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Genotype-Specific Minimal Residual Disease Interpretation
Improves Stratification in Pediatric Acute
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A B S T R A C T

Purpose
Minimal residual disease (MRD) and genetic abnormalities are important risk factors for outcome in
acute lymphoblastic leukemia. Current risk algorithms dichotomize MRD data and do not assimilate
genetics when assigning MRD risk, which reduces predictive accuracy. The aim of our study was to
exploit the full power ofMRDby examining it as a continuous variable and to integrate it with genetics.

Patients and Methods
We used a population-based cohort of 3,113 patients who were treated in UKALL2003, with
a median follow-up of 7 years. MRD was evaluated by polymerase chain reaction analysis of Ig/TCR
gene rearrangements, and patients were assigned to a genetic subtype on the basis of immu-
nophenotype, cytogenetics, and fluorescence in situ hybridization. To examine response kinetics at
the end of induction, we log-transformed the absolute MRD value and examined its distribution
across subgroups.

Results
MRDwas log normally distributed at the end of induction. MRD distributions of patients with distinct
genetic subtypes were different (P , .001). Patients with good-risk cytogenetics demonstrated the
fastest disease clearance, whereas patients with high-risk genetics and T-cell acute lymphoblastic
leukemia responded more slowly. The risk of relapse was correlated with MRD kinetics, and each
log reduction in disease level reduced the risk by 20% (hazard ratio, 0.80; 95% CI, 0.77 to 0.83;
P, .001). Although the risk of relapsewas directly proportional to theMRD level within each genetic
risk group, absolute relapse rate that was associated with a specific MRD value or category varied
significantly by genetic subtype. Integration of genetic subtype–specific MRD values allowed more
refined risk group stratification.

Conclusion
A single threshold for assigning patients to anMRD risk group does not reflect the response kinetics
of the different genetic subtypes. Future risk algorithms should integrate genetics with MRD to
accurately identify patients with the lowest and highest risk of relapse.

J Clin Oncol 36:34-43. © 2017 by American Society of Clinical Oncology. Licensed under the
Creative Commons Attribution 4.0 License: http://creativecommons.org/licenses/by/4.0/

INTRODUCTION

The assessment of treatment response via the
measurement ofminimal residual disease (MRD) is
now recognized as the most powerful prognostic
factor in acute lymphoblastic leukemia (ALL).1-4

The integration of MRD monitoring into risk-
adapted protocols has been used to successfully
guide therapy intensification and reduction2,5-7;
however, MRD alone is not sufficient to fully
predict outcome. Somatic genetic abnormalities

define fundamentally distinct biologic subgroups,
and several are important prognostic and predictive
biomarkers.

The extent to which the presence of specific
genetic abnormalities influences the kinetics of
disease clearance is not fully understood, and there
is no consensus surrounding the best method for
integrating genetic and MRD data to stratify pa-
tients. Although analysis of the BFM-2000 trial led
to the conclusion thatmolecular response redefines
all prognostic factors, only a handful of genetic
abnormalities were considered and ETV6-RUNX1
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retained its significance in the multivariable model.8 In addition,
studies by the Children’s Oncology Group (COG) and St Jude
Children’s Research Hospital have noted significant associations
between genetic abnormalities and MRD.9,10 Previous studies of
specific genetic subgroups have also led to different conclusions. For
example, theUnited Kingdom andCOG study groups assign patients
with iAMP21 (intrachromosomal amplification of chromosome 21)
to high-risk (HR) regimens irrespective of MRD,11,12 whereas the
BFM study group relies on MRD to assign risk in these patients.13

Other studies of low hypodiploidy and Philadelphia chromosome–
like ALL have proposed that treatment response can refine risk for
patients with these abnormalities, but most protocols still allocate
these patients to HR therapy.14,15

A common feature of these previous studies is the use of
categorical variables with which to study MRD. Dichotomization
of continuous variables leads to the loss of statistical power
equivalent to removing one third of data.16 To fully explore the
discriminatory power of MRD and examine its interaction with
genetics, we analyzed a large, well-annotated cohort of patients
who were treated in a single trial using MRD as a continuous
variable to study response at the end of induction (EOI).

PATIENTS AND METHODS

A total of 3,113 consecutive patients who were diagnosed with ALL by
standard flow cytometric criteria and who were treated in the MRC
UKALL2003 (2003 to 2011) trial were available for analysis (Appendix Fig
A1, online only).2,5 The trial was approved by the Scottish Multi-Centre
Research Ethics Committee, and written informed consent was obtained
from parents and patients in accordance with the Declaration of Helsinki.
Full details of the treatment protocol and results of the main trial questions
have been reported.2,5

Initially, National Cancer Institute (NCI) standard-risk (SR) patients
(, 10 years and white cell count, 503 109/L) were assigned to regimen A,
whereas NCI HR patients ($ 10 years and/or white cell count$ 503 109/L)
received regimen B (Appendix Fig A2, online only). Patients with HR cyto-
genetics and patients age less than 16 years with a slow early response were
assigned to regimen C. Slow early response was defined as$ 25% blasts in the
day 15 (NCI SR) or day 8 (NCI HR)marrow.MRDwas evaluated by real-time
quantitative polymerase chain reaction analysis of Ig/TCR gene rearrangements
with a quantitative range of 0.01% as defined by the European MRD Study
Group.17 Patients with undetectable MRD at EOI (day 29) and before interim
maintenance were classified as MRD low risk, as were those who had de-
tectable EOI MRD (, 0.01%), but undetectable MRD before the start of
interim maintenance. MRD low-risk patients were eligible for treatment re-
duction random assignment. Patients with EOIMRD$ 0.01% were classified
as MRD HR and were eligible for treatment intensification randomization.

Cytogenetic and fluorescence in situ hybridization testing was per-
formed, and data were curated as previously reported.18 Patients were
classified into four mutually exclusive genetic groups: cytogenetic good risk
(CYTO-GR): ETV6-RUNX1, high hyperdiploidy (51 to 65 chromosomes);
cytogenetic HR (CYTO-HR): KMT2A (MLL) fusions, near haploidy, low
hypodiploidy (, 40 chromosomes), iAMP21, and TCF3-HLF; cytogenetic
intermediate risk (CYTO-IR): TCF3-PBX1 and all other patient-cases with
abnormal or normal cytogenetics (B other); and patients with T-ALL.18

Copy number alterations (CNAs) affecting IKZF1,CDKN2A/B, PAX5, EBF1,
ETV6, BTG1, RB1, PAR1, and ERG were assessed by multiplex ligation-
dependent probe amplification using the SALSA P335/P327 kits (MRC
Holland, Amsterdam, the Netherlands) and SNP6.0 array (Affymetrix, Santa
Clara, CA) as previously described.19,20 B-other patients were subclassified
into previously defined subgroups on the basis of CNA21,22 (Appendix Fig
A3, online only).

Survival analysis considered three end points: event-free survival (EFS),
defined as time to relapse, second tumor, or death, with censoring at the date
of last contact; relapse rate (RR), defined as the time to relapse for those who
achieved a complete remission, with censoring at the date of death in re-
mission or last contact; and overall survival (OS), defined as the time to
death, with censoring at the date of last contact. Patients were observed to
March 1, 2016, giving amedian follow-up time of 7 years. Survival rates were
calculated and compared by using Kaplan-Meier methods, log rank tests,
and Cox proportional hazards regression models (univariable and multi-
variable analyses). To examine MRD as a continuous variable, we assigned
patient-cases with undetectable MRD a value one log below the minimum
detection level of 13 1025 and assumed a maximum value of 0.99999. The
absolute value of natural log of this transformed MRD value is referred to
as t(MRD). Normality was assessed by using the skewness and kurtosis,
Shapiro-Wilk and Shapiro-Francia tests. Log normal distributions were
compared by using amultiple-sample, multivariable test of means. As a result
of the investigative nature of this analysis, all tests were conducted at the 1%
significance level. Analyses were performed by using Intercooled STATA
(version 14.01; STATA, College Station, TX; Computing Resource Center,
Santa Monica, CA).

RESULTS

Examining MRD as a Continuous Variable
MRD was measured at the EOI for 2,678 (86%) patients who

were treated in UKALL2003. To allow the detailed examination of
the kinetics of treatment response and to compare different patient
subgroups, we transformed the absolute MRD value to produce
a continuousMRD variable. This log variable, t(MRD), ranged from
0 (highest MRD value) to 15 (undetectable MRD; Fig 1A). Tests for
normality and Q-Q plots indicated that t(MRD) followed a trun-
cated normal distribution. Thus, the first peak, comprising 744
(27.7%) patients who had undetectable MRD, represented the de-
tection limit of the assay (1 3 1025), rather than a biologic phe-
nomenon. Hence, we hypothesized that t(MRD) was normally
distributed.

Response Kinetics by NCI Risk Group and Genetics
Figure 1 and Appendix Table A1 (online only) detail the dis-

tribution of t(MRD) by NCI risk and genetic groups. Patients who
were classified as NCI SR received a three-drug induction (regimen
A), whereas NCI HR patients received a four-drug induction (regi-
men B). Despite receivingmore intensive induction, NCIHRpatients,
on average, had a slower response (P , .001); however, there was
significant variation in response kinetics by genetic subtype, both in
the overall cohort and when stratified by treatment.

Among the major subgroups, ETV6-RUNX1 patients had the
fastest disease clearance, with 36% (245 of 675) having undetectable
MRD, whereas CYTO-HR/T-ALL patients recorded the slowest
disease clearance (Figs 1C and 1D and Appendix Table A1). MRD
was log-normally distributed within each genetic subtype (P . .1),
with the exception of ETV6-RUNX1 (P = .01). There was no dif-
ference in response kinetics for ETV6-RUNX1, high hyperdiploidy,
or CYTO-IR patients according to induction treatment. Patients with
T-ALL who were treated with regimen A had a significantly better
response compared with those who were treated with regimen B.

Several abnormalities, which were too infrequent to allow
individual examination of t(MRD), comprised the CYTO-HR
group; therefore, we examined MRD distribution by category

jco.org © 2017 by American Society of Clinical Oncology 35

Integrating MRD and Genetics in Pediatric ALL

Downloaded from ascopubs.org by UCL Library Services on October 30, 2018 from 128.041.035.055
Copyright © 2018 American Society of Clinical Oncology. All rights reserved.

http://jco.org


(Fig 2 and Appendix Table A2, online only). MRD was distributed
normally for haploid, low hypodiploid, and iAMP21 patients,
whereas among KMT2A patient-cases, MRD was more evenly

spread and included a high proportion of refractory patients
(19%). The CYTO-IR group was also heterogeneous, composed
of TCF3-PBX1 (10%) and B-other ALL (90%). Patients with
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Fig 1. Distribution of the log transformed
minimal residual disease (MRD) value,
t(MRD). (A) Raw (solid) and smoothed
(dotted) density plots of t(MRD) for 2,678
patients treatedonUKALL2003. (B)Smoothed
log normal distributed of t(MRD) by induction
therapy: regimen A (dark blue) and regimen
B (brown). (C and D) Smoothed log normal
distributions of t(MRD) stratified by genetics
amongpatients treatedon (C) regimenA and
(D) regimen B. (E-H) Smoothed log normal
distributions of t(MRD) stratified by induction
treatments for patientswith (E)ETV6-RUNX1,
(F) high hyperdiploidy (HeH), (G) B-other ALL,
and (H) T-cell acute lymphoblastic leukemia
(T-ALL). HR, high risk.
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TCF3-PBX1 exhibited fast disease clearance with 38 (46%) of 83
patients having undetectable MRD. In contrast, the log normal
MRD distribution for B-other patients was shifted to the right,
which indicated slower disease clearance (Figs 1C and 1D).

To further investigate the B-other subgroup, we screened
a representative subset of patients (n = 221) for CNA (Fig 2 and
Appendix Fig A3).21 MRD of patients with a group A/B CNA
profile, IKZF1 deletion, and IKZF1plus profile22 was log-normally
distributed (P. .6). These B-other abnormalities are not mutually
exclusive, and it is interesting to note that four of 13 patients with
group A CNA profile, which is associated with a good outcome,
and MRD $ 1% had an ABL-class fusion. MRD was also log-
normally distributed among patients with activation of the JAK-
STAT pathway compared with ABL-class fusion patients where 14
of 18 patients had MRD $ 1%.

Integrating MRD and Genetics to Define New Clinically
Relevant Subgroups

The construction of a normally distributed log-transformed
MRD variable, t(MRD), allowed outcome to be measured in re-
lation to the log reduction in the leukemic cell population. Uni-
variable Cox proportional hazards regression models for EFS, RR,
and OS demonstrated that each log reduction in MRD equated to
an approximate 20% decrease in the risk of an adverse event: EFS,
0.81 (95% CI, 0.78 to 0.83); RR, 0.80 (95% CI, 0.77 to 0.83); and
OS, 0.77 (95% CI, 0.74 to 0.80). This effect was observed con-
sistently across treatment, random assignment, and genetic sub-
groups, with the exception of one/two delayed intensifications

(Table 1). Although the risk of relapse was directly proportional to
the MRD level within each genetic risk group, the absolute risk of
relapse that was associated with a specific MRD level varied by
genetic subtype (Fig 3). To further illustrate this relationship and to
aid stratification, we calculated 5-year EFS, RR, and OS rates for
multiple MRD categories across genetic subtypes (Table 2). Sur-
vival varied significantly for a given MRD category. Patients with
MRD levels at either end of the spectrum had similar outcomes,
regardless of genetic subgroup, whereas the outcome that was
associated with moderate MRD levels was genetic subtype de-
pendent. Additional evidence that both MRD and genetics impact
prognosis was evident when we examined some of the specific
genetic abnormalities that underpin these broad cytogenetic risk
groups (Appendix Table A2). Use of genetic-specific MRD
thresholds to define risk groups enabled the creation of subsets
with a more uniform outcome. In Table 2, we define exemplar risk
groups by grouping together MRD-genetic subsets that have a low
RR (, 7%) and a correspondingly high OS (. 94%) into a large SR
group that accounts for two thirds of patients. The remaining
patients were split into intermediate-risk and high-risk groups
primarily on the basis of RR (, 20% or . 20%); however, all
CYTO-HR patients were classified into the HR group because these
outcomes were achieved by receiving HR treatment (regimen C).

Correlation of MRD and Type of Relapse
At relapse, patients are classified as SR or HR on the basis of

the time and site of relapse, and the majority of SR patients achieve
a lasting second remission.23,24 The distribution of SR and HR
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relapses varied by genetic subtype and MRD (Fig 4A). The pro-
portion of patients who experienced relapse that would be clas-
sified as clinical HR23 was strongly associated with genetic subtype:
CYTO-GR, 20%; CYTO-IR, 38%; and CYTO-HR/T-ALL, 77%
(P , .001). This association was observed across all MRD cate-
gories (Appendix Table A3, online only). By integrating MRD and
genetics to define risk groups, it is possible to define a small HR
group (8% patients) that captures 48% of HR relapses (Table 2).
MRD assessment of marrow was not predictive of isolated CNS
relapse. In keeping with this concept, we observed a significant
difference in the MRD distributions for isolated marrow relapses
by clinical risk group (Fig 4B), but not among patients who
suffered an isolated CNS relapse (Fig 4C).

DISCUSSION

Risk stratification is a key component of precision medicine, re-
quiring the accurate measurement and integration of several
prognostic factors to ensure appropriate treatment allocation.
Whereas MRD and genetics have been shown to be the most
important prognostic factors in ALL,1-4,18 they have largely been
examined independently. We have reported, in unprecedented
detail, the relationship between absolute MRD values and genetic
abnormalities. These findings confirm and extend the observations
by Pui et al,9 although analysis of independent data sets is required.
Once validated, the concept of truly integrating MRD and genetics
via subtype-specific MRD thresholds, as demonstrated by the
integrated risk groups in Table 2, will improve risk algorithms that
are used to allocate treatment.

To our knowledge, this study is the first to present MRD as
a continuous variable and reveals the log normal distribution of
MRD at EOI as predicted by the log cell kill effect of chemotherapy

observed in mice and in vitro experiments.25-27 Whereas this
distribution was maintained across different treatments and ge-
netic subtypes, the kinetics of leukemic cell clearance differed.
Perhaps unsurprisingly, mean MRD value was higher in NCI HR
patients; however, this group received a four-drug induction that
may have been expected to induce MRD levels comparable to NCI
SR patients who received a three-drug induction. This suggests that
a more intensive induction does not fully compensate for the
inherent risk that is associated with NCI HR disease. An alternative
explanation is that the addition of anthracycline simply does not
add any efficacy to a three-drug dexamethasone-based induction.
This is supported by the fact that the rate of true MRD negativity in
our cohort (27.8%) was almost identical to that of the DCOG10
trial (28.8%), despite the universal use of a four-drug induction.6

MRD distributions differed to an even greater extent by genetic
subtype, which indicated that the underlying disease biology is the
key driver of treatment response and may have accounted for much
of the difference between the NCI SR and HR groups. ETV6-RUNX1
patients demonstrated a particularly rapid response to treatment that
was consistent with their good prognosis. Unexpectedly, TCF3-PBX1
patients, an intermediate-risk abnormality, demonstrated an even
faster MRD clearance, with 43% achieving MRD negativity (Fig 2)
compared with 36% of ETV6-RUNX1 patients. These observations
correlate with the recent report from the TCCSG L92-13 trial28 that
showed that ETV6-RUNX1 and TCF3-PBX1 patients had an ex-
cellent outcome despite receiving less maintenance therapy. Thus,
a greater understanding of disease kinetics could help tailor treat-
ments to different subtypes.

Examining MRD as a continuous variable emphasizes that
the relationship between MRD level and outcome is a continuum
and that using a single cutoff value to stratify patients is an
oversimplification. Moreover, integrating genetics aids the in-
terpretation of this relationship and indicates that MRD alone is

Table 1. Prognostic Impact of the Level of Disease Clearance Achieved at the End of Induction Among Children and Young AdultsWith Acute Lymphoblastic Leukemia

Variable Event-Free Survival Relapse Risk Overall Survival

Whole cohort 0.81 (0.78 to 0.83); P , .001 0.80 (0.77 to 0.83); P , .001 0.77 (0.74 to 0.80); P , .001
Stratified by clinical risk group*
Standard risk (regimen A) 0.86 (0.81 to 0.91); P , .001 0.85 (0.79 to 0.91); P , .001 0.82 (0.75 to 0.88); P , .001
Intermediate risk (regimen B) 0.79 (0.75 to 0.83); P , .001 0.77 (0.72 to 0.82); P , .001 0.76 (0.71 to 0.81); P , .001
High risk (regimen C) 0.85 (0.80 to 0.91); P , .001 0.85 (0.80 to 0.92); P , .001 0.85 (0.79 to 0.91); P , .001

Stratified by treatment random assignment†
One delayed intensification 0.73 (0.55 to 0.97); P = .029 0.70 (0.52 to 0.94); P = .017 0.72 (0.45 to 1.13); P = .15
Two delayed intensifications 1.01 (0.75 to 1.36); P = .9‡ 1.17 (0.81 to 1.70); P = .4‡ 0.96 (0.54 to 1.70); P = .9‡
Standard therapy 0.76 (0.66 to 0.87); P , .001 0.72 (0.62 to 0.84); P , .001 0.76 (0.64 to 0.91); P = .002
Augmented therapy 0.80 (0.67 to 0.96); P = .014 0.73 (0.60 to 0.89); P = .002 0.77 (0.63 to 0.95); P = .014

Stratified by genetic subtype
Good-risk cytogenetics 0.83 (0.78 to 0.89); P , .001 0.84 (0.78 to 0.90); P , .001 0.77 (0.70 to 0.84); P , .001
Intermediate-risk cytogenetics 0.81 (0.77 to 0.85); P , .001 0.78 (0.73 to 0.83); P , .001 0.81 (0.76 to 0.86); P , .001
High-risk cytogenetics 0.88 (0.81 to 0.95); P = .002 0.91 (0.82 to 1.00); P = .05 0.85 (0.77 to 0.93); P = .001
T-ALL 0.85 (0.78 to 0.91); P , .001 0.83 (0.76 to 0.90); P , .001 0.80 (0.72 to 0.88); P , .001

NOTE. Data are given as hazard ratio (95% CI). Hazard ratios are from univariable Cox proportional hazards regression models using a log transformed minimal residual
disease value (Patients and Methods); therefore, each hazard ratio represents the decrease in risk of an event that is associated with each log fold reduction in disease
level at the end of induction.
Abbreviation: T-ALL, T-cell acute lymphoblastic leukemia.
*Patients were assigned to clinical risk group according to age, white cell count, genetics, and early treatment response (Appendix Fig A1).
†Patients who had minimal residual diseases of, 0.01%were randomly assigned to one or two delayed intensification blocks, whereas patients with minimal residual
disease of $ 0.01% were randomly assigned to receive augmented therapy (Appendix Fig A1).
‡A total of 252 patients with minimal residual disease of , 0.01% were randomly assigned to receive two delayed intensification blocks. The overall relapse rate was
just 4%; therefore, the power to detect a significant prognostic effect by minimal residual disease was low.

38 © 2017 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY

O’Connor et al

Downloaded from ascopubs.org by UCL Library Services on October 30, 2018 from 128.041.035.055
Copyright © 2018 American Society of Clinical Oncology. All rights reserved.



0.00

0.05

0.10

0.15

0.20

0.01% 0.1% 5%

MRD)

De
ns

ity

All patients (n = 2,542)

0.00

0.05

0.10

0.15

0.20

0.01% 0.1% 5%

De
ns

ity

ETV6−RUNX1 (n = 675)

0.00

0.05

0.10

0.15

0.20

0.01% 0.1% 5%

De
ns

ity

High hyperdiploidy (n = 739)

0.00

0.05

0.10

0.15

0.20

0.01% 0.1% 5%

De
ns

ity

Intermediate risk (n = 745)

0.00

0.05

0.10

0.15

0.20

0.01% 0.1% 5%

De
ns

ity

High risk (n = 100)

0.00

0.05

0.10

0.15

0.20

0.01% 0.1% 5%

De
ns

ity

T−ALL (n = 283)

Increasing Relapse Rate at 5 Years (1%−45%)

Fig 3. Relationship between minimal residual disease (MRD) at relapse risk. Each panel shows a smoothed density distribution of MRD for patient-cases in a particular
genetic subtype. Shading corresponds to the risk of relapse for patients with that particular MRD level. The dotted line indicates the t(MRD) value that corresponds to
specific MRD values. T-ALL, T-cell acute lymphoblastic leukemia.

jco.org © 2017 by American Society of Clinical Oncology 39

Integrating MRD and Genetics in Pediatric ALL

Downloaded from ascopubs.org by UCL Library Services on October 30, 2018 from 128.041.035.055
Copyright © 2018 American Society of Clinical Oncology. All rights reserved.

http://jco.org


Ta
bl
e
2.

In
te
gr
at
io
n
of

M
R
D

C
at
eg

or
y
an

d
G
en

et
ic

S
ub

ty
pe

D
efi

ne
s
N
ew

C
lin
ic
al
ly

R
el
ev

an
t
P
at
ie
nt

S
ub

se
ts
,
Th

er
eb

y
R
efi

ni
ng

R
is
k
S
tr
at
ifi
ca
tio

n

V
ar
ia
bl
e

To
ta
l

G
en

et
ic

R
is
k
G
ro
up

P
§

G
oo

d
In
te
rm

ed
ia
te

H
ig
h

T-
A
LL

To
ta
l

N
o.

of
pa

tie
nt
s
(%

)k
3,
11

3
(1
00

)
1,
58

6
(5
4)

86
0
(2
9)

12
1
(4
)

38
6
(1
3)

E
FS

at
5
ye

ar
s
(9
5%

C
I)

88
%

(8
6%

to
89

%
)

93
%

(9
1%

to
94

%
)

84
%

(8
1%

to
86

%
)

70
%

(6
1%

to
77

%
)

81
%

(7
6%

to
84

%
)

,
.0
01

R
R

at
5
ye

ar
s
(9
5%

C
I)

9%
(8
%

to
10

%
)

5%
(4
%

to
6%

)
12

%
(1
0%

to
14

%
)

24
%

(1
7%

to
33

%
)

14
%

(1
1%

to
18

%
)

,
.0
01

O
S
at

5
ye

ar
s
(9
5%

C
I)

92
%

(9
1%

to
93

%
)

96
%

(9
5%

to
97

%
)

90
%

(8
7%

to
92

%
)

78
%

(6
9%

to
84

%
)

86
%

(7
9%

to
90

%
)

,
.0
01

M
R
D

lo
w

ris
k*

U
nd

et
ec

ta
bl
e

N
o.

of
pa

tie
nt
s
(%

)k
74

4
(2
8)

44
3
(1
7)
*

18
0
(7
)*

25
(1
)‡

64
(3
)*

E
FS

at
5
ye

ar
s
(9
5%

C
I)

95
%

(9
4%

to
97

%
)

97
%

(9
5%

to
98

%
)*

94
%

(8
9%

to
96

%
)*

88
%

(6
7%

to
96

%
)‡

94
%

(8
4%

to
98

%
)*

.0
8

R
R

at
5
ye

ar
s
(9
5%

C
I)

4%
(3
%

to
5%

)
3%

(1
%

to
5%

)*
4%

(2
%

to
8%

)*
12

%
(4
%

to
33

%
)‡

6%
(2
%

to
16

%
)*

.2
O
S
at

5
ye

ar
s
(9
5%

C
I)

99
%

(9
8%

to
99

%
)

99
%

(9
8%

to
10

0%
)*

98
%

(9
4%

to
99

%
)*

10
0%

‡
98

%
(8
9%

to
10

0%
)*

.1
0
to

,
0.
01

%
N
o.

of
pa

tie
nt
s
(%

)k
87

2
(3
3)

53
4
(2
1)
*

21
9
(9
)*

22
(1
)‡

55
(2
)†

E
FS

at
5
ye

ar
s
(9
5%

C
I)

92
%

(9
0%

to
93

%
)

94
%

(9
2%

to
96

%
)*

90
%

(8
6%

to
94

%
)*

57
%

(3
3%

to
75

%
)‡

85
%

(7
2%

to
92

%
)†

,
.0
01

R
R

at
5
ye

ar
s
(9
5%

C
I)

6%
(5
%

to
8%

)
4%

(2
%

to
6%

)*
6%

(4
%

to
10

%
)*

43
%

(2
5%

to
67

%
)‡

11
%

(5
%

to
24

%
)†

,
.0
01

O
S
at

5
ye

ar
s
(9
5%

C
I)

96
%

(9
4%

to
97

%
)

98
%

(9
7%

to
99

%
)*

94
%

(8
9%

to
96

%
)*

77
%

(5
4%

to
90

%
)‡

93
%

(8
2%

to
97

%
)†

,
.0
01

M
R
D

hi
gh

ris
k

0.
01

to
,

0.
1%

N
o.

of
pa

tie
nt
s
(%

)k
55

7
(2
1)

28
0
(1
1)
*

16
8
(7
)†

22
(1
)‡

61
(2
)†

E
FS

at
5
ye

ar
s
(9
5%

C
I)

88
%

(8
5%

to
91

%
)

92
%

(8
8%

to
95

%
)*

85
%

(7
9%

to
90

%
)†

73
%

(4
9%

to
87

%
)‡

90
%

(7
9%

to
95

%
)†

.0
05

R
R

at
5
ye

ar
s
(9
5%

C
I)

8%
(6
%

to
11

%
)

6%
(4
%

to
10

%
)*

11
%

(7
%

to
17

%
)†

10
%

(3
%

to
35

%
)‡

7%
(3
%

to
17

%
)†

.2
O
S
at

5
ye

ar
s
(9
5%

C
I)

93
%

(9
0%

to
95

%
)

96
%

(9
3%

to
98

%
)*

89
%

(8
4%

to
93

%
)†

73
%

(4
9%

to
87

%
)‡

95
%

(8
5%

to
98

%
)†

,
.0
01

0.
1
to

,
1.
0%

N
o.

of
pa

tie
nt
s
(%

)k
32

2
(1
2)

11
3
(4
)†

10
9
(4
)†

19
(1
)‡

60
(2
)†

E
FS

at
5
ye

ar
s
(9
5%

C
I)

78
%

(7
4%

to
83

%
)

84
%

(7
6%

to
90

%
)†

78
%

(6
9%

to
84

%
)†

53
%

(2
9%

to
72

%
)‡

75
%

(6
2%

to
84

%
)†

.0
06

R
R

at
5
ye

ar
s
(9
5%

C
I)

16
%

(1
3%

to
21

%
)

12
%

(7
%

to
20

%
)†

18
%

(1
2%

to
27

%
)†

40
%

(2
1%

to
66

%
)‡

16
%

(9
%

to
29

%
)†

.0
1

O
S
at

5
ye

ar
s
(9
5%

C
I)

86
%

(8
2%

to
90

%
)

91
%

(8
4%

to
95

%
)†

89
%

(8
1%

to
94

%
)†

58
%

(3
3%

to
76

%
)‡

82
%

(6
9%

to
89

%
)†

,
.0
01

1
to

,
5%

N
o.

of
pa

tie
nt
s
(%

)k
96

(4
)

33
(1
)†

35
(1
)‡

4
(,

1)
‡

17
(1
)†

E
FS

at
5
ye

ar
s
(9
5%

C
I)

72
%

(6
2%

to
80

%
)

84
%

(6
6%

to
93

%
)†

60
%

(4
2%

to
74

%
)‡

75
%

(1
3%

to
96

%
)‡

88
%

(5
9%

to
97

%
)†

.0
9

R
R

at
5
ye

ar
s
(9
5%

C
I)

20
%

(1
3%

to
30

%
)

10
%

(3
%

to
28

%
)†

31
%

(1
8%

to
49

%
)‡

25
%

(4
%

to
87

%
)‡

12
%

(3
%

to
41

%
)†

.3
O
S
at

5
ye

ar
s
(9
5%

C
I)

80
%

(7
0%

to
87

%
)

87
%

(7
0%

to
95

%
)†

68
%

(5
0%

to
81

%
)‡

10
0%

‡
94

%
(6
5%

to
99

%
)†

.1
$

5% N
o.

of
pa

tie
nt
s
(%

)k
87

(3
)

11
(,

1)
‡

34
(1
)‡

8
(,

1)
‡

26
(1
)‡

E
FS

at
5
ye

ar
s
(9
5%

C
I)

42
%

(3
2%

to
53

%
)

60
%

(2
5%

to
83

%
)‡

36
%

(2
0%

to
52

%
)‡

38
%

(9
%

to
67

%
)‡

50
%

(3
0%

to
67

%
)‡

.4
R
R

at
5
ye

ar
s
(9
5%

C
I)

51
%

(4
0%

to
63

%
)

40
%

(1
7%

to
75

%
)‡

58
%

(4
0%

to
77

%
)‡

38
%

(1
4%

to
77

%
)‡

46
%

(2
8%

to
67

%
)‡

.7
O
S
at

5
ye

ar
s
(9
5%

C
I)

57
%

(4
5%

to
66

%
)

80
%

(4
1%

to
95

%
)‡

58
%

(3
9%

to
73

%
)‡

38
%

(9
%

to
67

%
)‡

58
%

(3
7%

to
74

%
)‡

.4

In
te
gr
at
ed

R
is
k
G
ro
up

N
o.

(%
)

E
FS

R
R

O
S

N
o.

of
R
el
ap

se
s
(%

)
H
R

R
el
ap

se
s
(%

)

S
ta
nd

ar
d*

1,
72

0
(6
8)

94
%

(9
3%

to
95

%
)

4%
(3
%

to
5%

)
98

%
(9
6%

to
98

%
)

90
(3
7)

15
(1
6)

In
te
rm

ed
ia
te
†

61
6
(2
4)

83
%

(8
0%

to
86

%
)

13
%

(1
0%

to
16

%
)

90
%

(8
6%

to
93

%
)

84
(3
5)

34
(3
6)

H
ig
h‡

¶
20

6
(8
)

58
%

(5
1%

to
65

%
)

33
%

(2
9%

to
43

%
)

70
%

(6
3%

to
75

%
)

67
(2
8)

46
(4
8)

P
,

.0
01

,
.0
01

,
.0
01

A
bb

re
vi
at
io
ns

:
E
FS

,
ev

en
t-f
re
e
su

rv
iv
al
;
H
R
,
hi
gh

ris
k;

M
R
D
,
m
in
im

al
re
si
du

al
di
se

as
e;

O
S
,
ov

er
al
ls

ur
vi
va
l;
R
R
,
re
la
ps

e
ra
te
;
T-
A
LL

,
T-
ce

ll
ac
ut
e
ly
m
ph

ob
la
st
ic

le
uk

em
ia
.

*T
he

in
te
gr
at
ed

st
an

da
rd

ris
k
gr
ou

p
co

m
pr
is
es

pa
tie

nt
s
w
ith

go
od

ris
k
ge

ne
tic

s
an

d
M
R
D

,
0.
1%

pl
us

pa
tie

nt
s
w
ith

in
te
rm

ed
ia
te

ris
k
ge

ne
tic

s
an

d
M
R
D

,
0.
01

%
pl
us

T-
A
LL

pa
tie

nt
s
w
ith

un
de

te
ct
ab

le
M
R
D
.

†
Th

e
in
te
gr
at
ed

in
te
rm

ed
ia
te

ris
k
gr
ou

p
co
m
pr
is
es

pa
tie
nt
s
w
ith

go
od

ris
k
ge

ne
tic
s
an
d
M
R
D
$
0.
1%

an
d
,
5%

pl
us

pa
tie
nt
s
w
ith

in
te
rm

ed
ia
te
ris
k
ge

ne
tic
s
an
d
M
R
D
$
0.
01

%
an
d
,
1%

pl
us

T-
A
LL

pa
tie
nt
s
w
ith

M
R
D
.
0%

an
d
,
5%

.
‡
Th

e
in
te
gr
at
ed

hi
gh

-ri
sk

gr
ou

p
co

m
pr
is
es

al
lp

at
ie
nt
s
w
ith

M
R
D

$
5%

,
al
lp

at
ie
nt
s
w
ith

hi
gh

ris
k
cy
to
ge

ne
tic

s
pl
us

pa
tie

nt
s
w
ith

in
te
rm

ed
ia
te

ris
k
ge

ne
tic

s
an

d
M
R
D

$
1%

.
§L

og
-ra

nk
te
st

fo
r
eq

ua
lit
y
of

su
rv
iv
or

fu
nc

tio
ns

.
S
ur
vi
va
lr
at
es

ar
e
gi
ve

n
at

5
ye

ar
s
(9
5%

C
I).

kP
er
ce
nt
ag
es

ca
lc
ul
at
ed

fo
re

ac
h
ris
k
cl
as
si
fi
ca
tio

n:
M
R
D
on

ly
(n
=
2,
67

8)
,g
en

et
ic
s
on

ly
(n
=
2,
95

3)
,M

R
D
pl
us

ge
ne

tic
s
(n
=
2,
54

2)
.M

R
D
w
as

un
kn
ow

n
fo
r4

35
pa
tie

nt
s.
C
yt
og

en
et
ic
s
w
er
e
un

kn
ow

n
fo
r1

60
pa
tie

nt
s
w
ith

B
C
P-
A
LL

.
¶
A
ll
pa

tie
nt
s
w
ith

H
R
cy

to
ge

ne
tic

s
w
er
e
in
cl
ud

ed
in

th
is

ca
te
go

ry
be

ca
us

e
as

a
gr
ou

p
th
ey

ha
d
po

or
ou

tc
om

es
an

d
w
er
e
al
la

ss
ig
ne

d
to

re
gi
m
en

C
.

40 © 2017 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY

O’Connor et al

Downloaded from ascopubs.org by UCL Library Services on October 30, 2018 from 128.041.035.055
Copyright © 2018 American Society of Clinical Oncology. All rights reserved.



B

Isolated BM Clinical SR Clinical HR

0

0.05

0.1

De
ns

ity

051015

(MRD)

Isolated BM

Isolated CNS Clinical SR Clinical HR

C

0

0.05

0.1

0.15

De
ns

ity

051015

(MRD)

Isolated CNS

A

427

15 1

C
yt

o
g

en
et

ic
 G

R

507

25 2

259

18 3

100

10 3

28

5

72

2

172

8

205

86

146

15 7

88

15
6

252

8

18
6

10

22

3

135

4

20

2

122

5

3

1

5

3

60

1 3

49

1
5

56

1
4

50

2
8

15

1 1

14
12

n = 443 n = 534 n = 280 n = 113 n = 33 n = 11

n = 180 n = 219 n = 168 n = 109 n = 35 n = 34

n = 25 n = 22 n = 22 n = 19 n = 4 n = 8

n = 64 n = 55 n = 61 n = 60 n = 17 n = 26

0% 0 to < 0.01% 0.01 to < 0.1% 0.1 to < 1% 1 to < 5% ≥ 5%

C
yt

o
g

en
et

ic
 H

R
C

yt
o

g
en

et
ic

 IR
T

-A
LL

No relapse Standard risk High risk
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not sufficient to accurately stratify patients. Patients with MRD
values at the extremes of the scale are the exception. Patients with
high MRD ($ 5%) have an extremely poor outcome (EFS of 42%
at 5 years), irrespective of genetics, and should be considered for
treatment intensification or novel therapies.29 Similarly, pa-
tients who achieve a true negative MRD response have an ex-
cellent outcome (EFS of 95% at 5 years) and may be suitable for
treatment reduction in an effort to reduce toxicity. Of impor-
tance, even if patients with undetectable MRD do experience
relapse, their disease is usually salvageable (Fig 4), providing
additional reassurance that treatment reduction is an appropriate
strategy. The log-normal distribution of MRD implies that some
patients reduce their disease levels from the diagnostic burden of
approximately 1012 leukemic cells30 by 6 to 7 logs after 4 weeks of
therapy. Thus, there may be subset of patients whose disease can
be eradicated by weeks, rather than years, of therapy. The de-
velopment and application of ultrasensitive MRD methodolo-
gies will be required to test this hypothesis and identify such
patients. Interpreting data for CYTO-HR patients with unde-
tectable MRD is difficult because of modest numbers, genetic
heterogeneity, and HR therapy. Of interest, all relapsed patients in
this group had iAMP21 (Appendix Table A2). This finding sup-
ports the United Kingdom11 and COG12 conclusion that all pa-
tients with iAMP21 require HR treatment as opposed to the BFM
finding that MRD alone identifies HR patients with iAMP21.13

Stratification of patients with MRD. 0%, but, 5%, is more
complex but is informed by integrating genetics. To effectively
stratify patients, it is imperative to use different MRD values within
each group. For example, GR-CYTO patients with MRD of 0.01%
to 0.1% had an excellent outcome, despite being classified as MRD
HR and considered for treatment intensification. To assess the
potential impact of therapy intensification, we examined the re-
lapse rate among CYTO-GR patients who were randomly assigned
to receive standard or augmented therapy (n = 157). Relapse rate
remained low for all patients: 4.2% (1.4 to 12.4) versus 2.5% (0.6 to
9.8; P = .4). In our current trial, UKALL2011, we have now raised
the threshold at which we classify CYT0-GR patients as beingMRD
risk. We anticipate that this intervention will reduce toxicity
without comprising outcome. At the other end of the spectrum,
CYTO-IR/MRD $ 1% and CYTO-HR/MRD . 0% patients have
poor outcomes and could be considered together with patients
with MRD $ 5% in an HR group. This strategy effectively de-
lineates those patients with low risk and HR disease, leaving ap-
proximately one third of patients with intermediate outcomes who
mainly have CYTO-IR or T-ALL.

The prognostic impact of MRD within T-ALL was intriguing.
Patients with 0% or $ 5% MRD had excellent or poor outcomes,
respectively, but otherwise MRD seemed to have little impact.
Patients with T-ALL were significantly less likely to have a re-
portable MRD result: 73% versus 88% (P , .001). These obser-
vations could indicate that an MRD methodology that is reliant on
Ig/TCR rearrangements is less useful in T-ALL; however, it should
be noted that we have relatively few patients with T-ALL and were

not able to examine the underlying genetic heterogeneity.31 CYTO-
IR is also genetically heterogeneous. We demonstrated that many of
the abnormalities that underpin B-other ALL will be useful in
future algorithms to further refine genetic subtypes and, thus, new
integrated risk groups. For example, patients with the group A
CNA profile21 have an excellent outcome if MRD is , 1% and
could be included in a low-risk group. Of interest, many of the
patients with a group A CNA profile and MRD of . 1% harbored
EBF1-PDGFRB.32

Risk stratificationmust be based on the efficacy and associated
toxicity of the proposed treatments. Effective but toxic treatments—
for example stem-cell transplantation—should be reserved for HR
patients who are unlikely to be cured with conventional therapy;
however, treatment intensification or novel agents may be consid-
ered appropriate for intermediate-risk patients. Currently, treatment
protocols use a single MRD threshold to assign patients to risk
groups, irrespective of the presence of genetic abnormalities;
however, data generated by this study indicate that MRD must be
interpreted within the context of genetics to maximize its effec-
tiveness. Using different MRD cutoffs for different genetic subtypes
allows more flexibility to define patient subgroups of the appro-
priate size and outcome. We propose that the future of stratifi-
cation in ALL lies in the integration of MRD measurement with
detailed genetic classification. We have already changed the MRD
threshold for CYTO-GR patients in UKALL2011 and plan to use
this strategy more fully when designing the risk stratification al-
gorithm of our next trial.
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Appendix

Complete MRD and
genetic data
(n = 2,542)

Eligible for analysis
(n = 3,113)

Genetic subtypes
Classifiable
Unclassifiable

(n = 2,953)
(n = 160)

MRD
Measured
Not measured

(n = 2,678)
(n = 435)

              Not eligible
Registered twice
Misdiagnosis
Consent withdrawn
BCR-ABL1+ve

(n = 3)
(n = 14)
(n = 7)

(n = 70)

Clinical IR
(n = 781)

Clinical HR
(n = 314)

Clinical SR
(n = 1,447)

Standard (n = 6) /
augmented therapy

(n = 308)

Eligible for stratification
(n = 2,228)

Randomly
assigned
(n = 499)

Allocated
(n = 938)

1 DI
(n = 247)

2 DI
(n = 252)

Standard
(n = 251)

Augmented
(n = 251)

EOI MRD < 0.01%
(n = 1,437)

EOI MRD 0.01%
(n = 791)

Standard (n = 225) /
augmented (n = 64)

2 DI
(n = 938)

Registered
(N = 3,207)

Randomly
assigned
(n = 502)

Allocated
(n = 289)

Fig A1. CONSORT diagram for UKALL2003 showing the number of patientswhowere available for analysis in this study and the randomassignment and/ormajor treatment
pathways. Patientswhohad. 25%of the bonemarrowmadeupof blast cells at day 8 (National Cancer Institute [NCI] high risk) or 15 (NCI standard risk)were reclassified to the
clinical high-risk group irrespective of their initial classification and were not eligible for minimal residual disease (MRD) stratification and random assignment. NCI standard-risk
(SR) patients had to have an early response of, 25%marrowblasts at the day 15 assessment (reclassified as clinical SR) and NCI high-risk (HR) patients, 25%marrowblasts
at day 8 (reclassified as clinical intermediate risk [IR]) to be eligible for random assignment if theywere younger than 16 years of age. All patients$ 16 years of agewere treated
as clinical IR irrespective of day 8 or day 15 bone marrow response and were eligible for MRD stratification and random assignment. Morphologic remission status was
assessed at day 29 of induction and complete remissionwas defined as amarrow blast count, 5%. Patients whowere not in complete remission at day 29 of induction were
not eligible for MRD stratification and random assignment. We stratified clinical SR and IR groups by bone marrowMRD at the end of induction (EOI; day 29 from the start of
treatment). augmented therapy, transferred to regimen C; DI, delayed intensification; standard therapy, remaining on regimen A/B.
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Fig A2. Schematic representation of the ALL2003 treatment protocol. Regimen A was composed of a three-drug induction—vincristine, dexamethasone, and
asparaginase—followed by consolidation (daily mercaptopurine and weekly intrathecal methotrexate), CNS-directed therapy, interim maintenance (daily mercaptopurine,
weekly methotrexate, monthly vincristine, and corticosteroid pulses), delayed intensification (asparaginase, vincristine, dexamethasone, and doxorubicin), and continuing
therapy (oral mercaptopurine and methotrexate, monthly vincristine and corticosteroid pulses, and intrathecal methotrexate every 3 months). Regimen B patients also
received daunorubicin during induction and Berlin Frankfurt Munster (BFM) consolidation (4 weeks of cyclophosphamide and cytarabine). Regimen C patients received an
additional four doses of vincristine and two doses of pegylated asparaginase during BFM consolidation. Furthermore, regimen C patients received escalating doses of
intravenous methotrexate without folinic acid rescue, and vincristine and pegylated asparaginase as interim maintenance (Capizzi maintainance). CT, continuing therapy;
DI, delayed intensification; IM, interim maintenance; MRD, minimal residual disease; NCI, National Cancer Institute; WCC, white cell count.

ABL-class fusions are composed of patients with rearrangements
involving ABL1, ABL2, PDGFRB, or CSF1R

4) Gene fusions JAK-STAT abnormalities are composed of IGH-CRLF2, PR2Y8-CRLF2, IGH-EPOR, and JAK2 fusions

All other patients with B-other

IKZF1 deleted 

3) IKZF1 deletion

IKZF1 normal

1) CNA profile

(Moorman et al 21)

Good-risk CNA profile: Group A
No deletion of IKZF1, CDKN2A/B, PAR1, BTG1, EBF1, PAX5, ETV6, and RB1. Isolated deletions of

ETV6, PAX5, BTG1. ETV6 deletions with a single additional deletion of BTG1, PAX5, and CDKN2A/B.

Intermediate/poor-risk CNA profile: Group B
Any deletion of IKZF1, PAR1, EBF1, or RB1. All other CNA profiles notmentioned above.

2) IKZF1 plus

(Dagdan et al 22)

All other patients with B-other

IKZF1plus: Presence of an IKZF1 deletion and at least one additional deletion of PAX5, CDKN2A\B, or
PAR1 in the absence of an ERG deletion.

Fig A3. Four methods of subclassifying B-other acute lymphoblastic leukemia by genetics. For CDKN2A/B, deletion of either the CDKN2A or CDKN2B probes were
sufficient for the locus to be classified as deleted. For PAX5, intragenic amplifications were coded with the deletions, as they are predicted to be functionally equivalent. A
deletion in the PAR1 region of chromosome X or Y—del(X)(p22.33p22.33)/del(Y)(p11.32p11.32)—results in the loss of the CSF2RA and IL3RA probes, but the retention of
the CRLF2 probe. CNA, copy number alteration.
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Table A1. Mean and Standard Deviation of the Log Transformed MRD Value, t(MRD), Stratified by Genetic Subtype and Initial Treatment Regimen

Subgroup No. of Patients Mean t(MRD) Standard Deviation P*

Pairwise P

ETV6- RUNX1 HeH IR Cyto HR Cyto

Overall
Total 2,678 9.86 3.29
Regimen A† 1,574 10.14 2.94 , .001
Regimen B 1,104 9.46 3.69

All patients
ETV6-RUNX1 675 11.12 2.46 , .001‡ —

HeH 739 9.95 3.04 , .001 —

IR Cyto 745 9.38 3.42 , .001 , .001 —

HR Cyto 100 8.93 3.85 , .001 .002 .20 —

T-ALL 283 8.57 3.83 , .001 , .001 .001 .40
Regimen A (three-drug induction)†
ETV6-RUNX1 512 11.03 2.43 , .001‡ —

HeH 564 9.86 2.95 , .001 —

IR Cyto 362 9.40 3.15 , .001 .02 —

HR Cyto 36 9.94 3.29 .01 .90 .30 —

T-ALL 37 10.09 4.05 .03 .70 .20 .90
Regimen B (four-drug induction)
ETV6-RUNX1 163 11.38 2.55 , .001‡ —

HeH 175 10.26 3.32 , .001 —

IR Cyto 383 9.36 3.67 , .001 .006 —

HR Cyto 64 8.36 4.05 , .001 , .001 .05 —

T-ALL 246 8.34 3.75 , .001 , .001 , .001 .90
ETV6-RUNX1 patients
Regimen A 512 11.03 2.42 .12
Regimen B 163 11.38 2.55

HeH patients
Regimen A 564 9.86 2.95 .12
Regimen B 175 10.26 3.22

IR Cyto patients
Regimen A 362 9.40 3.15 .88
Regimen B 383 9.36 3.67

HR Cyto patients
Regimen A 36 9.94 3.28 .05
Regimen B 64 8.36 4.05

T-ALL patients
Regimen A 37 10.09 8.74 .01
Regimen B 246 8.34 7.87

Abbreviations: HeH, high hyperdiploidy; HR Cyto, high-risk cytogenetics; IR Cyto, intermediate-risk cytogenetics; T-ALL, T-cell acute lymphoblastic leukemia.
*Multiple-sample multivariable tests on means.
†Patients treated with regimen A who were classified as having a slow early response (. 25% blasts in the day 15 marrow) or HR cytogenetics switched to regimen C
on day 15 and, thus, received a four-drug induction from day 15 onwards. Among the 1,574 regimen A patients, only 33 (2.1%) had a slow early response, and 36 (2.3%)
had HR cytogenetics. These patients have not been excluded from the data shown in the table, as excluding them made no difference to the results.
‡P values from a five-way comparison.
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Table A3. Distribution of Patients Who Experienced Relapse by Clinical Relapse Risk Group, Genetic Subtype and End of Induction MRD

Relapse Risk Group Cytogenetic Good Risk Cytogenetic Intermediate Risk Cytogenetic High Risk/T-ALL P

Total cohort 97 (100) 102 (100) 82 (100)
Clinical standard risk 78 (80) 63 (62) 19 (23) , .001
Clinical high risk 19 (20) 39 (38) 63 (77)

MRD 0% 16 (100) 8 (100) 7 (100)
Clinical standard risk 14 (88) 8 (100) 4 (57) .068
Clinical high risk 2 (13) 0 (0) 3 (43)

MRD , 0.01% 27 (100) 14 (100) 15 (100)
Clinical standard risk 25 (93) 8 (57) 6 (40) .001
Clinical high risk 2 (7) 6 (430 9 (60)

MRD , 0.1% 20 (100) 22 (100) 7 (100)
Clinical standard risk 15 (75) 15 (68) 1 (14) .013
Clinical high risk 5 (25) 7 (32) 6 (86)

MRD , 1% 13 (100) 21 (100) 17 (100)
Clinical standard risk 9 (69) 15 (71) 4 (24) .006
Clinical high risk 4 (31) 6 (29) 13 (76)

MRD $ 1% 9 (100) 26 (100) 18 (100)
Clinical standard risk 7 (78) 8 (31) 1 (6) .001
Clinical high risk 2 (22) 18 (69) 17 (94)

NOTE. Patients who experienced late (. 6 months after stopping frontline therapy) isolated extramedullary relapses were classified as clinical standard risk, as were
patients with BCP-ALL who experienced late relapses involving the bone marrow or early (, 6 months from stopping frontline therapy) isolated extramedullary and
combined relapses as well as patients with T-ALL with early isolated extramedullary relapses. All remaining patients were classified as high risk and thus included:
patients who experienced early relapse (, 18 months from initial diagnosis), T-ALL relapses involving the marrow, and patients with BCP-ALL who experienced early
isolated BM relapses.
Abbreviations: MRD, minimal residual disease; T-ALL, T-cell acute lymphoblastic leukemia.
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