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Robson José Mariano Machado

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Statistical Science

University College London

October 17, 2018



2
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Abstract

Multi-state models can be used to analyse processes where change of status over

time is of interest. In medical research, processes are commonly defined by a set

of living states and a dead state. Transition times between living states are often in-

terval censored. In this case, models are usually formulated in a Markov processes

framework. The likelihood function is then constructed using transition probabili-

ties. Models are specified using proportional hazards for the effect of covariates on

transition intensities. Time-dependency is usually defined by parametric models,

which can represent a strong model assumption. Semiparametric hazards specifica-

tion with splines is a more flexible method for modelling time-dependency in multi-

state models. Penalised maximum likelihood is used to estimate these models. Se-

lecting the optimal amount of smoothing is challenging as the problem involves

multiple penalties. This thesis aims to develop methods to estimate multi-state

models with splines for interval-censored data. We propose a penalised likelihood

method to estimate multi-state models that allow for parametric and semiparametric

hazards specifications. The estimation is based on a scoring algorithm, and a grid

search method to estimate the smoothing parameters. This method is shown using

an application to ageing research. Furthermore, we extend the proposed method by

developing a computationally more efficient method to estimate multi-state models

with splines. For this extension, the estimation is based on a scoring algorithm, and

an automatic smoothing parameters selection. The extended method is illustrated

with two data analyses and a simulation study.
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Chapter 1

Introduction

1.1 Research aim and overview

Multi-state models are a broadly applicable approach to analysing longitudinal data,

where change of status over time is of interest. In medical research, these statuses

are usually defined by the severity of a disease or condition of subjects in a follow-

up study. Some standard examples include, dementia research in which interest lies

in the decline of cognitive function, post-transplantation chronic disease studies,

which aim to investigate disease progression after transplant, and human immun-

odeficiency virus (HIV), where modelling the transition of subjects across disease

stages is of interest. Data deriving from these medical conditions share similar char-

acteristics inherent to how data are obtained. Specifically, time of change in a med-

ical condition cannot always be observed exactly, instead changes are recorded at

pre-specified follow-up times. In this case, transition times are said to be interval-

censored. On the other hand, if a dead state is defined, time of death is usually

known exactly. Multi-state models for data with these characteristics are the focus

of this thesis.

Multi-state models for interval-censored data are commonly formulated in a

Markov processes framework (Kalbfleisch and Lawless, 1985). The Markov prop-

erty states that the future of the process only depends on the current state. Models

can be specified through the transition intensities (also called hazards), which rep-

resent the instantaneous risks of moving across states. To facilitate estimation, a
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time homogeneous Markov process is usually assumed (Kalbfleisch and Lawless,

1985; Jackson, 2011). In this case, the hazards are assumed to be constant over

time. For a wide range of applications, the risks of moving across states depend on

the current state and on time. In this case, a non-homogeneous Markov assumption

is assumed to model the multi-state process. Several time-dependent models can be

fitted with parametric specifications (Van den Hout, 2017). However, the functional

forms underlying the hazards are often unknown and parametric models can be too

restrictive.

Flexible multi-state models can be obtained with smooth nonparametric haz-

ard functions specification. In this case, the hazards are specified in terms of splines

function basis. Splines are polynomial functions, which allow for flexible modelling

De Boor (1978). In particular, they enable modelling time-dependent hazards with-

out making strong model assumptions. For each hazard function, an extra parameter

is employed to control model smoothness. These parameters are commonly called

smoothing parameters. In the frequentist context, penalised maximum likelihood is

used to estimate the models. Estimation of multi-state models with splines can be

carried out in two challenging steps. First, for fixed values of smoothing parame-

ters, penalised maximum likelihood estimation is used to obtain estimates for the

model parameters. Second, given the estimates of model parameters in the first step,

we aim to define a stable and efficient method to estimate the optimal values for the

smoothing parameters. These two steps are iterated until a convergence criterion

is met. At the present time, methods available cannot fully address the problem of

estimating flexible multi-state models in the presence of interval censoring.

This thesis aims to develop a new efficient method for estimating multi-state

models with splines in the presence of censoring. The focus is on observation

schemes in which the transition times between living states are interval-censored

and times into the dead (or absorbing) state are known exactly (or right-censored).

In the remainder of this chapter, some special features of multi-state modelling

are presented. This includes a description of basic concepts of survival analysis

that are used throughout this thesis. In addition, the literature on techniques for
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parametric and semiparametric multi-state models is reviewed. This also includes a

review of smoothing methods useful for the development of methods in this thesis.

Finally, we introduce data used to illustrate methods studied and developed in this

thesis.

Chapter 2 follows this introduction by presenting the theory of multi-state mod-

elling. Specifically, we discuss parametric model specification and estimation. A

detailed description of a scoring algorithm to obtain the maximum likelihood esti-

mates is discussed. The method is then illustrated through an application to data for

post-heart transplantation patients, and data for decline of cognitive function.

Chapter 3 then extends parametric multi-state models by allowing for

transition-specific hazards specification with splines. Firstly, we provide an in-

troduction to smoothing methods that will be used for the remainder of the thesis.

In particular, we present cubic regression splines and P-splines. We then present

our method for specification and estimation of multi-state models with splines, that

uses a scoring algorithm for estimating the model parameters, and a grid search for

selecting the optimal amount of smoothing. This method is then illustrated with an

application to ageing research.

Chapter 4 proposes an unifying and efficient framework for estimating multi-

state models with splines in the presence of censoring. A simulation study is carried

out to analyse the performance of the method presented. Subsequently, the method

is illustrated with an application to data used in Chapter 2.

The final chapter provides a discussion of the methods and applications devel-

oped in this thesis, and indicates areas for future research.

1.2 Special features of multi-state processes

In this section, a number of different multi-state models are presented in order to

illustrate some essential features of these models. In particular, we discuss some

model structures and observational patterns commonly found in medical research.

The discussion presented in this section is mainly based on the papers by Andersen

and Keiding (2002) and Commenges (2002).
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1.2.1 Model structure

Graphically, multi-state models can be illustrated using diagrams with boxes rep-

resenting the states and with arrows between the states representing the possible

transitions. A state is said an absorbing state if further transitions cannot occur

from that state. A transient state is a state that is not absorbing, meaning that at

least one transition is possible from that state.

Survival model

A simple multi-state model can be defined for survival data in which individuals

are followed-up until the event death (or censoring) occurs. The two-state model is

then defined by the transient State 1 (alive) and the absorbing State 2 (death). This

model is illustrated in Figure 1.1.

Figure 1.1: A two-state survival model

Unidirectional model

Unidirectional models extend the survival model by defining a set of transient states

before an absorbing State D (Figure 1.2) (Titman, 2008). For this model, individuals

start at a transient state and can move forward to the next state until the absorbing

state. Cook and Lawless (2002) use these models for the analysis of repeated events

data.

Figure 1.2: An unidirectional model

The illness-death model

The illness-death model is defined by a disease-free state (State 1), from which

subjects can move into the dead state (State 3), or move into a diseased state (State

2). Once in State 2, subjects can move back to State 1 or move into State 3, see

Figure 1.3.
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Figure 1.3: An illness-death model

Competing risks model

In the context of medical research, competing risks models are defined by one

transient state (State 1: alive) and a number, k, of absorbing states, State h, for

h = 1, . . . ,k corresponding to “death from cause h”. Figure 1.4 illustrates the model

for k = 2.

Figure 1.4: A competing risks model

1.2.2 Observational patterns

As discussed in Commenges (2002), the observations are often incomplete in the

sense that it is not possible to observe the whole population of interest, and it is

not possible to observe the process continuously over time. The first problem can

be addressed by drawing a representative sample of the population. The second

problem leads to what is called censored observations. Commenges (2002) provides

a thorough discussion on how to approach different types of censoring in multi-state

processes. We next describe right and interval-censoring as these are the focus of

this thesis.

Consider first that a multi-state process is observed in continuous time from

time t0 until time t0 + c. If the state of the process at time t0 + c is an absorbing
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Figure 1.5: The trajectory of an illness-death process. Dashed vertical lines represent the
follow-up times. Solid horizontal lines represent the state occupancy over time

state, then the process is observed completely. If not, then some transition times are

said to be right-censored.

For many applications, a multi-state process is observed at only a finite number

of times. In this case, the exact time of transitions are only known to have occurred

within a time interval. In this case, the transition times are said to be interval cen-

sored. This type of censoring is common in cohort studies, where states are recorded

at fixed visit times. If a dead state is defined, the time of death is usually known

exactly. In this case, we have a mix of discrete and continuous time observations.

This thesis focus on methods for these pattern of observations. Figure 1.5 illustrates

the trajectory of an illness-death process over time. The vertical dashed lines repre-

sent the follow-up times at which state occupancy is recorded. The horizontal lines

represent the state occupancy over time. The process moves back and forth between

the living states, subsequently moves from the illness state into the dead state.

1.3 Literature review
For the analysis of time-homogeneous multi-state processes, Kalbfleisch and Law-

less (1985) developed a general procedure for obtaining maximum likelihood esti-

mates of the model parameters. The method is based on a scoring algorithm that

uses an approximation to the second order derivatives of the log-likelihood func-

tion. Kay (1986) proposes a similar method that calculates the first and second or-



1.3. Literature review 20

der derivatives of some particular multi-state processes. Kay also provides methods

for hypothesis testing and model diagnostics. Satten and Longini (1996) developed

a method for fitting these models when states are subject to measurement errors.

Jackson (2011) presented the msm package in R for analysing time homogeneous

multi-state processes for interval-censored data.

For time-dependent multi-state processes, Kalbfleisch and Lawless (1985) sug-

gested using two methods. The first method uses piecewise-constant hazards to

approach time-dependent processes. In this case, the hazards are constant within

specified intervals, but can change for different intervals, see also Kay (1986). For

many applications, it is not reasonable to assume that the underlying hazards are

piecewise-constant functions. Also, the total number of parameters in the model can

become large with the number of transition specific-hazards. The second method fo-

cuses on a special case in which the non-homogeneity is due to a time-varying mul-

tiplicative change in the matrix of transition intensities. In this case, it is possible

to find a transformation function so that the resulting process is time homogeneous.

Hubbard et al. (2008) investigated this method and proposed a flexible approach for

estimating the transformation functions. Titman (2011) uses a numerical approx-

imation to calculate the transition probabilities at the level of the corresponding

differential equations. A disadvantage of this method is that estimation can become

computationally expensive if many time-varying covariates are included. Jackson

(2011) suggests using a piecewise-constant approximation for parametric models,

which is employed to obtain the transition probabilities for the likelihood function.

Van den Hout (2017) provides a general method for estimating multi-state models

for interval-censored data. Focus is given to time-dependent parametric models,

such as, Gompertz and Weibull distributions. Given a piecewise-constant approx-

imation to the parametric hazards, a scoring algorithm is used for estimating the

models. Further literature on time-dependent multi-state models includes Omar

et al. (1995), Van den Hout and Matthews (2008a) and Van den Hout and Matthews

(2008b).

Even though multi-state models with splines for known transition times are out
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of the scope of this research, a literature review of these models can be important

for the development of this work. Fahrmeir and Klinger (1998) approached these

models in a counting process framework. Transition intensities are specified in

terms of spline functions. Estimation is based on a backfitting scheme with internal

smoothing parameter selection by AIC optimisation. The application is to human

sleep data with a discrete set of sleep states. Measurements are made every 30

seconds for a group of 30 patients. A Bayesian approach to this model and data

is given in Kneib and Hennerfeind (2008). In this case, the inferential procedures

developed allow for simultaneous estimation of model and smoothing parameters.

Sennhenn-Reulen and Kneib (2016) developed an estimation procedure based on

a structured lasso penalisation for multi-state models. The aim of their research is

to identify covariate effect coefficient equal to zero. Baseline transition intensities

are specified with piecewise-constant models, or unspecified and equal across all

transitions. The R package Flexsurv is mainly designed for modelling time-to-

event data (Jackson, 2016). It can fit any parametric time-to-event distribution and

the spline models of (Royston and Parmar, 2002). This package can also be used

for fitting some multi-state model by writing data in a survival format. Models can

be specified with a rage of parametric and nonparametric shapes.

In the context of multi-state models with splines for interval-censored data, a

penalised approach for an unidirectional three-state model is used in Joly and Com-

menges (1999). Estimation is performed with an algorithm which uses derivatives

of the penalised log-likelihood. The smoothing parameters are selected using a grid

search with cross-validation. Joly et al. (2002) use the same approach for an illness-

death without recovery model. Joly et al. (2009) further extend their method for a

five-state model without recovery. These methods require explicit expressions for

the transition probabilities. Calculating those formulae can be intractable for more

complex models, such as, models with more than four states and backward transi-

tions. In addition, their methods can be computationally intractable for models with

multiple smoothing parameters, as the grid search method requires models to be

fitted for all possible combination of smoothing parameters values given in the grid.
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The method proposed in Titman (2011) allows for nonparametric hazard specifica-

tions with B-splines; however, the log-likelihood is maximised without penalisation.

If a large set of B-splines basis is used to model a transition-specific hazard, models

can become unidentifiable.

Efficient smoothing parameter selection methods are important for practical

multi-state modelling with splines. We next discuss some relevant literature for

automatic smoothing parameter estimation that will be useful for defining an au-

tomatic and efficient algorithm to estimate multi-state models with splines. Gu

and Wahba (1991) developed an efficient Newton method for multiple smoothing

parameter selection. Wood (2000) extends their method for multiple smoothing

parameter selection in generalized ridge regression problems. Wood (2004) pro-

vides a stable and efficient method that improves the method developed in Wood

(2000). These methods are widely used in generalised additive models. However,

they can be further extended for more general settings. Radice et al. (2016) pro-

poses a method for multiple smoothing parameter estimation for copula regression.

Their method is general, but lead to numerical instability for some applications.

Marra et al. (2017) developed a more general and stable method that can be esti-

mate multiple smoothing parameters using only the gradient and Hessian (or Fisher

information matrix). This method is general and can be used in a variety of settings.

1.4 Survival analysis

Some concepts of time-to-event analysis can be used and extended to multi-state

modelling. In this section, we describe important features of these concepts that

will be useful for the development of this thesis. Time-to-event analysis aims to

describe the analysis of data in the form of a well-defined time origin until the

occurrence of some particular event. In medical research, the time origin will often

correspond to beginning of a treatment and the event of interest can be relief of pain,

the recurrence of symptoms, or death. If the event is death of a patient, then time-to-

event data are commonly called survival data. In this thesis, we focus on examples

that include a dead state, and we shall refer to time-to-event data as survival data.
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This section is partly based on Collett (2015).

Let T be the random variable associated with the survival time of patients,

which can take any non-negative values. The distribution function of T is given by

F(t) = P(T < t) =
∫ t

0
f (u)du, (1.1)

where f (t) represents the probability density function of T . Equation (1.1) repre-

sents the probability that survival is less than some value t.

The survival function, S(t), is defined to be the probability that the survival

time is greater than or equal to t,

S(t) = P(T ≥ t) = 1−F(t), (1.2)

where F(t) is as defined in (1.1).

The hazard function is widely used to express the risk or hazard of an event

occurring at some time t. This function is obtained from the probability that an

individual dies at time t, conditional on them having survived to that time. Formally,

the hazard function, h(t), is given by

h(t) = lim
δ t→0

{
P(t ≤ T ≤ t +δ t|T ≥ t)

δ t

}
. (1.3)

Equations (1.1), (1.2) and (1.3) provide that the hazard function can be ex-

pressed as

h(t) =
f (t)
S(t)

. (1.4)

The cumulative hazard function is used to express the cumulative risk of an

event occuring by time t. Formally, the cumulative hazard function, H(t), is given

by

H(t) =
∫ t

0
h(u)du. (1.5)

From Equation (1.4), it follows that h(t) = − d
dt {logS(t)}, which implies that

S(t) = exp{−H(t)}. Therefore, the survival function can also be expressed in terms

of the cumulative hazard function.
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Empirical non-parametric methods are useful to summarise the survival times

for individuals in a particular group. Suppose that for a single sample of survival

times none of the observations is censored. The empirical survival function is given

by

Ŝ(t) =
Number of individuals with survival times≥ t

Number of individuals in the data
. (1.6)

The empirical survival function is equal to unity for values of t before the first death

time, and zero after the final death time. The estimated survivor function, Ŝ(t),

is assumed to be constant between two adjacent death times, and so a plot of Ŝ(t)

against t is a step-function. The function decreases immediately after each observed

survival time.

Suppose that there are n individuals with survival times at t1, . . . , tn. These ob-

servations can be right-censored and more than one death can occur at a given time.

Suppose that there are r deaths among the individuals, where r ≤ n. Let t(1), . . . , t(r)

be the r ordered death times, n j the number of individuals who are alive just before

t( j), including those who are about to die, and d j the number of individuals who die

at t( j). The Kaplan-Meier estimate of the survival function is given by

Ŝ(t) =
k

∏
j=1

(
n j−d j

n j

)
(1.7)

for t(k)≤ t < t(k+1), k = 1, . . . ,r, with Ŝ(t)= 1 for t < t(1), and where t(r+1) is taken to

be ∞. If the largest observation is a censored survival time, t∗, then Ŝ(t) is undefined

for t > t∗. If the largest observed survival time, t(r), is an uncensored observation,

nr = dr, and so Ŝ(t) = 0 for t ≥ t(r). A plot of the Kaplan-Meier estimate of the

survival function is a step-function, in which the estimated survival probabilities

are constant between adjacent death times and decrease at each death time. This

thesis uses the Kaplan-Meier estimate of the survival function for model validation.
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1.4.1 The exponential distribution

The probability density function of a random variable T that has an exponential

distribution with parameter λ > 0 is given by

f (t) = λ exp−λ t , (1.8)

for 0≤ t < ∞. The survival function is then given by

S(t) = 1−
∫ t

0
f (t)dt

S(t) = exp(−λ t). (1.9)

Using the relation h(t) =− d
dt log(S(t)), the hazard function is given by

h(t) = λ , (1.10)

for t ≥ 0. Therefore, if the hazard is constant over time. For many applications, it

may be more reasonable to consider time-dependent hazard functions.

1.4.2 The Gompertz distribution

The probability density function of a random variable T that has a Gompertz distri-

bution with parameters λ > 0 and θ ∈ R is given by

f (t) = λeθ t exp
{

λ

θ
(1− eθ t)

}
, (1.11)

for 0≤ t < ∞. The survival function of the Gompertz distribution is given by

S(t) = exp
{

λ

θ
(1− eθ t)

}
. (1.12)

The hazard function of the Gompertz is given by

h(t) = λeθ t , (1.13)
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Figure 1.6: Gompertz hazard functions for scale and shape parameters (λ ,θ) =
(1,−0.8),(0.1,0.15) and (0.01,0.45)

for t ≥ 0. The parameters θ and λ are the shape and scale parameters, respec-

tively. For the case in which θ = 0, the hazard function is constant and equal to λ ,

and the survival times then have an exponential distribution. Positive values of θ

lead to increasing hazards, while negative values of θ lead to decreasing hazards.

As an illustration, the hazard function for Gompertz distributions with parameters

(λ ,θ) = (1,−0.8),(0.1,0.15) and (0.01,0.45) are shown in Figure 1.6.

1.4.3 The Weibull distribution

The probability density function of a random variable T that has a Weibull distribu-

tion, with parameters λ > 0 and γ > 0 is given by

f (t) = λγ
γ−1 exp(−λ tγ), (1.14)

for 0≤ t < ∞. The survival function of the Weibull distribution is given by

S(t) = exp(−λ tγ). (1.15)
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Figure 1.7: Weibull hazard function for scale parameter λ = 1 and the shape parameters
γ = 0.5, 1, 2 and 3

The corresponding hazard function is given by

h(t) = λγtγ−1 (1.16)

for t ≥ 0. For the case in which γ = 1, the hazard function is constant over time, and

the survival times have an exponential distribution. The shape of the hazard function

is controlled by the parameter γ , which is then defined as the shape parameter, while

λ is a scale parameter. A plot of the Weibull hazard function for distributions with

λ = 1 and γ = 0.5,1,2 and 3 is shown in Figure 1.7.

1.4.4 The lognormal distribution

A random variable T has a lognormal distribution, with parameters µ and σ , if the

random variable logT has a normal distribution with mean µ and variance σ2. The

probability density function of T is given by

f (t) =
1

σ
√

2π
t−1 exp

{
−(log t−µ)2/2σ

2} , (1.17)
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Figure 1.8: Lognormal hazard functions for µ = 1 and σ2 = 0.75, 1, and 1.75

for 0≤ t < ∞ and σ . The survival function of the lognormal distribution is

S(t) = 1−Φ

(
log t−µ

σ

)
, (1.18)

where Φ(·) is the standard normal distribution function, given by

Φ(z) =
1√
2π

∫ z

−∞

exp(−u2/2)du. (1.19)

The hazard function can be found from the relation h(t) = f (t)/S(t). This

function is zero at t = 0, increases to a maximum and then decreases to zero as t

tends to infinity. The hazard and survival functions are given in terms of integrals

limits, which makes the use of this model difficult for applications. However, the

flexibility of this model is attractive and they will be useful in Chapter 4 to simulate

transition times from a distribution function that leads to a non-linear shape of haz-

ard functions. For illustration, the hazard function for lognormal distributions with

parameters µ = 1 and σ2 = 0.75,1, and 1.75 are shown in Figure 1.6.
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1.5 Simulation of multi-state processes
In this section, we describe how to simulate multi-state processes using the inversion

method (Bender et al., 2005). For a fixed transition from state r to state s, r 6= s,

the random variable T represents the time to event . If the cumulative distribution

function for leaving state r to state s is given by F(t) = 1− S(t), then U = F(T )

has a uniform distribution on the interval [0,1], denoted by U ∼U [0,1]. Moreover,

if a random variable has distribution U ∼U [0,1] then 1−U ∼U [0,1] as well. It

means that S(T )∼U [0,1]. Therefore, if the function H(t) can be inverted, the time

to event from state r to state s can expressed as

T = H−1[− log(U)exp(β>rsz)] (1.20)

where U ∼U [0,1].

Suppose there are m−1 competing intensities for leaving state r. The time to

next event can be obtained by taking T = min(T1, . . . ,Tm−1), where Ti is obtained

applying (1.20).

For the calculation of subsequent event times, we use that the survival function

conditional on entering the state r at time t0 > 0 is given by

S(t|t0) = P(T > t|T > t0)

=
S(t)
S(t0)

. (1.21)

1.6 Examples
This section further discusses special features of multi-state processes through ex-

amples. Data from these examples will then be used to illustrate the statistical

methods presented in subsequent chapters.

1.6.1 Cardiac allograft vasculopathy data

Cardiac allograft vasculopathy (CAV) is a narrowing of the arterial walls and one

of the main cause of death in heart transplantation patients. The data are a series

of approximately yearly angiographic examinations of heart transplant recipients.
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Figure 1.9: Four-state model for disease progression after transplant for the CAV data

The data come from Papworth Hospital U.K. The data contain 3217 rows which are

grouped by 622 patients and ordered by years after transplant. For the CAV data,

baseline means years since the beginning of the study.

Of interest is the onset of CAV after transplantation. The state at each follow-

up time is a grade of CAV which can be normal, mild, moderate or severe. Dead is

the absorbing state and time of death is known within one day. Three living states

are defined by CAV severity: State 1, 2, and 3, for Normal, Mild/Moderate, and

Severe, respectively. An additional State 4 is defined as the Dead state, see Figure

1.9.

The interval-censored multi-state process is summarised by the frequencies

in Table 1.1. The code 99 represents right-censored observations. As it can be

seen, some backward transitions are recorded. However, the narrowing process is

assumed to be biologically irreversible. There are essentially two ways to approach

this problem. First, it is possible to fit multi-state models with misclassification of

states (Jackson et al., 2003). Such an approach is out of the scope of the current

research. Second, the data can be redefined for the history of CAV. In this case,

the states are classified as Healthy (1) if the patient has not developed the disease,

Mild/Moderate (2) if the patient has developed mild/moderate or Severe (3) if the

patient has developed severe CAV and Dead (4) if the patient has died. Then, the

data are consistent with the model in Figure 1.9.

The CAV data include several covariates which may be used to analyse pa-

tient’s progression across states. These include recipient age at examination, donor

age, the sexes of recipient and donor, and primary diagnosis of ischaemic heart dis-

ease (IHD). Sharples et al. (2003) showed in an analyse of these data that IHD and
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Table 1.1: State table for the CAV data: number of times each pair of states was observed at
successive observation times. The three living states are defined by CAV severity

To
From 1 2 3 4 99
1 1367 204 44 148 276
2 46 134 54 48 69
3 4 13 107 55 26

donor age are major risk factors of disease onset.

1.6.2 English longitudinal study of ageing data

The English Longitudinal Study of Ageing (ELSA) baseline (1998-2001) is a rep-

resentative sample of the English population aged 50 and older. ELSA contains

information on health, economic position, and quality of life. Data from ELSA

can be obtained via the Economic and Social Data Service (www.esds.ac.uk).

There are 11932 individuals in the ELSA baseline. The following description of

these data can also be found in Van den Hout (2017).

Of interest is the change of cognitive function in older population. For the

analysis in this thesis, a random sample of size N = 1000 is taken from ELSA. Of

these 1000 individuals, 205 died during the follow-up with age at death available.

Because ELSA data are publicly available, measures have been taken by the data

provider to prevent identification of the individuals. One of those measures is the

censoring of ages above 90 years. In the sampling of the subset of N = 1000, indi-

viduals who were 90 years or older at baseline were ignored, where baseline means

entry in the study. The sample has 544 women and 456 men. Highest educational

qualification is dichotomised according to years of formal education: fewer than

ten versus ten or more. There are 558 individuals with fewer than ten years of

education.

The focus is on the number of words remembered in a delayed recall from a

list of ten. The score on this test is equal to the number of words remembered, i.e.,

score ∈ {0,1,2, · · · ,10}. It is of interest to explore the effect of age and gender on

cognitive change over time when controlling for education. Four living states are
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Figure 1.10: Five-state model for longitudinal data in ELSA on number of words remem-
bered in a recall

defined by the number of words an individual can remember: State 1, 2, 3, and 4,

for the number of words {7,8,9,10}, {6,5} {4,3,2}, and {1,0}, respectively. An

additional State 5 is defined as the dead state, see Figure 1.10.

1.6.3 Origins of variance in the oldest-old data

The origins of variance in the oldest-old (OCTO) study included dizygotic (DZ)

and monozygotic (MZ) twin pairs aged 80 years of age and older. The sample was

selected from older adults in the population-based Swedish Twin Registry. Older

adults participating in the study were tested in their residence by nurses. Informed

consent was obtained from each participant. Five cycles of longitudinal data were

collected at two year intervals. The initial sample consisted of 702 individuals (351

same-sex pairs). The final analysis included 694 participants.

Of interest is the effects of age on cognitive function. The mini-mental state

examination (MMSE) is used to assess global cognitive functioning of participants

at each time point (Folstein et al., 1975). The state at each follow-up time is a clas-

sification of respondents in terms of MMSE, which can be normal MMSE (27 ≤

MMSE ≤ 30), mild MMSE impairment (23≤MMSE ≤ 26) and severe MMSE im-

pairment (MMSE≤ 22). The MMSE is not used to determine clinical diagnosis but

as suggestive of mild cognitive impairment and dementia. These MMSE severity

are used to define three living states: State 1, 2, and 3, for No cognitive impair-

ment, Mild cognitive impairment, and Severe cognitive impairment, respectively.

An additional State 3 is defined as the Dead state, see Figure 1.11.

The interval-censored multi-state process is summarised by the frequencies in

Table 1.2. Even though there are some backwards transitions from State 3, severe
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State 1 
No cognitive
impairment 

State 2 
Mild cognitive

impairment 

Dead

State 3 
Severe cognitive

impairment 

Figure 1.11: Four-state model for longitudinal data in OCTO

cognitive impairment is assumed to be irreversible. Here, the OCTO data are rede-

fined for the history of severe cognitive impairment. In this case, if a participant has

moved into State 3, they are only allowed to stay in State 3 or move into the dead

state, see Figure 1.11.

The data include several covariates which may be used to analyse patient’s

decline of cognitive function and death. These include education, sex, and socioe-

conomic status (SES). Robitaille et al. (2018) investigate the effect of age and these

covariates on the transitions between cognitive states and life.

1.7 Discussion
To conclude, estimation of time-dependent multi-state models for interval-

censoring can be challenging. Most parametric models are specified with restrictive

functional forms, such as, Gompertz and Weibull. Flexible parametric distributions

can also be used, but obtaining the derivatives of the log-likelihood function for

those models can be intractable. For the examples in Section 1.6, there is no clear

information on good parametric shapes. Nonparametric hazards specification with

splines provides a flexible approach for modelling time-dependent multi-state pro-

cess. The methods developed so far focus on particular cases and are not feasible

for many applications.



1.7. Discussion 34

Table 1.2: State table for the OCTO data: number of times each pair of states was observed
at successive observation times. The three living states are defined by grades of
cognitive function

To
From 1 2 3 4
1 715 133 82 233
2 67 106 116 110
3 8 21 274 319



Chapter 2

Parametric multi-state models

This chapter introduces parametric multi-state models for interval-censored data.

The general formulation builds up within a Markov processes framework, and mod-

els are specified through hazard functions. Maximum likelihood is used for estima-

tion. Model selection and model validation are briefly discussed as they will be

useful for comparing and validating models throughout this thesis. The method is

illustrated with the CAV and OCTO data sets. These applications show the versatil-

ity of multi-state modelling for longitudinal data, but also highlight some limitations

of parametric model specifications. The aim of this chapter is to present the general

theory of multi-state models. All methods presented are standard and can be found

in textbooks (Cox, 2017; Van den Hout, 2017). The applications are original, as the

CAV and OCTO data sets have not been analysed with the formatting proposed in

this chapter.

2.1 Continuous-time Markov processes
A stochastic process is a collection of random variables {Y (t)|t ∈U}, where U is

an index set that can take discrete or continuous values. The state space, S , is the

set of possible values of Y (t), which can also be discrete or continuous. The focus

here is on the case in which U is continuous and S is discrete, where the former is

a set of model states and Y (t) denotes the state of S occupied by the system at time

t. The content presented in this section follows the presentation in Cox (2017).

Given the time points t1, . . . tn, it is of interest to examine the joint distribu-
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tion of Y1, . . . ,Yn, where Yj = Y (t j) for j = 1, . . . ,n. Commonly, {Y (t)|t ∈ U} is

assumed to be a Markov process, which means that the future state of the process

only depends on the current state. Formally, a continuous-time Markov process on

the discrete states S is defined through a set of probabilities, prs(t), such that,

prs(t,u) = P
(
Y (u+ t) = s|Y (u) = r

)
, (2.1)

for r,s ∈ S , u ≥ 0 and t ≥ 0. The Markov process {Y (t)|t ∈ U} is time-

homogeneous if the probability (2.1) only depends on the initial state, that is,

prs(t) = P
(
Y (t) = s|Y (0) = r

)
. (2.2)

The process is for now assumed to be time-homogeneous. The probabilities in (2.2)

must satisfy

0≤ prs(t)≤ 1, (2.3)

prk(t) = ∑
s

prs(u)psk(t−u) (t > u), (2.4)

∑
s

prs(t) = 1. (2.5)

The matrix P(t) which contains these probabilities is called the transition prob-

ability matrix. Equation (2.4) is the Chapman-Kolmogorov equation for a time-

homogeneous Markov process and can be written in matrix form as P(t) =

P(u)P(t− u), with P(0) = I. This is useful for computing transition probabilities

over a long-term time interval.

In applications, models are specified through the transition rates over a small

time interval. The transition intensities (or hazards) from state r to state s are given

by

qrs = lim
∆t→0

P
(
Y (t +∆t) = s|Y (t) = r

)
∆t

, (2.6)

for r 6= s. Notice that the q′rss are constants. The matrix Q with off-diagonal entries

qrs and diagonal entries qrr = −∑s 6=r qrs is called the generator matrix. If qrr = 0,
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the state r is called absorbing. As described in Section 1.6, data analysed in this

thesis will include an absorbing state, which represents the dead state.

As an example, the generator matrix for the ELSA data described in Section

1.6.2 is given by



−(q12 +q15) q12 0 0 q15

q21 −(q21 +q23 +q25) q23 0 q25

0 q32 −(q32 +q34 +q35) q34 q35

0 0 q43 −(q43 +q45) q45

0 0 0 0 0


.

The rate at which individuals move, e.g., from state 1 into state 3 is zero, q13 = 0,

because this transition is not allowed by the process. In order to move into state

3 from state 1 subjects must go first through state 2. The dead state 5 is the only

absorbing state for this application.

For a given generator matrix, Q, a Markov process is uniquely defined (Cox,

2017). The link between a generator matrix and its probability matrix is established

by the forward and backward equations, which are given by

P′(t) = P(t)Q, (2.7)

P′(t) = QP(t), (2.8)

respectively. Given the initial condition P(0) = I, the solution to the differential

equations in (2.7) and (2.8) is

P(t) = exp(Qt) (2.9)

=
∞

∑
k=0

Qk tk

k!
, (2.10)

where Q0 = I. Because Q is finite, the series (2.10) is convergent and (2.9) is

the unique solution of both backward and forward equations. Moler and Van Loan

(2003) discuss a range of methods to calculate the exponential of a matrix. Here, the
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transition probability matrix P(t) are computed using the eigen-decomposition of Q.

Let b1, . . . ,bk represent the eigenvalues of Q and A the matrix with the eigenvectors

as columns. For distinct eigenvalues, the matrix A is invertible, and the eigenvalue

decomposition is Q = Adiag(b1, . . . ,bk)A−1. The transition probability matrix P(t)

for elapsed time t is given by

P(t) = A diag
(

eb1t , . . . ,ebkt
)

A−1.

In this thesis, multi-state processes are Markov processes with transition prob-

abilities depending on the current state and possibly on covariates.

For many applications, the risks of moving across states depend on the current

state and on time. In this case, a non-homogeneous Markov assumption is assumed

to model the multi-state process. The generator matrix is then a function of time,

which means that the matrix Q(t) can vary over time. We next describe how to

specify and approach time-dependent multi-state models.

2.2 Model representation
The hazard functions as defined in (2.6) can be generalised to the situation where the

hazards depend on time and on the values of p explanatory variables, x1, . . . ,xp. The

set of values of the explanatory variable are denoted by the vector x = (x1, . . . ,xp)
>.

Let qrs.0(t) represent the hazard function for an individual for whom the values of

all the explanatory variables that make up the vector x is zero. This function is

called the baseline hazard function. A time-dependent hazard regression model can

be written in the form

qrs(t) = qrs.0(t)exp
(
βββ
>
rsx
)
, (2.11)

where βββ rs = (βrs.1, . . . ,βrs.p)
> is the vector of coefficients of the p explanatory vari-

ables acting on transition from state r to state s. We focus on the case where the

explanatory variables are recorded at the time origin of the study. It is straight-

forward to extend the model to the situation where the values of the explanatory
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variables change over time (Van den Hout, 2017).

Equation (2.11) shows that transition-specific time dependency can be intro-

duced via baseline hazards. As presented in Section 1.4, examples of parametric

functional forms for qrs.0(t) include

exponential: qrs.0(t) = αrs αrs > 0 (2.12)

Weibull: qrs.0(t) = αrsτrstτrs−1
αrs,τrs > 0 (2.13)

Gompertz: qrs.0(t) = αrs exp(ξrst) αrs > 0 . (2.14)

The exponential model is the simplest parametric hazard specification, which

does not allow for time-dependent modelling. The Weibull and Gompertz specifi-

cations are useful to model monotonic upward or downward trends over time.

Whilst it is straightforward to specify time-dependent models for the hazards,

calculating the transition probabilities of time-dependent multi-state processes are

complicated. The forward and backwards equations in (2.7) and (2.8), respectively,

are derived for processes for which Q is constant. For time-dependent multi-state

processes, those equations can be extended as follows. Define a family of matrices

P(t,u), for u > t, with elements P(Y (u) = j|Y (t) = i). The forward and backward

equations are given by

∂P(t,u)
∂u

= P(t,u)Q(u), (2.15)

−∂P(t,u)
∂ t

= Q(t)P(t,u), (2.16)

respectively. Equations (2.15) and (2.16) are called the Kolmogorov differential

equations. Finding a solution or approximated solution for these equation is crucial

for practical multi-state modelling. Titman (2011) uses a numerical approximation

to solve these differential equations. In this thesis, time-dependency is approached

by using a piecewise-constant approximation to the hazards.
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2.3 Piecewise-constant hazards approximation

This section describes a piecewise-constant approximation to take into account

time-dependency of the hazards. Given a specified time-interval (t1, t2], we aim

to find an approximate value for the transition probability P(t1, t2), which is then

employed in estimation. We next present two methods that can be used within the

framework that will be developed in this thesis.

The first method uses the follow-up times in the data to define the grid for

the piecewise-constant approximation for the individual likelihood contributions.

In this case, for a given time-interval (t1, t2] the transition probability P(t1, t2) is

estimated by exp((t2− t1)Q(t1)). This approximation performs well in estimation

depending on the volatility of the process and on the study design. For more volatile

processes, the follow-up times have to be more frequent to capture the risk changes

over time.

Alternatively, it is possible to impose a fixed grid to the piecewise-constant

approximation as described in Van den Hout and Matthews (2008a). For a given

time interval (t1, t2], the transition probability P(t1, t2) can be calculated by imposing

a grid for the piecewise-constant approximation, which is the same for all individual

likelihood contributions. In this case, time intervals in the data are embedded in the

grid. For example, say the grid is defined by u1, ...,uM. For the observed time

interval (t1, t2], determine j1 and j2 such that u j1 < t1 ≤ u j1+1 and u j2 < t2 ≤ u j2+1.

The transition matrix for (t1, t2] is then defined by

P(t1, t2) = P
(
t1,u j1+1

)
P
(
u j1+1,u j1+2

)
×· · ·×P

(
u j2 , t2

)
,

using generator matrices Q(u j1),Q(u j1+1), . . . ,Q(u j2), respectively.

Van den Hout (2017) compares the performance of the piecewise-constant ap-

proximation and the exact method that solves the forward and backward differential

equations as in (2.15) and (2.16). The simulation is carried out for the illness-death

model with Gompertz hazards. The grid for the piecewise-constant approximation

is defined by the data. Two study designs are investigated: states are observed yearly
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and at the points 0, 4, 8, 9, 10, 11, 12. For the first case, the results of both meth-

ods are very similar. For the second case, the piecewise-constant approximation led

to slightly biased results for the scale parameter, but similar results for the shape

parameter. It is expected given the 4-year interval times. Therefore, the piecewise-

constant approximation leads to satisfactory results as long as the time between

observations is not too long relative to the volatility of the multi-state process.

For multi-state processes in which the sampling times are covariate dependent

(e.g. individuals with a pre-condition are sampled more often), the approximation

bias may lead to bias of the covariate effect. For such cases, imposing a grid to the

piecewise-constant approximation can improve the estimation. Also, it is possible to

include an interval-censored state in between two distant observation times (Van den

Hout, 2017).

2.4 Maximum likelihood estimation
Let θθθ = (θ1, . . . ,θq)

> be the parameters vector of a given multi-state model. These

parameters can be estimated using the method of maximum likelihood. We first

obtain the likelihood function of the sample data. Then we illustrate a scoring al-

gorithm, which is used to obtain the maximum likelihood estimates of the model

parameters.

2.4.1 Likelihood function of the model

Given a multi-state model, maximum likelihood inference can be used to estimate

model parameters. In the presence of interval censoring, the likelihood function is

constructed using transition probabilities.

Let the state space be S = {1,2, ..,D}, with D the dead state. Consider a

series of states Y1, ...,Yn observed at times t1, ..., tn, respectively. The inference is

conditional on the first observed state. For Y2, ...,Yn, the distribution is

P(Yn = yn, ...,Y2 = y2|Y1 = y1,θθθ , t,X) , (2.17)

where θθθ = (θ1, ...,θq)
> is the vector with the model parameters, t= (t1, ..., tn)>, and
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the n× p matrix X contains the values of the p covariates at each of the n time points.

A conditional first-order Markov assumption is used to define the distribution (2.17)

of Y2, ...,Yn as

n

∏
j=2

P
(
Yj = y j|Yj−1 = y j−1,θθθ , t j−1,x j−1

)
,

where x j−1 is the ( j−1)th row in X.

Next consider an individual i with observed values y1, ...,yn−1 ∈S \D, and a

last observation yn which is either a value in S or a code for right-censoring. The

likelihood contribution for this individual is Li = ∏
n
j=2 Li j, where

Li j =

 P
(
Yj = y j|Yj−1 = y j−1,θθθ , t j−1,x j−1

)
for j = 2, ...,n−1

C(yn|yn−1) for j = n .
(2.18)

If a living state at tn is observed, then C(yn|yn−1) = P(Yn = yn|Yn−1 = yn−1), where

part of the conditioning is ignored in the notation. If the state is right censored at tn,

then C(yn|yn−1) = ∑
D−1
s=1 P(Yn = s|Yn−1 = yn−1). If the state at tn is D, then known

time of death is taken into account by defining

C(yn|yn−1) =
D−1

∑
s=1

P(Yn = s|Yn−1 = yn−1)qsD(tn). (2.19)

Given N individuals, the log-likelihood function is given by

`(θθθ) =
N

∑
i=1

logLi =
N

∑
i=1

ni

∑
j=2

logLi j, (2.20)

where ni is the number of observation times for individual i, which can include a

right-censored observation.

The above definition of the likelihood function can also be found in Jackson

(2011). Including time-dependency, as defined by the models in Section 2.2, does

not affect the basic structure of the likelihood function. Similar expressions of the

likelihood function can be found in Kalbfleisch and Lawless (1985), Kay (1986),
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Gentleman et al. (1994), and Van den Hout (2017).

The log-likelihood function in (2.20) can be maximised by using a general-

purpose optimiser or a scoring algorithm. The latter is illustrated in the next section

and will be used for the analysis in this chapter.

2.4.2 Scoring algorithm

The maximum likelihood estimates of the vector of parameters θθθ in the multi-state

model (2.11) can be found by maximising the log-likelihood function (2.20) using

numerical methods. This maximisation can be achieved using a scoring algorithm

(Van den Hout, 2017), and it is described below.

Kalbfleisch and Lawless (1985) proposed a scoring algorithm for maximis-

ing the log-likelihood function of time homogeneous multi-state models. Given

a piecewise-constant approximation to the time-dependency in the hazard model

(2.11), their formulae can be used to maximise the likelihood function (2.20). In

particular, those formulae are applied to the constituent intervals with constant haz-

ards in the likelihood function. Notice that, in this case, we obtain an approximation

to the log-likelihood function in (2.20), which is still the logarithm of a likelihood

function.

As in Section 2.4.1, let θθθ =(θ1, ...,θq)
> be the vector of model parameters. For

a given time interval (t1, t2], the first-order derivatives of the transition probability

matrix, ∂P(t1, t2)/∂θk, is given in terms of ∂Q(t)/∂θk. The latter is straightfor-

ward to derive for most parametric models, such as, Weibull and Gompertz hazard

models. The likelihood contributions for exact death times and right-censoring are

straightforward to deal with, as they are made up of transition probabilities.

To specify the scoring algorithm, the derivative of a transition matrix is pre-

sented first. Given a piecewise-constant approximation to the hazards, the likeli-

hood contribution for an observed time interval (t1, t2] is defined using a constant

generator matrix Q = Q(t1). For the eigenvalues of Q given by b = (b1, ...,bD)
>,

define B = diag(b). Given matrix A with the eigenvectors as columns, the eigen-

value decomposition is Q = ABA−1. The transition probability matrix P(t) =
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P(t1, t2) for elapsed time t = t2− t1 is given by

P(t) = A diag
(

eb1t , ...,ebDt
)

A−1.

As described in Kalbfleisch and Lawless (1985), the derivative of P(t) can be

obtained as
∂

∂θk
P(t) = AVkA−1,

where Vk is the D×D matrix with (l,m) entry
g(k)lm [exp(blt)− exp(bmt)]/(bl−bm) l 6= m

g(k)ll t exp(blt) l = m,

where g(k)lm is the (l,m) entry in G(k) = A∂Q/∂θkA−1.

For the parametric time-dependent hazard models in Section 2.2, matrix

∂Q/∂θk is straightforward to derive.

The scoring algorithm can now be defined as follows. Let g(θθθ) be the q× 1

vector of first-order derivatives of the log-likelihood function in (2.20). This quan-

tity is called the gradient vector. The kth entry of g(θθθ) is given by

N

∑
i=1

ni

∑
j=2

∂

∂θk
logLi j . (2.21)

Let I (θθθ) be the q×q matrix of expected negative second-order derivatives of the

log-likelihood. This quantity is given by

I (θθθ) = IE
[
− ∂ 2`(θθθ)

∂θθθ∂θθθ
>

]
. (2.22)

The matrix I (θθθ) is called the Fisher information matrix. This matrix can be ap-

proximated by defining the q×q matrix M(θθθ) with (k, l) entry

N

∑
i=1

ni

∑
j=2

∂

∂θk
logLi j

∂

∂θl
logLi j . (2.23)
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The scoring algorithm provides that an estimate of the vector θθθ at the (v+1)th

cycle of the iterative procedure, θθθ
(v+1), is

θθθ
(v+1) = θθθ

(v)+M
(
θθθ
(v))−1g

(
θθθ
(v)) .

for v = 1,2,3 . . ., where g
(
θθθ
(v)) is the gradient vector and M

(
θθθ
(v))−1 is the inverse

of the (approximated) Fisher information matrix, both evaluated at θθθ
(v). The pro-

cess iterates until the relative differences in the values of the parameter estimates

satisfies max1≤k≤q |θ (v+1)−θ (v)|< δ for a suitable small positive value.

The asymptotic covariance matrix of the maximum likelihood estimate θ̂θθ is

equal to the inverse of the Fisher information matrix I (θθθ)−1, which can be ap-

proximated by I (θ̂θθ)−1. Hence, after convergence, the covariance matrix of the

maximum likelihood estimate θ̂θθ is estimated by M(θ̂θθ)−1 (Van den Hout, 2017).

The standard error of θ̂i = (θ̂θθ)i is given by

SE(θ̂i)≈ (M(θθθ)−1)
1/2
ii , (2.24)

where i = 1, . . . ,q. The algorithm is implemented by the author in R in such a way

that it is easy to vary transition-specific choices for parametric shapes.

2.5 Confidence intervals
The distribution of the maximum likelihood estimator can be used to construct con-

fidence intervals for the estimate θ̂θθ and functions of them, such as the hazards and

probability matrix (Wood, 2006). Let Vθθθ represent the covariance matrix of θ̂θθ at

convergence. From large sample theory, samples of the estimate θ̂θθ can be drawn

from N(θ̂θθ ,Vθθθ ). Confidence intervals for functions of the model parameters can be

constructed as follows:

Step 1: Draw b vectors from N(θ̂θθ ,Vθθθ ).

Step 2: Calculate the value of the function of interest at each simulated value.

Step 3: Using the simulated values of the function, calculate the lower (ς/2) and
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upper (1− ς/2), quantiles.

The parameter ς is usually set to 0.05. In this thesis, we approximate the covariance

matrix Vθθθ by the inverse of the matrix M as defined in (2.23).

Sampling from a K-variate normal distribution N(µµµ,ΣΣΣ) is possible by using

the Cholesky decomposition ΣΣΣ = LL>. First K draws are taken independently from

the standard normal and collected in the K×1 vector z. A multivariate draw from

N(µµµ,ΣΣΣ) is then given by µµµ +Lz.

2.6 Model selection
In multi-state models various hazards specifications can be used. Model selection is

commonly used to select the best model among them. Model fitting can always be

improved by adding more parameters. However, parsimonious models are easier to

estimate and better for prediction. Model selection methods aim to find the balance

between goodness-of-fit and parsimony. Ruppert et al. (2003) and Wood (2006)

provide descriptions of several methods for model selection. Their method can be

used to compare nested multi-state models, i.e., models with the same structure,

but with different specifications. This thesis uses the Akaike Information Crite-

rion (Akaike, 1998). This quantity is also know as AIC. This section follows the

description presented in Ruppert et al. (2003) and Wood (2006).

The AIC selects models based on their fit to new data. The AIC is derived from

the Kullback-Leibler (K-L) discrepancy. Suppose that the model density is fθ (y),

and that f0(y) is the true density, where θ denotes the parameter (or the vector of

parameters ) of fθ . The K-L discrepancy is given by

K( fθ , f0) =
∫
{log[ f0(y)]− log[ fθ (y)]} f0(y)dy. (2.25)

Equation (2.25) provides a measure of how well fθ matches the truth. If θ̂ is the

maximum likelihood estimate of θ , then K( fθ , f0) could be used to provide a mea-

sure of how well the the model fθ is expected to fit a new set of data, not used to

estimate θ̂ . It can be shown that E[K( fθ , f0)] ≈ −`(θ̂)+ q, where `(θ̂) is the log-

likelihood function evaluated at the maximum likelihood estimate, and q represents
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the number of model parameters. This measure can be used for model comparison.

The Akaike Information Criterion is then defined as

AIC =−2`(θ̂)+2q. (2.26)

Models with lower AIC values are considered to be closer to the true model, than

models with higher AIC values. The term q penalises models with more parameters

than necessary, counteracting the tendency of the likelihood to models with a large

number of parameters.

2.7 Model validation

For multi-state models, the Markov assumption and parametric hazards specifica-

tion are used to facilitate inference. Titman and Sharples (2010) reviewed diag-

nostics methods for multi-state models in the presence of interval censoring. We

describe below the method that will be used in this thesis for model validation and

model comparison.

A simple diagnostic method compares the model predictions of the entry time

into an absorbing state with the Kaplan-Meier estimates (see Section 1.4). Suppose

that all individuals start in the same state at baseline and progress to an absorbing

state, and that the assumptions in the multi-state model are correct. Then, there

should be close agreement between the empirical survival curve and the survival

curve implied by the fitted multi-state model. In this case, survival time is in relation

to the dead state. The pointwise 95% confidence intervals of the Kaplan-Meier are

used as a benchmark to decide if any disagreement is within allowed bands. If the

time scale is age, then age has to be transformed to time since beginning of the

study. In this case, we can compare all individual survival curves. Notice that this

method only checks one part of the model, the survival times from a specified state.

However, it gives relevant information about model fitting. This method is used to

assess model fit throughout this thesis.
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Table 2.1: State table for the OCTO data for the history of State 3: number of times each
pair of states was observed at successive observation times. The three living
states are defined by grades of cognitive function

To
From 1 2 3 4
1 710 130 79 229
2 66 98 100 104
3 0 0 339 329

2.8 Applications
The methods presented in this chapter are illustrated with applications to the OCTO

and CAV data sets. In what follows, model estimation is undertaken using the scor-

ing algorithm presented in Section 2.4.2. Let θθθ = (θ1, ...,θq)
> be the vector with

model parameters, where q depends on the application. The convergence criterion

for the algorithm is to stop at iteration v+1 when max1≤k≤q |θ (v+1)−θ (v)|< 10−6.

For both data sets, models are specified with Gompertz hazards because this is

a common assumption in applied research (Marioni et al., 2012; Robitaille et al.,

2018) and can be used with the msm package.

2.8.1 Origins of variance in the oldest-old data

We fit a multi-model for the OCTO data defined as in Figure 1.11. Even though in-

dividuals in state 3 (severe cognitive impairment) can only move into state 4 (dead),

some backward observations from state 3 are recorded. This is due to measurement

error. It is possible to fit multi-state models with misclassification of states (Jack-

son et al., 2003). However, such an approach is out of the scope of this research.

We define the OCTO data for the history of state 3, which means that once indi-

viduals move into state 3, they are only allowed to move into state 4. The resulting

interval-censored multi-state process is summarised by the frequencies in Table 2.1.

Let t represent age minus 80. This is necessary to avoid numerical problems

with the scoring algorithm. Because time of death is known, rather than being in-

terval censored, the likelihood contribution of individuals observed in state r < 4 at

time t and dead at time t∗ > t are given by ∑
3
s=1 P(Y (t∗) = s|Y (t) = r)qs4(t∗). As
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Figure 2.1: Histogram of age at baseline transformed by minus 80 in the OCTO data. The
variable t represents age minus 80

Table 2.2: Parameter estimates for the four-state for the OCTO data. Estimated standard
errors in parentheses. Time scale t is age in years minus 80

Intercept t sex
α12.0 -2.157 (0.163) α12.1 0.115 (0.024) βL -0.325 (0.100)
α14.0 -3.185 (0.220) α14.1 0.128 (0.032) βD -0.334 (0.091)
α21.0 -1.383 (0.254) α21.1 -0.020 (0.047)
α23.0 -0.967 (0.162) α23.1 0.056 (0.023)
α24.0 -3.775 (0.719) α24.1 0.177 (0.078)
α34.0 -1.463 (0.130) α34.1 0.060 (0.013)

described in Section 2.3, transition probabilities for the likelihood function are cal-

culated by using a piecewise-constant approximation to the hazards. For the OCTO

data, the mean length of follow-up times is 1.994 years with standard deviation of

1.098 and median 1.986. Assuming that change in transition intensities in relation to

the frequency of observation can be assessed in intervals of approximately 2 years,

we can use the data to define the grid for the piecewise-constant approximation.

The proportional hazards model with Gompertz specification and dependence
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on the covariate sex is given by

qrs(t) = exp(αrs.0 +αrs.1t +βrssex) , (2.27)

where (r,s)∈{(1,2),(1,4),(2,1),(2,3),(2,4),(3,4)} and sex is 0/1 for men/women.

For the transition between the living states, the constraints on the coefficients for

sex are β12 = β23 = βL, except for transition from 2 to 1 where β21 = 0. For the

transitions into the dead state, the constraints are β14 = β24 = β34 = βD. This model

has a total of 14 parameters and AIC = 5342.837.

The estimated hazards (solid lines) for women and 95% confidence intervals

(dashed lines) are presented in Figure 4.5. The confidence intervals are obtained

by simulation with b = 1000 replications. The risks of moving across states are

increasing throughout the length of the study, except for the transition from 2 to 1

which is decreasing. The confidence intervals are fairly wide after approximately

15 years due to the dependence on the slope parameter as t increases. Figure 2.1

illustrates the histogram of age at baseline minus 80.

Table 2.2 presents the parameter estimates for model (2.27) for the OCTO

data. The effect of sex for the living states is very close to the effect of sex for the

transition into the dead state, β̂L =−0.325 and β̂D =−0.334.

Figure 2.3 depicts the baseline-specific survival as estimated by the model and

as described by the Kaplan-Meier curves. Individual survival curves (in grey) are

shifted to the years since baseline so that we can compare them and their mean to

the Kaplan-Meier curve. This is necessary because individuals have different ages

at baseline. For survival given baseline states 2 and 3, there is some discrepancy

between the model-based mean survival and the Kaplan-Meier curve, but overall

the fit is reasonably good. Although this is not a proper goodness-of-fit test, the

comparison shows that the model is able to capture the attrition due to death during

the follow-up.
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Figure 2.2: Estimated Gompertz hazards (solid lines) for women, with 95% confidence
intervals (dashed lines). The confidence intervals are obtained by simulation
with b = 1000 replications

2.8.2 Cardiac allograft vasculopathy data

For the CAV data as described in Section 1.6.1, some backward transitions are

recorded from states 3 and 2. However, the process is biologically irreversible and

of particular interest is the onset of CAV. In order to investigate this, an illness-death

without recovery model can be defined. The states are classified as Healthy (1) if the

patient has not developed the disease, CAV (2) if the patient has developed moderate

or severe CAV and Dead (3) if the patient has died, see Figure 2.4. Also, diagnosis

of ischaemic heart disease (IHD) and donor age are known to be major risk factors

of disease onset (Titman, 2011). Only data until 15 years are considered, since after
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Figure 2.3: Comparison of model-based survival from states 1, 2, and 3 with Kaplan-Meier
curves. Model-based survival: grey lines for individuals, blue lines for the
mean of the individual survival curves. Kaplan-Meier in black lines with 95%
confidence intervals. Frequencies for baseline state along vertical axes

this time data are scarce and we cannot estimate the model for times beyond that

time. Titman (2011) used a similar formatting of the CAV data. Table 2.3 gives the

number of times each pair of states was observed at successive observation times.
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Table 2.3: State table for the CAV data: number of times each pair of states was observed at
successive observation times. The two living states are defined by CAV severity

To
From 1 2 3 99
1 1336 224 139 252
2 0 412 110 105

Health CAV

Dead

Figure 2.4: Illness-death without recovery model for disease progression after transplant
for the CAV data

We fit a progressive three-state model for the CAV data defined as in Figure

2.4. Because time of death is known within one day, rather than being interval

censored, the likelihood contribution of individuals observed in state r < 3 at time

t and are dead at time t∗ > t are given by ∑
2
s=1 P(Y (t∗) = s|Y (t) = r)qs3(t∗). As

described in Section 2.3, transition probabilities for the likelihood function are cal-

culated using a piecewise-constant approximation to the hazards. For the CAV data,

the mean length of follow-up times is 1.622 years with standard deviation of 0.972

and median 1.258. Assuming that change in transition intensities in relation to the

frequency of observation can be assessed in intervals of approximately one year, we

can use the data to define the grid for the piecewise-constant approximation.

Let t represent time since baseline. The proportional Gompertz hazard model is

specified with dependence on donor age (dage) and primary diagnosis of ischaemic

heart disease (IHD):

qrs(t) = exp(αrs.0 +αrs.1t +β1dage+β2IHD) , (2.28)

where (r,s) ∈ {(1,2),(1,3),(2,3)}. This model has 8 parameters and AIC =

3190.752.

The estimated Gompertz hazards for subjects with IHD and donor age of 26
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Figure 2.5: Histogram of time since transplant in the CAV data

Table 2.4: Parameter estimates for the illness-death without recovery for the CAV data.
Estimated standard errors in parentheses. The variable t represents time since
baseline

Intercept t Covariates
α12.0 -3.166 (0.175) α12.1 0.110 (0.022) β1 0.014 (0.004)
α13.0 -3.682 (0.204) α13.1 -0.195 (0.064) β2 0.296 (0.089)
α23.0 -3.585 (0.268) α23.1 0.101 (0.032)

(solid lines) and 95% confidence intervals (dashed lines) are presented in Figure 2.6.

The confidence intervals are calculated using simulation with b= 1000, as described

in Section 2.5. The risks of moving from state 1 (Healthy) to state 2 (CAV), and

from state 2 (CAV) to state 3 (Dead) increase over the years. The risk of going from

state 1 to state 3 (Dead) is very low and decreasing over the years. Similarly to

what happened in the application to the OCTO data (Section 2.8.1), the confidence

intervals become wider towards the end of the study. The histogram of time since

transplant in Figure 4.8 shows that data become scarce after approximately 10 years.

Table 2.4 illustrates the parameter estimates for model (2.28) for the CAV data.

For the covariates effects, β̂1 = 0.018 and β̂2 = 0.277 indicating that donor age and

IHD increase the risks of disease progression and death.
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Figure 2.6: Estimated Gompertz hazards for subjects with IHD and with donor age of 26
(solid lines), with 95% confidence intervals (dashed lines). The confidence
intervals are obtained by simulation with b = 1000 replications

Figure 2.7 shows baseline survival as estimated by the model and as described

by the Kaplan-Meier curves. The model predicts the survival reasonably well up to

ten years. However, there is some discrepancy between the estimate survival curve

and the Kaplan-Meier curve after ten years, which is an indication of lack of fit.
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Figure 2.7: Comparison of model-based survival from states 1 with Kaplan-Meier curves.
Model-based survival: grey lines for individuals, blue line for the mean of the
individual survival curves. Kaplan-Meier in black lines with 95% confidence
intervals

2.9 Discussion
This chapter presented the general formulation of parametric multi-state models for

interval-censored data. We show in an application to the OCTO data that a Gom-

pertz hazard specification results in a satisfactory model fit. In the application with

the CAV data, we demonstrate that such parametric model assumption can be too

restrictive. This thesis aims to investigate how model fit can be improved by using

flexible hazards specification with splines, without defining a specific parametric

form. Even though there are a wide range of more flexible model, deciding on a

specific model can be difficult. The next chapter introduces the multi-state models

with splines, which aim to overcome restrictive hazards models such as Gompertz

and Weibull.



Chapter 3

Multi-state models with splines

This chapter begins with a brief introduction to smoothing methods. This will in-

clude a detailed description of cubic regression splines and P-splines basis func-

tions. We then show how to specify transition-specific hazard functions with

splines. A penalised maximum likelihood method is developed to estimate model

parameters. The method uses a scoring algorithm to maximise the penalised log-

likelihood function and a grid search to select the optimum amount of smoothing.

The chapter then concludes with an application to the ELSA data, where paramet-

ric and semi-parametric transition-specific hazards specifications are explored to

model the multi-state processes. A substantial part of the material in this chapter

has been published in Statistics in Medicine as a paper entitled Flexible multistate

models for interval-censored data: Specification, estimation, and an application to

ageing research (Machado and van den Hout, 2018). We acknowledge that part of

the analysis of the ELSA data is also in Van den Hout (2017).

3.1 Introduction
The application to the CAV data in Chapter 2 shows that parametric hazards speci-

fication can lead to poor model fitting. In this section, we present an introduction to

smoothing methods, which are a general technique to estimate nonparametric func-

tions. These methods allow for flexible modelling without making strong assump-

tion about the functional forms underlying the data. We describe how to approach

the simple case of estimating a univariate nonparametric function. The methods
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are subsequently extended to specify and estimate multi-state models with splines.

This sections follows the description presented in Ruppert et al. (2003) and Wood

(2006).

3.1.1 Smoothing methods

Consider the problem of estimating a function g from a set of n data points (xi,yi)

for i = 1, . . . ,n, where g is continuous on [x1,xn] ∈ R with absolutely continuous

first derivatives. The nonparametric function f can be used as a predictor

yi = f (xi)+ εi, (3.1)

where εi are the error terms and IE (εi) = 0.

In practice, f is represented in terms of spline basis functions. Splines are

curves made up of sections of polynomials joined together so that they are contin-

uous in value, as well as in first and second derivatives. The points at which the

sections join are known as the knots of the spline. The locations of the knots must

be chosen. Typically the knots would either be evenly spaced through the range of

the observed x values, or placed at quantiles of the distribution of unique x values.

The problem of estimating the nonparametric function f with splines can be

formulated as follows. Let B(x) = [B1(x), . . . ,Bq(x)]> be the vector of spline basis

functions evaluated at x and ααα = (α1, . . . ,αq)
> the parameter vector so that the

nonparametric function can be written as f (x) = ααα>B(x). A penalised spline is

defined as α̂αα
>B(x), where α̂αα is the minimiser of

n

∑
i=1
{yi−ααα

>B(xi)}2 +λααα
>Sααα, (3.2)

for some symmetric positive semidefinite matrix S and scalar λ > 0. The matrix

S is called the penalty matrix. The scalar λ is known as the smoothing parameter,

which is used to control the function smoothness. Various definitions of spline basis

functions can be found in Wood (2006). This thesis uses cubic regression splines

and P-splines, which are introduced in Sections 3.1.2 and 3.1.3, respectively. The
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smoothing method discussed in this section can be generalised to more complex

settings such as generalised additive models (Wood, 2006).

3.1.2 Cubic regression splines

Cubic regression splines are parametrised in terms of the values of polynomial func-

tions at the knots. In particular, the knots can be placed considering the percentiles

of the distributions of unique x values. This means that more knots are placed where

there is more data. This is appealing for multi-state modelling because multi-state

processes commonly become scarce towards the end of study. If knots are placed

where there is no data, models cannot be estimated.

Consider defining a cubic spline function, f (x), with k knots, x1, . . . ,xk. Let

f (x j) = α j and f ′′(x j) = δ j for j = 1, . . . ,k. Then the spline can be written as

f (x) = a−j (x)α j +a+j (x)α j+1 + c−j (x)δ j + c+j (x)δ j+1, (3.3)

for the interval [x j,x j+1]. The basis function a−j (x),a
+
j (x),c

−
j (x) and c+j (x) are de-

fined as

a−j (x) = (x j+1− x)/h j,

a+j (x) = (x− x j)/h j,

c−j (x) = [(x j+1− x)3/h j−h j(x j+1− x)]/6,

c+j (x) = [(x− x j)
3/h j−h j(x− x j)]/6,

where h j = x j+1− x j. Define the matrices G and D as

Di,i = 1/hi,

Di,i+1 = −1/hi−1/hi+1,

Di,i+2 = 1/hi+1,
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for i = 1, . . . ,k−2, and,

Gi,i+1 = hi+1/6,

Gi+1,i = hi+1/6,

for i = 1, . . . ,k− 3. The conditions that the spline must have continuous second

derivatives, at x j, and should have zero second derivative at x1 and xk, imply that

Gδδδ
− = Dααα, (3.4)

where δδδ
− = (δ2, . . . ,δk−1)

>. Defining F− = G−1D, and

F =


0

F−

0

 ,

where 0 is a row of zeros, we have that δδδ = Fααα . Hence, the spline can be re-written

in terms of ααα as

f (x) = a−j (x)α j +a+j (x)α j+1 + c−j (x)F jααα + c+j (x)F jααα, (3.5)

for x j ≤ x≤ x j+1. Equation (3.5) can be further written as

f (x) =
k

∑
i=1

αiBi(x), (3.6)

where Bi(x) are given implicitly by (3.5). Therefore, given a set of x values, at

which to evaluate the spline, it is possible to obtain a model matrix mapping ααα to

evaluate the spline. It can be shown that

∫ xk

x1

f ′′(x)2dx = ααα
>D>G−1Dααα, (3.7)

that is, S = D>G−1D is the penalty matrix (Wood, 2000) . Figure 3.1 illustrates
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Figure 3.1: The left hand panel illustrates one basis function, B4(x), for a cubic regression
spline. On the right hand panel, the various curves of medium thickness show
the basis functions, Bi(x), of a cubic regression spline, each multiplied by its
coefficients α j. These scaled basis functions are summed to get the smooth
curve illustrated by the thick continuous curve

how a smooth function can be represented in terms of cubic regression spline basis

functions. The cubic regression splines as defined here are implemented in the

package mgcv in R (Wood, 2007).

3.1.3 P-splines

Simpler cubic splines can be represented by a B-splines basis. The B-splines ba-

sis functions are appealing because these functions are strictly local. Each basis

function is only non-zero over the intervals between m+ 3 adjacent knots, where

m is the order of the basis (e.g., m = 2 for cubic splines). The k +m+ 1 knots,

x1 < x2 < .. . < xk+m+1, define a k parameter B-spline basis, where the interval over

which the spline is to be evaluated lies within [xm+2,xk]. An (m+1)th order spline

can be represented as

f (x) =
k

∑
i=1

Bm
i (x)αi, (3.8)

where the B-spline basis functions are most conveniently defined recursively as fol-

lows:

Bm
i (x) =

x− xi

xi+m+1− xi
Bm−1

i (x)+
xi+m+2− x

xi+m+2− xi+1
Bm−1

i+1 (x),
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Figure 3.2: Illustrations of B-splines basis functions of degrees (a) one, (b) two, and (c)
three

for i = 1, . . . ,k, and

B−1
i (x) =

1 xi ≤ x < xi+1

0 otherwise
.

Figure 3.2 shows the B-splines basis of degree 1, 2 and 3 for the case of seven

evenly spaced knots. Figure 3.3 illustrates how a smooth curve can be represented

in terms of B-splines basis functions of degree two and three.

P-splines are a smoother using B-splines basis functions, defined on evenly

spaced knots, with a difference penalty applied directly to the parameters, αi, to

control function smoothness. To illustrate how this works, suppose we decide to

penalise the squared difference between adjacent αi values. Then the penalty would

be

P =
k−1

∑
i=1

(αi+1−αi)
2 = α

2
1 −2α1α2 +2α

2
2 −2α2α3 + . . .+α

2
k ,
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Figure 3.3: Illustration of smooth curves made up of B-spline basis functions. On the left
hand panel, the dashed curves show B-splines basis functions with m = 1 mul-
tiplied by their associated coefficients. The thick solid smooth curve is the sum
of the scaled basis functions. The right hand panel shows the same, but for
B-splines basis function with m = 2

which can be written in matrix form as

P = ααα
>



1 −1 0 · ·

−1 2 −1 · ·

0 −1 2 · ·

· · · · ·

· · · · ·


ααα. (3.9)

Equation 3.9 can be written as P = ααα>D>Dααα , where the matrix D is the

difference operator matrix (Eilers and Marx, 1996). P-splines are straightforward

to set up and use, and allow for good flexibility as any order of penalty can be

combined with any order of B-spline basis. Their main disadvantage is that the

simplicity is somewhat diminished if uneven knot spacing is required (Wood, 2006).

3.2 Model representation
We showed in Section 2.2 that it is straightforward to define parametric time-

dependent multi-state models. The specification of multi-state models with splines

can be done in a similar way, as spline models can be seen as a type of parametric

models.
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Recall that a time-dependent hazard regression model for transition intensities

combines baseline hazards with log-linear regression. Time-dependent models can

be defined by using proportional hazards model for transition r to s, r 6= s, as follows

qrs(t) = qrs.0(t)exp
(
βββ
>
rsx
)
, (3.10)

where qrs.0(t) is the baseline hazard function, x = (x1, . . . ,xp)
> is a covariate vec-

tor and βββ rs = (βrs.1, . . . ,βrs.p)
> is vector of unknown parameters. In Chapter 2,

examples of parametric shapes for qrs.0(t) are presented. We next describe the non-

parametric specification of qrs.0(t) with splines. Each baseline hazard can be ap-

proximated by the exponential of a linear combination of Krs spline base functions

Bk(t) and regression coefficients αrs.k ∈ R as follows

qrs.0(t) = exp

(
Krs

∑
k=1

αrs.kBk(t)

)
. (3.11)

Let the number of spline basis functions be large. Define the vector of co-

efficients by αααrs = (αrs.1, . . . ,αrs.Krs)
> for r 6= s. Each qrs.0(t) is associated to a

penalty matrix, which is quadratic in the basis coefficients and measures the com-

plexity of qrs.0(t). For each transition r→ s, the smoothing penalty can be written

as λrsααα
>
rsSrsαααrs, where Srs is a matrix of known coefficients. The quantities λrs

are called smoothing parameters. They control the trade-off between model fit and

model smoothness. Large values for the smoothing parameters, λrs→ ∞, lead to a

log-linear estimate of qrs.0, while λrs = 0 results in an unpenalised regression spline

estimate (Wood, 2006). With relation to the number of knots, Krs = 10 is usually

enough and larger number of splines basis functions will not change the estimated

functions.

In this chapter, we focus on the use of P-splines for the basis functions Bk(t).

However, the method is implemented in a way that is easy to employ other spline

definitions and corresponding penalties. Flexible multi-state models can be defined

by P-splines and a combination of parametric hazards specification presented in

Section 2.2. Applications of P-splines to multi-state models can also be found in
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Kneib and Hennerfeind (2008).

3.3 Penalised maximum likelihood estimation

Multi-state models with splines can be fitted to a set of longitudinal data using

penalised maximum likelihood estimation. In this section, we present the penalised

log-likelihood function, and a scoring algorithm for finding the penalised likelihood

estimates of the model parameters.

3.3.1 Penalised log-likelihood function

For semi-parametric multi-state models, at least one baseline hazard function is

specified with P-splines. If the model for a transition is specified with P-splines, we

define a large set of equidistant knots. To control the smoothness of the estimated

curve, a penalty based on finite differences of the coefficient of adjacent P-splines

is imposed on the log-likelihood function. Let βββ , ααα and ξξξ represent the vector of

parameters associated to the parametric, non-parametric and covariates components

of a multi-state model, respectively. Let θθθ = (βββ>,ααα>,ξξξ>)> be the full set of pa-

rameters and `(θθθ) be the log-likelihood function of a semi-parametric multi-state

model. This function is constructed as described in Section 2.4.1. The penalised

log-likelihood function is given by

`p(θθθ) = `(θθθ)− 1
2

s

∑
j=1

λ jααα
>
j D>j D jααα j

= `(θθθ)− 1
2

θθθ
>Sλλλ θθθ , (3.12)

where s is defined as the number of transitions with P-splines, ααα j = (α j1, . . . ,α jK)
>

is assumed to have the same dimension for each hazard approached with splines,

D j is the matrix representation of the difference operator of adjacent P-splines, λλλ =

(λ1, . . . ,λs)
> is the vector of smoothing parameters and Sλλλ is the penalty matrix. Sλλλ

is a block diagonal matrix with blocks λ jD>j D j for penalising P-splines parameters

and zeros elsewhere (Gray, 1992).
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3.3.2 Parameter estimation

The penalised log-likelihood function (3.12) can be maximised using a numerical

method that consists of two parts. First, given a grid of values for the smoothing

parameters vector, we aim to find an estimate of the model parameters for each vec-

tor in the grid. Second, we select the smoothing parameters vector that minimises

an information criterion such as the AIC. We next describe how to perform the first

part of the method, that is, how to maximise the penalised log-likelihood function

in (3.12) for fixed smoothing parameters vector.

Given a piecewise-constant approximation to the time-dependency in the haz-

ard model (3.10), a scoring algorithm can be used to maximise the penalised log-

likelihood function (3.12) for a fixed value of the smoothing parameter vector λλλ .

In particular, the scoring algorithm presented in Section 2.4.2 can be extended and

used to find the penalised maximum likelihood estimates.

Let gp(θθθ) be the q× 1 vector of first-order derivatives of the penalised log-

likelihood function in (3.12). This quantity is called the penalised gradient and is

given by

gp(θθθ) = ∂`p(θθθ)/∂θθθ (3.13)

= ∂`(θθθ)/∂θθθ −Sλλλ θθθ (3.14)

= g(θθθ)−Sλλλ θθθ (3.15)

where g(θθθ) is the gradient vector as defined in (2.21). Let I p(θθθ) be the q×q ma-

trix of the expected negative second-order derivatives of the log-likelihood function.

This matrix is known as penalised Fisher information and is given by

I p(θθθ) = IE
[
−∂

2`p(θθθ)/∂θθθ∂θθθ
>
]

(3.16)

= IE
[
−∂

2`(θθθ)/∂θθθ∂θθθ
>+Sλλλ

]
(3.17)

= I +Sλλλ , (3.18)

where I (θθθ) is the Fisher information matrix as defined in (2.22).
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The scoring algorithm provides that an estimate of the vector θθθ at the (v+1)th

cycle of the iterative procedure, θθθ
(v+1), is

θθθ
(v+1) = θθθ

(v)+I p
(
θθθ
(v))−1gp

(
θθθ
(v)) . (3.19)

for v = 1,2,3 . . ., where gp
(
θθθ
(v)) is the penalised gradient vector and I p

(
θθθ
(v))−1

is the inverse of the penalised Fisher information matrix, both evaluated at θθθ
(v). The

process iterates until the relative differences in the values of the parameter estimates

satisfies ∑
q
k=1 |θ

(v)
k −θ

(v+1)
k |< δ for a suitable small positive value δ .

The asymptotic covariance matrix of the penalised maximum likelihood esti-

mate θ̂θθ is given by the inverse of the penalised Fisher information matrix I p(θθθ)
−1

(Gray, 1992), which can be approximated by I p(θ̂θθ)
−1. Thus, the standard error of

θ̂i = (θ̂θθ)i is given by

SE(θ̂i)≈ (I p(θ̂θθ)
−1)

1/2
ii , (3.20)

for i = 1, . . . ,q.

As discussed in Section 2.4.2, it is not possible to calculate the Fisher informa-

tion matrix, and it is approximated by the q×q matrix M(θθθ) with (k, l) entry

N

∑
i=1

ni

∑
j=2

∂

∂θk
logLi j

∂

∂θl
logLi j. (3.21)

Hence, the penalised Fisher information matrix in (3.18) is approximated by

Mp(θθθ) = M(θθθ)+Sλλλ . (3.22)

The matrix I p is then replaced by Mp in equations (3.19) and (3.20).

The algorithm is implemented by the author in R in such a way that it is

straightforward to vary transition-specific choices for parametric shapes. An ex-

ample of such a model is explored in the application, where Gompertz and spline

models are used to specify the hazards.
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3.3.3 Smoothing parameter estimation

Estimating the optimal value for the smoothing parameters λλλ is crucial for fitting

models with splines (Gu and Wahba, 1991). Given a grid of smoothing parameter

vectors, the optimum value can be defined as the one with the smallest AIC. The

AIC definition presented in Section 2.6 can be extended for semi-parametric models

as follows,

AIC(λλλ ) =−2`p(θθθ)+2d f , (3.23)

where d f is a measure of model complexity, and `p(θθθ) is the penalised log-

likelihood function. The quantity d f is called the degrees of freedom. For para-

metric models, the degrees of freedom are equal to the number of independent pa-

rameters in the model. For semi-parametric models with splines, the degrees of

freedom can be defined as

d f (λλλ ) = tr[I (I +Sλλλ )
−1], (3.24)

where I is the Fisher information matrix and Sλλλ is the penalty function (Gray,

1992). A similar definition of degrees of freedom is given in Commenges et al.

(2007). If the vector of smoothing parameters is zero, λλλ = 0, there is no penalty

and the degrees of freedom is given by

d f (λλλ ) = tr[I (I +Sλλλ )
−1]

= tr[I (I )−1]

= tr[III] = q,

where q is the number of parameters in the model, and III is the q×q identity matrix.

Therefore, for d f = q the AIC definition in (3.23) coincides with the definition

provided in Section 2.6. If the smoothing parameters vector is not zero, then the

degrees of freedom is less than the total number of parameters, d f < q.

In this thesis, we approximate the matrix I by the matrix M as defined in
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Section 2.4.2. This implies that we use an approximation to the degrees of freedom.

3.4 Prediction
Once a multi-state model is fitted using a parametric and semi-parametric hazard

model, estimated model parameters can be used for prediction. Typically this con-

cerns computing transition matrices as a function of the penalised maximum likeli-

hood estimate. The covariance of a function of model parameters can be estimated

by Monte Carlo simulation or by using the multivariate delta method. Because tran-

sition probabilities are restricted to [0,1], we have to calculate the standard error

of e.g., log(p/(1− p)) or log(− log(p)), and back transform (Titman, 2011). This

thesis focuses on the simulation method.

Let V̂θθθ denote the estimated covariance matrix of the penalised maximum like-

lihood estimate, θ̂θθ , defined as Mp(θ̂θθ)
−1 in (3.22). Notice that V̂θθθ takes into account

the choice of the smoothing parameters, λ̂λλ . Of interest is the estimation of P(t1, t2)

for arbitrary t1 and t2 > t1. In the case of a time-dependent model, let the grid for

the piecewise-constant approximation be defined by u j+1 = u j +h for j = 1, ...,M

such that u1 = t1 and uM = t2. Given this grid, matrix P(t1, t2) is estimated by

P(u1,u2)×· · ·×P(uM−1,uM).

For Monte Carlo simulation, parameter vectors θθθ
(b) are drawn from N(θ̂θθ , V̂θθθ ),

for b = 1, ...,B, and for each sampled θθθ
(b), P(t1, t2) is calculated. Summary statis-

tics such as mean and covariance can be derived easily from the B realisations of

P(t1, t2).

3.5 Application to the English longitudinal study of

ageing data
The method is illustrated with an application to the ELSA data. As described in

Section 1.6.2, the ELSA data are a random sample of size N = 1000 individuals. Of

these 1000 individuals, 205 died during the follow-up with age at death available.

The sample has 544 women and 456 men. Highest educational qualification is

dichotomised for the current analysis according to years of formal education: fewer
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Figure 3.4: Five-state model for longitudinal data in ELSA on number of words remem-
bered in a recall

Table 3.1: State table for the ELSA data: number of times each pair of states was observed
at successive observation times. The four living states are defined by number of
words remembered

To
From 10-7 words 6-5 words 4-2 words 1-0 words Dead
10-7 words 164 150 49 12 8
6-5 words 156 440 303 48 40
4-2 words 52 336 616 151 85
1-0 words 11 35 114 149 72

than ten versus ten or more.

This application focuses on the number of words remembered in a delayed

recall from a list of ten. A five-state model is defined for the number of words

remembered and death, see Figure 3.4. The four living states are defined as: State

1, 2, 3, and 4, for the number of words {7,8,9,10}, {6,5} {4,3,2}, and {1,0},

respectively. The state 5 is defined as the dead state. The statistical modelling in

this section aims to explore the effect of age and gender on cognitive change over

time when controlling for education. The interval-censored multi-state process is

summarised by the frequencies in Table 3.1. Note that the sum of the transitions

into the dead state is equal to the number of deaths in the sample, i.e., 205. Table

3.1 also shows that the process is mainly progressive in the sense that the main trend

over time is towards the higher states.

In what follows, model estimation is undertaken by using the scoring algo-

rithm. Let θθθ = (θ1, ...,θq)
> be the vector with model parameters, where q depends

on the chosen model. The convergence criterion for the algorithm is to stop at itera-

tion v+1 when ∑
q
k=1 |θ

(v)
k −θ

(v+1)
k |< 10−6. Because time of death is known, rather
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than being interval censored, the likelihood contribution of individuals observed in

state r < 5 at time t and dead at time t∗ > t are given as in (2.19) with D = 5.

Model selection is bottom-up starting with the time-homogeneous exponential

hazard model given by

qrs(t) = exp
(
βrs.0

)
, (3.25)

for the transitions r→ s depicted in Figure 1.10. This intercept-only model with 10

parameters has AIC = 8109.5. Convergence of the scoring algorithm was reached

after 14 iterations, using starting values βrs.0 =−3 for all the parameters.

As described in Section 2.3, time-dependent models are estimated by using

a piecewise-constant approximation to the hazards. For the ELSA data, the mean

length of follow-up times is 2.178 years with standard deviation of 0.855 and the

median is 2 years. Assuming that change in transition intensities in relation to the

frequency of observation can be assessed in intervals of approximately 2 years, we

use the data to define the grid for the piecewise-constant approximation rather than

imposing a fixed grid to calculate the likelihood contributions. For the process at

hand, age is the most suitable time scale. Age in the ELSA data is transformed by

subtracting 49 years. This results in 1 being the minimal age in the sample.

The first extension is a Gompertz models given by

qrs(t) = exp
(
βrs.0 +ξrst

)
, (3.26)

where the effect of time is allowed to be different for all transitions. This model has

20 parameters and AIC = 7784.2.

Even though the sample size is not small, Table 3.1 shows that mortality in-

formation is limited because only about 20% of the individuals end up in the dead

state during follow-up. A more parsimonious model Gompertz model is given by

qrs(t) = exp
(
βrs.0 +ξrst

)
, (3.27)
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where ξ21 = ξ32 = ξ43 = ξB and ξ15 = ξ25 = ξ35 = ξ45 = ξD. That is, the effect of

time is the same for all backwards transitions and for transitions into the dead state.

This model has 15 parameters, and needs 16 scoring iterations when using starting

values βrs.0 =−3 and ξrs = 0 for all the relevant r,s-combinations. The model has

AIC = 7780.5. In what follows, model (3.25) is extended by adding parameters with

parameter equality constraints.

Subsequently, covariate information is added for the transitions of interest, i.e.,

those transitions that represent a decline in cognitive function. For this, model (3.27)

is extended to

qrs(t) = exp
(
βrs.0 +ξrst +βrs.1sex+βrs.2education

)
, (3.28)

where sex is 0/1 for women/men, and education is 0/1 for fewer than ten years/ten

years of more of education. For the transitions into the dead state, the constraints

on the coefficients for sex are β15.1 = β25.1 = β35.1 = β45.1, and for education are

βr5.2 = 0 for r = 1,2,3,4. This model has 22 parameters, needs 16 iterations, and

has AIC = 7680.3.

It is worthwhile to investigate alternative time-dependent models. First, in

model (3.28), the Gompertz baseline models for the transitions into the dead state

are replaced by Weibull models. Starting values for the transitions into the dead

state are βr5.0 = −10, τ15 = exp(0.5), and for the remaining parameters the values

are as given above. This yields AIC = 7688.7 after 20 iterations.

Next, all baseline hazards definitions in model (3.28) are replaced by Weibull

models, which results in AIC = 7729.5 after 28 iterations. Alternatively, model

(3.28) is defined with Gompertz baseline models for the transitions into the dead

state and Weibull models for progression through the living states. This yields AIC

= 7719.7 after 25 iterations.

Semi-parametric models with P-splines can be used to model non-linear func-

tional forms and to check shapes specified by parametric models. Because the focus

of our investigation is the decline of cognitive function, which is mostly associated

with individuals in states 3 and 4, we replace the Gompertz hazard for transition
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Table 3.2: Comparison between models for the ELSA data with N = 1000, where -2LL
stands for -2 times the (penalised) loglikelihood function evaluated at its maxi-
mum. The variable t denotes age transformed by subtracting 49 years

Model Baseline hazards #Parameters -2LL AIC
Intercept-only Exponential 10 8089.5 8109.5
t Gompertz no constraints 20 7744.2 7784.2
t Gompertz 15 7750.5 7780.5
t, sex, education Gompertz 22 7636.3 7680.3
t, sex, education Gompertz for living 22 7644.7 7688.7

and Weibull for death
t, sex, education Weibull 22 7685.5 7729.5
t, sex, education Weibull for living 22 7675.7 7719.7

and Gompertz for death
t, sex, education P-splines I 38 7626.0 7678.2

for 2→ 3 and 3→ 4
t, sex, education P-splines II for 3→ 4 30 7630.9 7678.2

2→ 3 and 3→ 4 in model (3.28) by

q23(t) = exp

(
K

∑
k=1

α23.kBk(t)+β23.1sex+β23.2education

)

q34(t) = exp

(
K

∑
k=1

α34.kBk(t)+β34.1sex+β34.2education

)
.

(3.29)

For this model, the number of P-splines bases for both hazard functions is K =

10 and the vector of smoothing parameters is λ = (λ1,λ2). The initial grid is given

by all pairs of combinations of log10 λ1 = (−3,−2,−1,0,1,2,3) and log10 λ2 =

(−3,−2,−1,0,1,2,3). A possible graphical representation of the AIC results is to

plot its values when one smoothing parameter is fixed. Figure 3.5(c) illustrates the

resulting AIC for different values of λ2 with fixed λ1 = 10−3. The value which

minimises the AIC is λ2 = 10. It happens for all values of λ1. The search for

the optimal values of λ1 is less straightforward as λ1 → ∞. Figure 3.5(a) shows

the AIC for several values of λ1 with fixed λ2 = 10. The AIC decreases quickly

for small values of λ2; however, it gets approximately constant for large values.

This result indicates that the functional form of the hazard for transitions 2→ 3

is log-linear. Because both AIC and parameter estimates do not change much for

sufficiently large values of λ1, it is possible to set λ1 = 107. In this case, the best



3.5. Application to the English longitudinal study of ageing data 74

−2 0 2 4 6 8 10

7
6

7
8

7
6

8
2

7
6

8
6

(a)

log10(λ1)

A
IC

(λ
1
, 
1

0
)

−3 −1 1 3 5 7 9 11 0 10 20 30 40

0
.2

0
.4

0
.6

(b)

Time (years)

In
te

n
s
it
y

−3 −2 −1 0 1 2 3

7
6

8
8

7
6

9
2

7
6

9
6

(c)

log10(λ2)

A
IC

(1
0

−
3
, 

λ
2
)

−3 −2 −1 0 1 2 3 0 10 20 30 40

0
.0

0
.2

0
.4

(d)

Time (years)

In
te

n
s
it
y

−3 −2 −1 0 1 2 3

7
6

7
8

7
6

8
2

7
6

8
6

(e)

log10(λ)

A
IC

(λ
)

−3 −1 0 1 3 0 10 20 30 40

0
.1

0
.3

0
.5

(f)

Time (years)

In
te

n
s
it
y

Figure 3.5: AIC results and fitted hazard transitions for men with ten or more year of ed-
ucation. In (a) and (c), the AIC results for fixed λ2 = 10 and fixed λ1 = 10−3,
respectively. In (b) and (d), the estimated hazards for 2→ 3 and 3→ 4, respec-
tively. Solid line for P-splines I and dotted line for Gompertz. In (e) and (f),
the AIC results for model P-splines II and fitted hazard for 3→ 4, respectively.
Time denotes age transformed by subtracting 49 years

model (P-splines I) according to the AIC is obtained with smoothing parameter

λ̂
>
= (107,10). This model has 30 parameters and 26.1 degrees of freedom.

The fitted hazards for transition 2→ 3 for the Gompertz (3.28) and P-splines I

(3.29), for men with ten or more years of education are illustrated in Figure 3.5(b).

The functional forms of both models are very similar for this transition; however,

the functional forms for transition 3→ 4 are quite different, as indicated in Figure

3.5(d). Model (3.29) has AIC = 7678.2 indicating that it performs slightly better

than the Gompertz model with AIC = 7680.3. Therefore, for prediction purposes

the Gompertz models may be preferable for prediction beyond the time range in the

data. The fitted hazards in Figures 3.5(b) and (d) show that an increase of age is
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Table 3.3: Results for sex, education and time for the five-state P-splines II model for the
ELSA data. Estimated standard errors in parentheses. The variable t denotes age
transformed by subtracting 49 years

sex education t
β12.1 0.552 (0.138) β12.2 -0.281 (0.146) ξ12 0.030 (0.010)
β23.1 0.178 (0.101) β23.2 -0.836 (0.103) ξB -0.031 (0.006)
β34.1 0.141 (0.145) β34.2 -0.445 (0.160) ξD 0.042 (0.009)
βD 0.477 (0.151)

associated with higher risk of moving from state 2 to state 3 and from state 3 to

state 4.

The functional form of hazard for transition 2→ 3 in model (3.29) indicates

that a Gompertz specification can be reasonable for this transition. Therefore, in

model (3.28), only the hazard for transition 3→ 4 is specified with P-splines:

q34(t) = exp

(
K

∑
k=1

α34.kBk(t)+β34.1sex+β34.2education

)
. (3.30)

The number of P-splines bases is K = 10 and the grid search is made on the values

log10 λ = (−3,−1,0,1,3). The resulting AIC values are illustrated in Figure 3.5(e).

The minimum AIC with value 7678.2 is obtained at λ = 10. That is the same

AIC value as for model (3.29); however, the degrees of freedom is slightly smaller

d f = 23.65. As model (3.30) (P-splines II) is easier to estimate if compared to

model (3.29), it is considered the best model among all illustrated in this thesis.

Table 3.2 summarises the comparison of the investigated models. Figure 3.5(f)

illustrates the fitted hazard for transition 3→ 4 in model (3.30) for men with ten or

more years of education. As expected, there is an increase in the risk of progression

to a decline of cognitive function over the years.

Table 3.3 shows the estimates for the covariate effect parameters in the P-

splines II model (3.30). Most of the point estimates are as expected. For example,

the effect of getting older is associated with decline of cognitive function, i.e., ξ̂12 >

0, and with a decreasing hazard of remembering more words, i.e., ξ̂B < 0. For

transitions 1→ 2, 2→ 3, and 3→ 4 more years of education is associated with a
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lower risk of moving. The effect of being a male patient is associated with higher

risks of going into the dead state, β̂D = 0.477. This correspond to hazard ratio of

exp(β̂D) = 1.611, which represents a 61% higher hazard of death.

Model validation is hampered by the interval censoring of the transitions be-

tween the living states. But given that death times are available, it make sense to

compare survival as estimated by the model with Kaplan-Meier curves (Gentleman

et al., 1994). Of course, this will only check part of the fitted model. Figure 3.6

depicts baseline-specific survival as estimated by the model and as described by the

Kaplan-Meier curves. Individual survival curves (in grey) are shifted to the years

since baseline so that we can compare them and their mean to the Kaplan-Meier

curves. This is necessary because individuals have different ages at baseline. The

shape of the Kaplan-Meier curves is due to fact that time of death is rounded to

the nearest integer. Even though time of death is not known precisely, we assume

that time of transition into the dead state is known exactly. For survival given base-

line state 3, there is some discrepancy between model-based mean survival and the

Kaplan-Meier curve, but overall the fit is reasonably good. Although this is not a

proper goodness-of-fit test, the comparison shows that the model is able to capture

the attrition due to death during the follow-up.

3.5.1 Predicting cognitive function

Although parameters for the transition intensities help to understand the estimated

model, interpretation is more straightforward when transition probabilities are con-

sidered. Firstly, consider a short time interval for which we assume that the intensi-

ties are constant. For men aged 60 with ten or more years of education, the two-year

transition probabilities are estimated at

P̂(t1 = 11, t2 = 13) =



0.330 0.488 0.154 0.010 0.018

0.171 0.531 0.253 0.023 0.022

0.083 0.391 0.429 0.066 0.031

0.034 0.219 0.410 0.291 0.046

0 0 0 0 1


, (3.31)
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Figure 3.6: Comparison of model-based survival from states 1, 2, 3, and 4 with Kaplan-
Meier curves. Model-based survival: grey lines for individuals, smooth black
line for the mean of the individual survival curves. Kaplan-Meier in black lines
with 95% confidence bands. Frequencies for baseline state along vertical axes

where t denotes age transformed by subtracting 49 years. The diagonal entries in

this matrix dominate. But there are some large off-diagonal entries as well. For

example, if a man aged 60 is in state 3, then he has a 39% chance of being in state 2

two years later. This high chance is an illustration of the noise of the process under

investigation: it is quite likely that a 60 year old man moves between states 2 and 3

within the next two years.

Next we illustrate the estimation of standard errors and 95% confidence in-

tervals for transition probabilities. Using simulation with B = 1000, the estimated

standard errors of matrix (4.22) is


0.038 0.029 0.016 0.004 0.011

0.013 0.021 0.019 0.009 0.006

0.007 0.019 0.024 0.024 0.006

0.004 0.019 0.024 0.037 0.012

 .
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Figure 3.7: For the P-splines II model, estimated ten-year transition probabilities for men
aged 60 with ten or more years of education, and in state 3 at baseline. Solid
line for transition probabilities (with B = 1000) and dashed lines for 95% con-
fidence bands

The 95% confidence intervals for the first row are given by

(0.263,0.408), (0.425,0.540), (0.120,0.185), (0.004,0.021), and (0.011,0.049).

Next, ten-year transition probabilities are estimated for men aged 60 with ten

or more years of education. The grid is defined by h = 1/2 years. The estimation is

shown in Figure 3.7.

Figure 3.7 concurs with expectations. For example, given the progressive trend

of the process, it is to be expected that a probability of being in state 3 decreases

over time, as moving to states 4, and 5 becomes more likely due to increased age.

3.6 Discussion
Specification and estimation of continuous-time multi-state models are presented

and shown to be a flexible framework for statistical modelling of time-dependent

processes. By defining transition-specific with parametric and semi-parametric
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hazard models, a wide range of multi-state processes can be investigated. Pe-

nalised maximum likelihood estimation is undertaken by a scoring algorithm using

a piecewise-constant approximation to time-dependent hazards. The Akaike infor-

mation criterion is used to select the optimal value for the smoothing parameters.

The Markov processes formulation to semi-parametric multi-state models ex-

tends the method described in Joly and Commenges (1999) and Joly et al. (2002).

This is an important methodology to medical statistics as backward transitions occur

naturally in many applications (Abner et al., 2012; Marioni et al., 2012). Further-

more, using the piecewise-constant approximation is an alternative to the method

introduced by Titman (2011) which handles the time-dependency by using numer-

ical solutions to the non-linear differential equations defined directly by the time-

dependency of the Markov process. As stated by Titman, computation using the

non-linear differential equations can become prohibitively slow when adding con-

tinuous covariates. This is not a problem when using the piecewise-constant ap-

proximation and the scoring algorithm. To address the problem with continuous

covariates, the method in Titman (2011) uses an approximation to the full likeli-

hood. Therefore, It would be interesting to compare both methods to investigate the

degree of approximation and relative computation speeds between the methods.

The piecewise-constant approximation can be determined by the observation

times in the data. Alternatively, a fixed grid can be used that is imposed for all like-

lihood contributions. This method is computationally more extensive as it requires

a greater number of eigenvalue decompositions to calculate transition probabilities

for intervals defined by the grid. Those two methods to define a piecewise-constant

approximation will differ depending on the study design and volatility of the process

of interest (Van den Hout, 2017).

A semi-Markov assumption could be more reasonable for modelling the ELSA

data; however, fitting semi-Markov models with interval-censored data is compli-

cated given the number of living states and backward transitions (Commenges,

2002). Nonetheless, Figure 3.6 shows that the fit is reasonably good.

The scoring algorithm is implemented in R in such a way that it is easy to
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vary transition-specific choices for parametric and semi-parametric shapes. An ex-

ample of such a model is explored in the application, where P-splines are used for

transitions 2→ 3 and 3→ 4, and Gompertz hazards are defined for the other transi-

tions. The eigenvalue decomposition in the algorithm is computed with the function

eigen in R, which uses the LAPACK routine (Anderson et al., 1999). P-spline

bases are computed using the code in the appendix in Eilers and Marx (1996).

There is some overlap between the method presented in this chapter and the

msm package (Jackson, 2011). The last is a platform to analyse time-homogeneous

multi-state processes with interval-censored transition times. It is possible to fit

some time-dependent models with msm, such as the Gompertz and splines mod-

els. However, this package cannot fit models with penalised splines nor with some

commonly used parametric specifications such as the Weibull model.

If prediction of a time-dependent process beyond the time range in the data

is of interest, hazard models with P-splines can be used to validate the parametric

choices which underlie the prediction. This was illustrated in the application with

the ELSA data in which age range is from 50 to 90 years. If risk factors are the

main focus of the research, P-splines can be used to capture non-parametric shapes

of time-dependency.

The choice of the type of spline is not essential. P-splines were used in this

chapter, but any other spline function with a first-order derivative can be handled

within the current framework. The same holds for parametric shapes other than

the Gompertz and the Weibull. The specification and estimation of a continuous-

time survival model is very general and does not pose restrictions on the number of

states, scale of covariates, or number of transitions.



Chapter 4

Automatic smoothing for multi-state

models

The method presented in the last chapter can become intractable for many appli-

cations, as computational time increases quickly with the number of hazards ap-

proached with splines. This chapter focus on developing an efficient and automatic

method for estimating multi-state models with splines. Automatic smoothing meth-

ods are pivotal for practical modelling with splines. This chapter begins with a

description of a commonly used method for multiple smoothing parameters estima-

tion, and its limitation for multi-state models. Subsequently, we develop a penalised

maximum likelihood method for automatic smoothing in multi-state models. The

method is illustrated with applications to the CAV and OCTO data sets. A small

simulation study is used to assess the performance of the method. A substantial part

of the material in this chapter has been submitted to arXiv as a paper entitled Pe-

nalised maximum likelihood estimation in multistate models for interval-censored

data (Machado et al., 2018).

4.1 Background for automatic smoothing
Chapter 3 shows that it is straightforward to specify parametric and semi-parametric

hazard in multi-state models. For each transition-specific hazards approached with

splines, a smoothing parameter is employed for estimation. Hence, the problem of

estimating multi-state models with splines involves estimating multiple smoothing
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Figure 4.1: An unidirectional three-state model

parameters. Automatic smoothing parameters selection methods for generalised

additive models (GAM) are well established (Ruppert et al., 2003; Wood, 2006).

Those methods can be extended for different settings, e.g., semi-parametric cop-

ula regression models (Radice et al., 2016). In this section, we illustrate how the

existing GAM framework could be applied to multi-state models, and discuss the

limitations of such methods for multi-state modelling. For ease of presentation,

the method is illustrated for the unidirectional three-state model in Figure 4.1. The

details of most results in this section are presented in Section 4.2. The following

presentation is based on Wood (2000) and Radice et al. (2016).

Let n represent the number of follow-up times in the data. The linear predictors

for transitions 1→ 2 and 2→ 3 are given by

η12.i = x>i βββ 12 +
K

∑
k=1

α12.kB12.k(ti) (4.1)

η23.i = x>i βββ 23 +
K

∑
k=1

α23.kB23.k(ti) (4.2)

where xi = (xi1, . . . ,xip)
> is a vector of covariates, βββ 12 = (β12.1, . . . ,β12.p)

> and

βββ 23 = (β23.1, . . . ,β23.p)
> are parameter vectors. The splines parameters can be writ-

ten as ααα12 = (α12.1, . . . ,α12.K)
> and ααα23 = (α23.1, . . . ,α23.K)

>, where K represents

the number of splines basis functions. The linear predictors can further be written

as

η12.i = x>i βββ 12 +B12(ti)>ααα12 (4.3)

η23.i = x>i βββ 23 +B23(ti)>ααα23, (4.4)

where B12(ti) = (B12.1(ti), . . . ,B12.K(ti))> and B23(ti) = (B23.1(ti), . . . ,B23.K(ti))>.

After defining, X1i = (x>i ,B12(ti)>)> and X2i = (x>i ,B23(ti)>)>, we have that η1i =
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X>1iθθθ 1 and η2i = X>2iθθθ 2, where θθθ 1 = (βββ>12,ααα
>
12)
> and θθθ 2 = (βββ>23,ααα

>
23)
>.

Let θθθ = (βββ>12,ααα
>
12,βββ

>
23,ααα

>
23)
> be the full set of parameters. The penalised

log-likelihood is given by

`p(θθθ) = `(θθθ)− 1
2

θθθ
>Sλλλ θθθ , (4.5)

where `(θθθ) is the log-likelihood function and Sλλλ = diag(0,λ1S1,0,λ2S2) is the

penalty matrix.

For the estimation of the model parameters, given a value for the vector of

smoothing parameters, λ̂λλ , we aim to find an update for the parameter vector θθθ
[a].

Let us define X = (X1, . . . ,Xn)
>, where Xi = diag

(
X>1i,X

>
2i
)
, the vector d[a] as a

vector with ith element given by

d[a]
i =

(
∂`(θθθ [a])i/∂η12.i,∂`(θθθ

[a])i/∂η21.i

)
, (4.6)

and W[a] a block diagonal matrix made up of 2×2 matrices W[a]
i given by


∂ 2`(θθθ [a])i

∂η12.i∂η12.i

∂ 2`(θθθ [a])i

∂η12.i∂η23.i

∂ 2`(θθθ [a])i

∂η23.i∂η12.i

∂ 2`(θθθ [a])i

∂η23.i∂η23.i

 . (4.7)

We then have that the penalised gradient and penalised Hessian at θθθ
[a] are respec-

tively given by

g[a]p = X>d[a]−S
λ̂λλ

θθθ
[a] (4.8)

H
[a]

p = −X>W[a]X−S
λ̂λλ
. (4.9)

Applying a first-order Taylor expansion to g[a+1]
p around θθθ

[a], setting the resulting

expression to zero, we find that a new fit θθθ
[a+1] is given by

θθθ
[a+1] =

(
X>W[a]X+S

λ̂λλ

)−1
X>W[a]z[a], (4.10)
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where z[a] = (W[a])−1d[a]+Xθθθ
[a] is the pseudo-data (Wood, 2000). The derivation

of this result is presented with more details in Section 4.2. The pseudo-data plays

the role of the response vector in the GAM framework.

The smoothing parameter vector can be estimated by minimising the Un-

Biased Risk Estimator given by

V (λλλ ) = ||W1/2(z−Aλλλ z)||2/ň−1+2tr(Aλλλ )/ň, (4.11)

where Aλλλ =
√

WX
(
X>WX+Sλλλ

)−1 X>
√

W is the influence matrix, and ň = 2×

n (Craven and Wahba, 1978). Equation (4.11) can be minimised using a method

developed by Wood (2004), which is based on Newton’s method and can evaluate

the components of V (λλλ ) and their first and second order derivatives.

In the derivation above, the W[a]
i can be approximated by the M[a]

i matrix de-

fined as 
∂`(θθθ [a])i

∂η12.i

∂`(θθθ [a])i

∂η12.i

∂`(θθθ [a])i

∂η12.i

∂`(θθθ [a])i

∂η23.i

∂`(θθθ [a])i

∂η23.i

∂`(θθθ [a])i

∂η12.i

∂`(θθθ [a])i

∂η23.i

∂`(θθθ [a])i

∂η23.i

 , (4.12)

for i = 1, . . . ,n.

The above penalised maximum likelihood estimation for multi-state models is

based on the pseudo-data z = (W)−1d+Xθθθ . The main limitation of this method is

that the weight matrix W must be positive definite. For highly flexible models, not

all the n weight matrices contained in W = diag(W1, . . . ,Wn) need to be positive

definite. Also, the matrix W is as large as there are data and transitions in a multi-

state process. Then computational time and stability become serious issues for most

applications.

Marra et al. (2017) propose a smoothing parameter estimation based on a

parametrisation of z that uses H and g as a whole instead of the n components

that make them up. For some applications, the Hessian H may not be positive

definite but these would occur considerably less frequently than when working with

the n weight matrices that make it up.
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We next present a penalised maximum likelihood estimation for multi-state

models with splines, that is based on the framework developed by Marra et al.

(2017).

4.2 Penalised maximum likelihood estimation
This section presents an automatic and efficient method to estimate multi-state mod-

els with splines in the presence of interval censoring. We recall model specification

and the piecewise-constant approximation to the time-dependency. The method

presented in Marra et al. (2017) is then adapted for multi-state models with splines.

4.2.1 Model representation

Time-dependent models can be defined by using a proportional hazards model for

transition r to s, r 6= s

qrs(t) = qrs.0(t)exp
(
βββ
>
rsx
)
, (4.13)

where qrs.0(t) is an unspecified baseline hazard function, x = (x1, . . . ,xp)
> is a co-

variate vector and βββ rs = (βrs.1, . . . ,βrs.p)
> is a vector of unknown parameters. The

nonparametric specification of qrs.0(t) with splines is given by

qrs.0(t) = exp

(
Krs

∑
k=1

αrs.kBk(t)

)
, (4.14)

where Krs is the number of spline base functions Bk(t), and αrs.k ∈R are regression

coefficients.

4.2.2 Piecewise-constant hazards

Similarly to Chapter 3, time-dependency of the hazards are taken into account by

using a piecewise-constant approximation. If the follow-up times vary across indi-

viduals, the individual-specific follow-up times can be used to define the piecewise-

constant approximation for the individual likelihood contributions. This implies that

a transition probability such P
(
Yj = y j|Y j−1 = y j−1

)
is derived by using Q(t j−1)

to estimate P(t j−1, t j) by exp((t j − t j−1)Q(t j−1)). It is also possible to impose a
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fixed grid to the piecewise-constant approximation as described in Van den Hout

and Matthews (2008a). For most applications, both methods lead to similar results

and the method described in this Section is preferable as it is less computationally

extensive (Van den Hout, 2017).

4.2.3 Penalised log-likelihood function

For each hazard, let the number of splines basis dimension be large enough to al-

low for flexible modelling. Let θθθ = (θ1, . . . ,θq)
> be the full set of parameters and

`(θθθ) be the logarithm of the likelihood function. The smoothness of the model

is controlled by adding a smoothness penalty to the log-likelihood function. The

penalised log-likelihood function is

`p(θθθ) = `(θθθ)− 1
2

θθθ
>Sλλλ θθθ , (4.15)

where Sλλλ is the penalty matrix. This is a block diagonal matrix with blocks λrsSrs

for penalising splines parameters of transition r to s, where Srs is a matrix of known

coefficients.

4.2.4 Parameter estimation

Given a piecewise-constant approximation to the time-dependency in the hazard

model (4.13), a scoring algorithm can be used to maximise the penalised log-

likelihood function (4.15), see Section 3.3.2. For a given multi-state model, if more

than one hazard is specified with splines, then estimation of λλλ by direct grid search

can be computationally burdensome.

As discussed in Section 4.1, there are methods available for automatic smooth-

ing parameters estimation within the penalised likelihood framework (Wood, 2006;

Radice et al., 2016). For their method, the derivatives of the penalised log-likelihood

function have to be split into the derivatives with relation to the linear predictors,

and the derivatives of the linear predictor with relation to the model parameters.

The direct use of their methods in multi-state models leads to large sparse matrices

that are difficult to deal with.

In this section, we present the method for automatic smoothing developed by
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Marra et al. (2017), which uses the gradient and the Hessian (or Fisher information

matrix) as a whole instead of components that make them up. The method consists

of two parts. First, given a value for the smoothing parameters, we aim to find an

estimate of the model parameters. Second, we use such an estimate to find an update

for the smoothing parameters. We next describe how to perform the first part of the

method.

Let g[a]p = g[a]−Sλλλ θθθ
[a] and H

[a]
p = H [a]−Sλλλ represent the penalised gradi-

ent and negative of the penalised Hessian matrix at iteration a, respectively, where

g[a] = ∂`(θθθ)/∂θθθ |
θθθ=θθθ

[a] and H [a] = ∂ 2`(θθθ)/∂θθθ∂θθθ
>|

θθθ=θθθ
[a] . A first-order Taylor

expansion of g[a+1]
p about the current fit θθθ

[a] is given by

g[a+1]
p ≈ g[a]p +H

[a]
p (θθθ [a+1]−θθθ

[a]), (4.16)

where g[a+1]
p = g[a]−S

λ̂λλ
θθθ
[a] and H

[a]
p = H [a]−S

λ̂λλ
. Let us define I [a] =−H [a].

A new fit θθθ
[a+1] is obtained by taking the right-hand side of equation (4.16) to be

zero

0 = g[a]p +
(
−I [a]−S

λ̂λλ

)
(θθθ [a+1]−θθθ

[a])

g[a]p =
(
I [a]+S

λ̂λλ

)
(θθθ [a+1]−θθθ

[a])

g[a]−S
λ̂λλ

θθθ
[a] =

(
I [a]+S

λ̂λλ

)
θθθ
[a+1]−I [a]

θθθ
[a]−S

λ̂λλ
θθθ
[a](

I [a]+S
λ̂λλ

)
θθθ
[a+1] = g[a]+I [a]

θθθ
[a]

θθθ
[a+1] =

(
I [a]+S

λ̂λλ

)−1√
I [a]

(√
I [a]

θθθ
[a]+

√
I [a]

−1
g[a]
)
.

Therefore, for fixed value of λ̂λλ the new fit for the parameter estimator can be ex-

pressed as

θθθ
[a+1] =

(
I [a]+S

λ̂λλ

)−1√
I [a]z[a], (4.17)

where z[a] =
√

I [a]
θθθ
[a] + εεε [a] is a q× 1 vector, with εεε [a] =

√
I [a]

−1
g[a] also a

q×1 vector. The quantities z is called the pseudo-data, which plays the role of the

response vector for GAM.
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This parametrisation of the model-parameter estimators allows for a well

founded formulation of the smoothing parameter selection that is presented in Sec-

tion 4.2.5 (Marra et al., 2017). As discussed in Kalbfleisch and Lawless (1985),

calculating the second derivatives of the probability matrix can be difficult to calcu-

late. We use the approximation to the Fisher information matrix that involves only

the first order derivatives of the penalised log-likelihood function as in (2.23).

4.2.5 Smoothing parameters estimation

The penalised maximum likelihood approach described in Section 4.2.4 can only

estimate model parameters, θθθ , for fixed vector of smoothing parameters, λλλ . In this

Section, we described the automatic smoothing parameter selection presented in

Marra et al. (2017).

From likelihood theory, εεε ∼N (0,I) and z∼N (µµµz,I), where I is the identity

matrix, µµµz =
√

I θθθ and θθθ is the true parameter vector. The predicted value vector

for z is µ̂µµz =
√

I θ̂θθ = A
λ̂λλ

z, where A
λ̂λλ
=
√

I (I + S
λ̂λλ
)−1
√

I . The smoothing

parameter vector is estimated to minimise

E
(
||µµµz− µ̂µµz||2

)
= E

(
||(z− εεε)−A

λ̂λλ
z||2
)

= E
(
||(z−A

λ̂λλ
z)− εεε||2

)
= E

(
||z−A

λ̂λλ
z||2 + ||εεε||2−2εεε

>(z−A
λ̂λλ

z)
)

= E
(
||z−A

λ̂λλ
z||2 + εεε

>
εεε−2εεε

>(µµµz + εεε)+2εεε
>A

λ̂λλ
(µµµz + εεε)

)
= E

(
||z−A

λ̂λλ
z||2− εεε

>
εεε−2εεε

>
µµµz +2εεε

>A
λ̂λλ

µµµz +2εεε
>A

λ̂λλ
εεε

)
.

Notice that E(εεε>εεε) = E(∑ε2
i ) = q, E(εεε>µµµz) = E(εεε>)µµµz = 0 and E(εεε>A

λ̂λλ
µµµz) =

E(εεε>)A
λ̂λλ

µµµz = 0. Using that εεε>A
λ̂λλ

εεε is a scalar, and that a scalar is its own trace,

we obtain that

E(tr(εεε>A
λ̂λλ

εεε)) = E(tr(A
λ̂λλ

εεεεεε
>)) = tr(A

λ̂λλ
E(εεεεεε

>)) = tr(A
λ̂λλ

I) = tr(A
λ̂λλ
).
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These calculations can also be found in Wood (2006). Hence, it follows that

E
(
||µµµz− µ̂µµz||2

)
= E

(
||z−A

λ̂λλ
z||2
)
−q+2tr(A

λ̂λλ
) (4.18)

where q is the number of parameters. The derivation of (4.18) is presented with a

minor mistake in Marra et al. (2017), where the constant q does not represent the

total number of parameters.

Calculating the expectation on the right hand side of (4.18) is not straight-

forward. In practice, λλλ is estimated by minimising the Un-Biased Risk Estimator

(UBRE; Craven and Wahba (1978))

V (λλλ ) = ||z−Aλλλ z||2−q+2tr(Aλλλ ). (4.19)

Equation (4.19) can be minimised using the automatic smoothing parameter selec-

tion method developed by (Wood, 2004) or by using a general-purpose optimiser.

4.2.6 Summary of the algorithm

The methods described in Sections 4.2.4 and 4.2.5 are iterated until the parameter

estimator satisfies max1≤k≤q |θ [a+1]−θ [a]|< δ for a suitable small positive value δ

(Radice et al., 2016). The two steps of the algorithm are as follows:

Step 1: For fixed smoothing parameters λλλ
[a], find an estimate of θθθ :

θθθ
[a+1] = argmax

θθθ

`p(θ).

Step 2: Given the estimate θθθ
[a+1], find an estimate of λλλ using equation (4.19):

λλλ
[a+1] = argmin

λλλ

V (λλλ ).

4.2.7 Confidence intervals

The distribution of the penalised maximum likelihood estimator can be used to con-

struct confidence intervals for the estimate θ̂θθ and functions of them, such as the
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hazards and probability matrix (Wood, 2006). Let Vθθθ represent the covariance ma-

trix of θ̂θθ at convergence. From large sample theory, samples of the estimate θ̂θθ can

be drawn from N(θ̂θθ ,Vθθθ ). Confidence intervals for functions of the model parame-

ters can be constructed as follows:

Step 1: Draw b vectors from N(θ̂θθ ,Vθθθ ).

Step 2: Calculate the value of the function of interest at each simulated value.

Step 3: Using the simulated values of the function, calculate the lower (ς/2) and

upper (1− ς ), quantiles.

The parameter ς is usually set to 0.05. In this thesis, we approximate the covariance

matrix Vθθθ by the inverse of the matrix Mp as defined in (3.22). The standard errors

reflect the choice of theta, but do not account for the way theta was chosen, i.e., the

same standard error would occur if theta were taken to be fixed and known from the

outset.

4.3 Simulation study
We perform a small simulation study to analyse the performance of the method pre-

sented in Section 4.2 for estimating multi-state models with splines. The simulation

is described for an illness-death model without recovery with a log-normal distri-

bution with parameters µ = 1.25 and σ = 1 for transition 1 to 2, an exponential

distribution with rate exp(−2.5) for transition 1 to 3, and a Gompertz distribution

with rate exp(−2.5) and shape 0.1 for transition 2 to 3.

Let Trs = Trs|u represent the time to the event s conditional on being in state r

at time u > 0. If state at u is 1, then the time of transition to the next state can be

obtained by taking T = min{T12,T13}. If T = T12 then, the next state is 2, otherwise

if T = T13 then the next state is 3. If the state is 2, then the time of the next state is

T23. The event times T12 and T13 are simulated using the functions rgengamma()

and rgompertz(), respectively, in the package flexsurv (Jackson, 2016). The tran-

sition times T23 can be simulated by sampling from uniform distribution and using

the inversion method as described in Section 1.5.
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Figure 4.2: Simulation study: true (black lines), estimated (grey lines) and mean estimated
(red lines) hazards for the illness-death model for 100 replications

We perform R = 100 replications. The sample size is N = 200 individuals.

The time scale is years since baseline, i.e., time since the beginning of the study.

The follow-up times are yearly and the length of the study is 15 years. This leads to

interval-censored transition times for transitions 1 to 2 and known time of transitions

into the dead state.

The package mgcv in R (Wood, 2007) is used to set the design and penalty

matrices. The number of knots for each hazard is K = 10, hence the model has a

total of 30 parameters. We use cubic regression splines, in which case the knots are

placed using the percentiles of the observation times. Therefore, knots placement

is different for every sample. The multi-state model with splines is then estimated

using the procedure described in Section 4.2.
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Figure 4.2 illustrates the true (black lines), estimated (grey lines) and mean

estimated (red lines) hazards for the illness-death model for 100 replications. Some

estimated hazards seem to over- or under-estimated the true hazards; however, the

mean estimated hazards are very close to the true hazard curves. The discrepancy

between the hazards towards the end of the study is due to scarcity of data after 10

years. Also, the bias for hazard for transition 1 to 2 at early follow-up times is due

to the lack of transitions from state 1 to state 2 in the first year of the study. Overall,

the method satisfactorily estimates the nonlinear trend underlying the hazard for

transition 1 to 2.

Table 4.1 presents the results of the simulation in terms of transition probabili-

ties. For each defined time interval, it shows the transition probabilities for the true

model, the mean estimated transition probabilities, the bias and the estimated stan-

dard errors (eSE) (Burton et al., 2006). The results show that the multi-state model

with splines can estimate well transition probabilities across all time intervals.

The findings from the simulation results are twofold. First, they indicate that

the proposed method is able to estimate nonlinear hazards in the presence of interval

censoring. Second, they show that the piecewise-constant approximation to the

transition probabilities provides satisfactory results, as we are able to recover the

true curves and transition probabilities. Of course, the small number of replications

prevent us from being able to assess the coverage of confidence intervals; however,

the simulation results shows the good performance of the method with relation to

recovering the true model.

4.4 Applications

The methods presented in this chapter are illustrated with applications to the OCTO

and CAV data sets. In what follows, model estimation is undertaken using the scor-

ing algorithm summarised in Section 4.2.6. Let θθθ = (θ1, ...,θq)
> be the vector with

model parameters, where q depends on the application. The convergence criterion

for the algorithm is to stop at iteration a+1 when max1≤k≤q |θ
[a]
k −θ

[a+1]
k |< 10−6.

We use penalised cubic regression splines for the basis function. The knots are
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Table 4.1: Simulation study to investigate the performance of the multi-state models with
splines for modelling time-dependent processes. Mean, bias and estimated stan-
dard errors (eSE) for R = 100 replications. Absolute bias less than x is denoted
by dxe

Transition probabilities True Mean Bias eSE
p11(0,5) 0.241 0.232 -0.090 0.03
p12(0,5) 0.387 0.402 0.015 0.033
p13(0,5) 0.372 0.366 -0.006 0.028
p22(0,5) 0.589 0.611 0.022 0.057
p23(0,5) 0.411 0.389 -0.022 0.057

p11(0,10) 0.065 0.065 d0.001e 0.015
p12(0,10) 0.232 0.239 0.008 0.023
p13(0,10) 0.703 0.695 -0.008 0.028
p22(0,10) 0.246 0.263 0.018 0.037
p23(0,10) 0.754 0.737 -0.018 0.037

p11(5,10) 0.269 0.281 -0.012 0.052
p12(5,10) 0.291 0.284 0.007 0.037
p13(5,10) 0.440 0.435 -0.005 0.052
p22(5,10) 0.417 0.430 0.013 0.037
p23(5,10) 0.583 0.570 -0.013 0.037

placed considering the percentiles of the observation times. This means that more

knots are placed where data are plentiful and fewer knots where data are scarce. This

is a key factor for fitting multi-state models with splines. Because multi-state data

can become scarce close to the end of study, there might not be enough information

to estimate some basis coefficients. Fitting multi-state models with P-splines might

not be possible for some applications as it requires the knots to be equally spaced. In

this case, some knots can be placed where there is no data. The design and penalty

matrices are set up using the package mgcv in R. The smoothing parameters are

estimated using the general-purpose optimiser optim in R.

4.4.1 Origins of variance in the oldest-old data

We showed in Section 2.8.1 that a Gompertz hazards specification seems to be rea-

sonable for the OCTO data. In this section, these data are analysed with a multi-

model with splines. The multi-state process is illustrated in Figure 4.3. We aim

to check the suitability of the parametric hazards specification in Section 2.8.1, as
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Figure 4.3: Four-state model for longitudinal data in OCTO

well as verify whether the modelling can be further improved with nonparametric

hazards.

Recall that for the OCTO data, the mean length of follow-up times is 1.994

years with standard deviation of 1.098 and median 1.986. Assuming that change

in transition intensities in relation to the frequency of observation can be assessed

in intervals of approximately 2 years, we can use the data to define the grid for the

piecewise-constant approximation.

Let t represent age minus 80. Because time of death is known, rather than being

interval censored, the likelihood contribution of individuals observed in state r < 4

at time t and dead at time t∗ > t are given by ∑
3
s=1 P(Y (t∗) = s|Y (t) = r)qs4(t∗).

Similarly to the application in Section 2.8.1, the proportional hazard model

with splines and dependence on the covariate sex is given by

qrs(t) = exp

(
10

∑
k=1

αrs.kBk(t)+βrssex

)
, (4.20)

where (r,s) ∈ {(1,2),(1,4),(2,1),(2,3),(2,4),(3,4)}, Bk(t) are cubic regression

splines, and sex is 0/1 for men/women. For the transition between the living states,

the constraints on the coefficients for sex are β12.1 = β23.1
d
= βL, except for transition

from 2 to 1 with β21.1 = 0. For the transitions into the dead state, the constraints are

β14.1 = β24.1 = β34.1
d
= βD.

As indicated in (4.20), the hazards are modelled with 10 knots each, hence

the total number of parameters is 62. The resulting model has AIC = 5340.946,

−2`(θθθ) = 5306.396 , and d f = 17.275. The comparison with the parametric model

in (2.27), which has AIC = 5342.837,−2`(θθθ) = 5314.837, and 14 parameters, indi-
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Figure 4.4: Histogram of age transformed by minus 80 in the OCTO data

cates that the nonparametric hazards specification in (4.20) leads to a more flexible

model, which slightly improves model fitting.

The estimated smooth hazards for women (solid lines) and 95% confidence

intervals (dashed lines) are presented in Figure 4.5. For transition from state 1 to

2, the hazard is increasing and has a nonlinear shape. For transition from state 2

to 1, the hazard slightly increases up to approximately 5 years, but decreases af-

terwards. The shapes of these hazards can be difficult to model with parametric

specifications. For the other transitions, the risks of moving across states are in-

creasing throughout the length of the study, with fairly log-linear shapes that can

be approached with parametric models. The confidence intervals are fairly wide

after approximately 15 years. That is because data become scarce after 15 years

and our smooth non-parametric hazard model is a strictly local approach. Figure

2.1 illustrates the histogram of age minus 80. The vector of smoothing parameters

is estimated at λ̂λλ = (327.57, 640.20, 216.54, 3935634.85, 500128.59, 2118.19)>.

The covariate effects are estimated at β̂L = −0.323 (0.100) and β̂D =

−0.338 (0.092), indicating that being a woman decrease the risks of moving across
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Figure 4.5: Estimated smooth hazards (solid lines) for women, with 95% confidence inter-
vals (dashed lines)

cognitive states and moving into the dead state, respectively. Notice that for the

parametric model in (2.27), the effect of the covariate sex for living states and into

the dead state are estimated at −0.325 and −0.334, respectively. Therefore, the

baseline hazard specification does not seem to influence the covariate estimates.

Figure 3.6 depicts baseline-specific survival as estimated by the model and

as described by the Kaplan-Meier curves. Individual survival curves (in grey) are

shifted to the years since baseline so that we can compare them and their mean to

the Kaplan-Meier curve. This is necessary because individuals have different ages

at baseline. For survival given baseline state 3, there is small discrepancy between

model-based mean survival and the Kaplan-Meier curve, but overall the fit seems to
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Figure 4.6: Comparison of model-based survival from states 1, 2, and 3 with Kaplan-Meier
curves. Model-based survival: grey lines for individuals, smooth blue lines for
the mean of the individual survival curves. Kaplan-Meier in black lines with
95% confidence intervals. Frequencies for baseline state along vertical axes

be good. Although this is not a proper goodness-of-fit test, the comparison shows

that the model is able to capture the attrition due to death during the follow-up.

Furthermore, the predictions for the nonparametric model (4.20) are better than the

ones obtained for model (2.27), see Figure 2.3 .
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Health CAV
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Figure 4.7: Illness-death without recovery model for disease progression after transplant

4.4.2 Cardiac allograft vasculopathy data

As illustrated in Section 2.8.2, Gompertz hazards specification for analysing the

CAV data results in poor model fitting. In this section, we analyse these data with

nonparametric hazards models. The multi-state process is illustrated in Figure 4.7.

We aim to verify whether flexible model specifications with splines can improve

model fitting.

As discussed in Section 2.8.2, the mean length of follow-up times is 1.622

years with standard deviation of 0.972 and median 1.258. Assuming that change

in transition intensities in relation to the frequency of observation can be assessed

in intervals of approximately 1 year, we can use the data to define the grid for the

piecewise-constant approximation.

Let t represent time since baseline. Since time of death is known within

one day, rather than being interval censored, the likelihood contribution of indi-

viduals observed in state r < 3 at time t and dead at time t∗ > t are given by

∑
2
s=1 P(Y (t∗) = s|Y (t) = r)qs3(t∗).

The proportional hazard model with splines is specified with dependence on

donor age (dage) and primary diagnosis of ischaemic heart disease (IHD):

qrs(t) = exp

(
7

∑
k=1

αrs.kBk(t)+β1dage+β2IHD

)
, (4.21)

where (r,s) ∈ {(1,2),(1,3),(2,3)} and Bk(t) are cubic regression splines.

As indicated in (4.21), the hazards are modelled with 7 knots each, hence the

total number of parameters is 23. On a computer with 30 cores and using parallel

computing (Analytics and Weston, 2014a,b) , model 4.21 takes less than 22 minutes

to be estimated.
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Figure 4.8: Histogram of time since transplant in the CAV data

The vector of smoothing parameters is λλλ = (λ12,λ13,λ23)
>. This model has

AIC = 2931.715, −2`(θθθ) = 2903.483, and d f = 13.846. Compared to model

(2.28), which has AIC = 2932.953, −2`(θθθ) = 2924.953, and 8 parameters, model

(4.21) is more complex, considerably improves the likelihood, and slightly im-

proves the AIC.

The estimated smooth hazards for subjects with IHD and donor age of 26 (solid

lines) and 95% confidence intervals (dashed lines) are presented in Figure 4.9. The

vector of smoothing parameters is estimated at λ̂λλ =(14.292,55.036,743629)>. The

risk of moving from state 1 (healthy) to state 2 (CAV) increases until approximately

8 years after transplant, but decreases afterwards. The risk of going from state

1 to state 3 (dead) is very low and almost constant until approximately 10 years

since transplant, but increases pretty steep afterwards. The transition intensity from

state 2 to state 3 is quite volatile and upwards until 10 years after transplant and

decreasing afterwards. The confidence intervals are fairly wide after approximately

10 years. That is because data become scarce after that time.

For the parametric part of the model, β̂1 = 0.014 (0.004) and β̂2 = 0.2 (0.096)

indicating that donor age and IHD increase the risks of disease progression and
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Figure 4.9: Estimated smooth hazards for subjects with IHD and with donor age of 26
(solid lines), with 95% confidence intervals (dashed lines)

death. The model (2.28) has very similar estimates for covariates dage and IHD,

0.018 and 0.277, respectively. Hence, as in the application to the CAV data,

the baseline hazard specification is robust with relation to specification of time-

dependency.

Although estimated hazards gives insightful information about the risks of

moving across states, interpretation is more straightforward when transition proba-

bilities are considered. For subject with IHD and with donor age of 26, the five-year

transition probabilities are estimated at

P̂(0,5) =


0.502 (0.446,0.556) 0.318 (0.274,0.365) 0.180 (0.149,0.212)

0 0.699 (0.616,0.773) 0.301 (0.227,0.384)

0 0 1

 ,

with 95% confidence interval (in brackets) obtained using b = 1000 simulations as
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Figure 4.10: Comparison of model-based survival with Kaplan-Meier curves for the Gom-
pertz model (left-hand side) and spline model (right-hand side). Model-based
survival: grey lines for individuals, blue lines for the mean of the individual
curves. Kaplan-Meier in black lines with 95% confidence intervals

in Section 2.5. A transition probability can be interpreted as follows. A subject with

IHD and donor age of 26 has a 29% chance of being in the CAV five years later.

Model validation for multi-state models can be carried out by comparing model

prediction of the entry time into the dead state with the Kaplan-Meier curve esti-

mates (Titman and Sharples, 2010). Figure 4.10 depicts baseline-specific survival

as estimated by the models (2.28) and (4.21) (on the left and right hand side, re-

spectively) and as described by the Kaplan-Meier curves. For the Gompertz model

in (2.28), the fit is reasonably good up to 10 years, but after that the model fails to

predict survival. The multi-state model with splines predicts the survival reasonably

accurately throughout the years.

4.5 Discussion
This chapter presents a practical and unifying framework for estimating multi-state

models with splines for interval-censored data. This novel methodology improves

both accuracy of the parameter estimates and computational speed, if compared to

grid search methods such as the one presented in Chapter 3. The new estimation

procedure is made possible by rewriting the optimisation problem using a penalised

general likelihood estimation (Marra et al., 2017).
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The method is illustrated with two applications. We aim to illustrate the feasi-

bility of the method and its usage for flexible time-dependent modelling. In partic-

ular, the application to the OCTO data shows that the method is able to efficiently

estimate the hazard functions for a complex multi-state processes with a backward

transition. The application to the CAV data illustrates the flexibility of the method

to model nonlinear time dependency.

The small simulation study and application show the importance of this method

for flexible modelling of time-dependent processes. Even though an assessment of

bias is not possible due to the small number of replications, the simulation study

shows that the method can recover nonlinear, log-liner and linear hazards. Further-

more, we illustrate with an application that the method can give insightful informa-

tion on the functional form underlying the hazards.

The automatic smoothing parameters estimation as described in Marra et al.

(2017) requires the Hessian or the Fisher information for estimation. We show

through a simulation and applications that an approximation to the Fisher informa-

tion matrix, which only uses the first order derivatives of the log-likelihood, per-

forms well on estimation. This is relevant for interval-censored data as calculating

the second derivatives of the transition probabilities can be intractable.

The msm package (Jackson, 2011) is designed to model time-homogeneous

multi-state models. However, it is possible to fit some time-dependent models, such

as Gompertz and splines (without penalties) models. In this case, time-dependency

is also approached by using a piecewise-constant approximation to the hazards.

Therefore, this research can also be seen as a generalisation of the msm package,

which allows for flexible modelling of the time-dependency.

The Gompertz hazards specification is common in many applications due to

its simplicity and straightforward use with the msm package. We show through a

model validation method that such restrictive model specifications can lead to poor

model fit. As shown in Figure 4.10, the multi-state model with splines can improve

considerably model fit by allowing for flexible hazards specification.



Chapter 5

Conclusions and future work

Multi-state models are commonly used in medical research where patients’ health

status over time is of interest. In the presence of interval censoring, models can be

formulated in a Markov processes framework. Models are specified through propor-

tional hazards functions. For time-dependent processes, deciding on a reasonable

shape underlying the hazards is not straightforward. Semi-parametric hazards spec-

ifications, which allow for flexible modelling of time dependency, are alternatives

to parametric models. However, estimating multi-state models with splines is chal-

lenging as the problem involves multiple smoothing parameters selection.

This thesis presented novel penalised maximum likelihood methods to estimate

multi-state models with splines for interval-censored data. In particular, we have fo-

cused on estimating semi-parametric hazards functions with splines. Special atten-

tion has been given to cubic regression splines and P-splines, but in principle any

other splines basis could have been employed. The principal contribution of this

thesis has been to develop an unifying and efficient framework to estimate semi-

parametric multi-state models. This new method could be used to model nonlinear

time-dependency in multi-state processes or to check parametric model assump-

tions.

In Chapter 1, we have discussed various multi-state processes and some of their

special features, such as model structure and censoring. We also provided a litera-

ture review of the existing methods to analyse these processes. We concluded that

current methods cannot fully address the problem of estimating multi-state models
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with splines.

Chapter 2 then explored a standard method for fitting parametric multi-state

models. This method uses a scoring algorithm to maximise the log-likelihood func-

tion, for a given piecewise-constant approximation to the hazards. To assess model

fit, we used the comparison of the overall model survival function with the Kaplan-

Meier empirical estimates. The application of these methods to the OCTO data

showed that Gompertz hazards specification seems to lead to a reasonably good

model fit. However, such restrictive model assumptions for analysing the CAV data

resulted in lack of fit. We then concluded that a method to estimate more flexible

multi-state models should be developed to deal with time-dependency.

For this purpose, in Chapter 3, we developed a penalised maximum likeli-

hood method to estimate flexible multi-state models with splines. Specifically,

the method allows for parametric and semi-parametric hazards specifications. We

showed that a piecewise-constant approximation can be used to calculate the tran-

sition probabilities for the likelihood function, and then a scoring algorithm can be

used to optimise the penalised likelihood function. The main contribution of this

method has been to provide a general framework to specify and estimate multi-state

models with splines. We then applied the method to the ELSA data to investigate

the decline of cognitive function in older population. Even though time of death is

is rounded to the nearest integer, we assumed that time of transition into the dead

state is known exactly. This application showed that the risks of moving forward

across cognitive states are increasing. The method, however, is based on a grid

search for estimating the optimal amount of smoothing. Such approach can become

impractical for applications where several hazards are modelled with splines.

In Chapter 4, we extended the method presented in Chapter 3 by developing an

efficient algorithm based on penalised maximum likelihood and automatic search

of the smoothing parameters to estimate multi-state models for interval-censored

data. This method improves both estimation time and, by providing more precise

smoothing parameter estimates, accuracy of the model parameter estimates. The

method is a general tool that, in principle, allows for flexible modelling of multi-
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state processes with any structure, and it is the main contribution of this thesis.

The method has been illustrated with analysis of two data sets and a simulation

study. The application to the OCTO data showed that the method can elegantly es-

timate the smooth hazards of a considerably complicated process with a backward

transition. This allowed us to verify that a Gompertz hazard specification can be a

reasonable model assumption. In relation to the application to the CAV data, the

estimated smooth hazards showed that the risks of moving between states follow a

nonlinear trend over time. We verified through a model diagnostic that such flexi-

ble hazards specification with splines improves the model fitting for the CAV data.

Therefore, the method enabled us to improve the knowledge of the process of inter-

est. Finally, the simulation study allowed us to verify that the method can recover

non-linear and linear hazards functions.

The piecewise-constant approximation provides a general framework to cal-

culate transition probabilities of any multi-state process. However, the method re-

quires a much greater number of numerical evaluations as computation of eigenval-

ues decomposition is required for all pair of observation times. Alternatively, the

method presented in Titman (2011) could also be used to calculate transition proba-

bilities. Theoretical properties such as conditions for consistency and identifiability

should be studied.

The estimation time is improved by using parallel computing to calculate the

score vector and Fisher information matrix. The time to estimate model (4.21) with

a computer with 30 cores is just below 22 minutes. Computational time could be

further improved by using the package in Rcpp (Eddelbuettel et al., 2011).

To conclude, the methods presented in this thesis can be further extended to es-

timate multi-state models for different data structures. One possible extension is to

allow for misclassification of states (Jackson et al., 2003). This poses extra difficulty

for estimation as computation of the gradient or information is more challenging

(Lystig and Hughes, 2002). For processes with time-varying covariates, the hazards

are specified in terms of functions of the covariates. Similarly to the specification

of the baseline hazards, the functional forms underlying time-varying covariates are
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often unknown. Therefore, these functions could be specified by smooth functions.

Semiparametric hazards specification with splines of the covariate effects can be

useful to provide insightful information about the process of interest. The work by

Joly and Commenges (1999) on penalised semi-Markov models could be extended

in two ways. First, an automatic smoothing parameter selection method can be

used to improve precision of parameter estimation. Second, the method could be

extended for penalized semi-Markov models with backward transitions.



Appendix A

Code for the R software

The method developed in this thesis are implemented in the software R (R Core

Team, 2016). In this appendix we provide the code for fitting the three-state model

for the CAV data, as defined in Section 4.4.2.

#It is necessary to load the following libraries

library(msm)
library(splines)
library(mgcv)
library(flexsurv)

#The CAV data is assigned to the variable ‘‘Data’’.
#The following is the CAV data for an individual.

PTNUM years state dage pdiag
1 100002 0.000000 1 21 1
2 100002 1.002740 1 21 1
3 100002 2.002740 2 21 1
4 100002 3.093151 2 21 1
5 100002 4.000000 2 21 1
6 100002 4.997260 2 21 1
7 100002 5.854795 3 21 1

# The following construct the smoothing basis.
# The argument ‘‘bs’’ represent spline basis.
#In this case, ‘‘cr’’ stands for cubic regression splines.

smoother = smooth.construct(s(years, bs = "cr"), Data, NULL)

#Get the design matrix

X = smoother$X



108

#Get the dimension of the smoother

n.dim = smoother$bs.dim

#Get the penalty matrix
pen = output <- matrix(unlist(smoother$S), ncol = n.dim, byrow = TRUE)

#Define the number of parameter for each transition and
#the number of covariates.

npar12 = n.dim
npar13 = n.dim
npar23 = n.dim
ncov = 2

#This is useful for coding
n1 = npar12
n2 = n1 + npar13
n3 = n2 + npar23
n4 = n3 + ncov
npar = n4

#Vector of initial values
par.0 = c(rep(-3, n3), rep(0,2))

#number of states and dead state
s.number = 3
dead.state = 3

#Split the data into individuals
n = split(Data, Data$PTNUM)
N = length(n)

#Define elements for the scoring
iter=1
max.iter=100
diff= rep(Inf,length(par))

digits = 3
count = 0
Max = 1000
abstol = 1e-6

gamma = c(2, 2, 2)
sp = exp(gamma)

#The next function is the generator matrix and its eigen decomposition
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#Data.Ind.i is the data for ith individual
#X.i smoother for ith individual
#j is the jth observation

Q.matrix = function(par, Data.Ind.i, j, X.i){
dage = Data.Ind.i[j-1,4]
pdiag = Data.Ind.i[j-1,5]
Q = matrix(0,s.number,s.number)
Q[1,2] = exp(X.i[j-1,]%*%par[1:n1] + par[n3+1]*dage
+ par[n3+2]*pdiag)
Q[1,3] = exp(X.i[j-1,]%*%par[(n1+1):n2] + par[n3+1]*dage
+ par[n3+2]*pdiag)
Q[1,1] = -(Q[1,2] + Q[1,3])
Q[2,3] = exp(X.i[j-1,]%*%par[(n2+1):n3] + par[n3+1]*dage
+ par[n3+2]*pdiag)
Q[2,2] = -Q[2,3]
r = eigen(Q, symmetric = FALSE)
A = r$vectors
d = r$values
inv.A = solve(A)
Q.result = list("A" = A, "d" = d, "inv" = inv.A,
"Q" = Q)
return(Q.result)

}

#Function for calculating the probability transition for a follow-up
P = function(j, Data.Ind.i, A, d, inv.A){

t = exp(d*(Data.Ind.i[j,2] - Data.Ind.i[j-1,2]))
P = A%*%diag(t)%*%inv.A
return(P)

}

#Function that returns a likelihood contribution for a
#interval-censored observation time
Pt = function(j, Data.Ind.i, Q){

r = eigen(Q, symmetric = FALSE)
A = r$vectors
x = r$values
t = exp(x*(Data.Ind.i[j,2] - Data.Ind.i[j-1,2]))
pt.aux = A%*%diag(t)%*%solve(A)
pt = pt.aux[Data.Ind.i[j-1,3], Data.Ind.i[j,3]]
return(pt)

}

#Function that returns a likelihood contribution for
#death times

Ps = function(s, Data.Ind.i, Q){
m = nrow(Data.Ind.i)
r = eigen(Q, symmetric = FALSE)
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A = r$vectors
x = r$values
t = exp(x*(Data.Ind.i[m,2] - Data.Ind.i[m-1,2]))
ps.aux = A%*%diag(t)%*%solve(A)
ps = ps.aux[Data.Ind.i[m-1,3], s]*Q[s,s.number]
return(ps)

}

#Function to calculate the trace of a function
trace = function(A){

s = 0
for (i in 1:(nrow(A))){

s = s + A[i,i]
}
return(s)

}

#Matrix square root
square.root = function(S){

d = eigen(S, symmetric = TRUE)
rS = d$vectors%*%diag(d$valuesˆ0.5)%*%t(d$vectors)

}

#Derivative of the Q matrix
deriv.Q = function(par,Data.Ind.i, j, u, Q, X.i){

dage = Data.Ind.i[j-1,4]
pdiag = Data.Ind.i[j-1,5]
dQ = matrix(0, s.number, s.number)
if(u<=n1){

dQ[1,2] = X.i[j-1,u]*Q[1,2]
dQ[1,1] = -dQ[1,2]

}
if(u>n1 & u<=n2){

dQ[1,3] = X.i[j-1,u-n1]*Q[1,3]
dQ[1,1] = -dQ[1,3]

}
if(u>n2 & u<=n3){

dQ[2,3] = X.i[j-1,u-n2]*Q[2,3]
dQ[2,2] = -dQ[2,3]

}
if(u==n3+1){

dQ[1,2] = dage*Q[1,2]
dQ[1,3] = dage*Q[1,3]
dQ[1,1] = -(dQ[1,2]+dQ[1,3])
dQ[2,3] = dage*Q[2,3]
dQ[2,2] = -dQ[2,3]

}
if(u==n3+2){

dQ[1,2] = pdiag*Q[1,2]
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dQ[1,3] = pdiag*Q[1,3]
dQ[1,1] = -(dQ[1,2]+dQ[1,3])
dQ[2,3] = pdiag*Q[2,3]
dQ[2,2] = -dQ[2,3]

}
return(dQ)

}

#Derivative of the probability transition matrix
deriv.P = function(j, Data.Ind.i, dQ.u, s.number, A, d, inv.A){

t = (Data.Ind.i[j,2] - Data.Ind.i[j-1,2])
G.u = inv.A%*%dQ.u%*%A
V.u = matrix(0,s.number, s.number)
for(l in 1:s.number){

for(m in 1:s.number){
if(l==m){

V.u[l,l] = G.u[l,l]*t*exp(d[l]*t)
}else{

V.u[l,m] = G.u[l,m]*(exp(d[l]*t)
- exp(d[m]*t))/(d[l] - d[m])

}
}

}
dP.u = A%*%V.u%*%inv.A
return(dP.u)

}

#Function to calculate the gradient and the M matrix
scoring.msm = function(N, par){

M = matrix(0,length(par), length(par))
S = matrix(0,length(par),1)
for(u in 1:length(par)){

for(v in 1:length(par)){
if(u <= v){

aux = scoring.uv(u,v,N,par)
M[v,u] = aux[[2]]
M[u,v] = aux[[2]]
if(u==v){

S[u] = aux[[1]]
}

}

}
}
result = list("S" = S, "M" = M)
return(result)

}
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#Calculates the u entry of the gradient
#and the uv entry of the M matrix
scoring.uv = function(u, v, N, par){

M.uv = 0
score.u.aux = 0
for(i in 1:N){

Data.Ind.i = n[[i]]
X.i = X[(1:nrow(Data.Ind.i)),] #get data associated to subject i
X = X[-(1:nrow(Data.Ind.i)),] # Delete data associated to subject i
for(j in 2:nrow(Data.Ind.i)){

decomp.Q = Q.matrix(par, Data.Ind.i, j, X.i)
A = decomp.Q$A
d = decomp.Q$d
inv.A = decomp.Q$inv
Q = decomp.Q$Q
P.aux = P(j, Data.Ind.i, A, d, inv.A)
dQ.u = deriv.Q(par, Data.Ind.i, j, u, Q, X.i)
dQ.v = deriv.Q(par, Data.Ind.i, j, v, Q, X.i)
dP.u = deriv.P(j, Data.Ind.i, dQ.u, s.number, A, d, inv.A)
dP.v = deriv.P(j, Data.Ind.i, dQ.v, s.number, A, d, inv.A)
if(Data.Ind.i[j,3]!=s.number){

M.uv = M.uv + (1/(P.aux[Data.Ind.i[j-1,3], Data.Ind.i[j,3]])ˆ2)

*dP.u[Data.Ind.i[j-1,3], Data.Ind.i[j,3]]

*dP.v[Data.Ind.i[j-1,3], Data.Ind.i[j,3]]
score.u.aux = score.u.aux
+ (1/P.aux[Data.Ind.i[j-1,3], Data.Ind.i[j,3]])

*dP.u[Data.Ind.i[j-1,3], Data.Ind.i[j,3]]
}else{

denom = 0
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num.u = 0
num.v = 0
for(s in 1:(s.number-1)){

denom = denom + P.aux[Data.Ind.i[j-1,3], s]*Q[s, s.number]
num.u = num.u + dP.u[Data.Ind.i[j-1,3], s]*Q[s, s.number]
+ P.aux[Data.Ind.i[j-1,3], s]*dQ.u[s, s.number]
num.v = num.v + dP.v[Data.Ind.i[j-1,3], s]*Q[s, s.number]
+ P.aux[Data.Ind.i[j-1,3], s]*dQ.v[s, s.number]

}
M.uv = M.uv + (1/denomˆ2)*num.u*num.v
score.u.aux = score.u.aux + num.u/denom

}
}

}
result = list("score.u" = score.u.aux, "M.uv" = M.uv)
return(result)

}
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#Set up the penalty matrix
spl.S = function(n1, n2, n3, n4, npar,pen){

Pen = list()
Pen[[1]] = Pen[[2]] = Pen[[3]] = Pen[[4]]
= matrix(0, npar, npar)
Pen[[1]][1:n1, 1:n1] = pen
Pen[[2]][(n1+1):n2,(n1+1):n2] = pen
Pen[[3]][(n2+1):n3,(n2+1):n3] = pen
return(Pen)

}

#Estimate the model parameter for given
#smoothing parameters
estimate.parameters = function(par.0, sp){

count=0
Pen = spl.S(n1, n2, n3, n4, npar,pen)
Pen = sp[1]*Pen[[1]] + sp[2]*Pen[[2]] + sp[3]*Pen[[3]]
Max.inner = 50
while(count < Max.inner){

aux = scoring.msm(N,par.0)
S = aux[[1]]
Sp = S - Pen%*%par.0
I = aux[[2]]
Ip = I + Pen
sqrt.I = square.root(I)
inv.sqrt.I = solve(sqrt.I)
e = inv.sqrt.I%*%S
z = sqrt.I%*%par.0 + e
inv.pen.I = solve(I + Pen)
par.h = inv.pen.I%*%sqrt.I%*%z
count = count + 1
if(max(abs(par.0 - par.h)) < abstol) break
par.0 = par.h

}
est.parameters.result = list("par" = par.h, "I" = I,
"Ip"=Ip, "inv.pen.I" = inv.pen.I, "sqrt.I" = sqrt.I,
"z" = z, "count"=count)
return(est.parameters.result)

}
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#Set up the UBRE
#gamma represents log(sp)
UBRE = function(gamma){

Pen = spl.S(n1, n2, n3, n4, npar, pen)
sp = exp(gamma)
Pen = sp[1]*Pen[[1]] + sp[2]*Pen[[2]] + sp[3]*Pen[[3]]
A = sqrt.I%*%solve(I + Pen)%*%sqrt.I
ubre = t(z - A%*%z)%*%(z - A%*%z) + 2*trace(A) - npar
return(ubre)

}

#Minimise the UBRE
estimate.lambda = function(gamma){

lambda.update = optim(gamma, UBRE, method = "BFGS",
control = list(maxit = 100000), hessian = TRUE)
lambda = lambda.update$par
return(lambda)

}

#The following while runs until the convergence criteria is achieved
# It is the summary of the scoring algorithm
while(count < Max){

find.est = estimate.parameters(par.0, sp)
par = find.est[[1]]
I = find.est[[2]]
inv.pen.I = find.est[[4]]
sqrt.I = find.est[[5]]
z = find.est[[6]]
count = count + 1
if(max(abs(par - par.0)) < abstol) break
est.gamma = estimate.lambda(gamma)
gamma = est.gamma
sp = exp(gamma)
par.0 = par

}
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