SUPPLEMENTARY INFORMATION

Supplementary Figure 1: Characterization of the XopH protein phosphatase activity.

a, Dephosphorylation of pNPP by XopH in different buffering systems. **b**, Dephosphorylation of pNPP by XopH (WT) and catalytic variants in 50 mM HEPES pH 7.0. **c**, Dephosphorylation of 0.5 mM commercial phosphor-peptides by XopH. pThr, PRApTVA; pSer, PRApSV; pTyr1,

ENDpYINASL; pTyr2, DADEpYLIPQQP; pTyr3, RRLIEDAEpYAARG; pTyr4, TSTEPQpYQPGENL. d, pTyr dephosphorylation by XopH (WT) and mutant derivatives. GFP served as negative control. e, Two-sample logo of pTyr dephosphorylation by XopH displaying enriched and depleted amino acid residues surrounding the dephosphorylated tyrosine. The logo was created from 72 top substrates out of >6000 peptides tested. f, pTyr2 dephosphorylation by XopH under high and low salt conditions. g, Kinetics of pTyr2 and pTyr-chip (KVDVDEpYDENKFVW) dephosphorylation by XopH. The maximal velocity V_{max} and Michaelis constant K_M were $0.63 \pm 0.16~\mu M$ min⁻¹ and $25.7 \pm 12.2~\mu M$ for pTyr2 (circles), $0.21 \pm 0.16~\mu M$ min⁻¹ and $0.00 \pm 0.16~\mu M$ min⁻¹ $0.12 \mu M$ min-1 and $29.7 \pm 3.0 \mu M$ for pTyr-chip (triangles). The experiments in a-d, f and g were performed twice with similar results, using two independent protein preparations each. Values are means of two technical replicates. Error bars indicate s.d.

ENANTIOMERS (with achiral counterions)

no plane of symmetry: 5 signals in ³¹P NMR, same shift for enantiomers

DIASTEREOMERS (with chiral counterions)

no plane of symmetry: 5 signals in ³¹P NMR, different shifts for diastereomers

Supplementary Figure 2: Structures and symmetry of $InsP_6$ and dephosphorylated derivatives.

Supplementary Figure 3: $InsP_5$ is the main product of XopH-dependent $InsP_6$ dephosphorylation.

a, InsP₆ was incubated with XopH for various time points as indicated. Reaction products were separated by PAGE and visualized by toluidine blue. Undigested InsP₆ served as control. Orange

G, loading dye. The experiment was repeated once with similar results. **b**, MALDI-ToF-MS of gel-purified hydrolysis product of InsP₆ after treatment with recombinant XopH enzyme. The obtained ion mass (578.9) corresponds to an InsP₅. **c**, LC-ToF-MS analysis of *myo*-inositolpolyphosphates in recombinant XopH enzyme assays. Expected retention times: InsP₆: 19.33 min, InsP₅: 19.26 min (all isomers coelute in one peak), InsP₄: 19.08 min (all isomers coelute in one peak), InsP₃: 17.5-18.2 min (dependent on isomer). The experiment was repeated twice with similar results. **d**, LC-QToF-MS/MS analysis of InsP₅ [1-OH]. Left panel: chromatographic retention of InsP₅ monoisotopic precursor ion mass ([M-H] = 578.888 Da \pm 0.02 Da), right panel: MS/MS spectra of InsP₅ from recombinant XopH enzyme assays and InsP₅ [1-OH] standard. **e**, High-performance ion chromatography (HPIC) analysis of XopH-dependent hydrolysis products of InsP₆, InsP₅ [1-OH] and InsP₅ [3-OH]. An InsP_x mix served as standard: a, InsP₆; b, Ins(1,3,4,5,6)P₅; c, Ins(1,2,4,5,6)P₅; d, Ins(1,2,3,4,5)P₅; e, Ins(1,2,3,4,6)P₅; f, Ins(1,2,5,6)P₄; g, Ins(1,3,4,5)P₄; h, Ins(1,2,4,5)P₄; i, Ins(1,2,3,4)P₄/Ins(1,3,4,6)P₄; j, Ins(1,2,3,5)P₄/Ins(1,2,4,6)P₄; k, Ins(4,5,6)P₃; l, Ins(1,5,6)P₃.

Supplementary Figure 4: $InsP_5$ [1-OH] is the likely XopH-dependent $InsP_6$ dephosphorylation product.

a, Reaction products (RP) obtained by phytate digestion with XopH ($0.13\mu g/\mu L$; 30 min) were mixed with InsP₅ isomers as indicated, separated by PAGE and visualized by toluidine blue staining. InsP₆ and InsP₅ isomers alone served as controls. Double bands report different isomer identities of RP and the respective InsP₅ species tested. **b**, All six different InsP₅ isomers (10 nmol) were digested with XopH, separated by PAGE and visualized by toluidine blue staining. **c**, An InsP₅ [1-OH]/XopH reaction mixture was incubated for 30 min at 28°C, then supplemented with InsP₆ (10 nmol) for additional 30 min, separated by PAGE and visualized by toluidine blue staining. InsP₆, InsP₅ [1-OH] and the InsP₅ [1-OH]/XopH reaction mixture (incubated for 1 h at

 $28^{\circ}\mathrm{C}$ prior to loading onto the gel) served as controls. The experiments were done twice with similar results.

Supplementary Figure 5: InsP₆ synthesis and quality control.

a, Chemical synthesis of highly pure InsP₆: (i) Bis-fluorenylmethyl-di*iso* propylamino-P-amidite (CAS: 197709-11-8), 4,5-Dicyanoimidazole, then *m*CPBA, 32 % yield; (ii) 5% Piperidine in DMF, then precipitation (and ion exchange with NaI), 92% yield. **b-d**, Quality control of synthetic InsP₆. **b**, InsP₆, ³¹P-NMR in D₂O. **c**, InsP₆, ¹H-NMR in D₂O. **d**, InsP₆, ¹³C NMR in D₂O.

Supplementary Figure 6: L-Arg-N enables the discrimination of $InsP_5$ [1/3-OH] by $^{31}P-NMR$.

Overlay of separately recorded mixtures of either $InsP_5$ [1-OH] (A) or $InsP_5$ [3-OH] (B), 100 µg each, in ammonium acetate buffer in the presence of excess of L-Arg-N (ca. 100 fold). The relative position of the peaks is identical to those found in spiking experiments.

Supplementary Figure 7: XopH leads to InsP₅ accumulation in planta.

a, HPLC profiles of neutralized extracts from 16-day old *N. benthamiana* transgenic seedlings labelled with [³H]-*myo*-inositol. Based on published chromatographic mobilities¹, InsP_{5a} represents InsP₅ [2-OH] and InsP_{5c} represents InsP₅ [1-OH] or its enantiomer InsP₅ [3-OH]. The

isomeric nature of $InsP_{3a-c}$, $InsP_{4a-b}$, $InsP_7$ and $InsP_8$ is unknown. **b**, Zoom-in into the HPLC profile. **c**, Relative amounts of $InsP_{5c}$ and $InsP_6$ in control line expressing gfp and two independent xopH-expressing lines. Error bars indicate s.e.m. **d**, LC-ToF-MS analysis of myo-inositolpolyphosphates in transgenic N. benthamiana seedlings. Plant extracts were generated as in **a**, but with unlabeled myo-inositol. Expected retention times: $InsP_6$: 19.33 min, $InsP_5$: 19.26 min (all isomers coelute in one peak), $InsP_4$: 19.08 min (all isomers coelute in one peak), $InsP_3$: 17.5-18.2 min (isomer-dependent). The experiments were performed three times with similar results.

Supplementary Figure 8: The enantiomer identity of XopH-dependent InsP₆ hydrolysis *in planta* is InsP₅ [1-OH].

Digestion and HPLC analyses of plant-purified InsP_{5c}. InsP_{5c} was purified from [³H]-myo-inositol-labeled xopH- and GFP-expressing N. benthamiana seedlings (see methods). XopH-treated or non-treated InsP_{5c} was then separated by SAX-HPLC. XopH was inactivated by incubating the reaction mixture at 95°C for 15 min. The figure shows the full chromatograms of the respective selections (min 45-71) depicted in Figure 7.

Supplementary Figure 9: XopH reduces the InsP₆ content of pepper leaves during *Xcv* infection.

HClO₄ extracts of *C. annuum* ECW leaves infected with *Xcv* strains as indicated were subjected to TiO₂ bead enrichment. Inositol polyphosphates were eluted from TiO₂ beads, resolved by PAGE and stained with toluidine blue. Protein extracts were visualized by Coomassie blue as a loading control. The experiment was repeated twice with similar results.

Supplementary Figure 10: XopH affects plant growth.

Photographs of two-months-old transgenic N. benthamiana plants grown on $0.5~\mathrm{MS}+1\%$ sucrose. Scale bars, 1 cm.

Supplementary Figure 11: HopAO1 from *Pseudomonas syringae* pv. *tomato* hydrolyzes InsP₆ into lower phosphorylated *myo*-inositol derivatives.

Recombinant XopH (0.13 $\mu g/\mu L$) or indicated amounts of recombinant HopAO1 were incubated with 10 nmol InsP₆ in reaction buffer (10 mM NaCl, 5% glycerol, 5 mM β -mercaptoethanol and 50 mM HEPES, pH 7.0) at 28°C for 30 min. Reaction products were separated by PAGE and visualized by toluidine blue staining. Orange G, loading dye. The experiment was repeated once with similar results.

Supplementary Figure 12: Unprocessed Western blots.

a, Reproduction of Fig. 1e (*top*) and the full blot of the membrane including a longer exposure (*bottom*). Please note that we removed three lanes that were not relevant for the results presented (stippled lines). **b**, **c**, Full Western blots used in Fig. 3c (b) and Fig. 8b (c).

Supplementary Figure 13: Uncropped gels.

Supplementary Figure 13: Uncropped gels (continued).

Supplementary Table 1

Oligonucleotides used in this study.

Name	Sequence (5'-3')	Purpose
XopH-GW-fw	CACCATGCCGAACAAAATCTCCGGCTCAA	GATEWAY cloning of
		xopH-his ₆
XopH-del2-77 GW-fw	CACCATGTCACATCCTGTTCTAGCTTACGACAG	GATEWAY cloning of
		xopH-del2-77-his ₆
XopH-C267A	TGCATGTACATGCTGGTATGGGCCT ^a	Site-directed mutagenesis
XopH-262rev	GTCTCTCATCATGGGCCATCTCC ^a	(XopH-C267A)
XopH-H239A-fw	GTTTGACAGTGACAGATGCTCTTTCACCACGG	Site-directed mutagenesis
	GCGGACGATATTG	(XopH-H239A and -CH)
XopH-H239A-rv	CAATATCGTCCGCCCGTGGTGAAAGAGCATCT	
	GTCACTGTCAAAC	
XopH-mutP43-52-53-	TCCCGCAGAACTCGCCGATCTAGCAAGCCGGC	Site-directed mutagenesis
fw	AAGCAGCTCGGTCAAAAACAGCACTTTA	(PRR1 mutant)
XopH-mutP43-52-53-	TAAAGTGCTGTTTTTGACCGAGCTGCTTGCCGG	
rv	CTTGCTAGATCGGCGAGTTCTGCGGGA	
XopH-mutP69-71-fw	TAATCCAGAAATTCAGAGACGCTTTGGCTCTC	Site-directed mutagenesis
_	CCGCCACCACCTCACATCCT	(PRR2-1 mutant)
XopH-mutP69-71-rv	AGGATGTGACGTGGGTGGTGGCGGGAGAGCC	
•	AAAGCGTCTCTGAATTTCTGGATTA	
XopH-mutP73-74-75-	AGAAATTCAGAGACCCTTTGCCTCTCGCGGCA	Site-directed mutagenesis
76-fw	GCAGCCACGTCACATCCTGTTCTAGCTT	(PRR2-2 mutant)
XopH-mutP73-74-75-	AAGCTAGAACAGGATGTGACGTGGCTGCC	Site-directed mutagenesis
76-rv	GCGAGAGGCAAAGGGTCTCTGAATTTCT	(PRR2-2 mutant)
caac-EGFP fw	CACCATGGTGAGCAAGGGCGAGGAGCT	SOE-PCR for gfp-xopH
		derivatives
NLS-XopH rv	TCCCGAGCCTCCAAAAAAGAAGAGAAAGGTC	SOE-PCR for gfp-NLS-
1	ATGCCGAACAAAATCTCCGGCTCAA	xopH-his ₆
NLS-XopH-fw	TTGAGCCGGAGATTTTGTTCGGCATGACCTTTC	
1	TCTTCTTTTTGGAGGCTCGGGA	
NES-XopH-rv	TTGAGCCGGAGATTTTGTTCGGCATCTTGTTAA	SOE-PCR for gfp-NES-
1	TATCAAGTCCAGCCAACTTAAGAGCA	xopH-his ₆
NES-XopH-fw	TGCTCTTAAGTTGGCTGGACTTGATATTAACAA	
The start of	GATGCCGAACAAAATCTCCGGCTCAA	
nes-XopH-rv	TTGAGCCGGAGATTTTGTTCGGCATCTTGTTAG	SOE-PCR for gfp-nes-
	CATCTGCTCCAGCTGCCTTAAGAGCA	xopH-his ₆
nes-XopH-fw	TGCTCTTAAGGCAGCTGGAGCAGATGCTAACA	
123 F 22 2	AGATGCCGAACAAAATCTCCGGCTCAA	
XopH-His6 GW-rv	TTAGTGATGGTGATGGTGCATTGTGGTC	GATEWAY cloning of
1	GAGCCATTCGGAC	<i>xopH-his</i> ₆ , SOE-PCR <i>gfp</i> -
		xopH derivatives
eGFP-GW-rv	CTTGTACAGCTCGTCCATGCCGAGAGTGATCC	GATEWAY cloning of gfp
	CGGCGGCGTCAC	erriz wiri Gennig er WP
eGFP-GW-fw	CACCATGGTGAGCAAGGGCGAGGAGCTGTTCA	-
	CCGGGGTGCCCATC	
pET-XopH-NdeI-fw	AAGGAGATATACATATGCCGAACAAAATCTCC	In-Fusion HD cloning of <i>xopH- his</i> ₆ into pET22b(+)
pE1 Mopil Maci iw	GGC	
pET-XopH-del2-77-	AAGGAGATATACATATGTCACATCCTGTTCTA	In-Fusion HD cloning of
NdeI-fw	GCTTACGAC	<i>xopH-del2-77-his</i> ₆ into
1 1dC1-1 W	GCTTACGAC	pET22b(+)
pET-XopH-XhoI-rv	GGTGGTGGTGCTCGAGTGCATTGTGGTCGAGC	In-Fusion HD cloning into
PL1-Mop11-Mioi-1V	CATTCG	pET22b(+)
nIIC57-RamHI parly	TCTAGATATCGGATCCTACGCCAGCGTCGCTCT	pOK-early-stop- <i>xopH</i>
pUC57-BamHI-early-	TOTAGATATOGGATOCTACGCCAGCGTCGCTCT	poix-carry-stop-xopn

stop-fw		(fragment I)
xopH-early-stop-A-rv	CTTCCCGGATCGCGTCGCTGCT	
xopH-early-stop-B-fw	ACGCGATCCGGGAAGAGTGCCGACT	pOK-early-stop-xopH
pUC57-BamHI-early-	GACGGCCCGGGATCCACGTACATATTTGGCG	(fragment II)
stop-rv	CCCG	
si_CaCOI1_fwd	CACCAGATCTGCCACTTGATAATGGTGT ^b	COI1 silencing construct
si_NbCOI1_rev	TCCAGAAGGCCTTCATCGGAT	
si_CaEIN2_fwd	CACCAACGGGTACTTTCTGCTTC ^b	EIN2 silencing construct
si_CaEIN2_rev	CCAATACATAAGAATTTCGCAC	
si_CaEBF1_fwd	CACCAATAAGTGCTTGCAGTGGAG ^b	EBF1 silencing construct
si_CaEBF1_rev	GCAGTTCACCAGGGAAAGAG ^b	_
NbMYC2_fwd	GATGGGATGCTATGATTCGTATAC ^c	qRT-PCR
NbMYC2_rev	CTGAAACACTAGCATGGTGCACATC°	_
NbPI-II_fwd	GGGGAGCCTCAAAGTGCTGC ^c	qRT-PCR
NbPI-II_rev	CAGAGTTTAGCATGACAGTGC ^c	
NbPR1_fwd	CGTTACGGCGAAAACCTAGC	qRT-PCR
NbPR1_rev	CCCGGTGCACAAGTATTCGA	
NbPR4_fwd	GGCCAAGATTCCTGTGGTAGAT ^d	qRT-PCR
NbPR4_rev	CACTGTTGTTTGAGTTCCTGTTCCT ^d	_
NbLR23_fwd	AGGATGCCGTCAAGAAGATGT	qRT-PCR
NbLR23_rev	TCTGGTGTCAATCGAACAAACG	_
NbF-Box_fwd	CCTCCCAGGTATTTTCGTGCA	qRT-PCR
NbF-Box_rev	CCTTTGCCTTGGTTCCAGGA	-
NbCOI1_fwd	ATGCACTTCTTGACACAGCAG	qRT-PCR
NbCOI1_rev	CCCCAACAACATTCCTTGTC	
NbEIN2_fwd	CCGTCTGTTGGTCGATCAAC	qRT-PCR
NbEIN2_rev	GGCGAATGTTCAAACCTCTG	
NbEBF1_fwd	ATGTCTAAAGTCTTCAATTTTAGTG	qRT-PCR
NbEBF1_rev	CAAGGGAGAAATAGGCTG	_
XopH ATG fw	ATGCCGAACAAATCTCCGG	Analysis of xopH-transgenic
XopH rv-3	GTCACGTGATTTGCCAGCAT	N. benthamiana

^a 5'phosphorylation; ^b 1-bp exchange in *N. benthamiana*; ^c adapted for *N. benthamiana* from references 2 and 3.

Supplementary References

- Stevenson-Paulik, J., Bastidas, R. J., Chiou, S.-T., Frye, R. A. & York, J. D. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. *Proc. Natl. Acad. Sci. USA* **102**, 12612-12617 (2005).
- Shoji, T. & Hashimoto, T. Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the *NIC2*-locus *ERF* genes. *Plant Cell Physiol*. **52**, 1117-1130, doi:10.1093/pcp/pcr063 (2011).
- 3 Kiba, A. *et al.* SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in *Nicotiana benthamiana*. *PLoS ONE* **9**, e98150, doi:10.1371/journal.pone.0098150 (2014).