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Abstract 

Recent advances in the isolation of tissue-resident adult stem cells and the identification 

of inductive factors that efficiently direct differentiation of human pluripotent stem cells 

(hPSCs) along specific lineages have facilitated the development of high-fidelity 

modelling of several tissues in vitro. Many of the novel approaches used have employed 

self-organising three-dimensional (3D) culturing of organoids, which offer several 

advantages over conventional two-dimentional platforms. Organoid technologies hold 

great promises for modelling diseases and predicting the outcome of drug responses in 

vitro. Here, we outline the historical background and some of the recent advances in the 

field of 3D organoids. We also highlight some of the current limitations of these systems 

and discuss potential avenues to further benefit biological research using 3D modelling 

technologies.     
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Introduction 

The isolation and maintenance of mammalian cells have significantly advanced scientific 

research into cellular processes and mechanisms of disease that include stem cell 

development and differentiation, the production of monoclonal antibodies, and 

therapeutic proteins and for modelling cancer in vitro (1). Although culturing tissues 

dates back to the late nineteenth century, present cell culture systems draw from 

studies on the action of serum on fibroblast cells (2) and the development of novel 

synthetic cell culture media (3, 4). A classic example of this was the isolation and 

expansion of HeLa cells from a cervical tumour on a two-dimensional (2D) monolayer 

culture (5).  

Since then, culturing cells in 2D has remained the predominant methodology of in vitro 

cell growth and expansion. However, the 2D platforms do not effectively recapitulate 

the spatial requirements that are essential for the organisation and cellular interactions, 

which occur in vivo. In addition, it is suspected that limited cell-cell contact and altered 

in vitro cell signalling networks can result in major discrepancies between the data 

acquired from 2D in vitro versus in vivo research.  

Historical background 

To overcome 2D platform limitations, efforts have led to development of novel 

approaches to recreate a more physiologically relevant environment in the form of 3D 

cell culture (1). To successfully construct and maintain a 3D structure, much research 

has been devoted to the development of synthetic or natural polymeric 3D scaffolds to 

facilitate cell growth. These efforts have resulted in the fabrication and characterisation 

of several non-degradable or biodegradable synthetic polymers such as poly-lactic acid, 

poly-glycolic acid, poly-lactic-co-glycolic acid and poly caprolactone (6). Initially, a “top-

down” approach was adopted where cells were seeded on a prefabricated scaffold, 

however, difficulties in recreating the intricate microstructural characteristics of tissues 

have remained the major limitation of this approach (7). Later, “bottom-up” assembly of 

small cellularised blocks and layer-by-layer assembly (also known as 3D printing) have 

been developed (8). In this review, we focus on scaffold-free methods to culture cells in 

3D and the generation of organoids by embedding cells in semi-solidified extracellular 
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matrices (ECM) in contrast to the use of polymeric scaffolds and 3D printing, which have 

been reviewed extensively elsewhere (6, 9, 10). 

Techniques to generate scaffold-free 3D cellular aggregates  

In general, scaffold-free approaches rely on cell-cell interaction and can be categorised 

into passive or active methodologies. The passive methodologies solely rely on cell 

adhesion properties, in which cells require time to form solid aggregates (11). Various 

passive methods have been developed to generate scaffold-free 3D aggregates robustly 

and consistently (Fig. 1).  

Hanging-drop is the first technique to generate 3D structures by culturing suspended 

droplets of desired cell line(s) to force aggregation (Fig. 1a). In fact, Robert Koch et al. 

invented the hanging-drop methodology in the 1880s to grow anthrax bacilli in a 

suspended drop of fluid taken from oxen eyes in a special concave microscope slide 

(12). Later, this method was adopted by Harrison and co-workers to monitor nerve 

outgrowth (13). Harrison’s pioneering work led to the development of various 

techniques for short-term culture of dissected tissues during the early 20th century. 

Although 3D spheroids can be generated efficiently using this technique, the lack of 

scalability promoted the development of high-throughput culture methods that use 

384-hanging drop arrays, which are amenable to automation (14, 15).  

Later, the liquid overlay method was developed to generate 3D microtissues on non-

adherent surfaces. Using this method, random interactions of cells resulted in the 

formation of large numbers of spheroids, which were usually heterogeneous in size (16, 

17). As the nutrients and oxygen exchange is based on passive diffusion in static culture, 

formation of necrotic centres in large spheroids is a major drawback of this 

methodology (18). To improve consistency and control, the size of formed microtissues, 

micromoulds (Fig. 1b) and patterned microplates have more recently been used (19). 

More advanced methodologies have also been developed for large scale production of 

3D microtissues, which include, spinner flasks, rotating wall vessel bioreactors, and 

microfluidic systems (Fig. 1c).  
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a. Hanging drop  
 

 
 

b. Microplate mould 

 
 

c. Stirred flask culture 

 
 

Figure 1: Methods for generation of 3D microtissues. (a) Hanging drop is the first method of 

generating and maintaining 3D structures in culture. (b) 3D micromoulds have been 

introduced to the field to overcome both culture media restriction of the hanging drop 

method and size heterogeneity of spheroids formed in liquid overlay methodology. (c) The use 

of spinner flask is one of the more advanced methodologies, which is developed for large-

scale production and maintenance of 3D microtissues.      

As it is difficult to robustly generate 3D microtissues from more than one cell type, 

several active techniques have been developed to overcome this problem. Active 

methodologies use additional physical stimuli such as ultrasound traps, electric fields, 

magnetic forces, or the strong affinity between avidin and biotin to generate 

multicellular heterospheroids (20-23). 

3D organoid formation 

Derivation of reconstituted collagen from rat tail (24), discovery of fibronectin (25, 26), 

isolation of a matrix from chondrosarcoma murine cells (27) and characterisation of 
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laminin (28) have set the building blocks for subsequent progress in the field of 3D cell 

culture. In 1989, Barcellos-Hoff and colleagues reported the functional differentiation 

and alveolar morphogenesis of primary mammary cultures on a reconstituted basement 

membrane matrix derived from Engelbreth-Holm-Swarm murine tumour, today known 

as MatrigelTM (29). However, it took nearly two decades to widely utilise the self-

organising capacity of cells cultured in this laminin-rich ECM to form 3D organ-like 

structures known as organoids (30). The generation of organoids has made significant 

impact and led to the establishment of organoid culture from various tissues (Fig. 2), 

which will be discussed in more details here. 

 

Figure 2: Schematic representation of some of the organoids generated from PSCs. Embryonic 

stem cells (ESCs) are generated following expansion of cells isolated from the inner cell mass 

of an embryo at the blastocyst stage while iPSCs can be generated from somatic cells 

following reprogramming by key master regulators known as Yamanaka factors. Organoids of 

various tissues have been generated following treatment of MatrigelTM-embedded PSCs by 

cocktails of various growth factors. They can also be generated following isolation and culture 

of specific populations of progenitor cells, which maintain homeostasis of tissues during 

adulthood such as cells expressing Leucine-rich repeat-containing G-protein coupled receprot 

5 (LGR5). 

An insight into 3D organoid cultures 

The production of 3D organoid-based culture systems from multiple organs has received 

considerable attention over the last ten years (31). The term ‘’organoid’’ is defined as 
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self-organising 3D structures that are cultured in vitro while embedded in an ECM. 

These 3D structures closely resemble their organ of origin (32). Organoids can be 

derived from various cell sources such as primary tissue, cell lines, adult stem cells 

(ACS), and pluripotent stem cells (PSCs) (33). Organoids from human PSCs (hPSCs) are 

great tools to enhance our knowledge of human embryonic development while ASC-

derived organoids can closely mimic the in vivo stem cell niche and can be considered as 

useful tools to enhance our understanding of the underlying mechanisms involved in 

tissue regeneration following injury. 

Organoids derived from the intestine and colon  

The epithelium of intestine is derived from the definitive endoderm (DE) during 

embryonic development (34). In a pioneering work, Ootani et al. developed an air-liquid 

interface model by culturing fragments of intestine, which contained mesenchymal and 

epithelial cells from neonatal mice. In this model, cyst-like structures were formed in a 

medium supplemented with foetal bovine serum (FBS). Interestingly, these cyst-like 

structures were composed of all major cell types of the adult mouse intestine and could 

be maintained for over one year in culture (35).  

Later on, Hans Clevers’ research group proposed an alternative technique that aided the 

formation of epithelial organoids (mini-guts) from single Lgr5+ stem cells. The LGR5 

protein is produced by small population of stem cells residing in a variety of adult 

organs including intestine, stomach, kidney, and skin (36). By using a specialised cell 

culture medium and the support of MatrigelTM as an ECM, the stem cell niche of the 

crypt was mimicked and enabled long-term survival of LGR5+ cells (37). These 

“organoids” were composed of a central lumen surrounded by outgrowths or “buds”, 

which resemble the intestinal crypts and make them distinctive from the cystic 

structures previously described by Ootani and co-workers (37). In this model, self-

renewal of the stem cell population relied on LGR5+ stem cells, which terminally 

differentiated into enterocytes, and enteroendocrine or goblet cells. This 

methodological advancement played a key role in mimicking near-physiological 

conditions of in vivo mouse models whilst having an easy-to-maintain in vitro culture 

system (37). Due to the low level of Lgr5 expression, other research groups have 

investigated other stem cells markers such as CD24 (38), EphB2 (39) and CD166+/GRP78 
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(40) to generate intestinal organoids. In addition, a step-wise protocol was developed to 

generate intestinal organoids from hPSCs using Activin A to induce initial transition into 

DE. Then WNT3A and BMP4 were used to promote hindgut and intestinal specification 

(41). 

Liver organoids  

During embryonic development and early hepatogenesis, progenitor cells migrate from 

the foregut endoderm to form a very dense and vascularised ‘liver buds’. The key cross-

signalling pathways between mesenchymal, endodermal epithelial and endothelial 

progenitors have been studied extensively using these to better understand human liver 

development. In an attempt to recapitulate liver development, 3D aggregates were 

formed by culturing human PSC-derived hepatocytes with mesenchymal stem cells and 

endothelial cells on a MatrigelTM-coated plate.  It was reported that these liver 

aggregates contained blood vessels and following transplantation into mice become 

connected to the host vessels within 48 hours. The functional activity of the liver as 

determined by protein production and drug metabolism activity was significantly 

increased over time. Further, the recipient mice were recovered from drug-induced liver 

failure following liver bud transplantation (42). 

Hepatocytes and bile duct cells are the two major cell types of the liver, which have 

extremely slow turn-over in comparison with the small intestine and colon. In the 

healthy adult mouse liver, Lgr5 is not expressed at high levels. However, upon tissue 

damage or injury, small Lgr5+ cells located near bile ducts with high level Wnt signalling. 

It has been reported that following tissue injury, hepatocytes and bile duct cells are 

generated in vivo. With slight alteration, the single Lgr5+ cells could be clonally 

expanded as organoids by inhibiting notch signalling pathway and differentiation into 

functional hepatocytes (43). In a similar study, culture conditions were optimised for the 

long-term expansion of human liver progenitor cells. Similarly, long-term expanded liver 

organoids remained genetically stable and were transplanted into recipient mice to 

provide liver support (44).  

Pancreatic organoids 

The adult pancreas is composed of several different cell types such as exocrine/acinar 

and endocrine cells with a very slow turn-over. Similar to the liver, under normal 
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physiological conditions, WNT signalling pathway is not active and the Lgr5 gene is not 

highly expressed in the pancreas. Upon tissue injury, the WNT signalling is activated 

while pancreatic ducts regenerate through proliferation of Lgr5+ cells. In a similar setting 

to the mini-gut culture condition, clonal pancreas organoids were differentiated and 

successfully transplanted in vivo (45). In an elegant study, Boj and colleagues 

established organoid models from both normal and neoplastic murine and human 

pancreatic tissues. Interestingly, these organoids exhibited ductal- and disease stage-

specific characteristics and recapitulated tumour progression following in vivo 

transplantation (46).  

Lung organoids   

The lung is derived from Nkx2-1+ progenitor cells, which are generated in the ventral 

foregut endoderm region during embryonic development. In a pioneering work, a 

cytokeratins 5 (Krt5)-CreERT2 transgenic mouse model was used to trace and 

characterise basal cells which act as progenitors to generate differentiated cells during 

postnatal growth and repair. Following identification of ITGA6 and NGFR as two specific 

cell surface markers, an organoid culture was established to generate both mouse and 

human luminal cells including differentiated ciliated cells (47). The generation of lung 

organoids from PSCs have also been investigated. In an early attempt, induction of PSCs 

toward the endodermal fate was achieved following Activin A induction and TFG-/BMP 

inhibition and subsequent combinatorial induction of BMP and FGF signalling to 

generate lung progenitors, which can recapitulate the early embryonic development of 

the lung (48). More recently, an efficient protocol was developed to generate most cell 

types of the respiratory system including basal, goblet, Clara, ciliated, type I and type II 

alveolar epithelial cells capable of performing specific functions such as surfactant 

protein-B uptake and stimulated surfactant release (49).  

Stomach Organoids 

During embryogenesis, the stomach derives from the posterior foregut. Stomach 

organoids have been generated from both ASCs and PSCs. D’amour and colleagues 

proposed a method for the efficient derivation of DE from hESCs. It was reported that in 

the presence of Activin A and low serum, up to 80% of the cells were differentiated into 

DE cells. It was also suggested that the process of differentiation into DE requires 
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epithelial-to-mesenchymal transition (EMT) (50). Later, it was shown that DE can be 

derived from PSCs with only Activin A following temporal manipulation of retinoic acid, 

FGF, WNT, BMP, and EGF signalling pathways to generate 3D human gastric organoids 

(51). In addition, gastric organoids can be generated from single Lgr5+ cells that reside at 

the base of pyloric glands of the adult mouse stomach. Importantly, generated 

organoids closely recapitulate mature pyloric epithelium and can be expanded and 

maintained for an extended period in culture (52). Moreover, at the base of the gastric 

corpus there are specialised chief cells called Troy cells. Upon exposure to damage, 

these cells undergo dedifferentiation to become multipotent epithelial stem cells in 

vivo. Using this knowledge, gastric organoids were generated by culturing Troy+ chief 

cells, which contains various cell types of corpus glands (53).  

Brain organoids 

During embryonic development, neural ectoderm forms the central nervous system 

(CNS), initially through formation of the neural plate, which subsequently forms the 

neural tube via folding and fusion. Similar to other organs, morphogenic gradients in the 

tube establish a dorsal-ventral and a rostral-caudal axis. Neurons are the major cell 

types of the CNS and they are generated from neural stem cells (NSC), which located 

near the ventricles (54, 55).  

In ESC culture, spontaneous neural differentiation can be achieved following inhibition 

of signalling pathways such as BMP, Nodal, and WNTs. This process is very similar to the 

neural-default mechanism of ESCs. Based on this knowledge, Sasai and colleagues 

developed SFEBq: serum-free floating culture of embryoid body (EB)-like aggregates 

with quick re-aggregation (56). In this culture setting, ESCs were isolated from the 

growth-factor free 2D cultures. The cells were then re-aggregated in 96-well non-

adhesive culture plates. The cells were maintained in serum-free medium containing no 

or a very low levels of growth factors for 7 days, after which they were transferred into 

adhesion plates. Following formation of the lumen, ESCs polarise and differentiate to 

generate polarised a neuroectoderm-like epithelium. It was further concluded that 

under certain conditions, the embryonic spatial and temporal events can be 

recapitulated in vitro, which can in turn lead to the generation of neural structures in 

the brain (56).  
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In another study, cerebral organoids were generated and called “mini-brains” as several 

regions of the brain were represented in each organoid. Very similar to the previous 

study, the floating EBs were cultured in absence of growth factors to derive specific 

brain region identity. Further, aggregates were embedded in a laminin-rich ECM. With 

this technique, large neuroepithelial buds were formed representing different brain 

regions. Interestingly, it was reported that brain regions such as retina, ventral 

forebrain, midbrain-hind-brain boundary, and dorsal cortex were observed in these 

cultures (55).  

Retinal organoids 

Embryonic development of the retina occurs through lateral evagination of the 

diencephalon, which in turn forms pseudostratified neuro-epithelial known as optic 

vesicles (OVs). Later, sensory neural retina (NR) is derived from the distal portion of the 

OVs, while the proximal portion gives rise to retinal pigment epithelium (RPE). Following 

invagination of OVs at their distal portion, a bi-layered optic cup (OC) is formed with the 

RPE and NR as its outer and inner walls, respectively. The NR progenitor cells give rise to 

photoreceptors (rods and cones), ganglion cells, and all supportive cell types (57). 

Pioneering work in chick embryos that demonstrated the retinal capacity to form 

different cell types in the distinct laminated structure of retina paved the way for 

development of PSC-derived retinal organoids (58). 

Following an initial studies that demonstrated the successful formation of retinal 

epithelium from 3D floating mESC-derived EB-like aggregates in a low-serum medium 

(59), retinal organoids were generated from self-organising hESCs forming a multi-

layered tissue containing both rod and cone photoreceptors. Remarkably, retinal 

organoids formed from hESCs were much larger in size than organoids derived from 

mESCs, potentially reflecting the species-specific differences (60).  

Other organs 

More recently, organoids from other organs such as the prostate (61), fallopian tube 

(62), mammary gland (63, 64), taste buds (65), salivary glands (66, 67), and oesophagus 

(68) have all been developed. 
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The basal and luminal cells are two major cell types that form the pseudostratified 

epithelium of the prostate. In 2014, a mini-gut-based culture method was developed to 

support the long-term expansion of primary mouse and human prostate organoids. The 

structure of these 3D organoids consisted of mature and differentiated basal and 

luminal cells. It was also reported that luminal cell-derived organoids closely resembled 

prostate glands. Luminal cell induction depends on WNT or R-spondin activation to 

some extent and subsequently this will form prostate-like pseudostratified organoid 

structures (61). Furthermore, an alternative culture system was established to derive 

prostate organoids using MatrigelTM, EGF, and androgen supplementation 

independently (69).  

The fallopian tube is an anatomically simple organ, which is composed of columnar 

epithelium. Secretory cells produce tubular fluid and ciliated cells support the transfer 

of gametes within the tube. Self-renewal capacity of the epithelium is of utmost 

importance due to the monthly cyclical hormonal fluctuations. In 2015, long-term 3D 

organoid culture of the human fallopian tube was established following adaptation of 

mini-gut culture protocols. The resulting clonal organoids were composed of ciliated 

and secretory cells, which provide the opportunity to study human fallopian tube 

epithelium in more details (62).  

Applications of 3D Organoids  

Organoids can be exploited for various applications such as disease modelling, drug 

toxicity testing, organoid biobanking, personalised therapy, and host-pathogen 

interaction studies. In addition, organoids are a useful tool to perform omics analysis 

(transcriptomics, proteomics, epigenomics and metabolomics) of healthy and diseased 

tissues to gain a better understanding of mechanisms underlying pathological 

conditions (70). Some of these applications are discusses below in further detail. 

Disease modelling  

Although several animal models have been generated to recapitulate clinical 

characteristics of human monogenic disorders following introduction of single-gene 

mutations, introduction of such a mutation does not guarantee the recapitulation of the 

clinical features of these disorders in recipient animals. However, organoids generated 

from patient-specific iPSC lines can recapitulate the clinical features of various 
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monogenic disorders and can be used as in vitro models to further study these 

disorders. 

A clear example is an early attempt to generate an in vitro model of cystic fibrosis (CF) 

using patient-derived tissue fragments (71). CF is an autosomal recessive genetic 

disorder caused by a mutation in the cystic fibrosis transmembrane conductance 

regulator (CFTR) gene affecting multiple organs including the lung, intestine, liver, 

pancreas, and reproductive tract (72). Dekkers et al. initially developed an organoid-

based assay, whereby forskolin promoted a rapid swelling of wild type-derived 

organoids from mouse and human intestinal samples through activation of c-AMP. They 

further concluded that the drug-induced swelling was significantly reduced in mice 

carrying the F508del mutation in the CFTR disease model. With the development of this 

advanced methodology, it was suggested that this is a promising tool to study gene 

therapy models to correct CFTR mutations (71). In a follow up study, the same assay 

was used to assess the potential of CRISPR/CAS9 technology to correct the CFTR 

F508del allele. Interestingly, organoids with the correct set of alleles regained the ability 

to swell upon exposure to forskolin. These studies concurrently demonstrated a proof-

of-concept for gene replacement therapy for future clinical translation (73). More 

recently, in vitro organoid models of other monogenic disorders such as Alagille 

syndrome (74), and Retinitis Pigmentosa (75) have been generated, which is reviewed 

more extensively elsewhere (76). 

Cell-based therapies 

Despite advanced in therapeutic regimens, there are various inherited, degenerative 

and, chronic disorders that have remained incurable through conventional approaches. 

Stem cell-based therapies have the potential to alleviate symptoms or possibly cure 

these conditions by replacing damaged or lost cells. The ability to generate organ-like 

structures, which contain representative cell populations of the desired organs has 

made organoid culture a powerful tool to obtain various progenitor cells for cell-based 

therapies.    

In an early attempt, Yui and co-workers prepared a large batch of organoids, which 

originally derived from single Lgr5+ colon stem cells to study long-term genetic stability 

of the organoids. These organoids were transplanted per annum into multiple mice 
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suffering from experimental colitis. They further confirmed that organoids were readily 

integrated and acted as functional epithelial patches, which could not be easily 

distinguished from the host epithelium (77). In another elegant study, improvement of 

vision impairment was successfully demonstrated following transplantation of 

functional rod photoreceptors in adult Gnat1-/- mice, which lack rod function as a model 

of congenital stationary night blindness (78). Therefore, generation of transplantation-

competent photoreceptor precursors from hPSCs have been investigated to treat 

blindness (79-82).  

In addition, multi-lineage approaches have been developed to generate composite 

organoids for the liver, lung, intestine, heart, kidney, and brain (42, 83). Despite 

promising outcomes in the preliminary studies, clinical translation of hPSC-derived 

organoids faces several major challenges including reliance of current protocols on 

undefined and animal-derived ingredients that need to be resolved to facilitate their 

clinical applications.  

Drug screening, organ-on-chips, and personalised medicine

High attrition rate is the biggest challenge facing the pharmaceutical industry. Lack of 

suitable preclinical models to accurately predict efficacy and toxicity of novel lead 

compounds has been considered as one of the major contributors. To improve 

productivity and predictability, 2D cell-based screenings have been used as a convenient 

means to evaluate novel therapeutic candidates. However, the emerging evidences has 

revealed poor predictability of 2D screening platforms for certain diseases such as 

cancers (84). In addition, predictability of preclinical animal models has been a matter of 

debate due to considerable interspecies differences in disease phenotypes and 

reactions to drugs (85-87). Lack of predictability and growing ethical concerns regarding 

the use of laboratory animals have encouraged exploration of new avenues to develop 

novel screening platforms to mitigate the high attrition rate. 

To overcome these issues, various mono- and co-culture 3D systems have been 

developed for oncology research and drug screening. Nutrients, oxygen, metabolites, 

and soluble factors induce the formation of a heterogeneous population of cells within 

3D microtissues to mimic tumour microenvironments more closely than monolayer 

cultures (88).  
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Despite various practical challenges, 3D drug screening platforms have grown in 

popularity and both tumour and healthy organoids of various tissues have been 

generated from patients’ biopsies and ASCs or PSCs. In a pioneering work, Wong et al. 

demonstrated the usefulness of in vitro organoid models for the screening of lead 

compounds following treatment of patient-derived organoids with a novel small 

molecule to correct for a common CF-processing mutation that resulted in enhanced 

membrane localisation of mature CFTR protein (89).  

Considering heterogeneity of tumour pathophysiology, patient-derived organoids have 

proven to be a useful tool for cancer drug discovery. The heterogeneous response of 

neoplastic tumours to anti-cancer treatment was demonstrated following screening of 

83 authorised and experimental anti-cancer agents on tumour organoids derived from 

resected colorectal tissues obtained from 20 patients (90). Similarly, organoids from 

three major subtypes of liver cancers were propagated and used for drug screening. 

Interestingly, liver cancer-derived organoids preserved gene expression, genomic 

landscape, and metastatic properties of the original tumours even after long-term in 

vitro expansion. In addition, SCH772984 (an extracellular signal-regulated kinase (ERK) 

inhibitor) was identified as a potential therapeutic compound for primary liver cancer 

(91).  

Above mentioned studies reiterate the importance of patient-specific organoids to 

identify an appropriate anti-tumour regimen for the efficient treatment of neoplastic 

disorders. To this end, organoid biobanks have been established from patient tumours 

as a valuable tool for drug screening and personalised medicine (90, 92, 93).  

3D organoids have also been used in conjunction with microfluidic devices, known as 

organ-on-chips, as a powerful tool for drug screening. Although organ-on-chips are 

designed to represent functional complexity of a particular organ such as the intestine 

(94) and liver (95), recent efforts have been focused on the development of more 

sophisticated platforms by interconnecting  several organ-on-chips (96). Development 

of such platforms can substitute mandatory preclinical studies in animal models to 

increase the success rate and improve productivity of drug screening while addressing 

growing ethical concerns regarding the use of animal models for drug screening.      
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Modelling infectious diseases to mimic complex interaction between the host and 

pathogens  

The Zika Virus (ZIKV) is a flavivirus, which was isolated from a rhesus monkey in the Zika 

region of Uganda in 1947 and can be transmitted by Aedes species mosquitoes (97). 

Following entry to the human body, ZIKV binds to innate immune Toll-like receptor 3 

(TRL3), which leads to the activation of genes causing disregulation of neurogenesis, 

which is a common side effect seen following ZIKV infection. Using hESC-derived 

cerebral organoids, it was demonstrated that TLR3 inhibition reduced the phenotypic 

effects of ZIKV infection (97).  Other studies also suggested that the mechanism of 

action of this lethal virus is concerned with TRL3-mediated apoptosis, hence cell death 

of neural stem cells (NSC) and impaired development in humans (98, 99). These 

experiments also demonstrated that microcephaly (i.e; a low level of NSC proliferation 

and more cell death) can be observed as a side effect of ZIKV infection in organoids (98, 

100). Based on this knowledge, another research group employed a unique miniaturised 

spinning bioreactor system to grow forebrain-specific organoids derived from hiPSCs to 

be used as a major platform for high-throughput drug screening (101).  

Techniques for the introduction of microorganisms into organoids  

Organoids are dense 3D structures, which are composed of apical and basal membranes 

as two main compartments. The apical side of the epithelium is toward the lumen 

(inside) of the organoids and the basal membrane appears on the outside. 

Microorganisms tend to target the apical membrane in vivo. Therefore, recapitulating 

the exact interactions between the host and the microbes are crucial. Hence, three 

independent strategies have been developed to reproduce host versus pathogen 

interactions (70). 

I. Infection of dissociated spheroids before forming 3D organoids 

In this technique, organoids are forced to undergo mechanical shear stress or enzymatic 

digestion to become single-cell suspension to expose the apical side. Following infection 

of dissociated cells, the infected cells will be seeded in a 3D matrix to form 3D organoids 

within a few days. This method was employed to study gene expression manipulations 

using a specific lentiviral system (102) and can be used to model different infectious 

disease models (97, 103, 104).  
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II. Microinjection of viruses or bacteria into the lumen side of organoids 

This technique was previously developed to inject ESCs into mice to study genetics. 

With slight modifications, microorganisms can be injected directly into the organoid’s 

lumen (105, 106). As the organoids remain intact and no dissociation occurs, the 

necessary interaction between the host and pathogens can be easily detected and 

monitored. Although this method seems promising, there are some limitations including 

the availability of a microinjector device and precise quantification of delivered 

pathogens can be difficult due to the size variation of organoids in culture (70).  

III. 2D culture derived organoids and interaction with microorganisms 

3D organoids can be dissociated and seeded onto an ECM such as MatrigelTM or 

collagen-coated plates. The cells will expand in 2D and the apical surface will be 

exposed on the surface, therefore, when microorganisms are added to the dish, the 

host-microbe interaction proceeds. With this technique, microbes can be quantified, 

however; it does not resemble the in vivo 3D setting (107).  

Future Directions 

The ability to generate organ-specific organoids using hPSCs or tissue-specific 

progenitor cells alongside the development of cancer organoids has made organoid 

technology a powerful tool to study various biological aspects including organ 

development, tissue morphogenesis, modelling diseases in vitro, and testing the efficacy 

and toxicity of therapeutic compounds (41, 43, 44, 51, 55, 71, 91, 108-112). The 

advancement in microfabrication and microfluidic technology can set the stage for the 

development of new devices to enable high-throughput screening and biosensing, 

which subsequently would expand organoid application as a tool for drug toxicity 

screening of novel compounds (113).  

To achieve the full potential of 3D organoids, it is important to overcome limitations 

associated with current methodologies, particularly phenotypic immaturity of derived 

cells. For instance, suboptimal expression of hepocyte-specific CYP450 enzymes and low 

levels of albumin secretion were reported in liver organoids compared to primary 

hepatocytes, which restricts their downstream industrial and clinical applications (114). 

In addition, MatrigelTM, as an undefined animal product, has been an indispensable 

element of 3D organoid methodologies that would undermine their therapeutic value. 
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Therefore, it is important to develop new methodologies to establish GMP-ready 

protocols for the generation of 3D microtissues by using xeno-free and well-defined 

matrices to facilitate their potential clinical applications.  
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