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Coherently driven microcavity-polaritons and the
question of superfluidity
R.T. Juggins 1, J. Keeling 2 & M.H. Szymańska1

Due to their driven-dissipative nature, photonic quantum fluids present new challenges in

understanding superfluidity. Some associated effects have been observed, and notably the

report of nearly dissipationless flow for coherently driven microcavity-polaritons was taken as

a smoking gun for superflow. Here, we show that the superfluid response—the difference

between responses to longitudinal and transverse forces—is zero for coherently driven

polaritons. This is a consequence of the gapped excitation spectrum caused by external phase

locking. Furthermore, while a normal component exists at finite pump momentum, the

remainder forms a rigid state that is unresponsive to either longitudinal or transverse per-

turbations. Interestingly, the total response almost vanishes when the real part of the exci-

tation spectrum has a linear dispersion, which was the regime investigated experimentally.

This suggests that the observed suppression of scattering should be interpreted as a sign of

this new rigid state and not a superfluid.
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One of the most spectacular emergent effects in quantum
physics is that of superfluidity, which was first observed
as a set of peculiar flow properties in liquid helium when

cooled below 2.17 K1. Understanding collective effects such as
dissipationless flow, lack of response to transverse perturbations,
quantised vortices, and metastable persistent currents has been
the aim of much theoretical work2–6, particularly with respect to
systems in thermodynamic equilibrium. Extending these well-
established ideas to driven-dissipative systems, which do not
thermalise due to constant pumping and decay, has however
proved contentious7–13.

While dissipationless flow, explained by the Landau criterion14,
is perhaps the most famous property of superfluids, arguably the
most fundamental is that they do not respond to transverse per-
turbations5: that is, the bulk of the fluid is irrotational. Crucially,
this difference between longitudinal and transverse response
onsets sharply at the phase transition, whereas perfectly dis-
sipationless flow only occurs at absolute zero temperature, where
the normal component vanishes. Thus, to clearly distinguish a true
superfluid from a fluid merely with low viscosity, one needs to
focus on the response functions. This difference in response
derives from the dependence of superflow on the gradient of the
macroscopic wavefunction phase, a fact that also leads to quan-
tised circulation and the existence of vortices and persistent cur-
rents2. Experimentally, the absence of transverse response is
striking with a well-known manifestation being the Hess-Fairbank
effect (analogous to the Meissner effect in superconductors).
Following this logic, the standard definition of the superfluid
fraction is given by finding what part of the system responds to
longitudinal, but not transverse, perturbations3–6, 9,15–17. Such a
definition of superfluidity is equivalent to the use of the Meissner
effect to distinguish a superconductor from a material with low
resistance.

Driven-dissipative systems present new challenges in the study
of superfluidity as they do not usually thermalise and it is
unclear whether the effects seen in equilibrium will all continue to
apply9–11,15,18,19. Examples of such systems are numerous,
including Bose–Einstein condensates of photons20,21, cold atoms
coupled to photonic modes in optical cavities22, and cavity
arrays23–25. Much recent research in this area has been focused
on microcavity-polaritons15,26,27, which are bosonic

quasiparticles made of quantum well excitons strongly coupled to
cavity photons (see Fig. 1). Polariton experiments have observed a
number of effects usually associated with superfluidity, such as
the suppression of scattering for flow past a defect28–30, quantised
vortices7, and metastable persistent currents31.

The way a polaritonic system is pumped affects its excitation
spectrum and so is likely to alter its superfluid properties. While
experimentally uninvestigated, the transverse response of inco-
herently pumped polaritons has been calculated using a Keldysh
path integral method9,13, and it was found that a finite superfluid
fraction can exist despite the system being out-of-equilibrium.
Fundamentally, this was a direct consequence of the gaplessness
of the diffusive excitation spectrum32. This conclusion seems to
hold even when going beyond a linearised theory, and con-
sidering the full nonlinear dynamics which lead to a
Kardar–Parisi–Zhang (KPZ) equation predicting the absence of
analgebraic order33. Superfluidity is endangered by repulsive
forces between vortices in the KPZ-ordered phase at large
distances12,34—however, this can only be seen at scales too large
to be relevant in current experiments.

On the other hand, coherently driven polaritons below the
threshold of optical parametric oscillation (OPO), which we
consider in this work, are quite different. Here, the system
inherits its macroscopic phase from the pump, resulting in a
gapped excitation spectrum35. This phase fixing also inhibits
superfluid effects such as the formation of vortices and solitons.
However, it is notable that nearly dissipationless flow has been
observed in this system and described as evidence of
superfluidity28.

In this article, we calculate the longitudinal and transverse
response functions for coherently pumped polaritons below the
OPO threshold. We consider the case of a continuous and
homogeneous pump—a regime in which dissipationless flow was
reported in experiment28. We find these response functions to be
equal, meaning that no part of the system responds to pertur-
bations like a superfluid. Furthermore, we discover that a fraction
of the system cannot be classified as ‘normal’ or ‘superfluid’ as it
does not respond to either longitudinal or transverse forces. We
show this rigidity to follow from external phase fixing. Because
the excitation spectrum is gapped, the KPZ nonlinearity is not
relevant and our result holds in the thermodynamic limit13,33.
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Fig. 1 Polaritons in semiconductor microcavities. a Polaritons are quasiparticles formed when cavity photons, which are massive due to confinement in the z
direction between two Bragg mirrors, interact strongly with excitons confined in a quantum well. Polaritons are free to move in the two-dimensional plane
perpendicular to their confinement. b The excitonic dispersion (dashed green) is approximately constant compared to the photonic (dashed red) due to the
much larger exciton mass. Strong coupling leads to anticrossing and the formation of upper and lower polariton branches (solid black). Polaritons interact
because of their excitonic component, while their photonic part causes decay and the need for an external drive. A coherent laser pump resonantly tuned to
the polariton dispersion is marked by a blue dot
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Results
Gapped excitation spectrum. We study microcavity-polaritons,
which are two-dimensional bosonic quasiparticles that result
from the strong coupling of quantum well excitons to cavity
photons (see Fig. 1). They have a very small mass (~10−4me,
where me is the mass of an electron) which allows the formation
of macroscopically ordered states at high temperatures (~20 K in
GaAs36, and up to room temperature in organic materials37).

More specifically, we are interested in coherently pumped
microcavities, where laser excitation resonant or near-resonant
with the lower polariton dispersion maintains a steady state
against polariton decay, leading to the formation of a macro-
scopically occupied state at the pump frequency and momentum
(ωp and kp= (kp, 0))38. In such systems, there is no spontaneous
symmetry breaking as the phase is fixed by the pump.

As we are interested in low energies, we can ignore the upper
polariton dispersion and write the Hamiltonian of the system in
terms of lower polariton operators, â, coupled to bosonic decay
bath modes, Â39:

Ĥ ¼ P
k
εk â

y
k âk þ

Fpffiffi
2

p ðây0 þ â0Þ

þ V
2

P
k;k′;q

âyk�qâ
y
k′þqâk âk′ þ

P
p
ωA
p Â

y
pÂp

þP
k;p

ζk;p âykÂp þ Ây
pâk

� �
;

ð1Þ

where momentum arguments are with respect to the pump frame.
As a result, the lower polariton dispersion takes the form εk=
(k+ kp)2/2m*, where we have used a quadratic approximation.
Other quantities appearing in this expression are: Fp, the
amplitude of the pump, V, the polariton–polariton interaction
strength, ωA

p the dispersion of the bath modes, and ζk,p, the
coupling between the polaritons and the bath modes. While for

some range of detunings and pump intensities this system
becomes bistable, here we consider the monostable state at low
pump intensity.

The excitation spectrum of this system has been studied
previously35,39,40, and is given by

ω�;±
k ¼ αþk � α�k

2
� iκ±

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþk þ α�k
� �2�4V2 ψ0

�� ��4q
; ð2Þ

where ψ0 is the mean-field solution, α±
k ¼ ε± k � ωp þ 2V ψ0

�� ��2,
and κ is a decay constant derived from integrating out the bath.
Here, we wish to emphasise a point somewhat neglected in
previous work, which has concentrated on the gaplessness of the
real part of the excitation spectrum for specific blue detuning (Δp

= ωp− ε0−V|ψ0|2= 0), at which it takes a linear Bogoliubov-like
form near ω, k= 0. It has been noted that in this regime, the real
part appears to fulfil the Landau criterion for superfluidity, and
this fact has been used to explain the observation of dissipation-
less flow28. However, we note that unlike in equilibrium systems,
for which the criterion was derived, the excitation spectrum here
is complex and, due to phase fixing by the pump, is gapped,
except at exactly the pump strength where a parametric instability
first occurs. In general this gap is found in the imaginary part (see
Fig. 2). In fact, it has been shown that scattering in these systems
can only be reduced, not completely eliminated19. Furthermore,
while approximately dissipationless flow can be explained by the
real part of the excitation spectrum, a gapped spectrum may have
important consequences for superfluidity more generally. Indeed,
the limits of using the Landau criterion alone to interpret
superfluidity in driven-dissipative systems can be seen from the
incoherent case, where the diffusive excitation spectrum32 does
not fulfil it at all. In this context, a new generalised criterion in
terms of the complex wave vector was formulated to explain
dissipationless flow8.
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Fig. 2 The excitation spectrum at different polariton densities. The real (solid blue) and the imaginary (dashed red) parts of the spectrum in the frame of
the pump momentum, which is kp= 0.1 µm−1 in the x-direction, for ky= 0. The pump is blue detuned by 0.05meV with respect to the bare lower polariton
dispersion. In a and b, the densities are |ψ0|2= 0.2 µm−2 and |ψ0|2= 9.3 µm−2, respectively. In c, the density is |ψ0|2= 20.0 µm−2 and the pump comes
into resonance with the interaction shifted lower polariton dispersion, Δp=ωp− ε0− V|ψ0|2= 0, at which point the real part takes the linear form of the
Bogoliubov spectrum. Here, and in d where |ψ0|2= 30.9 µm−2, the Landau criterion is fulfilled in the real part. However, it is significant that the imaginary
part is always gapped
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Sum-rules and anisotropy. To study whether the phase fixing
and gapped spectrum in coherently pumped polaritons affects
their superfluid properties, we calculate the static current–current
response function. More specifically, for a perturbation described
by the Hamiltonian Ĥ ¼Pq ĵðqÞ:fðqÞ, where f is the perturbing
force, this response function describes the tendency for a particle
current to flow as a result of that force, ji(q)= χij(q)fj(q), where i,
j refer to directions in the xy plane. This function is given by the
correlator of two current operators41, χijðqÞ ¼ �iĥjiðqÞ̂jjð�qÞi,
and can be separated into longitudinal and transverse parts (i.e.
the response to pushing or shearing the polaritons as shown in
Fig. 3). A perfect superfluid has only the former. Mathematically,
this decomposition can be made by considering a diagonal
component of the response tensor, χii, and varying the order in
which the components of the momentum vector are taken to
zero3,42. Taking the transverse momentum (i.e. the component
perpendicular to i) to zero before the longitudinal momentum
(component parallel to i) gives the longitudinal response func-
tion, and vice versa.

In systems where particle number is conserved, the f-sum rule
holds3. This identity follows directly from continuity of current,

Ĥ; ρ̂ðqÞ� 	 ¼ �q:̂jðqÞ; ð3Þ

and allows the longitudinal response function in the long
wavelength limit to be identified with the total density, ρ=mχL

(q→ 0). In addition, using linear response theory, one can
identify the normal density as the transverse response function in
the same limit3,6, ρn=mχT(q→ 0), and calculate the superfluid
density as the difference between the two limiting responses3–6,9,
ρs=m(χL(q→ 0)− χT(q→ 0)). In driven-dissipative systems,
however, particle conservation does not hold and one should
not expect the f-sum rule or, by extension the above expression
for ρs, to hold either. While previous work on incoherently
pumped polaritons nevertheless found that the f-sum rule did
hold9, coherently pumped systems face further complications. In
particular, for the total density of the system to equal the sum of
the normal and superfluid components, ρ= ρn + ρs, the system
must be Galilean invariant2. It is clear that Galilean invariance is
broken for a coherently pumped system, as polaritons are injected
at a fixed momentum, picking out a special frame of reference
through the pumping term in the Hamiltonian (Eq. (1)). In
addition, coherently pumped polaritons are anisotropic, meaning
that the longitudinal and transverse response functions are
tensors, not scalars. Given these subtleties, a relation between the
response functions and densities is unknown. Thus, instead, we
determine whether any part of the system responds to
perturbations in a manner characteristic of a superfluid, as
defined by the superfluid response:

lim

q ! 0
χSijðqÞ
� �

¼ lim

q ! 0
χLijðqÞ � χTijðqÞ
� �

; ð4Þ

where χLij and χTij are the (anisotropic) longitudinal and transverse

response functions. We will not, however, associate these with
densities.

Response function. In order to calculate the static
current–current response function, we utilise a path integral
method where the perturbation is modelled by source fields9.
Here, we present the results of this calculation, with details of the
derivation using Keldysh field theory given in the Methods.

Each term in the response function contains two factors of the
momentum vertex,

γðk þ q; kÞ ¼ 1
2m�

2kp þ 2kx þ qx
2ky þ qy

 !
; ð5Þ

which describes the bare coupling between the source fields and
excitations carrying momentum q. Because the pump breaks
rotational invariance, the vertex is anisotropic. Without loss of
generality, we consider the pump wavevector to be in the x
direction.

The full response can be written in terms of two components,
one due to the mean-field and the other due to fluctuations:

χijðqÞ ¼ χmf
ij ðqÞ þ χflijðqÞ: ð6Þ

The mean-field term is,

χmf
ij ðqÞ ¼

X
σ;σ′2±

cmf
σ;σ′ðqÞγiðσqÞγjðσ′qÞ; ð7Þ

where the coefficient cmf
σ;σ′ðqÞ is given in Supplementary Note 1,

and the fluctuations term is:

χflijðqÞ ¼ i
4

R
d2k
ð2πÞ2 iTr½Mq

ij� þ
R

dω
2π Tr½DK

ω;kMq
ij�

�n
�Tr DR

ω;kþqAkþq;k
i DK

ω;kBk;kþq
j

h
þDK

ω;kþqAkþq;k
i DA

ω;kBk;kþq
j

i�o ; ð8Þ

where the retarded, advanced, and Keldysh Green’s
functions are defined by DR ¼ �iθðt � t′Þh½ΨðtÞ;Ψyðt′Þ�i,
DA ¼ iθðt′� tÞh½ΨðtÞ;Ψyðt′Þ�i, and DK ¼ �ihfΨðtÞ;Ψyðt′Þgi.
The Green’s functions, as well as Akþq;k

i , Bk;kþq
i , and Mq

ij, are
2 × 2 matrices in Nambu space (i.e., the space of particle creation
and annihilation operators). The matrices consist of a series of

Fig. 3 Longitudinal vs. transverse response. A current flowing in response to a perturbing force may originate through longitudinal or transverse actions,
corresponding to pushing and shearing, respectively. A superfluid responds to longitudinal but not transverse perturbations3–6,9,15–17
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different combinations of momentum vertices:

Akþq;k
i =Bkþq;k

i ¼ 1
2 ð1þ σ̂zÞγiðk þ q; kÞ
þ 1

2 ð1� σ̂zÞγið�k � q;�kÞ
þ P

σ2±
CA=B
σ ðqÞγiðσqÞ;

ð9Þ

Mq
ij ¼

X
σ;σ′2 ±

CMσ;σ′ðqÞγiðσqÞγjðσ′qÞ; ð10Þ

where CA=B
σ ðqÞ and CMσ;σ′ðqÞ are 2 × 2 matrices in Nambu space,

and σ̂z is the third Pauli matrix. These coefficients are given in
Supplementary Note 1.

As discussed further below, it is important to observe that each
of these terms involves 1/det[(DR)−1(ω= 0, q)]. One may also
note that the total response function can be divided into two sets
of contributions. Those involving the response of the condensate
appearing through the coupling γ(0, q)= (2kp + q)/2m*, and
those involving coupling to excitations through γ(k + q, k)=
(2kp + 2k + q)/2m*.

Superfluid response. To quantify the superfluid behaviour of the
system, we need to take the long wavelength limit of the response
function. In order for the longitudinal and transverse responses to
differ—that is, for the order in which qx and qy are taken to zero
to matter in any way—there needs to be singular behaviour as
q→ 0. Each term in Eq. (6) takes the ultimate form

hðqÞ
det½ðDRÞ�1ðω ¼ 0; qÞ� ; ð11Þ

where h(q) is some polynomial in q. Singular behaviour requires
the denominator of this expression, the static inverse retarded
Green’s function, to vanish as q→ 0. One may see that the
requirement for this to happen is directly related to the gapless-
ness of the excitation spectrum. The spectrum, ω*(k), in Eq. (2) is
defined by

det½ðDRÞ�1ðω�ðkÞ; kÞ� ¼ 0: ð12Þ

If the spectrum is gapless, i.e. if ω*(k→ 0)= 0, then the static
inverse retarded Green’s function will vanish as q goes to zero,
and there can be a singular dependence of the response function
on momentum. As the excitation spectrum of coherently pumped
polaritons is always gapped, this instead gives a finite value for the
static inverse retarded Green’s function, so there cannot be any
singular terms. Consequently, the longitudinal and transverse
response functions are equal and Eq. (4) shows that no part of the
system responds to perturbations like a superfluid.

Rigid state. In fact our result is more profound. In the case where
kp= 0, the response function is exactly zero in the long wave-
length limit: that is, the system does not respond to either
longitudinal or transverse perturbations. This implies that the
coherently pumped system forms a rigid state more akin to a solid
than a fluid in that it has a finite density but shows zero response
to small perturbations. Indeed, while it is already known that
phase fixing prevents the formation of vortices43, we can see that
its effect is even more severe in its restriction of the response of
the system. (If the pump is restricted in time or in space, then
there can be free phase evolution in those times or places without
a pump, allowing vortex formation to be recovered44,45.)

When the pump is at non-zero wavevector, kp ≠ 0, the
behaviour is different. While the state remains rigid to

perturbations (in the sense that its momentum continues to be
locked to the pump) the net current can change, by modifying the
occupation of the state at kp: i.e. if the coherent state has a finite
momentum, a change in the occupation of that state will change
the total current, allowing a non-zero response to the applied
force. Mathematically, this occurs because at finite kp, the
perturbation couples to the pump state through the momentum
vertex γ(0, 0)= kp/2m*, and so a force can change the amplitude
of the state at kp. This change manifests as a finite normal
response with quadratic dependence on kp. (By ‘normal’ we mean
that the longitudinal and transverse responses are equal.) As a
result, the mean-field part of the response, which is orders of
magnitude larger than the part due to fluctuations, takes the form

χð0Þij ðq ! 0Þ ¼ �δxiδxj
k2p ψ0

�� ��2ð�ψ0 þ ψ0Þ
m�2 Fp � V ψ0

�� ��2ð�ψ0 þ ψ0Þ
� � : ð13Þ

This expression reports how a perturbation changes the
occupation of the pump state, which, for finite pump momentum,
changes the overall current. To see this in detail, one can start
with the time-independent Gross–Pitaevskii equation (GPE) for
a bosonic field ψ coupled to a current through the perturbation
f(x):

� ∇2

2m � ωp � iκþ V ψðxÞj j2
� �

ψðxÞ ¼ �Fpe
ikp :x

� i
2m fðxÞ:∇ψðxÞ þ ∇:ðfðxÞψðxÞÞ½ �;

ð14Þ

and find how the occupation of the pump state changes due to
this perturbation. Because we are interested in the q→ 0 limit, we
take f to be independent of position, so this equation reduces to

� ∇2

2m
� ωp � iκþ V ψðxÞj j2


 �
ψðxÞ ¼ �Fpe

ikp :x � f :
i∇
m

ψðxÞ:

ð15Þ

Rewriting ψðxÞ ¼ ðψ0 þ ϕðxÞÞeikp:x , where ψ0e
ikp :x is the mean-

field satisfying the original GPE (i.e. with f= 0), and removing
any terms higher than first order in ϕ(x) and f leads to the
equation

� ∇2

2m
ϕðxÞ � ikp:

∇
m
ϕðxÞ þ Vψ2

0ϕ
�ðxÞ

þ k2p
2m

� ωp � iκþ 2V ψ0

�� ��2 !
ϕðxÞ ¼ f :kp

m
ψ0:

ð16Þ

One may check (e.g. by Fourier transforming) that the solution
of this is a homogenous (position independent) function ϕ(x)=
ϕ. The current associated with this change of occupation is given
by δj ¼ kp=m

� �
ψ�
0ϕþ ϕ�ψ0

� �
, which can be used to recover the

mean-field response function through δji ¼ χð0Þij ðq ! 0Þfj, with
χð0Þij ðq ! 0Þ as given in Eq. (13).

Figure 4 shows a quantity R defined as the ratio of the long
wavelength response to the mean-field density, R=m*χxx(q→
0)/|ψ0|2. We explore how R changes with pump momentum kp
and mean-field polariton density |ψ0|2 for the parameters: m*=
5 × 10−5me, where me is the electron mass, V= 0.01 meV µm2,
and κ= 0.05 meV. The ratio increases quadratically with kp, i.e.
the higher the velocity of the pump state, the more the current
changes due to the perturbation. That the response increases
smoothly with velocity is consistent with a smooth increase in
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drag force identified in a previous study19 of coherently pumped
polaritons. There is a nonmonotonic dependence of R on the
pump intensity, with an asymptotic decrease of R at large
intensity. This arises because a large pump intensity reduces the
response to a weak perturbation.

Detuning. It is worth noting that blue detuning can lead to the
real part of the excitation spectrum fulfilling the Landau criterion
at the right density28,35,40 (see Fig. 2(c)). This regime has been
used to explore flows against defects with reduced dissipation28.
Figure 5 shows how the long wavelength response normalised to

the mean-field density changes when we change the value of
the polariton density for a specific blue detuning, where m*= 5 ×
10−5me, V= 0.0025 meVµm2, and κ= 0.05 meV. It is notable
that at the shifted resonance point, Δp= ωp− ε0− V|ψ0|2= 0,
where the real part of the excitation spectrum takes a Bogoliubov
form, the mean-field term in the response function, Eq. (13),
becomes zero. The reason for this is that Eq. (13) is proportional
to <ðψ0Þ, and when Δp= 0, ψ0 is entirely imaginary. While the
long wavelength response due to fluctuations is finite, it is orders
of magnitude smaller than the mean-field contribution at most
densities. This suggests that, even if we take higher orders in
fluctuations, there is always a pump strength for which the
response goes from negative to positive and is thus strictly zero.
Furthermore, this pump strength is very close to the shifted
resonance point at which dissipationless flow was observed in
experiments. For densities above the shifted resonance point, the
Landau criterion is still fulfilled in the real part which is now
gapped, but by contrast to the experimentally investigated regime
in Fig. 2(c), the response function is finite and positive, showing a
gradual reduction with increasing density similar to the case of
zero detuning (Fig. 4).

Because there is no continuity of current (Eq. 3), the f-sum rule
does not hold and there is no clear physical correspondence
between the response functions and the density of the system. As a
result, the negative value of the long wavelength response function
at low densities does not present a problem. Additionally, it should
be noted that in a previous study of incoherently pumped
polaritons at the mean-field level11, in which external potentials
were present, it was concluded that the resultant currents in the
steady state can change the physical picture substantially and render
the interpretation of the superfluid and normal density fractions in
terms of the response of the system to a vector potential unphysical.
While the phase was free in that study and in the present work
there are no external potentials, parallels exist with the fact that the
coherent pumping ensures a steady-state current.

Discussion
We study, using a nonequilibrium path integral method, a system
of coherently pumped microcavity-polaritons in which the
pumping is continuous, homogeneous, and below the OPO
threshold, and show that the external fixing of the the macro-
scopic phase prevents it from being a superfluid. This is because
the gapped spectrum affects the limiting behaviour of the
current–current response function such that the longitudinal and
transverse responses are the same. Remarkably, we also find that
the system does not respond to either longitudinal or transverse
perturbations at kp= 0, and it possesses only a normal compo-
nent at finite kp, which grows with increasing kp. Rather than a
superfluid, this result suggests the existence of a rigid state that,
like a solid, has density but no current response. The smooth
growth of the normal component with kp is similar to the smooth
crossover in drag predicted in a previous study19. Additionally,
the fraction of the system corresponding to the macroscopic rigid
state grows faster than that of the normal component as pump
intensity is increased.

While blue detuning can allow the fulfilment of the Landau
criterion in the real part, and signs of dissipationless flow have
been observed28, this is the only property associated with
superfluidity that is exhibited by the rigid state, as vortices and
persistent currents cannot form when the phase is externally
fixed, and the superfluid response is zero. It is notable too that the
long wavelength total current–current response function falls to
zero very close to the experimentally investigated regime where
the excitation spectrum takes the Bogoliubov form, which could
explain the observed reduced scattering.
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Fig. 4 Response at zero detuning. The long wavelength response,
normalised to the mean-field density, R=m*χxx(q→ 0)/|ψ0|2, as a function
a of pump momentum kp at |ψ0|2= 6.9 µm−2, and b the mean-field density
|ψ0|2 at kp= 0.1 µm−1. The detuning is zero in both cases
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Fig. 5 Response at finite detuning. Total long wavelength response for
kp= 0.1 µm−1 (dashed purple) and kp= 0.25 µm−1 (solid green) normalised
with respect to the mean-field density, R=m*χxx(q→ 0)/|ψ0|2. Vertical
lines marked (a–d) correspond to the excitation spectra in Fig. 2. For a and
b, the response is negative, and goes to zero close to c where the excitation
spectrum is of the linear Bogoliubov form (the mean-field component, Eq.
(13), is exactly zero at c on account of an imaginary mean-field, but the
fluctuations are small and finite), before becoming positive, peaking around
d, and tailing off similarly to the resonant case in Fig. 4. Larger kp leads to a
larger response to perturbations. Note that there is no change in response

associated with the speed of sound, given by cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ψ0

�� ��2=m�
q

, which

corresponds to the momentum k= 0.1 µm−1 when |ψ0|2= 6.1 µm−2 and k
= 0.25 µm−1 when |ψ0|2= 38.1 µm−2
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The existence of this rigid state suggests that driven-dissipative
systems allow for a richer collection of macroscopic flow prop-
erties than equilibrium systems, and highlights the subtleties
inherent in the attributes together known as superfluidity.

Method
Keldysh path integral. We calculate the current–current response function using a
Keldysh path integral technique9,41,46. Starting from the Hamiltonian (Eq. (1)) and
integrating out the decay bath, the action is given in terms of Keldysh ‘classical’ and
‘quantum’ fields, Ψ= (ψc, ψq)39:

S½Ψ� ¼ P
ω;k

�ψc
kðωÞ; �ψq

kðωÞ
� � 0 D0

kðωÞ
D0
kðωÞ� 2iκ

 !
ψc
kðωÞ

ψq
kðωÞ


 �

� P
ω;ω′;ν

P
k;k′;q

V
2

�ψc
k�qðω� νÞ�ψq

k′þqðω′þ νÞ ψc
kðωÞψc

k′ðω′Þ
��

þψq
kðωÞψq

k′ðω′Þ
	þ c:c:

�� Fp �ψq
0ð0Þ þ ψq

0ð0Þð Þ;

ð17Þ

where D0
kðωÞ ¼ ωþ ωp � εk � iκ and εk= (k + kp)2/2m*. To connect this to the

normal ordered current response, we add an extra term to the action, δS, that
contains two source fields, f and θ, where the former is coupled to the Keldysh
‘quantum’ current and the latter to the observable current:

δS½f ; θ� ¼
X
ω;k;q

γiðk þ q; kÞ�ΨkþqðωÞ½σ̂Kx fiðqÞ þ ðσ̂Kz þ iσ̂Ky ÞθiðqÞ�ΨkðωÞ; ð18Þ

where σKi are the Pauli matrices in the Keldysh basis.

Current–current response function. Having constructed a path integral,
Z ¼ RDð�Ψ;ΨÞeðiSþiδSÞ , the response function is found by differentiating it with
respect to the source fields:

χijðqÞ ¼ � i
2

d2Z½f; θ�
dfiðqÞdθjð�qÞ

�����
f¼θ¼0

: ð19Þ

Owing to the interaction term in the Hamiltonian, this calculation requires that
we make the substitution Ψ=Ψ0 + δΨ for a mean-field and quadratic fluctuations,
modifying our path integral,

Z ¼
Z

Dðδ�Ψ; δΨÞexp iS0 þ i
X

δ�ΨðD�1 þ A½f; θ�ÞδΨ
h i

; ð20Þ

where D�1 is the inverse matrix of Green’s functions and A[f, θ] consists of the
fluctuation terms dependent on the source fields. In general, our mean-field will be
dependent on the source fields, and integrating out the fluctuations we find our
response function is given by

χijðqÞ ¼ χmf
ij ðqÞ þ χflijðqÞ ð21Þ

¼ � i
2 i d2S0

dfiðqÞdθjð�qÞ
h

þ 1
2 Tr D dA

dfiðqÞ D
dA

dθjð�qÞ
� �

� 1
2 Tr D d2A

dfiðqÞdθjð�qÞ
� �i

;

ð22Þ

where the first term comes from the mean-field and the others from the
fluctuations.

Coefficients. The coefficients in Eqs. (7–10) are given in Supplementary Note 1.

Data availability
Data sharing is not applicable to this article as no datasets were generated or analysed
during the current study.
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