indicated ethnic and/or geographical variability in

324 REE,^{9,38} for example Tamil women in South India having lower average

325 metabolism than white American women.³⁹ Individuals of Japanese, Filipino and

326 Bengalese ethnicity demonstrated negative deviations in REE, as assessed

327 against contemporary normative standards, of 6.4%, 8.3% and 9%,

328 respectively.⁴⁰ Henry and Rees¹¹ concluded that individuals in tropical regions

329 could be characterized generally as having lower REE than individuals in

330 temperate regions.

331

332 However, subsequent studies suggested that differences in body composition 333 (i.e. variation in the relative proportion of high-metabolic rate organs and lower-334 metabolic rate SMM and FM) could explain ethnic/geographical REE differences.^{12,16,40-43} Whereas ethnic differences in REE tend to persist when 335 336 controlling for overall weight or BMI, they are abolished when fat-free mass, 337 which includes SMM and organs, is taken into account. Differences in average 338 REE between Indian females and Australian females of European descent were rendered non-significant with adjustment for both fat-free mass and FM.¹⁶ 339 340 341 It is possible that organ/tissue K_i values vary by ethnic ancestry and/or 342 geography for reasons unrelated to body composition. Our initial results suggest 343 that K_i values, or the metabolic 'cost' of six organs and tissues and a residual 344 component, might indeed be different in South Asian women compared to other 345 cohorts. It is more likely, however, that bias in the estimation of heart mass, or 346 potentially another organ or tissue, explains inconsistencies between our

348

347

estimated values and Elia's.

In conclusion, we cannot definitively determine whether our K_i values for South Asian women are inconsistent with those reported by Elia, as we have shown that potential error in the measurement of organ mass may impact results when using the method of Wang and coworkers.³ Despite the difficulties of *in vivo* K_i value assessment, such methods may be necessary to more firmly elucidate ethnic variability in tissue-specific metabolic rates, if it exists.

The current results suggest that the heart may be the least reproducible organ to determine with MRI using manual measurements. Software designed to assist segmentation and/or the use of advanced imaging methods (e.g. ref. 44) may increase accuracy in heart volume/mass estimation, even as investigators must remain cautious when comparing MRI with autopsy-derived measurements.

361

362 Nevertheless, our results support the rankings in Elia's reported K_i values,

363 irrespective of the heart mass variable used: organs and tissues appear variably

364 'expensive', with the brain and visceral organs demonstrating higher specific

365 metabolic rates than SMM, FM or residual mass. High-cost organs such as the

366 heart and kidney have a specific REE more than 30 times greater than an

367 equivalent amount of muscle tissue at rest (although it has not been sufficiently

368 appreciated that skeletal muscle comprises a greater proportion of total REE

than the kidneys when mass is taken into account; see Figure 2). Variability in

370 the size of organ/tissue components therefore contributes to variability in energy

371 expenditure associated with fat-free mass, which in turn accounts for much of the

372 variance in whole-body REE.⁴⁵ This suggests that patterns of growth and

development in early life may influence adult REE, as shown previously in an

374 elderly European population.⁴⁶

375

376 ACKNOWLEDGEMENTS: This study was supported in part by a Dissertation
377 Fieldwork Grant awarded by the Wenner-Gren Foundation to MKS.

379 **CONFLICT OF INTEREST:** The authors declare no conflicts of interest.

380

381	FUNDING: OJA was funded by	y a National Institute for Health Research (NIHR)
-----	----------------------------	--	-------

382 Clinician Scientist Fellowship award (NIHR-CS-012-002), and supported by

- 383 Great Ormond Street Hospital (GOSH) Children's Charity and NIHR GOSH
- Biomedical Research Centre. SE was supported by Great Ormond Street
- 385 Hospital Children's Charity and NIHR GOSH Biomedical Research Centre. TJC
- 386 was funded by Medical Research Council grant MR/M012069/1. This article
- 387 presents independent research funded by the NIHR and the views expressed are
- those of the authors and not necessarily those of the NHS, the NIHR, or the
- 389 Department of Health. None of the funders were involved in the design or
- 390 interpretation of the results.

391

392 **REFERENCES**

393

1 Elia M. Organ and tissue contribution to metabolic rate. In: Kinney JM, Tucker

395 HN (eds). Energy metabolism: tissue determinants and cellular corollaries.

396 (Raven Press, New York, NY, 1992), pp 61-80.

- 397
- 398 2 Elia M. The inter-organ flux of substrates in fed and fasted man, as indicated
- by arterio-venous balance studies. Nutr Res Rev. 1991; 4: 3-31.
- 400

Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Schautz B, Later W *et al.* Specific
metabolic rates of major organs and tissues across adulthood: evaluation by
mechanistic model of resting energy expenditure. Am J Clin Nutr. 2010; 92:
1369-1377.

405

406 4 Gallagher D, Belmonte D, Deurenberg P, Wang Z, Krasnow N, Pi-Sunyer FX

407 et al. Organ-tissue mass measurement allows modeling of REE and

408 metabolically active tissue mass. Am J Physiol. 1998; 275: E249-E258.

409

410 5 Illner K, Brinkmann G, Heller M, Bosy-Westphal A, Müller MJ. Metabolically

411 active components of fat free mass and resting energy expenditure in nonobese

412 adults. Am J Physiol Endocrinol Metab. 2000; 278: E308-E315.

413

414 6 Bosy-Westphal A, Reinecke U, Schlörke T, Illner K, Kutzner D, Heller M et al.

415 Effect of organ and tissue masses on resting energy expenditure in underweight,

416 normal weight and obese adults. Int J Obes. 2004; 28: 72-79.

417

418 7 Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Heller M, Later W et al.

419 Evaluation of specific metabolic rates of major organs and tissues: comparison

420 between men and women. Am J Hum Biol. 2011; 23: 333-338.

422	8 De Almeida AO. L'emission de chaleur. Le metabolisme basal et le
423	metabolisme minimum de l'homme noir tropical. J Physiol Pathol Gen. 1921; 18:
424	958-964.
425	
426	9 Benedict FG. The racial elements in human metabolism. Am J Phys Anthropol.
427	1932; 16: 463-473.
428	
429	10 Shetty PS, Soares MJ, Sheela ML. Basal Metabolic Rates of South Indian
430	Males. FAO, Bangalore, India, 1988.
431	
432	11 Henry CJK, Rees DG. New predictive equations for the estimation of basal
433	metabolic rate in tropical peoples. Eur J Clin Nutr. 1991; 45: 177-185.
434	
435	12 Gallagher D, Albu J, He Q, Heshka S, Boxt L, Krasnow N et al. Small organs
436	with a high metabolic rate explain lower resting energy expenditure in African
437	Americans than in white adults. Am J Clin Nutr. 2006; 83: 1062-1067.
438	
439	13 Kohli A, Aggarwal N. Normal organ weights in Indian adults. Medico Legal
440	Update Int J. 2006; 6: 49-52.
441	
442	14 Wells JCK, Pomeroy E, Walimbe SR, Popkin BM, Yajnik CS. The elevated
443	susceptibility to diabetes in India: an evolutionary perspective. Front Pub Health.
444	2016; 4: 145.

446	15 Banerjee S. Studies in energy metabolism. ICMR Special Report No. 43,
447	New Delhi, 1962.

448

- 449 16 Soares MJ, Piers LS, O'Dea K, Shetty PS. No evidence for an ethnic
- 450 influence on basal metabolism: an examination of data from India and Australia.

451 Br J Nutr. 1998; 79: 333-341.

452

453 17 Javed F, He Q, Davidson LE, Thornton JC, Albu J, Boxt L et al. Brain and

454 high metabolic rate organ mass: contributions to resting energy expenditure

455 beyond fat-free mass. Am J Clin Nutr. 2010; 91: 907-912.

456

457 18 Cohen J. A power primer. Psychological Bulletin. 1992; 112: 155-159.458

459 19 WHO Expert Consultation. Appropriate body mass index for Asian

460 populations and its implications for policy and intervention strategies. Lancet.

461 2004; 363: 157-163.

462

463 20 Unni US, Ramakrishnan G, Raj T, Kishore RP, Thomas T, Vaz M et al.

- 464 Muscle mass and functional correlates of insulin sensitivity in lean young Indian
- 465 men. Eur J Clin Nutr. 2009; 63: 1206-1212.

466

Wells JCK, Haroun D, Williams JE, Nicholls D, Darch T, Eaton S *et al.* Body
composition in young female eating-disorder patients with severe weight loss and
controls: evidence from the four-component model and evaluation of DXA. Eur J
Clin Nutr. 2015; 69: 1330-1335.

471

472 22 Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D. Total-body

473 skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry

474 method. Am J Clin Nutr. 2002; 76: 378-383.

- 475
- 476 23 Weir JBV. New methods for calculating metabolic rate with special reference

477 to protein metabolism. J Physiol. 1949; 109: 1-9.

478

479 24 Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C et al. Whole

480 brain segmentation: automated labeling of neuroanatomical structures in the

481 human brain. Neuron. 2002; 33: 341-355.

482

483 25 Fischl B, Salat DH, van der Kouwe AJW, Makris N, Ségonne F, Quinn BT et

484 *al.* Sequence-independent segmentation of magnetic resonance images.

485 NeuroImage. 2004; 23: S69-S84.

486

487 26 Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model of

488 shape and appearance for subcortical brain segmentation. NeuroImage. 2011;

489 56: 907-922.

491

492 in multidimensional DICOM images. J Digit Imaging. 2004; 17: 205-216. 493 494 28 Perini TA, de Oliveira GL, dos Santos Ornellas J, de Oliveira FP. Technical 495 error of measurement in anthropometry. Rev Bras Med Esporte. 2005; 11: 86-90. 496 497 29 De la Grandmaison GL, Clairand I, Durigon M. Organ weight in 684 adult 498 autopsies: new tables for a Caucasoid population. Forensic Sci Int. 2001; 119: 499 149-154. 500 501 30 Davis ML, Stitzel JD, Gayzik FS. Thoracoabdominal organ volumes for small 502 women. Traffic Injury Prevention. 2015; 16: 611-617. 503 504 31 Prodhomme O, Seguret F, Martrille L, Pidoux O, Cambonie G, Couture A et 505 al. Organ volume measurements: comparison between MRI and autopsy findings 506 in infants following sudden unexpected death. Arch Dis Child Fetal Neonatal Ed. 507 2012; 97: F434-F438. 508 509 32 Duck FA. Physical Properties of Tissues. Academic, New York, NY, 1990.

27 Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating

510

511 33 Geisler C, Hübers M, Granert O, Müller MJ. Contribution of structural brain

512 phenotypes to the variance in resting energy expenditure in healthy Caucasian

- 513 subjects. J Appl Physiol. 2017; e-pub ahead of print 21 September 2017;
- 514 doi:10.1152/japplphysiol.00690.2017.
- 515
- 516 34 R Core Team. R: A language and environment for statistical computing. R
- 517 Foundation for Statistical Computing, Vienna Austria, 2016. <u>https://www.R-</u>
- 518 project.org/.
- 519
- 520 35 Sahni D, Jit I, Sanjeev. Weights of the heart in Northwest Indian adults. Am J
- 521 Hum Biol. 1994; 6: 419-423.
- 522
- 523 36 Singh D, Bansal YS, Sreenivas M, Pandey AN, Tyagi S. Weights of human
- organs at autopsy in Chandigarh zone of Northwest India. J Indian Acad Forens
 Med. 2004; 26: 97-99.
- 526
- 527 37 Thayyil S, Schievano S, Robertson NJ, Jones R, Chitty LS, Sebire NJ et al. A
- 528 semi-automated method for non-invasive internal organ weight estimation by
- 529 post-mortem magnetic resonance imaging in fetuses, newborns and children. Eur
- 530 J Radiol. 2009; 72: 321-326.
- 531
- 532 38 Krishnan BT, Vareed C. Basal metabolism of young college students, men
- 533 and women in Madras. Indian J Med Res. 1932; 20: 831-858.
- 534

536	Indian J Med Res. 1931; 19: 75-98.
537	
538	40 Dubois EF. Basal metabolic rate in health and disease. Lea and Febiger,
539	Philadelphia, PA, 1936.
540	
541	41 Ferro-Luzzi A, Petracchi C, Kuriyan R, Kurpad AV. Basal metabolism of
542	weight-stable chronically undernourished men and women: lack of metabolic
543	adaptation and ethnic differences. Am J Clin Nutr. 1997; 66: 1086-1093.
544	
545	42 Wouters-Adriaens MPE, Westerterp KR. Low resting energy expenditure in
546	Asians can be attributed to body composition. Obesity. 2008; 16: 2212-2216.
547	
548	43 Song LLT, Venkataraman K, Gluckman P, Chong YS, Chee MWL, Khoo CM
549	et al. Smaller size of high metabolic rate organs explains lower resting energy
550	expenditure in Asian-Indian than Chinese men. Int J Obes. 2016; 40: 633-638.
551	
552	44 Bustamante M, Gupta V, Forsberg D, Carlhäll C-J, Engvall J, Ebbers T.
553	Automated multi-atlas segmentation of cardiac 4D flow MRI. Med Image Anal.
554	2018; doi: https://doi.org/10.1016/j.media.2018.08.003.
555	

39 Mason ED, Benedict FG. The basal metabolism of South Indian women.

- 45 Müller MJ, Bosy-Westphal A, Kutzner D, Heller M. Metabolically active
- 557 components of fat-free mass and resting energy expenditure in humans: recent
- lessons from imaging technologies. Obes Rev. 2002; 3: 113-122.
- 559
- 560 46 Kensara OA, Wooton SA, Phillips DIW, Patel M, Hoffman DJ, Jackson AA et
- 561 *al.* Substrate-energy metabolism and metabolic risk factors for cardiovascular
- 562 disease in relation to fetal growth and adult body composition. Am J Physiol
- 563 Endocrinol Metab. 2006; 291: E365-E371.

Figure 1. K_i values (kcal/kg/day) derived using measured heart mass and heart mass minus 22.5%, compared with Elia's values

Figure 2. Percentage contribution of organs and tissues to total resting energy expenditure (kcal/day) in females, calculated using K_i values reported by Elia and masses measured in the current study, including adjusted heart mass

K_i values (heart mass minus 22.5%)

Residual FM

Table 1. Sample statistics for age, anthropometry, organ mass and resting er and a mixed-sex sample

	This study		All-female studies (Mean ± SD or Rang
Subject characteristic	n	Mean ± SD	Sahni et al., 1994 ¹ n = 87
Age (yr)	70	24 ± 2	21 - 25
Weight (kg)	70	57.8 ± 9.3	48.1 ± 7.6
Height (cm)	70	161.2 ± 6.6	
BMI (kg/m ²)	70	22.3 ± 3.5	
Fat mass (kg)	70	20.3 ± 6.7	
Skeletal muscle mass (kg)	70	15.3 ± 2.2	
Brain (kg)	70	1.08 ± 0.08	
Heart (kg)	69	0.53 ± 0.09	0.23 ± 0.04
Liver (kg)	70	1.21 ± 0.21	
Kidneys (kg)	70	0.29 ± 0.05	
Residual mass (kg)	69	19.2 ± 2.1	
Resting energy expenditure (kcal/24hr)	68	1337 ± 184	

¹Autopsy study; ²MRI study

nergy expenditure in this study, and in previously-reported all-female study samples (South

(South Asian):	
e	All-female studies (European): Mean ± SD

Singh et al., 2004 ¹ <i>n</i> = 204	lliner et al., 2000^2 <i>n</i> = 13	De la Grandmaison et al., 2001 ¹ <i>n</i> = 329	Davis et al., 2015 ² n = 14
21 - 30	25 ± 2	49 ± 20	37 ± 12
	62.8 ± 9.5	58.0 ± 13.2	53.9 ± 6.4
	170.0 ± 6.0	161.0 ± 7.5	155.0 ± 7.0
	22.1 ± 2.5	22.5 ± 4.5	22.4 ± 2.6
	19.2 ± 6.0		
	17.9 ± 2.5		
1.21 ± 0.11	1.5 ± 0.1		
0.24 ± 0.05	0.3 ± 0.0	0.31 ± 0.08	0.44 ± 0.04
1.3 ± 0.2	1.5 ± 0.2	1.48 ± 0.36	1.3 ± 0.23
0.26 ± 0.05	0.2 ± 0.0	0.27 ± 0.08	0.25 ± 0.04
	19.7 ± 2.1		
	1372 ± 163		

n Asian or European cohorts)

Mixed-sex study <u>(European): Mean ± SD</u>

Wang et al., 2010 ² <i>n</i> = 43 (f=27)				
26 ± 2.0				
70.0 ± 11.3				
174.0 ± 6.0				
23.0 ± 2.7				
16.6 ± 6.7				
25.0 ± 5.9				
1.33 ± 0.11				
0.31 ± 0.09				
1.35 ± 0.23				
0.28 ± 0.06				
22.8 ± 3.9				
1547 ± 241				

Table 2. Estimates of organ- and tissue-specific metabolic rate (K_i) values (kcal/kg/day), and effect of heart mass adjustment

Organ/tissue	K _i value (95% CI)	K _i value (95% CI) (heart mass less 22.5%, following Prodhomme et al.)	K _i value (Elia)
Heart	362 (315, 409)	467 (406, 528)	440
Kidneys	295 (210, 380)	471 (385, 556)	440
Brain	201 (178, 224)	249 (226, 273)	240
Liver	165 (144, 185)	207 (186, 228)	200
Skeletal muscle mass	10 (8.7, 12.0)	13.7 (12.1, 15.4)	13
Fat mass	2.6 (1.4, 3.8)	5.0 (3.8, 6.2)	4.5
Residual mass	10 (8.5, 11.1)	12.5 (11.2, 13.8)	12