
Expanding the distinctive neuroimaging phenotype of ACTA2 mutations 

  

Abstract 

BACKGROUND AND PURPOSE: Arg179His mutations in ACTA2 are associated with a 

distinctive neurovascular phenotype characterized by straight course of intracranial arteries, 

absent basal ‘moyamoya’ collaterals, dilatation of the proximal internal carotid arteries and 

occlusive disease of terminal internal carotid arteries. We now add to the distinctive 

neuroimaging features in these patients by describing their unique constellation of brain 

malformative findings that could flag the diagnosis in cases where targeted cerebrovascular 

imaging has not been carried out. 

MATERIALS AND METHODS: Neuroimaging studies from 13 patients with 

heterozygous Arg179His mutations in ACTA2 and 1 patient with pathognomonic 

clinico/radiological findings for ACTA2 mutation were retrospectively reviewed. Presence 

and localization of brain malformations and other abnormal brain MRI findings were 

reported. 

RESULTS: Characteristics bending and hypoplasia of the anterior corpus callosum, apparent 

absence of the anterior gyrus cinguli, radial frontal gyration were present in 100% of the 

patients, flattening of the pons on the midline and multiple indentations in the lateral surface 

of the pons were demonstrated in 93% of the patients, and apparent “squeezing” of the 

cerebral peduncles in 85% of the patients. 

CONCLUSIONS: As α-actin is not expressed in brain parenchyma, but only in vascular 

tissue, we speculate that, rather that a true malformative process, these findings represent a 

deformation of the brain during development related to the mechanical interaction with rigid 

arteries during the embryogenesis.  

  

ABBREVIATIONS: EDM= electronic data management systems; MRA= magnetic 

resonance angiography; SMC= smooth muscle cells.  GA= gestational age.  

  

Introduction 

The cerebral arteriopathy associated with Arg179His mutations in ACTA2 is a prototypical 

example of non-atherosclerotic cerebral arteriopathies, some of which are Mendelian 

disorders(1). Patients with ACTA2 mutation have distinctive clinical (multisystem smooth 

muscle involvement) and angiographic features(2) – specifically, a combination of ectasia 
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and stenosis, straight arterial course, absence of basal collaterals and more widespread 

cerebrovascular involvement in comparison with moyamoya disease(2).  The diagnosis is 

highly suggested by these imaging features and has important implications for management 

of the patient (increased risks associated with arterial instrumentation) and other family 

members, but also provides important mechanistic insights, that may be more 

generalisable(1). Previously the imaging phenotype associated with ACTA2 mutations has 

been confined to cerebrovascualr abnormalities and associated leukoencephalopathy (3), 

apart from a single case report of a patient with a dysmorphic corpus callosum(4). 

Here we expand the neuroimaging phenotype and describe characteristic brain parenchymal 

abnormalities that could flag the diagnosis when targeted cerebrovascular imaging has not 

been performed. 

  

Materials and Methods 

We reviewed in detail the brain magnetic resonance imaging (MRI) findings in a cohort of 

patients with ACTA2 mutations to describe characteristics of brain congenital abnormalities 

in addition to known neuroangiographic findings previously described(2). Clinically 

acquired, anonymised brain and cerebrovascular imaging studies from 13 unrelated patients 

with heterozygous Arg179His mutations in ACTA2 were retrospectively included from four 

pediatric hospitals and one general university hospital, with appropriate governance 

permissions from each site. The patients were selected after search for ACTA2 mutation in 

the electronic data management systems (EDM) of the centers involved in the study (last 10 

years). Inclusion criteria were: confirmed mutation and/or pathognomonic neuroradiological 

+ clinical findings and availability of MRI of diagnostic quality. 

This included re-analysis of eight patients already published by Munot et al.(2). All patients 

had had the genetic diagnosis confirmed within a clinically accredited laboratory, as part of 

their clinical evaluation. Another patient had no genetic confirmation (lost at follow-up) but 

showed typical radiological and clinical phenotypes which are considered pathognomonic for 

ACTA2 mutation(2,5) and thus was included in the study. 

Images were reviewed for quality and co-reported by two pediatric neuroradiologists (F D’A 

and KC) who reported presence and localization of brain malformations (i.e.: presence of 

cortical malformations, abnormal shape of the brainstem, abnormal relative size of the 

midbrain, pons and medulla oblongata, abnormal shape and size of the corpus callosum, 

abnormal gyration) (Table 1). Magnetic resonance angiography (MRA) and/or angiography, 
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where available, were also reviewed for typical ACTA2-related cerebrovascular anomalies as 

described in literature(2). 

Presence of associated ischemic brain damage was also reported and divided into large 

territorial infarction of the brain and evidence of watershed infarctions (i.e.: radiological 

evidence of small vessel disease). 

Presence of specific brain malformations found in our cohort was compared with known 

similar brain malformation patterns and analyzed in view of known embryological 

knowledge(6) in order to elucidate possible pathogenetic mechanisms. 

Review through EDM of the MRI scans and clinical data of all the patients from the main 

institution (i.e. Great Ormond Street Hospital for Children) with diagnosis of other forms of 

neurovascular dysplasia (e.g. moyamoya), excluded presence of similar brain abnormalities.  

  

  

Results 

Clinical, radiological and genetic findings in our patients are summarized in Table 1. 13 

patients had heterozygous missense Arg179His in ACTA2 and 1 patients without genetic 

confirmation had clinical and radiological findings pathognomonic for ACTA2 mutation 

(subject 14) and was included in the case series. 

  

-   All patients had the neuroangiographic features previously described in 

ACTA2 Arg179His mutations, namely: dilatation of the proximal internal 

carotid arteries, occlusion of the distal internal carotid arteries, straight 

“broomstick-like” arteries of the circle of Willis and absence of moyamoya 

collaterals. (Figure 1 E and F). Multiple areas of abnormal signal in 

keeping with small vessel disease and sometimes frank supratentorial 

infarctions in a different stage of maturation were commonly observed. 

  

-    All patient showed different degree of abnormal brain morphology, namely: 

  

(i) Bending (excessive curvature inferiorly and anteriorly) and hypoplasia (rostrum 

not well formed and flattened genu) of the anterior corpus callosum (Figure 1 A and 

B) with relatively normal or mildly hypoplastic posterior corpus callosum. On axial 
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images, the anterior corpus callosum demonstrates a characteristic “V” shaped 

appearance (Figure 1 C and D). This finding was present in all (100%) patients. 

  

(ii) Abnormal radial gyration of the frontal lobes and deficient anterior cingulate 

gyrus (Figure 1 A and B). (100%) 

  

(iii) “Twin Peaks” pons (appreciable in all the patients with exception of patient 1: 

93%): pons is flattened with subjective reduction of the anteroposterior diameter 

noted on the midline and impression of the basilar artery on the anterior surface with a 

consequent presence of two symmetrical prominences resembling twin mountains 

(Figure 2).  In the parasagittal slice, the patients had multiple indentations on the 

surface of the pons (Figure 3), probably due to the straightened pontine arterial 

branches creating compression of the pontine surface (see discussion). 

  

(iv) Apparent “squeezing” of the cerebral peduncles in the midbrain (Figure 2 C and 

D), that was present in 12/14 patients (85%). 

  

(v) variable degree of  horizontal orientation and thickening of the fornix (i.e.: fornix 

parallel to the corpus callosum) was present in all patients (Figure 1 A and B). 

  

The radiological and clinical findings of the patient without confirmed mutations were similar 

to the confirmed cases and with the typical ACTA2 cerebrovascular changes(2). 

Interestingly we also found an adult patient with similar and pronounced ACTA2-like 

cerebrovascular phenotype (patient 15 in table 1), which showed same spectrum of brain 

abnormalities, straightening of posterior circulation arteries and abnormal radial gyration also 

involving the posterior temporal lobes (Figure 4). This patient refused genetic testing and did 

not have pathognomonic clinical findings associated with ACTA2 mutation. Nevertheless this 

case is extremely interesting to try to understand the possible pathophysiology of the brain 

abnormalities related to vascular dysplasia (see discussion). 

In eight of the subjects (patient 1, 5, 8, 10, 11, 12, 13 and 15) follow-up MRI was not 

available. The others had a different evolution of the ischemic cerebral lesions. 

In all the patients with follow-up available the abnormalities in the corpus callosum, gyration 

and brainstem were stable overtime as well as the degree of arteriopathy. 
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No one of the patients showed cortical malformations such as focal cortical dysplasia, 

polymicrogyria, agyria or pachygyria, as described in literature(7). 

  

  

Discussion 

Actin is an abundant protein in eukaryotic organisms and plays an essential role in the 

protein-protein interactions. The actin protein represents a monomeric subunit of two main 

varieties of filaments in cells, which make up the cytoskeleton and form part of the 

contractile apparatus in muscle cells. The mammalian genome comprises six distinct actin 

isoforms (α-skeletal, α-cardiac, α-smooth; β-cytoplasmic; γ-smooth and γ-cytoplasmic actin) 

encoded by six different genes (8). α -smooth muscle actin, encoded by ACTA2, located on 

10q22-q24,(9) is a principal element of the contractile units of vascular smooth muscle cells 

(SMC) but is not expressed in the brain parenchyma. However α – actin cross reacts with 

gamma-actin to reinforce the cytoskeleton (10). The arterial phenotype in Arg179His ACTA2 

mutations, with ectasia of large arteries and occlusive disease in small arteries appears to 

reflect the local influence on the presence or absence of elastin within the arterial wall on the 

vascular phenotype(2)  These arterial features are also observed in the mouse model(11). It is 

important to note that vascular SMCs derive from the mesoderm in the posterior 

fossa/brainstem/thalami, and from the neural crest supratentorially (anterior neural plate)(12), 

however there are no data, to the best of our knowledge, to suggest differences in expression 

of ACTA2 related to different embryological origins. 

  

The occlusive disease observed in intracranial vessels is a result of fibrosis, thickening of the 

vascular wall, flattening and disorganization of the internal lamina and proliferation of 

SMCs(13). We previously postulated that this renders the arteries more rigid and less 

deformable(2). Arterial growth follows the contours of brain growth and gyration during the 

normal development(12) – thus we speculate that in patients with these ACTA2 mutations the 

increased rigidity of the intracranial arteries results both in the characteristic “straight” 

appearance and in the morphological brain changes that we have described, as a consequence 

of local mechanical effect from these vessels. Interestingly the muscular layers do not appear 

in the basal perforator vessels until gestational age (GA) 27, and, progressively until term, 

over the convexity. However studies on rat embryos show that actin expression in the 

vasculature starts very early(14) and histological specimens in subjects with ACTA2 
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mutations demonstrate that the rigidity is also due to abnormality in elastic and intima 

laminae(13). Furthermore, although the shape of the corpus callosum is complete by GA 20, 

this structure enlarges together with the connectivity and the development of the cortex(6); 

thus it is still possible that interaction with abnormally formed vessels is responsible for the 

observed deformity despite these difference in embryological age of development. In 

addition, as the actin cytoskeleton participates directly or indirectly in almost every aspect of 

neuronal development and function (15) any instability in the cytoskeleton resulting from 

abnormal cross linkage between actin subtypes could also influence neuronal migration (8). α 

– actin is not expressed in the brain parenchyma but only in vessels (differently from other 

isoforms), so it is unlikely that a mutation of this isoform will directly influence brain 

development, but it is possible that cross-regulation between different isoforms may play a 

role in subjects with ACTA2 mutation. 

  

There are other examples of malformative disorders being related to local mechanical factors, 

for example arachnoid cysts with surrounding brain hypoplasia, and Chiari I malformation in 

which a small posterior fossa results in distortion and inferior displacement of the cerebellar 

tonsils; which is why the term “Chiari I deformity” was proposed instead of 

malformation(16) 

  

In ACTA2 mutated patients, the abnormal arterial morphology and structural brain 

abnormalities parallel each other in both supratentorial and infratentorial parenchyma – 

universally so in the anterior part of the corpus callosum, anterior cingulate gyrus, an 

abnormal radial frontal gyration and variably in the brainstem. In fact, the characteristic “twin 

peaks” appearance of the pons in the axial plane seems to be related to impression by the 

basilar artery as well as the indentation of the lateral pontine surface may be due to the 

impression by the pontine arteries coming from the basilar artery (Figure 3). 

We have observed a particularly extreme example of this in a genetically untested case who 

shows neuroradiological features similar to ACTA2 mutations (patient 15). In this patient the 

posterior cerebral arteries are also severely straightened and are associated with abnormal 

radial gyration involving the posterior temporal lobes and marked brainstem compression 

(Figure 4). The vascular phenotype present in this case is similar to the others and only 

described in patients with ACTA2 mutation with the exception of an isolated case report(17) 

where a mutation was not found and that showed very similar brain images to our patient. 

Thus, even though it is possible that this patient (despite neurovascular findings) does not 
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have ACTA2 mutation, we think that the striking association between severe vascular and 

brain phenotypes in this subject is supportive of our hypothesis that brain abnormalities are 

secondary to vessel rigidity. 

  

The apparent absence/definition of a segment of the anterior cingulate and the frontal radial 

pattern are both likely associated with a callosal abnormality at that level, which itself 

probably translates into the axial callosal V-shape. The horizontal fornix (or rather, the fornix 

that is parallel to the anterior callosum) results from an abnormally developed septum 

pellucidum (i.e. too thick), which itself, may well relate to the abnormal cingulate(6). 

The brain malformation features do not appear to have a clear clinical correlate in Arg179His 

ACTA2 patients; epilepsy is rare, other than in the context of brain ischemia, and intellectual 

outcomes again seem related to brain injury rather than to developmental abnormalities “per 

se”. However the extreme reproducibility of the brain phenotype could represent an asset in 

the diagnosis when neuroangiographic studies are not available; for instance in patient 8 

standard MRI sequences showed typical bending of corpus callosum and radial frontal 

gyration that triggered the addition of an MRA sequences which confirmed the radiological 

diagnosis. 

  

These observations contribute to defining the distinctive neuroradiological features of ACTA2 

mutations, as well to shedding light on mechanisms, both genetic and mechanical, that result 

in structural changes to the brain and its vasculature. 

  

  

Conclusion 

We describe a characteristic and potentially pathognomonic (in specific clinical context) 

brain phenotype in patients with ACTA2 mutations and/or the typical clinical and 

neurovascular picture. A possible explanation for these brain imaging findings, that can be 

helpful in the diagnosis, is a mechanical effect on the brain parenchyma during development 

by abnormal rigid vessels with possible contribution of cross-regulation between different 

actin isoforms. 
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Figures and figure legend 

  

Figure 1: Supratentorial abnormalities in ACTA2 patients. Upper row: sagittal T2 weighted 

images (WI) (A), sagittal T1 WI (B) show typical hypoplasia and bending of the anterior 

corpus callosum with associated abnormal radial gyration of the frontal lobes and deficient 

anterior cingulate gyrus (white arrows). In patient 7 there is horizontal orientation of the 

fornix (black arrow in B), which is also markedly thick.  Middle row: axial T1 WI (C and D) 

demonstrates characteristic “V” shaped anterior corpus callosum (black circle). Lower row: 

magnetic resonance angiography maximum intensity projection antero-posterior view (E and 

F) shows typical neurovascular abnormalities in patients with ACTA2 mutation.  

  

  

Figure 2: Infratentorial malformations in ACTA 2 mutation. Upper row: axial T2 WI (A and 

B) at the level of the pons.  The “twin peaks” sign is demonstrated: pons is flattened with 

reduction of the antero-posterior diameter and impression of the basilar artery on the anterior 

surface with consequent presence of two symmetrical prominences resembling twin 

mountains. Middle raw, axial T2 WI at the level of the cerebral peduncles (C and D) show 

mild cranio-caudal elongation of the midbrain with reduction of the latero-lateral diameter 

and “squeezing” of the cerebral peduncles.  Right column: normal for comparison. 

  

Figure 3: In parasagittal slice the patients showed multiple indentation on the surface of the 

pons. We speculate that these may be due to the stretching of straightened pontine arterial 

branches. 

  

Figure 4: Neuroradiological findings in adult patient without confirmed ACTA2 mutation 

(patient 15). Sagittal T2 WI (A), axial T2 WI at the level of the pons (B) and of the midbrain 

(C) show marked callosal anterior bending (dotted arrow in A), “twin peaks” pontine sign 

(arrow in B) and reduction of the latero-lateral diameter of the midbrain with squeezed 

cerebral peduncle. D: sagittal T2 WI demonstrates marked basilar impression on the pons and 

anterior bending of the midbrain; parasagittal right slice (E) demonstrates indentation of the 

lateral surface of the pons (dotted black arrow) and straight course of the posterior cerebral 

arteries (white arrow). Axial T2 WI (F) at the level of the proximal segment of the  posterior 



cerebral arteries (ponto-mesencephalic junction) shows marked compression of the brainstem 

at that level related to straightening of the arteries (white arrows) and radial gyration of the 

posterior temporal lobes (black dotted arrows). 

                                          

Table1: Demographics, clinical presentation and neuroimaging findings 

  

  

Table legend: 

PDA: patent ductus arteriosus. PFO: persistent foramen ovale. TIA: transient ischemic 

attacks. PCA: posterior cerebellar arteries. Distinctive ACTA2 cerebrovascular features:  

dilatation proximal internal carotid arteries, occlusion of the distal internal carotid arteries, 

a straight course of arteries of the circle of Willis, absence of moya-moya collaterals.  *: 

genetic test not performed and clinical context non-pathognomonic for ACTA2 mutation. 

                              

                  

  

                                          

                              

                  

  

  

  

  

  

 

  

  

  

 
Age / 
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ethnicity Main Clinical Findings 

Typical ACTA 
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neurovascula
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abnormalities 

bending / 

hypoplasia 

anterior 

corpus 

callosum 

abnormal radial  gyration 

frontal lobes 

cortical 

malform

ations 

absence 

anterior 

cingulat

e gyrus 

"tw

in 

pe

ak

s 

po

ns

" 

"sque

ezed" 

midbr

ain 
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indent

ation 

of 

pontin

e 

surfac

e 

Large 

territori

al 

infarcti

on(s) 

water

shed 

infar

ction

s 

Pa

tie

nt 

1 

23 m/ 

female/ 

pakistani 

PDA, congenital mydriasis, pulmonary 

hypertension, right hemiparesis yes yes yes no yes no no no yes yes 
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Pa

tie

nt 

2 

4 y/ 

female/ 

white 

PDA, congenital mydriasis, bilateral hemiparesis, 

swallowing difficulties yes yes yes no yes yes yes yes no yes 

Pa

tie

nt 

3 

 9 y/ 

female/ 

white 

PDA, multiple TIAs, hypocontractile bladder, left 

hemiatrophy of toes and foot yes yes yes no yes yes yes yes yes yes 

Pa

tie

nt 

4 

 10 y/ 

male/ 

white 

PDA, congenital mydriasis, unilateral vocal cord 

paresis, cardiac arrest in newborn period yes yes yes no yes yes yes yes no yes 

Pa

tie

nt 

5 

10 y/ 

male/ 

white 

PDA, right femoral artery occlusion, dilatation 

aortic arch, pulmonary hypertension yes yes yes no yes yes no yes yes yes 

Pa

tie

nt 

6 

 4 y/ 

female/ 

arabic 

PFO, thrombophilia, dystonic left hemiparesis, 

possible seizures yes yes yes no yes yes yes yes no yes 

Pa

tie

nt 

7 

 3 

y/female/ 

white 

Aneurysmal PDA, congenital mydriasis, dilatation 

of ascending aorta yes yes yes no yes yes no yes no yes 

Pa

tie

nt 

8 

1 y/ 

female/ 

white 

PDA, congenital mydriasis, pulmonary 

hypertension, deceased for sepsis yes yes yes no yes yes yes yes no yes 

Pa

tie

nt 

9 

 1 y/ male/ 

arabic 

PDA, congenital mydriasis, bulbar palsy, 

pulmonary hypertension yes yes yes no yes yes yes yes no yes 

Pa

tie

nt 

10 

4 y/ 

female/ 

white 

congenital mydriasis, developmental and speech 

delay yes yes yes no yes yes yes yes yes yes 

Pa

tie

nt 

11 

 8 y/ 

female/ 

arabic 

PDA, congenital mydriasismidriasis, hands 

clumsiness, recurrent TIA yes yes yes no yes yes yes yes no yes 

Pa

tie

nt 

12 

11y/ 

female/ 

white 

PDA, Aortic dissection, congenital catharacts, 

cognitive decline yes yes yes no yes yes yes yes no yes 

Pa

tie

nt 

13 

 6y / male/ 

white PDA, congential mydriasis, left hemiparesis yes yes yes no yes yes yes yes yes yes 

Pa

tie

nt 

14 

3 

y/female/ 

white PDA, congential mydriasis, recurrent TIAs yes yes yes no yes yes yes yes no yes 

Pa

tie

nt 

15

* 

33y/ 

female/ 

black 

pseudobulbar palsy, left sided piramidal 

weakness , swallowing difficulties (symptoms 

started when she was 10 y) yes yes 

yes (also abnormal 

posterior temporal gyration 

in relation with streigthening 

of PCAs) no yes yes yes yes no 

yes 

(few 

foci) 
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