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Abstract

We present a spectroscopic study of the tidal tails and core of the Milky Way satellite TucanaIII, collectively referred
to as the TucanaIII stream, using the 2dF+AAOmega spectrograph on the Anglo-Australian Telescope and the
IMACS spectrograph on the Magellan Baade Telescope. In addition to recovering the brightest nine previously
known member stars in the TucanaIII core, we identify 22 members in the tidal tails. We observe strong evidence for
a velocity gradient of 8.0 0.4 km s deg1 1 - - over at least 3° on the sky. Based on the continuity in velocity, we
confirm that the TucanaIII tails are real tidal extensions of TucanaIII. The large velocity gradient of the stream
implies that TucanaIII is likely on a radial orbit. We successfully obtain metallicities for four members in the core
and 12 members in the tails. We find that members close to the ends of the stream tend to be more metal-poor than
members in the core, indicating a possible metallicity gradient between the center of the progenitor halo and its edge.
The spread in metallicity suggests that the progenitor of the TucanaIII stream is likely a dwarf galaxy rather than a
star cluster. Furthermore, we find that with the precise photometry of the Dark Energy Survey data, there is a
discernible color offset between metal-rich disk stars and metal-poor stream members. This metallicity-dependent
color offers a more efficient method to recognize metal-poor targets and will increase the selection efficiency of
stream members for future spectroscopic follow-up programs on stellar streams.

Key words: dark matter – galaxies: dwarf – galaxies: individual (Tucana III) – Local Group – stars: abundances

Supporting material: machine-readable tables

1. Introduction

Stellar streams, originating from the tidal disruption of dwarf
galaxies(e.g., the Sagittarius stream; Majewski et al. 2003;
Belokurov et al. 2006b) and globular clusters(e.g., the Palomar 5
tidal tails; Odenkirchen et al. 2001), are excellent tracers for
probing the underlying shape of the Milky Way’s (MW) dark
matter halo (see, e.g., Johnston et al. 2005; Law & Majewski
2010; Bonaca et al. 2014; Bovy 2014; Küpper et al. 2015; Bovy
et al. 2016; Erkal et al. 2016). Density perturbations along
kinematically cold (i.e., small velocity dispersion) stellar streams
can additionally be used to measure the abundance of low-mass
dark matter substructure (e.g., Ibata et al. 2002; Johnston et al.
2002; Carlberg 2009, 2016; Yoon et al. 2011; Erkal &
Belokurov 2015a; Bovy et al. 2017; Erkal et al. 2017) and
therefore provide a direct test of the standard ΛCDM cosmolo-
gical model(Springel et al. 2008). These diffuse stellar features
also inform us that our Galactic stellar halo is shaped by the
merging of neighboring smaller galaxies, which is predicted
by hierarchical structure formation models of galaxy evolution
(Peebles 1965; Searle & Zinn 1978; Steinmetz & Navarro 2002;
Bullock & Johnston 2005; Font et al. 2011). We refer readers to
Newberg & Carlin (2016) for a recent review.

Thanks to the unprecedented photometric precision, depth, and
coverage area of the Dark Energy Survey (DES; DES Collaboration
2005, 2016, 2017; Abbott et al. 2018), more than a dozen new
stellar streams have been discovered using the first 3 yr of data
(Drlica-Wagner et al. 2015; Balbinot et al. 2016; Shipp et al. 2018).
Of the streams discovered in the DES, the TucanaIII (Tuc III)
stellar stream is among the most intriguing because it is the only
new stream that has an unambiguous progenitor identified.

The TucIII stellar stream was discovered as a pair of very low
surface brightness linear features adjacent to the ultra-faint dwarf
galaxy candidate TucIII (Drlica-Wagner et al. 2015). Located at a
heliocentric distance of just ∼25 kpc and a Galactocentric distance
of ∼23 kpc, the stream extends at least 2° from either side of
TucIII. Further analyses conducted by Shipp et al. (2018) showed
that the stream has a projected length of 2 kpc (4°.8) and a width of
79 pc ( 0 .18ws =  ) on the sky. The stream is the result of the
ongoing disruption of TucIII. Following the terminology that was
used in Shipp et al. (2018), in this paper, we will refer to the
TucIII dwarf galaxy (candidate) as the TucIII core, the tidal tails
of TucIII as the TucIII tails, and the whole system as the TucIII
stream. Specifically, we consider all TucIII member stars

confirmed in Simon et al. (2017) as belonging to the TucIII core.
We define the radius of the TucIII core r to be the radial distance
to the outermost TucIII member confirmed in Simon et al. (2017),
i.e., a radius of r 0 .22  (or ∼97 pc), or 2.2 times the half-light
radius of the TucIII dwarf galaxy candidate determined in Drlica-
Wagner et al. (2015).
If TucIII is a dwarf galaxy, the TucIII stream will be a

prototype for the tidal disruption of the smallest galaxies.
Spectroscopic observations were conducted in the TucIII core by
Simon et al. (2017) with Magellan/IMACS, but the authors were
not able to conclusively classify TucIII as an ultra-faint dwarf
galaxy or star cluster due to the unresolved velocity and metallicity
dispersions. Simon et al. (2017) tentatively suggested that TucIII is
the tidally stripped remnant of a dark matter–dominated dwarf
galaxy, based on its large size and low mean metallicity.
Though dozens of streams have been found in the MW halo,

only a handful of streams have an unambiguous progenitor
identified(e.g., the Sagittarius stream, Palomar 5 tidal tails, and
NGC 5466 tidal tails; Belokurov et al. 2006a). The TucIII
stream offers an opportunity to investigate mechanisms of tidal
disruption and the resulting formation of tidal streams in great
detail. Furthermore, the presence of the progenitor also makes
the stream an ideal candidate for orbit fitting, as well as a
valuable tracer of the MW’s gravitational potential.
In this paper, we present results from spectroscopic observations

of the TucIII stream using the 2dF+AAOmega spectrograph on
the Anglo-Australian Telescope (AAT) and the IMACS
spectrograph on the Magellan Baade Telescope. We describe the
observations and data reduction from these two instruments in
Section 2. We identify member stars of the stream and determine
the kinematic and metallicity properties of the stream in Section 3.
In Section 4, we discuss the properties of the stream and the
comparison with other known streams and dwarf galaxies. In
Section 5, we demonstrate the use of photometric measurements to
select candidate metal-poor stream members based on their colors
for future spectroscopic follow-up programs. We conclude in
Section 6.

2. Observations and Data Reduction

2.1. AAT/2df+AAOmega Observations

We observed candidate member stars in the TucIII stream
with the AAOmega spectrograph(Sharp et al. 2006) on the

2
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3.9m AAT. AAOmega is a dual-beam spectrograph that feeds
a blue arm and a red arm with a beam splitter at 5700Å. This
paper focuses on the spectra obtained with the red arm using
the 1700D grating, which has a spectral resolution of
R=10,000, a pixel scale of 0.23Å pixel–1, and a wavelength
coverage of 8400 8810– Å. This wavelength range contains the
calcium triplet (CaT) absorption lines that are the primary
source of velocity and metallicity measurements.

The AAOmega spectrograph is fed by the Two Degree Field
(2dF) fiber positioner facility, allowing the acquisition of up to
400 simultaneous spectra of objects within a 2° field in
diameter on the sky. Among the 400 fibers, 25 are assigned to
sky positions, and eight are assigned to guide stars selected
from the UCAC4 catalog(Zacharias et al. 2013). The
remaining fibers are assigned to the target stars.

We selected the targets using an empirical color–magnitude
locus derived from the confirmed member stars in the TucIII
dwarf galaxy(Simon et al. 2017). Based on the location of
candidate stars on the sky and color–magnitude diagram using
an early version of DES astrometry and photometry, namely
the Y2Q catalog(Drlica-Wagner et al. 2015), a membership
probability for each star was calculated in a similar way as
discussed in Drlica-Wagner et al. (2015). We then prioritized
targets based on a combination of brightness and membership
probability and allocated targets to the fibers using the
configure46 software provided by the Australian Astronomical
Observatory. As shown in Figure 1, we selected several
hundred main-sequence turnoff (MSTO) and red giant branch
(RGB) stars, a few dozen red horizontal branch (RHB) stars,
and a handful of blue horizontal branch (BHB) stars.

Observations were conducted on 2016 June 30, July 9–13,
and July 25–27 and 2017 August 22. We had a total of nine
half nights of observing time in 2016 and 2 hr of service time in
2017. The exposures are typically composed of several
30–40 minute exposures. Due to unfavorable weather condi-
tions, we did not observe on July 11. The dome was partially
closed for many nights due to clouds, including June 30 and
July 9, 13, 26, and 27. Exposures on July 12 and 13 were taken
through thick clouds and were therefore excluded from the
analysis. About half of the exposures taken on July 10 were
also discarded due to the presence of thin clouds. Specifically,
data are excluded from the analysis when the extracted 1D
spectra from one exposure have signal-to-noise ratios (S/Ns) of
less than 2 pixel−1 for stars at g 18~ . As a comparison, with a
30 minute exposure, the S/N is around 7 pixel−1 for stars at
g 18~ in the absence of clouds. Overall, we lost roughly six of
the nine half nights due to poor weather. The remaining useful
three half nights have an average seeing of 2. 5~  .

Since the length of the stream was determined to be about 4° at
the time of discovery(Drlica-Wagner et al. 2015), we targeted the
TucIII stream with two telescope pointings whose centers are
offset by 0°.8 west (AAT-Field-1) and east (AAT-Field-2)
from the center of the TucIII core during the 2016 classical
observing time. This ensures that the TucIII core will get
longer exposures in total and may reveal more faint members.
Subsequent reanalysis by Shipp et al. (2018) revealed that the
stream is slightly longer (4°.8), and we therefore added a third
pointing (AAT-Field-3) 1°.2 west from the center of TucIII for
2 hr of observing on 2017 August 22 using service time. Due to
the shorter exposure time, AAT-Field-3 is shallower than the

other two pointings. An illustration of the three fields on the sky
along with the targets observed is shown in the top left panel of
Figure 1. We obtained S/N∼15 pixel–1 for stars at g 18~ in
AAT-Field-1 and AAT-Field-2 and S/N∼9 pixel–1 for
stars at g 18~ in AAT-Field-3. Though the 2df has a total of
400 fibers (including 25 sky fibers and eight guide stars) and a
fiber collision radius of 30″–40″, flexibility in fiber allocation with
2dF allows us to change the targets from night to night and observe
more targets at each field. Specifically, we performed quick data
reduction and analysis on the observed spectra at the end of each
night, measured the radial velocities (RVs) of bright stars whose
spectra have sufficient S/Ns (S/N>10), and classified those stars
that have velocity differences more than 100km s 1- from the
TucIII core velocity as nonmembers. We then reallocated the
fibers for those nonmembers to alternate targets in the subsequent
night’s observing. A total of 1045 candidate stars were observed
over the entire program with AAT in three fields. We observed
roughly 85% of the RGB candidates at g 19.5< in the fields of
three AAT pointings; the other 15% of the candidates were not
observed due to either fiber collision or low membership
probability of the targets and the limited number of available
fibers. We expect that the completeness of the true members at
g 19.5< is higher than 85% because the stars that are closer to the
empirical color–magnitude locus will have a higher membership
probability and therefore a higher priority to be assigned to a fiber.
The data reduction was performed using version 6.46 of

2dfdr.47 The reduction includes bias subtraction, 2D scattered-
light subtraction, flat fielding, Gaussian weighted spectral
extraction, wavelength calibration, and sky subtraction.
Wavelength calibration was first performed using the arc
frames taken immediately before or after each science
exposure, followed by a recalibration with a second-order
polynomial fit using sky emission lines. As the observations
were taken from different nights, the reduced and extracted
spectra were first corrected for the heliocentric motion of the
Sun at each exposure. Then the spectra from multiple
exposures were combined using inverse-variance weighting.
The final velocities and metallicities reported (see Section 2.3)
are derived from the combined spectra over the entire program.

2.2. Magellan/IMACS Observations

In order to better probe the transition region ( r0 .3 0 .5   )
between the (presumably) bound core of TucIII and the tidal tails,
we also obtained additional spectroscopy of TucIII with the
IMACS spectrograph (Dressler et al. 2006) on the Magellan
Baade telescope. We observed three slit masks on the nights of
2017 June 19 and 21. Target selection for these masks followed
the criteria described by Simon et al. (2017), and the mask
positions were chosen based on the highest densities of bright
candidate RGB stars. The spectrograph configuration was
identical to those used by Li et al. (2017) and Simon et al.
(2017), with the f/4 camera and the 1200/32°.7 grating providing
a spectral resolution of R=11,000 over the wavelength range

7500 8800~ – Å. Observing conditions on June 19 for the first
two masks were good (clear skies and seeing 0. 8<  ), while the
third mask on June 21 suffered from quite poor conditions (clouds
and seeing 1> ). Two of the masks, which were both offset from
the stream track, did not reveal any additional member stars, while
the mask on the stream track identified two new members (both
much fainter than what AAT can detect; see top right panel of

46 configure provides a graphic user interface for fiber allocations; see details
athttps://www.aao.gov.au/science/software/configure. 47 https://www.aao.gov.au/science/software/2dfdr
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Figure 1). These results suggest that TucIII members at these
radii are concentrated in the unbound tails, and relatively few
bright members of the core remain to be found.

The IMACS data were reduced as described by Simon
et al. (2017) and Li et al. (2017), employing a combination of
the Cosmos reduction pipeline (Dressler et al. 2011; Oemler
et al. 2017) and a version of the DEEP2 data reduction

pipeline (Cooper et al. 2012; Newman et al. 2013) adapted
for IMACS.

2.3. Velocity and Metallicity Measurements

The reduced 1D spectra from AAT/2df+AAOmega (here-
after AAT) and Magellan/IMACS (hereafter IMACS) were
then used for RV measurements following the same method as

Figure 1. Top left: spatial distribution of the target stars in celestial coordinates ( ,2000 2000a d ). The center of the TucIII dwarf galaxy is indicated with a green plus
sign. The three orange crosses indicate the center of the three AAT pointings along with the three orange circles to illustrate the field of view of AAT. The blue dashed
boxes show the locations of three IMACS pointings. The magenta dashed line shows a great circle on the sky using the end points of the TucIII stream from Shipp
et al. (2018). The gray crosses represent the targets for which RV measurements failed, while the black dots are the stars whose spectra have high enough S/N
(S/N6) for RV measurements. The red filled circles are the confirmed spectroscopic members of the TucIII stream from this work, with AAT members encircled
in yellow and IMACS members encircled in cyan. (Symbols are the same for other panels and other figures if not specified.) Top right: location of target stars in the
color–magnitude diagram. The blue lines show a Dotter isochrone(Dotter et al. 2008) for MSTO+RGB stars and a PARSEC isochrone(Bressan et al. 2012) for
horizontal-branch stars, both with Fe H 2.2= -[ ] and age=12.5 Gyr at distance modulus m M 17.0- = . Middle left: measured heliocentric RV of all targets.
Thirty-one member stars of the TucIII stream are grouped around 100 km s 1- - . A clear trend of increasing velocity toward equatorial east (or larger α) is evident
from the spectroscopically confirmed members. The uncertainties on the velocities are smaller than the symbol sizes of the member stars. Black (gray) dots represent
the stars for which the metallicity measurements are successful (unsuccessful) and are (are not) shown in the bottom panel. Bottom left: subset of the spectra having
measured metallicities derived from the EWs of CaT lines (assuming these stars are at the distance of Tuc III). The metallicities of 16 member stars in the TucIII
stream are successfully obtained. The metallicities of the members at the edges of the stream seem to be more metal-poor than the other members in the core of the
stream. Bottom right: scatter plot of the measured heliocentric velocity and metallicity of all the targets. The confirmed members are grouped around Fe H 2.5~ -[ ]
and v 100 km shel

1~ - - . Note that for better display, the error bars in Fe H[ ] and vhel are only shown for member stars. The error bars for the target stars are at a
similar level as those for the member stars.
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described in Li et al. (2017, 2018) and metallicity measure-
ments following Simon et al. (2015) and Li et al. (2017). We
refer readers to these works for more details, and we briefly
summarize the procedures below.

The RVs were measured via template fitting using a set of
RV standards (with various metallicities, temperatures, and
surface gravities) observed with the same instrument setup and
a maximum-likelihood approach with a Markov chain Monte
Carlo (MCMC) sampler. The statistical velocity uncertainties
were determined from the standard deviation of the posterior
velocity distribution from the MCMC sampler. We adopted a
systematic floor of 0.5km s 1- for AAT velocities(Li et al.
2018) and 1.0km s 1- for IMACS velocities(Li et al. 2017;
Simon et al. 2017) and added these systematic uncertainties in
quadrature with the statistical uncertainties for each star to
obtain the final reported velocity uncertainties.

We also determined the metallicities of RGB candidate stars
using the equivalent widths (EWs) of the CaT lines. We fit all
three of the CaT lines with a Gaussian-plus-Lorentzian function
and then converted the summed EWs of the three CaT lines to
metallicity using the calibration relation as a function of absolute
V magnitude from Carrera et al. (2013). We assume that the
candidate stars are members of the TucIII stream and are
therefore at a distance of 25±2kpc(Drlica-Wagner et al. 2015)
to derive the absolute magnitude of each candidate star. The
uncertainties on the EWs are calculated from the Gaussian and
Lorentzian fit plus a systematic uncertainty of 0.2Å (Li et al.
2017, 2018) added in quadrature. The metallicity uncertainties are
dominated by the uncertainties on the CaT EWs, with small
contributions from the uncertainties on the distances, the stellar
photometry, and the uncertainties on the calibration parameters
from Carrera et al. (2013). We note that Shipp et al. (2018) found
that the TucIII stream spans 8kpc in distance. A 4kpc shift from
25kpc will cause roughly a 0.05 dex shift in Fe H[ ] and is small
compared to the uncertainties from the EW measurement
(typically at 0.25 dex). We therefore excluded the possible
distance gradient when computing the metallicity of member stars
in the TucIII stream.

We applied the methods described above to the entire
spectroscopic sample and report the derived RVs and metallicities
in Table 1. We note that not all spectra have high enough S/Ns
for adequate RV and EW fits. We assess the fitting quality of
every spectrum visually. Usually, spectra that have S/N < 6 do
not provide a good RV fit, and spectra that have S/N < 9 do not
provide a good EW fit. In total, we successfully determined the
RVs of 552 candidate stars and EWs of 431 candidate stars from
AAT. For IMACS, we determined the RVs of 57 candidates and
EWs of 35 candidates. In total, 13 spectra with S/N > 6 were
rejected because of a poor RV fit, while 29 spectra with S/N > 9
were rejected because of a poor EW fit. We note that derived
metallicities are only valid for stars that are truly RGB members
of the TucIII stream. For the nonmembers, they are likely
foreground main-sequence stars from the MW at a different
distance, so the calibration relation from Carrera et al. (2013) does
not apply to these stars.

We note that even though we used the DES Y2Q catalog for
target selection, the reported astrometry and photometry in
Table 1 are from a newer version, namely the DES DR1
catalog(Abbott et al. 2018), and are used for analysis in later
sections. Specifically, the weighted average magnitudes
(WAVG_MAG_PSF) from DR1 are used throughout this work.
The improved photometry precision in DES DR1 is especially

important for the later discussion inSection 5. However, we
noticed that 2%~ of the candidate stars present in the DES
Y2Q catalog are missing in DES DR1. This is due to an overly
conservative rejection of stars that lie in the wings of nearby
saturated stars when the weighted average magnitude (WAVG_
MAG_PSF) quantities in DR1 are computed. For those stars, we
present their photometry from the Y2Q catalog and mark them
in Table 1. We note that the magnitudes reported here (and
used in the analysis in later sections) are all dereddened. For the
DR1 catalog, the correction is applied using the E B V-( )
values from the reddening map of Schlegel et al. (1998) and
extinction coefficient Rb derived using the Fitzpatrick (1999)
reddening law and Schlafly & Finkbeiner (2011) adjusted
reddening normalization parameter; for the Y2Q catalog, the
correction is made using the stellar locus regression. Details on
the reddening corrections can be found from the corresponding
references: Abbott et al. (2018) for DR1 and Drlica-Wagner
et al. (2015) for Y2Q.

3. Results

In this section, we describe the new stream members
identified from this work, from which we derived the velocity
gradient of the stream, as well as the metallicity dispersion. We
also compared our measurements and results with those from
Simon et al. (2017) for the members in the TucIII core.

3.1. Spectroscopic Membership Determination

We identified a total of 31 members in the AAT and IMACS
combined data set, nine of which are members of the TucIII
core and were previously confirmed in Simon et al. (2017). The
other 22 members are in the TucIII tails and are identified
for the first time in this work. Adding the 26 members from the
TucIII core from Simon et al. (2017), the total sample in the
TucIII stream increases to 48 stars. As shown in Figure 1,
the member stars form a clear peak around v 100 km shel

1~ - -

and Fe H 2.5~ -[ ] . Though a few candidate stars are at a
similar velocity or metallicity if we only consider one property
or the other, combining the two quantities separates the TucIII
members from nonmembers, as shown in the bottom right
panel of Figure 1.
We note that the membership identification of TucIII stream

members is a subjective selection process using the following
parameters: velocity, metallicity, color, magnitude, and the
spectrum itself. Specifically, we examined the candidate stars
that have velocities between 140- and 70 km s 1- - star-by-star
and listed their parameters in Table 1. Since the bulk velocity of
the TucIII stream ( 100 km s 1~- - ) is far away from that of the
MW disk stars, the MW foreground contamination in this velocity
range is minimal. The membership of the TucIII stream is mostly
unambiguous, especially through its location on the velocity
versus metallicity plot as shown in Figure 1. For stars with low
S/N spectra and no available EW measurements, we check with
the best-fit RV template on the velocity measurements to assess
whether the stars are metal-poor or not. We assess the members
and nonmembers in the TucIII stream subjectively in this section.
InSection 3.4, we discuss the membership probability of all the
observed stars using an objective Bayesian approach.
Among the 31 member stars in the TucIII stream, 29 were

observed by AAT, and 20 of them are the first identified members
in the tidal tails. Two are BHB members (DES J234654.06
−594331.7 and DES J235248.09−602054.9), one is an RHB
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Table 1
Velocity and Metallicity Measurements of the Observed Stars

IDa
2000a 2000d gb rb Cat.b Inst.c S/N v EW Fe H[ ] Mem.d Prob.e Comment

(deg) (deg) (mag) (mag) (km s 1- ) (Å)

Tuc III Leading/West Tail
DES J234319.89−592540.8 355.83288 −59.42799 18.194 17.719 DR1 AAT 22.2 −72.93±0.98 5.01±0.36 L 0 0.00
DES J234327.66−593542.1 355.86526 −59.59502 18.931 18.465 DR1 AAT 12.9 −116.19±1.79 1.30±0.32 −2.97±0.29 1 1.00
DES J234350.83−593925.6 355.96177 −59.65712 17.678 17.151 Y2Q AAT 33.8 −115.46±0.76 1.83±0.30 −2.83±0.18 1 1.00 Binary
DES J234434.87−594407.7 356.14531 −59.73549 18.339 17.835 DR1 AAT 20.8 −115.27±1.23 2.15±0.49 −2.51±0.27 1 0.99
DES J234437.03−595405.6 356.15431 −59.90157 17.005 16.391 DR1 AAT 40.7 −75.88±0.77 5.49±0.27 L 0 0.00
DES J234521.78−593131.3 356.34076 −59.52536 19.340 18.883 DR1 AAT 9.6 −116.09±2.43 1.65±0.52 −2.62±0.36 1 0.99
DES J234531.06−593908.6 356.37941 −59.65240 17.672 17.127 DR1 AAT 36.0 −110.38±0.84 2.27±0.38 −2.59±0.20 1 0.98
DES J234642.46−601828.1 356.67692 −60.30780 19.046 18.576 DR1 AAT 9.8 −114.02±3.39 2.01±0.49 −2.44±0.34 1 0.98
DES J234642.83−593152.8 356.67844 −59.53133 19.487 19.038 DR1 AAT 8.7 −114.70±3.08 1.85±0.79 −2.47±0.52 1 0.97
DES J234654.06−594331.7 356.72524 −59.72548 17.240 17.395 DR1 AAT 21.7 −109.61±1.61 L L 1 0.91 BHB
DES J234702.14−594843.2 356.75890 −59.81200 18.459 17.967 DR1 AAT 17.7 −109.26±1.52 1.99±0.59 −2.58±0.34 1 0.99
DES J234719.86−595348.0 356.83277 −59.89668 19.449 18.989 DR1 AAT 8.9 −110.65±2.68 L L 1 0.92
DES J234727.52−591504.9 356.86466 −59.25137 18.296 17.789 DR1 AAT 23.1 −111.07±0.99 2.23±0.43 −2.48±0.24 1 1.00
DES J234949.16−602020.5 357.45482 −60.33902 18.137 17.596 DR1 AAT 6.2 −113.59±3.12 L L 0 0.74
DES J235158.27−591210.9 357.99278 −59.20303 17.541 17.271 Y2Q AAT 31.7 −88.46±0.84 4.98±0.28 L 0 0.00
DES J235248.09−602054.9 358.20036 −60.34857 17.265 17.404 DR1 AAT 16.3 −105.58±2.57 L L 1 0.90 BHB
DES J235349.12−593245.4 358.45467 −59.54593 18.524 18.025 DR1 AAT 17.1 −102.56±2.51 2.41±0.46 −2.34±0.25 1 0.98

IMACS 28.8 −103.61±1.04 2.60±0.21 −2.25±0.12 L
DES J235425.88−594103.3 358.60784 −59.68424 20.288 20.008 DR1 IMACS 6.8 −102.65±2.64 L L 1 L Subgiant
DES J235435.00−593946.0 358.64582 −59.66279 20.695 20.493 DR1 IMACS 4.1 −100.63±3.24 L L 1 L MSTO
DES J235439.51−594118.7 358.66463 −59.68854 19.997 19.611 DR1 IMACS 9.7 −71.48±1.75 1.87±0.29 L 0 L

Tuc III Coref

DES J235532.68−593115.0 358.88616 −59.52083 16.090 15.344 DR1 AAT 125.7 −102.89±0.51 3.75±0.22 −2.28±0.10 1 0.99
DES J235549.92−593259.7 358.95799 −59.54990 17.400 16.815 DR1 AAT 22.0 −101.94±1.40 2.84±0.29 −2.37±0.14 1 1.00
DES J235620.76−593310.2 359.08651 −59.55282 18.857 18.374 DR1 AAT 11.6 −101.83±2.19 2.33±0.27 −2.31±0.16 1 0.99
DES J235650.50−593421.0 359.21042 −59.57250 19.950 19.496 DR1 AAT 6.0 −102.12±4.99 L L 1 0.83
DES J235707.46−593743.0 359.28110 −59.62861 19.727 19.296 DR1 AAT 5.7 −104.53±4.82 L L 1 0.81
DES J235726.04−593938.2 359.35851 −59.66061 19.265 18.800 DR1 AAT 13.2 −101.89±2.64 L L 1 0.89
DES J235730.25−592930.7 359.37602 −59.49186 19.342 18.878 DR1 AAT 8.1 −100.06±3.19 L L 1 0.88
DES J235738.50−593611.7 359.41040 −59.60325 17.173 16.569 DR1 AAT 45.9 −99.58±0.71 2.66±0.25 −2.50±0.13 1 1.00
DES J235745.46−593726.5 359.43941 −59.62401 19.806 19.379 DR1 AAT 8.2 −100.01±3.29 L L 1 0.88

Tuc III Trailing/East Tail
DES J235853.63−595952.2 359.72345 −59.99784 18.956 18.467 DR1 AAT 10.3 −121.84±2.14 3.87±0.63 L 0 0.00
DES J235855.20−591242.4 359.73001 −59.21177 18.701 18.219 DR1 AAT 9.8 −78.54±2.86 2.16±0.29 L 0 0.00

IMACS 6.6 −74.02±1.52 L L L
DES J000104.89−594814.4 0.27039 −59.80400 18.833 18.394 DR1 AAT 8.0 −85.13±4.37 2.19±0.60 L 0 0.49
DES J000234.74−593056.8 0.64473 −59.51578 19.341 18.881 DR1 AAT 5.7 −92.26±4.46 L L 1 0.78
DES J000344.78−600048.2 0.93656 −60.01339 19.109 18.670 DR1 AAT 7.8 −129.28±3.42 L L 0 0.00
DES J000347.26−593114.6 0.94693 −59.52072 19.104 18.646 DR1 AAT 7.1 −93.82±3.38 L L 1 0.86
DES J000427.21−593648.3 1.11336 −59.61342 18.771 18.283 DR1 AAT 10.7 −94.58±2.58 L L 1 0.87
DES J000529.05−600323.4 1.37102 −60.05651 17.543 17.318 DR1 AAT 21.6 −91.05±2.97 L L 1 0.85 RHB
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Table 1
(Continued)

IDa
2000a 2000d gb rb Cat.b Inst.c S/N v EW Fe H[ ] Mem.d Prob.e Comment

(deg) (deg) (mag) (mag) (km s 1- ) (Å)

DES J000548.69−593406.1 1.45288 −59.56835 16.770 16.123 Y2Q AAT 40.4 −92.01±0.70 2.34±0.35 −2.75±0.18 1 1.00
DES J000639.63−591658.5 1.66513 −59.28291 18.813 18.316 DR1 AAT 9.8 −92.11±2.30 2.09±0.27 −2.46±0.16 1 0.99
DES J000727.58−593357.0 1.86493 −59.56584 19.321 18.865 Y2Q AAT 7.3 −92.58±3.35 L L 1 0.82
DES J000758.93−594729.2 1.99552 −59.79145 18.530 18.038 DR1 AAT 11.7 −99.87±2.08 5.83±0.58 L 0 0.00

Note.Only stars with v140 km s 70 km s1
hel

1- < < -- - are presented here.
a The star IDs are computed based on the R.A. ( 2000a ) and decl. ( 2000d ) from either the DES DR1 or Y2Q catalog in the format of DES Jhhmmss.ss–ddmmss.s. Due to the small difference in the astrometry between the
two catalogs, the star ID in the DR1 catalog could be slightly different (in the last decimal point) from the Y2Q catalog; the latter one was used to produce the star IDs in the earlier literature for TucIII(e.g., Hansen et al.
2017; Simon et al. 2017).
b Quoted magnitudes represent the dereddened PSF magnitude in either the DR1 or Y2Q catalog.
c Telescopes and instruments used for obtaining the spectra of the targets.
d The membership of the TucIII stream stars through a subjective membership identification. (See details in Section 3.1.) Mem=1 are members; Mem=0 are nonmembers.
e The membership probability of TucIII stream stars through an objective mixture model. Measurements from the AAT observations are used for modeling. (See details in Section 3.4.)
f These nine TucIII core members are also observed by Simon et al. (2017).

(This table is available in its entirety in machine-readable form.)
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member (DES J000529.05−600323.4), and the remaining stars
are on the RGB. The RHB star shows no velocity variation from
multiple measurements over several nights of AAT observations
in 2016, so we conclude that it is not an RR Lyrae star. We note
that RHB stars are not common for dwarf galaxies at this
luminosity and age, but from the velocity, it is consistent with the
TucIII member stars. Including or excluding this star does not
change the kinematic properties of the stream.

In order to check for possible binary motions of the stream
member stars, we combined the spectra from the 2016 and 2017
AAT runs separately to provide independent measurements with a
time baseline of ∼13months for each star. We note that only the
member stars that are observed in both AAT-Field-1 and
AAT-Field-3 have repeated measurements after 13 months
(see Figure 1). We find that RGB member DES J234350.83
−593925.6 is likely a binary, because we measured an RV of
v 122.2 0.8 km shel

1= -  - during the 2016 run (average
MJD=57,589) and v 99.4 1.4 km shel

1= -  - on 2017
August 22 (MJD=57,987). Its measured velocity from the
combined spectra (v 115.5 0.8 km shel

1= -  - ) is very similar
to that of other stream members nearby; furthermore, it also has a
very low metallicity ( Fe H 2.8 0.2= - [ ] ). We therefore
conclude that it is a stream member. However, we exclude this
star from the kinematic analysis in later sections. All remaining
AAT members do not show large velocity variations with the data
we have obtained.

In contrast to the AAT, IMACS probes deeper but with a
much smaller field of view. One subgiant (DES J235425.88
−594103.3) and one MSTO star (DES J235435.00−593946.0)
were uniquely detected by IMACS in one of the masks. In
addition, RGB member DES J235349.12−593245.4 was
observed by both AAT and IMACS and shows no velocity
difference between the two.

We then discuss the nonmembers that have velocities close
to the systemic velocity of the stream. Specifically, we list all of
the nonmember stars that are in the velocity range of 140-
and 70 km s 1- - .

1. A few candidate stars, including DES J234319.89
−592540.8, DES J234437.03−595405.6, DES J235853.63
−595952.2, DES J000344.78−600048.2, and DES J000
758.93−594729.2, have relatively large CaT EWs, suggest-
ing that they are nonmembers.

2. DES J234949.16−602020.5 has a very low S/N, so no
EW is measured, but a metal-rich RV template was
selected as the best-fit template.48

3. DES J235855.20−591242.4 has a small CaT EW, but its
velocity is more than 20 km s 1- off from the bulk velocity
of the stream at its location. The independent RV
measurements from AAT and IMACS are consistent
within the 1σ uncertainty, suggesting that it is not in a
binary system.

4. DES J235158.27−591210.9 is similar. It also has a small
EW but a large velocity offset ( 20 km s 1> - ) from the
member stars at a similar location on the sky.

5. DES J000104.89−594814.4 has a small EW, and its
velocity is about 10km s 1- off from the bulk velocity of
the stream at the location. Furthermore, its position on the
color−magnitude diagram (CMD) is slightly offset from
the other members.

We suggest that for the last two nonmembers mentioned
above, i.e., DES J235158.27−591210.9 and DES J000104.89
−594814.4, more observations would be useful to check the
possibility that they could be stream members with velocities
offset from the stream by binary orbital motions.
In order to derive the kinematic properties of the stream in the

following sections, we transformed the member stars from celestial
equatorial coordinates ( ,a d) to stream coordinates ( B,L ) using
Euler angles ( , , 264 .23, 120 .29, 267 .51f q y =    ), where ,f q
are derived from the pole of the TucIII stream from Shipp et al.
(2018) by assuming a great circle orbit on the sky and ψ is chosen
so that the center of the TucIII core has 0L = . We also list the
transformation matrix in Appendix A. The member stars in the
stream coordinates ( B,L ) are shown in the top panel of Figure 2.
We observed candidate stars that are roughly±0°.7from the

TucIII stream track, taking into account the stream width of
0 .13ws =  (or FWHM=0°.3) from Drlica-Wagner et al.

(2015) at the discovery of the stream. The reanalysis from
Shipp et al. (2018) with improved data sets indicates the stream
is slightly wider at 0 .18ws =  . Surprisingly, we found three
apparent member stars at least 3σ away from B 0= (see
Figure 2), including one BHB member (B 0 .69= -  ), one
RGB member (B 0 .692= -  ), and one RHB member
(B 0 .54= -  ). Finding three out of 22 members at B 3 ws>
may indicate that the stream profile is non-Gaussian. This can
naturally arise if Tuc III is a globular cluster since, while 5%~
of stars will escape per relaxation time due to tidal stripping
(Hénon 1961), 1%~ will escape from the core (e.g.,
Spitzer 1987; Baumgardt et al. 2002; Alexander & Gieles 2012)
with a much larger velocity dispersion due to multibody
interactions. The 17%~ of stars ejected from the core would
thus produce a much broader stream than the stars that were
tidally stripped. Of course, this argument will not apply if Tuc
III is a dwarf galaxy.
A non-Gaussian profile across the stream can also arise due

to epicyclic motion along the stream (Küpper et al. 2008, 2010,
2012). In particular, away from pericenter, the epicycles bunch
up and can almost overlap (see, e.g., Figure9 of Küpper et al.
2012). This can create streams with stars significantly off the
main track.
Alternatively, this may imply that one or some of these three

stars are not true members of the Tuc III stream, especially for
the RHB member. As we noted earlier, since the RHB star does
not seem to be an RR Lyrae star, it is very uncommon for dwarf
galaxies at this luminosity to have an RHB member. Proper
motion from Gaia Data Release 2 (DR2)49 can further assess
the membership of these stars.
Shipp et al. (2018) estimated that the stellar mass of the

stream is about M3.8 103´ . Assuming a Chabrier (2001)
initial mass function with an age of 12.5 Gyr and metallicity of
Fe H 2.3= -[ ] , we estimate a total of 30 5~  member stars
brighter than g 19.5~ in the stream from 100 realizations of
dwarf galaxy stellar populations randomly sampled using
ugali.50 As a comparison, among all the confirmed members
from the tails and the core, 26 members have g 19.5< . For
most of the AAT spectra, we get S/N ∼ 7 at g 19.5;~ except
for stars that were uniquely observed in the field of AAT-
Field3, where only a 2 hr exposure was taken, we get S/
N∼4 at g 19.5~ . About 90% of the target stars that are

48 The membership of this star will be discussed further inSection 3.4.

49 Seehttps://www.cosmos.esa.int/web/gaia/dr2 for more details.
50 https://github.com/DarkEnergySurvey/ugali
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brighter than g 19.5~ have successful RV measurements.
Those 10% unsuccessful measurements are mostly from
spectra in AAT-Field3. We conclude that our sample is
near complete at g 19.5< for AAT-Field1 and AAT-
Field2, which covers roughly 3 .6 in total. However, the

actual stream length is about 4 .8 ; therefore, we expect several
additional brighter members near the ends of the stream that
were not observed in this work.
Drlica-Wagner et al. (2015) found that the stellar mass of the

TucIII dwarf galaxy candidate is around M800 , which is
about 21% of the total stellar mass of the stream. Assuming a
Plummer profile, the enclosed stellar mass within two half-light
radii (2rh), close to the definition of the TucIII core here, is
about 80% of the total mass of the dwarf galaxy, i.e., 17% of
the total stellar mass of the stream. As a comparison, for all the
members at g 19.5< , we identified six members in the core
and 20 members in the tails, which confirms that the member
stars in the core account for 6 26 23%~ of the total members
in the stream. As we expect additional brighter members would
be found near the ends of the stream as discussed above, this
ratio would become lower after finding more tail members.

3.2. Velocity Gradient

As shown in Figure 1, a clear velocity gradient with
increasing velocity toward larger R.A. ( 2000a , or equatorial
east) is present in the TucIII stream. In this section, we
calculate the systemic velocity and velocity gradient using the
tail stars measured in this paper and compare the systemic
velocity with what was derived in Simon et al. (2017). We also
perform the fit with a different setup to check if the results
change with different fitting parameters and data sets. The
results are summarized in Table 2.
We first fit the RVs (v) and RV uncertainties ( vd ) of 21 tail

members (after excluding one probable binary member) via a
maximum-likelihood approach and a three-parameter like-
lihood function similar to Li et al. (2017) to derive the systemic
velocity vhelof the stream, i.e., the system velocity at the center
of the TucIII core ( 0L = ), the velocity gradient along stream
longitude dv dL , and the velocity dispersion vs :
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Since Simon et al. (2017) used flat priors to fit the systemic
velocity and velocity dispersion, we use flat priors for all three
parameters to have a direct comparison with Simon et al.
(2017) later.51 The posterior distribution from the MCMC
sampler is shown in Figure 3, and the best-fit values are
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where we report the 50th percentile of the posterior and the
uncertainty is calculated from the 16th and 84th percentiles.
At a distance of 25kpc, the velocity gradient of dv dhel L =

8.0 0.4 km s deg1 1-  - - corresponds to 18.3 km s kpc1 1- -

projected on the sky in the heliocentric frame. The best-fit velocity
gradient and systemic velocity, along with the velocities of the tail
members, are shown in the middle panel of Figure 2.

Figure 2. Top: members confirmed in this work in the TucIII stream
coordinates (Λ, B), where the center of the TucIII core is at ( B, 0, 0L =) ( ).
Symbols are the same as in Figure 1. Also plotted in black dots are the member
stars of the TucIII core from Simon et al. (2017), nine of which overlap with
the AAT confirmed members. The black dashed lines show the width

0 . 18ws =  (1σ) of the stream from Shipp et al. (2018). The orange dashed
circle shows the definition of members in TucIII core (r r2.2 h< ), where all
the members confirmed in Simon et al. (2017) are encircled. The definition of
position angle qc is also illustrated. Middle: heliocentric velocity vhel as a
function of stream longitude Λ for 22 members in the tidal tails. The RGB
member DES J235349.12−593245.4 was observed by both AAT (yellow
circles) and IMACS (cyan circles); both measurements are presented. The red
line shows the best-fit velocity gradient and systemic velocity from the MCMC
fit using the velocities of the tail members only. The black circles represent the
velocities of 26 core members from Simon et al. (2017). The orange star shows
the systemic velocity of the TucIII core measured by Simon et al. (2017). The
uncertainty is smaller than the size of the symbol. Bottom: zoom-in of the
dashed orange rectangle in the middle panel, in which the velocities of the 26
members from Simon et al. (2017) are also presented. The black dashed line
shows the best-fit velocity gradient from these 26 core members, the red dashed
line indicates the gradient from the tails (i.e., same as the red solid line in the
middle panel), and the gray dashed line indicates a no-gradient model. The
gradient derived from core members alone ( 6.0 3.9 km s deg1 1-  - - ) is
similar to what is detected in the stream ( 8.0 0.4 km s deg1 1-  - - ) but with a
much larger uncertainty. Due to the relatively large velocity uncertainties and
small velocity differences observed in the core, the gradient in the core is
statistically insignificant (see more discussion in the text).

51 The overall posterior distribution will be smaller for the velocity dispersion
if the Jeffreys prior is used instead(see, e.g., Kim et al. 2015; Li et al. 2018)
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We note that this is a fit using only the 21 out of 22 members in
the tails (one is excluded because of apparent binarity). We did
not use the other nine member stars in the core that were both
measured in this work, as well as in Simon et al. (2017).
Therefore, the fit gives an independent check on the systemic
velocity of the TucIII core. The systemic velocity of the TucIII
core is 102.3 0.4 km s 1-  - (Simon et al. 2017) from a sample
of 26 core members. The difference between the two, 1 km s 1~ - ,
is about 1.5σ of the joint uncertainty. To test the origin of this
slight velocity difference, we compare the individual member stars
observed with both AAT and IMACS(mostly from Simon
et al. 2017), as shown in Figure 4. All stars have consistent
velocity measurements within a 1σ uncertainty except for
DES J235738.50−593611.7, for which the difference is 2s~ . If
we use only the nine core members that are measured in both
works, we get v 101.6 0.5 km shel

1= -  - from AAT measure-
ments and v 102.0 0.4 km shel

1= -  - from Simon et al.
(2017). We conclude that the systematic offset between the two
instruments is minimal. This is consistent with our comparison of
the measurements from these two instruments in Li et al. (2018).
This also confirms that these nine core members do not show any
binary motions.

We also measured the velocity gradient and dispersion with
21 tail members plus nine core members measured in this work.
The results are consistent with fitting the tail sample alone.

We note that we fit the gradient along Λ (i.e., B 0= ) in the
earlier analysis. Similar to Li et al. (2017), we introduce an
additional degree of freedom on position angle qc, which is
defined to be north-to-east in the stream coordinates (see
illustration in the top panel of Figure 2) and run a four-
parameter fit in stream coordinates to check the possibility that
the velocity gradient dv dc is not aligned with the stream. We
found very similar results (see Table 2) to those from the three-
parameter fit, and 81 14q =   c is consistent with the case
where the gradient is aligned with the stream ( 90q = c ).

3.2.1. Equilibrium in the Tuc III Core?

Enlightened by the fact that TucIII had a very close pericenter
passage (see details in discussions in Section 4.1.2, as well as in
Erkal et al. 2018), we examine the state of equilibrium in the Tuc
III core; specifically, we search for signatures of velocity gradient
in the core. We applied the same four-parameter fit to the 26 core
members measured in Simon et al. (2017).52 We found a velocity
gradient of dv d 6.7 6.1 km s deg1 1c = -  - - and a position

angle of 103 58
42q = 

c -

+ for the TucIII core, which is consistent
with the gradient in the TucIII stream. However, the large
uncertainties on both the gradient and the position angle
indicate that the velocity gradient is poorly detected. If we
apply a three-parameter fit instead, the corresponding gradient
is similar with a slightly smaller uncertainty, at dv dL =

6.0 3.9 km s deg1 1-  - - . In the bottom panel of Figure 2, we
show the velocities of the 26 core members in stream coordinates
along with the best-fit gradient from the three-parameter fit. To
assess the significance of the velocity gradient model in the
TucIII core, we compute the (logarithmic) Bayes’s factor (lnB)
comparing the gradient model with the null model (no gradient).
(See Trotta 2008 for a review of the Bayes factor and Bayesian
model selection.) We find that lnB 1.6= - for both the three-
parameter and four-parameter models. Values 0> ( 0< ) favor
(disfavor) the gradient model, and values within the ranges
0 1 2.5 5< < < (0 1 2.5 5> - > - > - ) correspond to insig-
nificant, low, moderate, and significant evidence in favor
(disfavor) of the gradient model (based on the Jeffreys scale;
see Table1 of Trotta 2008). With only the core data, the gradient
model is disfavored compared to the no-gradient model at low
statistical significance. We note that, even if the core exhibits the
same gradient as the stream, an 0 .3~  extension in Λ in the core
will only have 2 km s 1~ - difference between the two ends,
which is similar to the uncertainty in the velocity measurements
for individual stars. The TucIII velocity gradient therefore only
becomes statistically significant once a large radial extent is
observed. If more precise velocity measurements are obtained for
stars in the range of 0 .05 0 .5 < L < ∣ ∣ (or more members are
found in this range), it may be possible to identify the location of
the transition between the remaining progenitor and the tidal tails.
The transition radius can be further compared with the tidal
radius at the pericenter of Tuc III’s orbit.
A comparison of the posterior distributions of the velocity

gradient and velocity dispersion of the TucIII tails using 22 tail
members from this work and those of the TucIII core using 26
core members are shown in the left and middle panels of
Figure 5. For both data sets, the four-parameter fit described
above is used. In Simon et al. (2017), the velocity dispersion of
the TucIII core was not resolved (i.e., 1.5 km s 1s < - at 95%
confidence level). As shown in the middle panel of Figure 5,
the velocity dispersion of the tails is likely slightly higher than
that of the core, though the posterior distributions of the two
largely overlap. The larger velocity dispersion in the tails may
be a natural consequence of the ongoing tidal disruption.

Table 2
Best Fit on Kinematics with Different Data Sets or Fitting Parameters

Fitting No. of Stars vhel dv dL or dv dc vs qc
km s 1-( ) km s deg1 1- -( ) km s 1-( ) (deg)

3-parameter, tails only (default) 21 101.2 0.5-  8.0 0.4-  0.9 0.5
0.6

-
+ L

4-parameter, tails only 21 −101.2±0.5 8.2 0.6
0.4- -

+ 0.9 0.5
0.6

-
+ 81±14

3-parameter, tails+core 30 −101.3±0.3 −7.9±0.4 0.6±0.4 L
4-parameter, tails+core 30 −101.3±0.3 8.1 0.5

0.4- -
+ 0.6±0.4 80±12

3-parameter, core(Simon et al. 2017) 26 −102.2±0.4 −6.0±3.9 1.3< L
4-parameter, core(Simon et al. 2017) 26 −102.2±0.4 −6.7±6.1 1.3< 103 68

43
-
+

11-parameter membership, tail+core 552 −101.4±0.5 8.4 0.5
0.4- -

+ 0.8±0.4 86±13

Note.All values reported here (and in this paper) are from the 50th percentile of the posterior probability distributions. The uncertainties are from the 16th and 84th
percentiles of the posterior probability distributions. For the upper limit, the 95% confidence level is used.

52 For stars that have multiple measurements, the one with the highest S/N
was used.
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3.3. Metallicity and Metallicity Dispersion

Among the 31 confirmed member stars in the TucIII stream,
we obtained the metallicity of 16 RGB members, four of which
are the brightest RGB members in the TucIII core and are also
measured by Simon et al. (2017) with IMACS. One tail
member was measured by both AAT and IMACS in this work.
A comparison of the AAT and IMACS measurements for these
five members is presented in Figure 4 and shows that there is
no systematic offset between the two. The brightest core
member (DES J235532) was also observed by Hansen et al.
(2017) with high-resolution spectroscopy, and the measured
metallicity ( Fe H 2.25 0.18= - [ ] ) is comparable to what is
measured in this work ( Fe H 2.28 0.10= - [ ] ). We note that
although more RGB members in the TucIII core have
metallicity measurements in Simon et al. (2017), we decide

to only use the members measured from this work for
the analysis of metallicity properties so that the limiting
magnitude for both core members and tail members is
relatively uniform (g 19 ).
The metallicity of the 16 RGB members from this work

spans from Fe H 2.3= -[ ] to Fe H 3.0= -[ ] , as shown in
Table 1. We found a mean metallicity of Fe H 2.49= - [ ]
0.06 and a metallicity dispersion of 0.11Fe H 0.06

0.07s = -
+

[ ] , with the
posterior distribution presented in Figure 6. As a comparison,
Simon et al. (2017) measured a mean metallicity of
Fe H 2.44 0.08

0.07= - -
+[ ] and an upper limit on the metallicity

dispersion of 0.19< at the 95.5% confidence level for the
TucIII core. Similar to the velocity dispersion, the metallicity
dispersion from the stream (core+tail) is slightly larger than
that in the core (see right panel of Figure 5). The increase in the
dispersion might be a hint that the progenitor of the TucIII

Figure 3. Two-dimensional and marginalized posterior probability distribution from an MCMC sampler using a three-parameter likelihood model. The three
parameters are the systemic velocity vhel (in km s 1- ) at the center of the TucIII core (i.e., 0L = ), the velocity dispersion vs (in km s 1- ), and the velocity gradient
along stream longitude dv dL (in km s deg1 1- - ). Dashed lines in the 1D histograms indicate the 16th, 50th, and 84th percentiles of the posterior probability
distributions. A large velocity gradient of 8.0 0.4 km s deg1 1-  - - is detected.
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stream is more likely to be a dwarf galaxy rather than a star
cluster (see discussions in Section 4.1.3). This dispersion is
mainly driven by the three most metal-poor RGB members in
the stream ( Fe H 2.7< -[ ] ). A comparison of their spectra to
those of the core members is displayed in Figure 7.
Interestingly, these three most metal-poor RGB members are
also among the farthest stream members from the TucIII center
along the stream, as shown in the bottom left panel of Figure 1.

3.4. Spectroscopic Membership Probability

We construct a probabilistic mixture model as a cross-check
of our membership selection determined in Section 3.1 and to
see if the exclusion of an MW component adversely affected
our results. We only apply the mixture model to the AAT data
to consider a relatively uniform depth across the entire field.

The mixture model likelihood with the TucIII stream and
MW components is written as

P f P f P1 , 2Total MW TucIII MW MW= - +( ) ( )

where fMW is the fraction of stars in the MW population. We
only use velocity and metallicity data in this mixture model
with data vector v , , Fe H ,i i v i i i, Fe H , d d= ( [ ] )[ ] , where vi and
Fe H i[ ] are the velocity and metallicity of every observed star
and v i,d and iFe H ,d[ ] are the uncertainties of the measurements.
Both velocity and metallicity are constructed with Gaussian
distributions. We write the Gaussian distribution as

v
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The TucIII stream model is similar but includes an additional
term for the velocity gradient (dv dc):
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Overall, we have 11 free parameters: the TucIII stream (vhel,

vs , dv dc, qc, Fe H[ ], Fe Hs[ ]), MW (vhel
MW, v

MWs , Fe H MW[ ] ,

Fe H
MWs[ ] ), and fMW. For the low-S/N stars without metallicity

measurements, we average over all possible metallicity values;
as the metallicity likelihood is normalized to 1, this effectively
excludes the metallicity term. We assume linear priors for all
parameters. We determine the posterior distribution with the
MultiNest package (Feroz & Hobson 2008; Feroz et al. 2009).
We compute membership probabilities (pi) by computing
the ratio of TucIII likelihood to the total likelihood
(p f1i MW Tuc III Total = -( ) ), and we refer to these as the
Bayesian membership probabilities (Martinez et al. 2011).
The membership is computed for each point in the chain, and
the median value is adopted as the final pi.
We find 31 stars with nonzero membership (p 0.001i > ) and

overall membership p 28.3iå = . The 29 members (AAT only)
in Section 3.1 all have p 0.75i > , and there are two stars
previously considered nonmembers that have a nonzero
membership in the mixture model. The first nonmember,
DES J000104.89−594814.4, has pi=0.49 and was considered
a nonmember previously due to the velocity offset and the
offset in color from the TucIII CMD. Because the velocity
offset from TucIII’s velocity is small ( 10 km s 1~ - ) and it has a
low metallicity, it has a nonzero membership in the mixture
model. The second, DES J234949.16−602020.5, has pi=0.73
and was considered a nonmember due to the metal-rich
template providing a better fit than the metal-poor template due
to the large CaT EW. As the S/N was too low for an accurate
CaT EW measurement, only the velocity was considered in the

Figure 4. Comparison of the measurements of RVs (left) and metallicities (right) from AAT and IMACS. Except for DES J235349.12−593245.4 (shown as a gray
triangle), the other IMACS measurements were taken from Simon et al. (2017). The measurements from the two different instruments are consistent within a 1σ
uncertainty for the majority of stars, except for the RV of DES J235738.50−593611.7. The RV uncertainties from the AAT measurements on most stars are larger,
mainly due to the lower S/N of the spectra.

12

The Astrophysical Journal, 866:22 (23pp), 2018 October 10 Li et al.



mixture model, and the mixture model considers this star a
probable member. The properties of TucIII are not changed
with respect to our results with the subjective analysis
described inSection 3.1; we conclude that our determination
of the TucIII properties is robust. Overall, our Bayesian
membership probabilities agree with the subjective
membership.

We explored adding spatial information to the mixture model.
We precomputed spatial probabilities based on a simple Gaussian
model in stream latitude B with stream width 0 .18ws =  (Shipp
et al. 2018). We find that the spatial probability lowers the
membership probabilities of the candidate stars at larger B
(especially the three members at B 3 w s ), and therefore the
overall membership decreases to p 26.4iå = . However, adding
spatial information does not change the posterior distribution of
the kinematic and chemical properties of the Tuc III stream, as
shown in Figure 8.

4. Discussion

4.1. The Properties of the Tuc III Stream

4.1.1. Density Variation along the Stream

As shown in Figure 2, if we ignore the members confirmed
by IMACS (which probes much deeper than AAT) and only
focus on the 29 confirmed members from AAT, we notice
obvious underdensities around 0 .5L ~   . As discussed in
Section 3.1, the bright members with g 19.5< are mostly

Figure 5. Comparison of the velocity gradient dv dc (left), velocity dispersion vs (middle), and metallicity dispersion Fe Hs[ ] (right) derived from this work (red) on
the TucIII streams and Simon et al. (2017; black) on the TucIII core. For velocity gradient and velocity dispersion, 21 tail members (one excluded due to binarity)
from this work were used. For metallicity dispersion, 16 tail+core RGB members from this work were used.

Figure 6. Posterior distribution of mean metallicity Fe H[ ] and metallicity
distribution Fe Hs[ ] from 16 RGB members.

Figure 7. Spectra of four TucIII stream members, two tail members, and two
core members observed by AAT, shown with black lines. The red lines are the
best-fit model for measuring the CaT EWs, as described inSection 2.3.
The member stars are chosen so that they have similar brightnesses to minimize
the surface gravity effect on CaT EWs. The two tail stars have smaller EWs and
therefore are more metal-poor compared to the core stars at a similar brightness.

13

The Astrophysical Journal, 866:22 (23pp), 2018 October 10 Li et al.



identified within the fields of three AAT pointings. We
therefore believe this nonuniform distribution of bright
member stars is not a cause of observational bias. Though
these underdensities could be a result of small-number
statistics (∼20 tail stars from AAT), they may also just
appear underdense relative to the epicyclic overdensities
arising from tidal disruption (e.g., Küpper et al. 2008, 2010)
that have been seen in the Pal 5 stream (e.g., Erkal et al. 2017;
Küpper et al. 2017). Given the short amount of time needed to
form a stream as long as TucIII(see Erkal et al. 2018), the
fact that no more wiggles (overdensity + underdensity) have
been seen in these bright members might also reflect the fact
that the progenitor has only had one pericentric passage

(where the first tidal disruption happened). Additional
modeling is needed to investigate the formation of the stream.
Given the small sample with bright member stars, we suggest
that the density variation along the stream longitude should
be further investigated and verified with deeper photome-
try data.

4.1.2. The Stream Orbit

As shown in Figures 1 and 2, the RV of the TucIII
stream member stars decreases toward smaller R.A. ( 2000a )
or larger stream longitude (Λ). TucIII has a velocity
of v 195.2 km sGSR

1= - - at 0L = and dv dGSR L =
6.1 km s deg1 1- - - in the Galactic standard of rest (GSR) frame.

Figure 8. Posterior distributions of the TucIII stream and MWmixture model from 552 stars in the three AAT fields. Only the TucIII stream properties of the mixture
model are displayed here. They are, from left to right, systemic velocity (vhel), velocity dispersion ( vs ), velocity gradient (dv dc), position angle of the velocity
gradient (qc), average metallicity ( Fe H[ ]), and metallicity dispersion ( Fe Hs[ ]). The posteriors of the TucIII properties in the mixture model are very similar to the
results from the subjective membership selection.
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Therefore, the stream is moving toward the Galactic center; the
west tail (or 0L > ) is the leading arm and moving faster toward
us, and the east tail (or 0L < ) is the trailing arm and moving
slower.

Furthermore, Shipp et al. (2018) reported that a distance
gradient of 0.14 0.05 mag degd m M

d
1= -

L
-( ) was detected

along the TucIII stream, implying (given the stream’s
position relative to the Galactic center) that the TucIII
stream is on a radial orbit. The large velocity gradient
measured in this work matches with the picture of the large
distance gradient from photometry measurements. In fact,
TucIII is likely on a highly eccentric (e 0.9~ ), inclined orbit
with a pericenter of several kpc from the Galactic center,
though this orbit largely depends on the mass of the Large
Magellanic Cloud (LMC). We refer readers to Erkal et al.
(2018) for more detailed modeling work on the orbit of the
TucIII stream that uses the stream track and distance
measured from the DES photometry, as well as the velocity
and velocity gradient from this work.

The orbit of the TucIII stream will be further constrained by
the proper motions of the stream, which will soon be measured
by the upcoming Gaia DR2. We computed the expected
precision of the proper motions with which the TucIII stream
will be measured using the spectroscopically confirmed
members from this work (see details in Appendix B). The
projected precision of 0.04 mas yr−1 (or 5 km s−1 at 25 kpc)
will place very tight constraints on the orbit of the TucIII
stream and further constraints on the mass of the LMC(see
Erkal et al. 2018).

4.1.3. The Nature of the Progenitor

The nature of Tuc III is still under debate. Due to its low
metallicity and size, Simon et al. (2017) tentatively suggested
that TucIII is the tidally stripped remnant of a dark matter–
dominated dwarf galaxy. Indeed, if the total stellar mass of the
progenitor is the same as the TucIII stream as measured by
Shipp et al. (2018; i.e., M3.8 103´ ), it would lie directly
on the metallicity–luminosity relation of dwarf galaxies (Kirby
et al. 2013). However, recent work by Simpson (2018) found a
similarly low metallicity for the faint globular cluster ESO 280-
SC06, further blurring the boundary between dwarf galaxies
and star clusters.

Apart from the metallicity, the large size of TucIII
(r 44 pch ~ ) relative to the globular cluster population is
another piece of evidence favoring a dwarf galaxy origin. If
the progenitor is a star cluster, the unusually large size would
presumably be a consequence of tidal stripping. However,
even though stripping plus observational biases can poten-
tially inflate the size of faint star clusters(Contenta
et al. 2017), the radius of TucIII is still large enough to be
difficult to explain. While it is known that compact globular
clusters (r5 pc) can survive very close encounters with the
center of the MW (e.g., Sohn et al. 2018), comparable
measurements are not available for low-mass dwarf galaxies
or extended outer halo clusters. Theoretical modeling of
objects on such orbits could provide additional clues to the
nature of TucIII. For future studies, it is also important to
obtain better and/or additional velocity measurements in the
inner region of the stream (i.e., 0 .05 0 .5 < L < ∣ ∣ ) to detect
where the gradient starts and identify the location of the
transition between the remaining progenitor and the tidal tails
(see discussions in Section 3.2).

As discussed inSection 3.3, driven by the three most
metal-poor stars near the two ends of the stream, we found a
marginally larger metallicity dispersion for the TucIII stream
compared to the upper limit in the TucIII core (Simon
et al. 2017), suggesting a possible dwarf galaxy origin for the
TucIII stream. If the outer halo of the progenitor object was
tidally stripped first, then seeing more metal-poor stars
farther from the core (along the stream direction) indicates a
possible metallicity gradient in the progenitor, where the
metal-poor stars are less centrally concentrated than the
metal-rich ones. Similar trends have been seen in other MW
satellite galaxies but at larger stellar masses(see, e.g., Kirby
et al. 2011). This could also explain why the metallicity
dispersion of the TucIII core is small despite its progenitor
being a dwarf galaxy. We measure 0.11Fe H 0.06

0.07s = -
+

[ ] dex; as
Willman & Strader (2012) concluded that 0.2Fe Hs >[ ] dex
robustly diagnoses a dwarf galaxy, the metallicity dispersion
does not definitely classify this object. If TucIII is a dwarf
galaxy, the small dispersion inferred here is likely the result
of the following two causes. First, as a result of the low S/N
of the AAT spectra, the uncertainty on the CaT-derived
Fe H[ ] of individual stars is relatively large (most members
have Fe H[ ] uncertainties larger than the median metallicity
dispersion of 0.11 dex). Therefore, despite a large metallicity
range ( 3.0 Fe H 2.3- < < -[ ] ), the metallicity dispersion is
not completely resolved (i.e., it is still consistent with zero).
The dispersion can be refined with better metallicity
determinations with either high-resolution spectroscopic
follow-up observations or perhaps higher-S/N CaT spectra.
Second, the sample size of the most metal-poor population is
small, i.e., only three members at Fe H 2.7< -[ ] . It is
possible that the progenitor contained more metal-poor
members at Fe H 2.7< -[ ] but they were stripped first and
are now outside the known extent of the stream. Testing the
metallicity gradient hypothesis requires mapping the entire
Tuc III stream, in particular seeking lower-metallicity stars
that might be located near the ends of the stream.
Furthermore, the chemical abundance patterns of the

member stars could help the classification. For example,
light-element abundance correlations (e.g Na–O, Na–Al,
Mg–Al) appear to be ubiquitous in star clusters (e.g., Bastian
& Lardo 2017; Johnson et al. 2017). Many confirmed
TucIII stream members from this work are bright enough for
a detailed abundance analysis via high-resolution spectroscopic
observations.
Furthermore, based on the width of the stream, Shipp et al.

(2018) derived the progenitor mass to be M8 104~ ´ . If the
stellar luminosity of L2.8 103´  (or M 3.8v = - ) reported in
Shipp et al. (2018) is close to the total stellar luminosity of
the progenitor, it would imply a mass-to-light ratio of

M L40~  , indicating a possible dwarf galaxy classifica-
tion, though most of the ultra-faint dwarf galaxies at a similar
luminosity have a much larger mass-to-light ratio.53

4.2. Comparison with Other Streams and Satellites

4.2.1. Palomar 5

Of all the thin streams known so far, the tidal tails of the
globular cluster Palomar 5 (Pal 5) are in many ways similar to

53 We also note most of the mass-to-light ratios are defined within the half-
light radius, which is very different from how the progenitor mass was
calculated based on the width of stream.
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the TucIII tails—both have an identified unambiguous
progenitor and a similar velocity dispersion (see below).
First detected in SDSS (Odenkirchen et al. 2001), the stellar
stream of the Palomar 5 globular cluster extends over at least
22° (Ibata et al. 2016). A velocity gradient (in heliocentric
frame) in the range 0.4 1.0 km s deg1 1- -– was first detected by
Odenkirchen et al. (2009) and later confirmed with larger data
sets (Kuzma et al. 2015; Ibata et al. 2017). While at a similar
heliocentric and Galactocentric distance, it is noteworthy that
TucIII possesses a velocity gradient 10× larger than that of
Pal 5. Ibata et al. (2017) found that the stellar mass of the
tidal tails is 3× the mass of the core, which is very similar to
the TucIII stream, though TucIII appears shorter on the sky
(5° versus 22°), partially due to the projection from its
orientation.

Though the progenitor of the TucIII stream is more likely
to be a dwarf galaxy based on the large range of metallicities
in member stars, as discussed in Section 4.1.3, the velocity
dispersion of the TucIII tails is smaller than that of the Pal 5
stream(2.1 0.4 km s ;1 - Kuzma et al. 2015). This low
velocity dispersion of the TucIII stream makes it a good
target to search for stream density perturbations caused by
close encounters with dark matter subhalos (e.g., Erkal &
Belokurov 2015b). The short length of the TucIII stream,
however, may imply that the stream formed recently, and
therefore there might not have been enough time for dark
matter subhalos to perturb the stream density. A more precise
model of the stream will clarify the extent to which the stream
is only apparently short due to it being aligned with our line
of sight from the Sun. Even if the short length is only a
projection effect, it will likely make it harder to search for
gaps and wiggles along the stream. In addition, if there are
density variations near the progenitor due to its secular
disruption, these will need to be accounted for in the search
for subhalos.

4.2.2. Tidal Features Associated with Dwarf Galaxies

The kinematics and morphology of the TucIII tails leave
no doubt that they are physically associated with the satellite
and that the tidal stream contains a large velocity gradient.
This result suggests that the observation of velocity gradients
can be a good way to assess the dynamical state of dwarf
galaxies (Piatek & Pryor 1995). Below, we discuss other MW
dwarfs that have been claimed to contain extratidal features
and/or velocity gradients and compare them with the TucIII
stream.

Circumstantial photometric and kinematic evidence has been
used to argue that several other dwarf galaxies are being tidally
disrupted. For example, unusually high ellipticities (e.g.,
Hercules, Ursa Major II; Sand et al. 2009; Muñoz et al.
2010), irregular outer isophotes (e.g., Ursa Major I, Ursa Major
II; Okamoto et al. 2008; Muñoz et al. 2010; although see
Martin et al. 2008 regarding the significance of such features),
extratidal substructures (e.g., Hercules; Sand et al. 2009), and
kinematic substructure or velocity gradients (e.g., Coma
Berenices, Hercules, Leo V, Ursa Major II; Simon & Geha
2007; Adén et al. 2009; Collins et al. 2017) have been found in
several satellites and interpreted as tidal features. It is important
to keep in mind, however, that the common attribution of such

features to tidal stripping is not borne out by simulations of the
stripping process (Muñoz et al. 2008).
A prime example of a dwarf galaxy often suggested to be

disrupting is Hercules. Many authors have considered its
extremely elongated stellar distribution as evidence of tidal
disruption (Belokurov et al. 2007; Coleman et al. 2007; Sand
et al. 2009; Roderick et al. 2015). Extratidal stellar over-
densities, especially along the major axis, have also been
identified (Sand et al. 2009; Fabrizio et al. 2014; Roderick
et al. 2015), and several RR Lyrae variables are located at
large projected separations from the dwarf (Garling
et al. 2018). Note that while multiple studies have detected
stellar overdensities, many of them do not overlap. Hercules
has also been claimed to contain a velocity gradient (Adén
et al. 2009; Deason et al. 2012), but the statistical significance
of the gradient is very low (1.2σ), and a much larger
spectroscopic sample over a wider area would be needed to
test its reality (similar to our results in the Tuc III core).
Martin & Jin (2010) argued that Hercules could be an
unbound stellar stream resulting from the disruption of a
dwarf galaxy. Küpper et al. (2017) suggested that Hercules is
on a very eccentric orbit and that Hercules and any extra
structure are perpendicular to the orbit.
Of the ultra-faint dwarf galaxies often cited as undergoing

tidal disruption in the literature, Leo V is notable for its
similarities to Tuc III. There is some evidence for tidal
disruption based on the stellar distributions (Belokurov et al.
2008; de Jong et al. 2010; Sand et al. 2012), in particular the
extended BHB population (Belokurov et al. 2008; Sand et al.
2012) and RR Lyrae stars (Medina et al. 2017). Leo V has a
tentative velocity gradient (Collins et al. 2017) with roughly
four times the magnitude of Tuc III ( 80 km s kpc1 1~ - - ), but it
was measured with only eight stars over just 3~ ¢. Similarly,
Walker et al. (2009) found two potential members at large radii
(r 13» ¢) and argued that Leo V is losing mass. A velocity
gradient and members at large radii could indicate stripping
from Leo V. If Leo V is undergoing tidal disruption similar to
Tuc III, the lack of apparent tails may be due to the large
distance of the satellite. In this scenario, deeper observations of
the main sequence might reveal an extended structure. As a
note, the surface brightness of the Tuc III core is about
29 mag arcsec−2 (Drlica-Wagner et al. 2015), while the surface
brightness of the tails is about 3 mag arcsec−2 fainter (Shipp
et al. 2018).
A key difference between Tuc III and Hercules and Leo V is

that the latter two are quite distant satellites of the MW
(d 130 kpc;> Musella et al. 2012; Sand et al. 2012), well
beyond the region where the MW’s tidal field could be causing
stripping. If these objects are on very highly eccentric orbits,
then they could have suffered significant tidal stripping at
pericenter and are now located near apocenter (Küpper et al.
2017), but the required orbital eccentricities to bring them
within a few kpc of the Galactic center at pericenter are extreme
(e 0.95> ). Moreover, numerical simulations indicate that
dwarfs that are not completely disrupted should quickly return
to equilibrium after a pericentric passage (e.g., Peñarrubia
et al. 2008, 2009; Kazantzidis et al. 2011; Barber et al. 2015),
in which case tidal features are not expected to be seen for
objects that are currently far out in the halo of the MW. While it
has been suggested that Leo V could be physically associated
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with its neighbor Leo IV and that a tidal interaction between the
two is possible (de Jong et al. 2010), the mass required for the
two systems to be gravitationally bound to one another is
implausibly large for their luminosities (de Jong et al. 2010;
Blaña et al. 2012).

Regarding the ultra-faint dwarf Segue 2, Kirby et al. (2013)
argued that it was tidally stripped because it does not lie on the
stellar mass–metallicity relationship. A similar argument was
made for the Tuc III core (Simon et al. 2017). Including the
stellar mass in the tidal tails will move Tuc III into agreement
with other dwarf galaxies with respect to the stellar mass–
metallicity relationship. In contrast with Tuc III, there are no
clear tidal features seen in the Segue 2 stellar distribution, even
with data that reach the main sequence of Segue 2 (Belokurov
et al. 2009).

5. Selecting Metal-poor RGB Stars with DES Photometry

Although halo substructures such as stellar streams and
dwarf galaxies are most commonly identified by their MSTO
stars, which dominate the total stellar counts of a system for
typical survey depths, the spectroscopic follow-up observations
for membership identification and kinematic measurements are
mostly performed on RGB stars due to the faintness of the
MSTO stars. In contrast to the hundreds to thousands of MSTO
members, there are usually only a few dozen RGB members in
a stellar stream or an ultra-faint dwarf galaxy. The efficiency of
membership identification is extremely low due to a large
amount of contamination from foreground stars in the MW disk
and the low density of RGB members in these substructures,
especially for stellar streams where the surface density is much
lower compared to dwarfs. For example, of the 552 stars for
which we obtained successful velocity measurements with the
AAT observations, only 29 are members of the Tuc III stream.
Fortunately, stellar streams and dwarf galaxies are mostly old
and metal-poor populations; therefore, if the stellar metallicity
can be roughly estimated using the photometry, the foreground
contaminants could be largely removed, increasing the success
rate of follow-up spectroscopy.

The broadband colors of stars are sensitive to their chemical
composition. For example, many studies have found correla-
tions between stellar colors and metallicities for M
dwarfs (Lépine 2008; Bochanski et al. 2013; Lépine et al.
2013; Li et al. 2014). For F/G stars, Ivezić et al. (2008)
presented a correlation to estimate their effective temperature
and metallicity using the position of the stars on the SDSS
u− g versus g− r diagram. This method was based upon the
traditional ultraviolet- (UV-) excess method or line-blanketing
effect (see, e.g., Wildey et al. 1962; Sandage 1969). In other
words, the metallicity of a subdwarf (i.e., metal-poor dwarf
star) can be estimated with the difference between the star’s
U− B color and what would be measured for a more metal-rich
star with the same B− V color, because more metal lines are
present in the shorter wavelengths of a stellar spectrum.
Unfortunately, the DES does not routinely use the DECam u
band. Here we study the locations of confirmed member stars in
the Tuc III stream on the g− r versus r− i diagram. Thanks to
the high photometric precision of the DES, the method
described below can be used to improve the target selections
for future spectroscopic observations seeking members in
streams and dwarf galaxies.

We constructed a color–color diagram for the confirmed
RGB members in the Tuc III stream in g− r versus r− i using

the DES DR1 photometry when available.54 We focus on the
color range g r0.4 0.8< - < because this is the range for the
RGB member stars in the Tuc III stream where the foreground
contamination dominates.
As shown in the top left panel of Figure 9, all confirmed

Tuc III members lie on one side of the empirical stellar locus,
which was constructed as the median of stars in the
dereddened DES photometry. Specifically, we select a sample
of stars over the full survey footprint in regions with low
interstellar extinction—E B V 0.015- <( ) using the redden-
ing map of (Schlegel et al. 1998)—that are unsaturated and
measured with high S/N in each of the g, r, i, and z bands
(e.g., r16 21  ). We bin these selected stars (∼200,000)
according to their g− z color with ∼500 stars in each of 429
bins and evaluate the median stellar colors in each bin. As
the stream members are all metal-poor stars ( Fe H 2< -[ ] ),
the clumping of the members suggests that the color of these
RGB stars slightly depends on the metallicity of the star. We
therefore plot the Dotter isochrones at age=12.5 Gyr and
various metallicities in the top right panel of Figure 9 and find
a clear indication that at a given r− i color, metal-poor stars
tend to be bluer in g− r. This trend is very similar to the u− g
versus g− r diagram seen in Figure 2 of Ivezić et al. (2008).
Similar to the UV excess in U− B (or u− g for SDSS), metal-
poor stars also present a g− r excess at a given r− i color.
We also plot the blanketing vectors (see, e.g., Sandage &
Eggen 1959; Wildey et al. 1962) in the g− r versus r− i
diagram, which shows the shift in position from a metal-poor
giant star to a metal-rich giant star at a constant temperature
using the synthetic magnitude from the Dotter isochrones. For
a more metal-rich star, the g− r color gets redder and the r− i
color gets bluer.
This metallicity-dependent color will improve the effi-

ciency of selecting stream or dwarf RGB candidate members
by at least a factor of 50% (because all the member stars of the
Tuc III stream are on one side of the stellar locus). This is
extremely valuable for the spectroscopic follow-up program,
where the number of fibers or slitlets of a multi-object
spectrograph in one exposure is limited, and especially useful
for stellar stream follow-up, where the member stars are
sparsely populated and the foreground contamination from
MW disk stars is relatively high. Furthermore, this color–
color selection can remove foreground metal-rich disk stars
and improve the detection significance for distant substructure
searches (i.e., dwarfs and streams) using photometry alone,
since in these distance structures (d 200 kpc> ), only RGBs
are brighter than the limiting magnitude of the imaging
survey.
Note that from Fe H 2.3= -[ ] to Fe H 0.6= -[ ] , the

difference in r− i is less than 0.05 mag. Therefore, this color
difference cannot be revealed without the high-precision
DES photometry (rms < 0.01 mag; see Burke et al. 2018).
Furthermore, this color–color selection is most efficient for
the brightest stars where the uncertainty from photon noise is
negligible (g 21< ). Fortunately, our spectroscopic targets
are usually bright RGB stars, and therefore we can take
advantage of the precise photometric calibration of
the DES.
Following the trend discussed above, photometric metallicity

could, in principle, be derived statistically for stars at

54 Stars that have the Y2Q photometry in Table 1 are not included in Figure 9.
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g r0.4 0.8< - < based on their colors and thereby derive the
metallicity distribution function of the MW’s disk and its stellar
halo, though a more sophisticated calibration is needed to
derive a more precise correlation between the metallicity of the
stars and their positions in the g− r versus r− i diagram. As a
proof of concept, we plot stars in the region of the Tuc III
stream without any prior color–magnitude cut in the bottom
panels of Figure 9. We selected stars in two groups, g 19<

and g21 23< < . The brighter stars are nearby and therefore
dominated by metal-rich disk stars, and the fainter stars are
more distant and therefore dominated by metal-poor halo stars.
The brighter group has a majority of its stars below the
empirical stellar locus (and therefore is more metal-rich), while
the fainter group has more stars above the locus (and therefore
is more metal-poor). We leave a more thorough study of this
topic to a future paper.

Figure 9. Top left: color–color diagram in g−r vs. r−i for the observed targets (gray dots) and confirmed members (red filled circles) in the TucIII stream. The
dashed blue line is an empirical stellar locus of DES photometry. All confirmed TucIII members lie on one side of the empirical stellar locus and align well with a
metal-poor isochrone at Fe H 2.3= -[ ] using the synthetic magnitude from Dotter isochrones. Top right: synthetic magnitude from Dotter isochrones at
age=12.5 Gyr and various metallicities, along with the empirical stellar locus as shown in the top left panel. The synthetic magnitude from the isochrone indicates a
strong metallicity dependent on g−r color at a given r−i color. Also plotted (red vectors) are the isotherm lines (or blanketing vectors) for giant stars using the
synthetic magnitude from the Dotter isochrones. At a given stellar temperature, the g−r color increases (i.e., redder) and r−i color decreases (i.e., bluer) from a
metal-poor stellar population to a metal-rich stellar population. Bottom: stars in the field of the TucIII stream with g 19< (bottom left) and g21 23< < (bottom
right). The brighter (fainter) stellar bin is dominated by nearby disk stars (distant halo stars) and has more metal-rich (metal-poor) stars; thus, the majority of stars are
below (above) the stellar locus. The high-precision DES photometry could provide a rough metallicity estimation of the red stars ( g r0.4 0.8< - < ) based on the
g−r vs. r−i color of the stars and could further provide an estimation of the metallicity distribution function of the MW. We note that in the bottom right panel, due
to the poorer star–galaxy separation at the fainter magnitude, we expect some galaxy contaminations whose colors are far away from the stellar locus. The median
photometric uncertainty for each magnitude bin is also shown. The uncertainties are computed as a quadrature sum of the statistical uncertainty from the DES DR1
catalog (WAVG_MAGERR_PSF) and the systematic uncertainty as reported in DES DR1(Abbott et al. 2018). In the brighter bin, the uncertainty is dominated by the
systematic precision at 6–7 mmag (note that the spectroscopically confirmed Tuc III stream members have similar uncertainties). In the fainter bin, the uncertainty is
dominated by the WAVG_MAGERR_PSF quantity with a median at 0.01–0.02 mag.
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6. Summary

We report on a spectroscopic analysis of the Tuc III stream
using the 2dF+AAOmega spectrograph on the AAT and the
IMACS spectrograph on the Magellan Baade Telescope. We
identify, for the first time, 22 members in the tidal tails of
Tuc III. Together with the 26 members in the Tuc III core
previously confirmed by Simon et al. (2017), this study yields a
total sample of 48 stars in the Tuc III stream. Using the tail
members, we measured a large velocity gradient of

8.0 0.4 km s deg1 1-  - - along the stream, consistent with
the picture of the large distance gradient detected from the DES
photometry (Shipp et al. 2018). This velocity gradient, many
times larger than that of the Pal 5 stream, for instance, strongly
suggests that Tuc III is on a radial orbit and passed close to the
Galactic center. The membership and velocity information
obtained in this work allows a detailed, precise orbit of Tuc III
to be constructed (see Erkal et al. 2018) that will further our
understanding of the mass distribution of our Galactic
neighborhood, including the relative roles that dark matter,
disk stars, and the LMC play in determining overall halo
dynamics.

We found several more metal-poor member stars near the
ends of the stream. These more metal-poor members farther
from the center of Tuc III result in a slightly larger metallicity
dispersion for the stream than that for the core alone, as derived
in Simon et al. (2017), indicating that the progenitor of the
Tuc III stream is likely to be a dwarf galaxy rather than a star
cluster. However, the metallicity dispersion we found is still
smaller than that of most dwarf galaxies at a similar luminosity.
Additional metal-poor members farther from the center of the
stream may be found in future observations if such a metallicity
gradient is genuine.

We found that in a color–color diagram of g− r versus r− i,
all the member stars in the Tuc III stream are systematically
redder in r− i color (or bluer in g− r) than most nonmember
stars. The high precision of DES photometry allows us to
identify metal-poor stars photometrically. This metallicity-
dependent color offers a more efficient method for selecting
metal-poor targets and will increase the efficiency of selecting
stream members for future spectroscopic follow-up programs.
Furthermore, the color–color selection can eliminate fore-
ground metal-rich disk stars and improve the detection
significance in finding dwarf galaxies and stellar streams using
DES data (or other imaging surveys with a similar or better
photometric precision).
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Appendix A
Coordinate Transformation Matrix

In Section 3.1, we described the transformation from
celestial coordinates ( ,a d) to stream coordinates ( B,L )
for the Tuc III stream using Euler angles ( , , 264 .23,f q y = 
120 .29, 267 .51  ) so that the stream is roughly aligned along
B 0= and the Tuc III core is at 0L = . The transformation
from ( ,a d) to ( B,L ) is given by
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Appendix B
Expected Proper Motion Precision from GAIA DR2

The 29 member stars confirmed by AAT are relatively
bright (g 20< ) and will soon have proper motion measure-
ments from Gaia DR2. Here we estimate the expected
precision of proper motion on the TucIII stream from Gaia
DR2(Gaia Collaboration et al. 2016). We computed the
expected proper motion uncertainties from Gaia DR2 for
every star using the PyGaia package55 given the Gaia
G-band magnitude and V−I color of each star. We first
convert the DES photometry to Gaia G-band photometry
using the transformation equation reported in the Appendix
of Abbott et al. (2018). Since V−I color is unavailable for

these stars, we replaced it with DES g−i color instead. We
note that there is a small offset between the two, but a shift of
0.1 mag in V−I will only cause a 0.5μasyr−1 change in the
proper motion for the stars at G=20. We therefore conclude
that the effect of replacing V−I with g−r is minimal.
Since proper motion errors scale like t 1.5- , where t is the
duration of the observations, we also scaled the error by a
factor of 4.5´ of what pygaia computes, taking into
account that DR2 only includes the Gaia data from the first
22 months of the entire 5 yr mission length.56 The projected
proper motion uncertainty is roughly 0.1 0.2 0.5 1.0< < <
masyr−1 for individual stars with r-band magnitudes of
16.1 17.3 18.6 19.6< < < .

We then compute the weighted averaged uncertainty of
the 29 member stars as the expected precision of the proper
motion on the TucIII stream, which is on the order of
∼0.04masyr−1. We caution that this projected overall
uncertainty is calculated by assuming that the uncertainty on
each individual star is largely dominated by the statistical
uncertainty and therefore the overall uncertainty will be
reduced by averaging all of the measurements together. If the
precision from Gaia is systematics-limited at this brightness,
then the final overall uncertainty on TucIII could be
much larger.
We also note that this weighted average uncertainty

is mainly determined by the six brightest RGB members,
which each have projected proper motion uncertainties of
<0.2 mas yr−1. Recently, four RR Lyrae stars have been
found (C. E. Martínez-Vázquez 2018, in preparation) along
the TucIII stream that are not in this spectroscopically
confirmed sample. The RR Lyrae stars in TucIII are
relatively bright. Assuming a magnitude of G 17.5~ and
V I 0.2- ~ , each RR Lyrae star will have a proper motion
uncertainty of 0.2–0.3 mas yr−1. Including these RR Lyrae
stars will further improve the precision of the stream proper
motion.

Appendix C
Potential Members of the TucIII Stream

During the velocity measurements, we found another 52
candidate members that suggest a tentative velocity in the
range of v140 km s 70 km s1 1- < < -- - . However, the low
S/Ns ( v1 6  ) of the spectra did not pass the visual
inspection in the fit. We did not include them in the analysis,
but we list these stars and the best-fit velocity in Table 3. We
caution about the use of these measurements in RV (and
therefore the uncertainties are not provided), but we suggest
that these stars can be followed up spectroscopically with
larger telescopes to verify their velocities and membership.
Some of these stars are brighter than the limiting magnitude of
Gaia DR2, and, accordingly, their membership status could
be tested in the near future through precise proper motion
measurements.

55 https://github.com/agabrown/PyGaia 56 https://www.cosmos.esa.int/web/gaia/dr2
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Table 3
Potential Members in the TucIII Stream

ID 2000a 2000d g r Cat. Inst. S/N v
(deg) (deg) (mag) (mag) (km s 1- )

DES J233957.91−593718.3 354.99128 −59.62174 19.392 18.950 DR1 AAT 5.1 −126.85
DES J234209.92−594724.9 355.54135 −59.79024 19.806 19.398 DR1 AAT 2.4 −129.83
DES J234258.94−591925.4 355.74557 −59.32372 19.784 19.363 DR1 AAT 6.0 −112.15
DES J234310.16−595556.6 355.79232 −59.93240 20.956 20.758 DR1 AAT 3.1 −82.66
DES J234311.08−590221.5 355.79615 −59.03932 19.330 18.851 DR1 AAT 2.2 −73.82
DES J234325.17−594435.1 355.85489 −59.74308 18.763 18.320 DR1 AAT 4.5 −82.15
DES J234354.41−600605.7 355.97671 −60.10158 20.548 20.333 DR1 AAT 1.7 −108.10
DES J234446.62−601636.3 356.19427 −60.27674 19.777 19.363 DR1 AAT 5.6 −113.56
DES J234502.83−594108.5 356.26180 −59.68569 20.696 20.437 DR1 AAT 2.1 −96.39
DES J234539.31−600534.8 356.41378 −60.09300 20.413 20.165 DR1 AAT 3.3 −85.55
DES J234653.40−600737.8 356.72251 −60.12717 19.906 19.502 DR1 AAT 5.3 −114.54
DES J234703.67−592837.7 356.76528 −59.47714 19.933 19.527 DR1 AAT 4.7 −135.28
DES J234722.75−601040.8 356.84479 −60.17799 20.271 19.968 DR1 AAT 2.0 −100.87
DES J234754.05−593615.2 356.97523 −59.60422 20.103 19.714 DR1 AAT 4.2 −117.72
DES J234801.37−591054.6 357.00572 −59.18182 20.386 20.146 DR1 AAT 3.1 −117.09
DES J234822.42−600631.7 357.09343 −60.10880 20.910 20.687 DR1 AAT 6.5 −103.71
DES J234854.73−593421.6 357.22804 −59.57266 20.534 20.302 DR1 AAT 1.9 −132.98
DES J234907.03−595451.4 357.27929 −59.91428 20.790 20.569 DR1 AAT 3.7 −90.85
DES J234916.70−595028.3 357.31959 −59.84118 20.457 20.231 DR1 AAT 3.8 −125.84
DES J234934.85−594127.9 357.39519 −59.69107 20.718 20.501 DR1 AAT 1.9 −130.20
DES J234955.16−593738.0 357.47985 −59.62722 20.374 20.128 DR1 AAT 4.0 −112.21
DES J235011.85−592433.7 357.54936 −59.40936 20.308 20.025 DR1 AAT 3.3 −137.01
DES J235105.24−594437.3 357.77182 −59.74369 20.372 20.098 DR1 AAT 2.8 −111.33
DES J235134.95−594124.6 357.89564 −59.69016 19.846 19.411 DR1 AAT 3.9 −110.51
DES J235151.98−594056.9 357.96659 −59.68247 19.806 19.377 DR1 AAT 6.2 −111.75
DES J235209.62−590450.5 358.04007 −59.08070 19.844 19.411 DR1 AAT 5.8 −111.49
DES J235258.81−594111.3 358.24505 −59.68646 20.553 20.337 DR1 AAT 1.6 −123.43
DES J235318.39−593243.8 358.32662 −59.54549 20.422 20.179 DR1 IMACS 4.5 −100.10
DES J235328.33−593731.2 358.36804 −59.62533 21.523 21.271 DR1 IMACS 2.3 −107.67
DES J235341.40−592600.9 358.42251 −59.43358 19.796 19.329 DR1 AAT 3.6 −93.32
DES J235400.65−593255.5 358.50273 −59.54876 20.414 20.195 DR1 IMACS 5.5 −99.64
DES J235408.52−594422.1 358.53551 −59.73947 20.282 19.984 DR1 AAT 2.8 −83.00
DES J235425.68−595943.3 358.60701 −59.99537 20.313 20.002 DR1 AAT 1.9 −93.49
DES J235425.87−594042.6 358.60780 −59.67849 20.494 20.269 DR1 IMACS 5.7 −107.18
DES J235544.46−591918.1 358.93527 −59.32169 20.427 20.185 DR1 AAT 4.3 −120.70
DES J235549.61−592446.4 358.95673 −59.41289 20.274 19.894 DR1 AAT 3.1 −135.94
DES J235615.37−595231.4 359.06405 −59.87540 20.314 20.035 DR1 AAT 2.3 −71.16
DES J235619.28−592219.0 359.08034 −59.37195 20.788 20.560 DR1 AAT 2.0 −93.64
DES J235634.89−593001.2 359.14537 −59.50032 21.268 21.056 DR1 AAT 2.6 −108.97
DES J235712.70−600747.5 359.30291 −60.12986 20.004 19.608 DR1 AAT 3.1 −116.45
DES J235901.96−592204.5 359.75815 −59.36790 20.071 19.681 DR1 AAT 2.1 −87.20
DES J000101.57−593029.7 0.25654 −59.50824 19.631 19.184 DR1 AAT 4.5 −96.29
DES J000105.45−592448.8 0.27272 −59.41355 19.726 19.265 DR1 AAT 4.3 −100.99
DES J000133.88−595528.8 0.39116 −59.92467 20.390 20.171 DR1 AAT 2.2 −106.77
DES J000336.20−595212.8 0.90082 −59.87023 20.262 19.941 DR1 AAT 1.8 −100.49
DES J000400.30−593024.9 1.00126 −59.50691 19.645 19.201 DR1 AAT 4.5 −94.87
DES J000505.18−593122.1 1.27159 −59.52280 20.825 20.620 DR1 AAT 2.0 −117.23
DES J000731.43−593438.7 1.88097 −59.57741 20.819 20.592 DR1 AAT 5.4 −104.87
DES J000826.30−593212.2 2.10958 −59.53672 19.218 18.742 DR1 AAT 6.7 −93.81
DES J000841.53−591007.3 2.17302 −59.16870 19.460 18.995 DR1 AAT 2.7 −86.19
DES J000902.34−594247.1 2.25975 −59.71310 19.828 19.409 DR1 AAT 4.7 −71.10

Note.Stars that are observed with AAT or IMACS and have measured RVs in the range of v140 km s 70 km s1 1- < < -- - , but the S/Ns of the spectra are too low
to obtain robust velocity measurements; therefore, these stars are not included in the analysis. The RVs should be used with caution. See details in Appendix C.

(This table is available in machine-readable form.)
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