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Abstract: 

 Periodontitis is one of the most common inflammatory human diseases with a strong genetic component. Due to the 

limited sample size of available periodontitis cohorts and the underlying trait heterogeneity, genome-wide 

association studies (GWAS) of chronic periodontitis (CP) have largely been unsuccessful in identifying common 

susceptibility factors. A combination of quantitative trait loci (QTL) mapping in mice with association studies in 

humans has the potential to discover novel risk loci. To this end, we assessed alveolar bone loss in response to 

experimental periodontal infection in 25 lines (286 mice) from the Collaborative Cross (CC) mouse population using 

micro-computerized tomography (µCT) analysis. The orthologous human chromosomal regions of the significant 

QTL were analyzed for association using imputed genotype data (OmniExpress BeadChip arrays) derived from case-

control samples of aggressive periodontitis (AgP; 896 cases, 7,104 controls) and chronic periodontitis (CP; 2,746 

cases, 1,864 controls) of Northwest-European and European-American descent, respectively. In the mouse genome, 

QTL-mapping revealed two significant loci (minus log P-value=5.3; FDR=0.06) on chromosomes 1 (Perl3) and 14 
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(Perl4). The mapping resolution ranged from ~1.5 Mb to 3 Mb. Perl3 overlaps with a previously-reported QTL 

associated with residual bone volume in F2 cross and includes the murine gene Ccdc121. Its human orthologue was 

previously reported to be associated with CP in humans. Use of variation data from the genomes of the CC founder 

strains further refined the QTLs and suggested seven candidate genes (CAPN8, DUSP23, PCDH17, SNORA17, 

PCDH9, LECT1, and LECT2). We found no evidence of association of these candidates with the human orthologues. 

In conclusion, the CC populations enabled mapping of confined QTL that confer susceptibility to alveolar bone loss 

in mice and larger human phenotype-genotype samples and additional expression data from gingival tissues are likely 

required to identify true positive signals. 

 

 

 

 

Background:  

Periodontitis is a common multifactorial oral disease caused by a dysbiotic oral microbiota and a deregulated host 

inflammatory response(Hajishengallis, 2014). Apart from external factors, there is clear evidence for the contribution 

of genetic variation to the susceptibility of periodontitis(Corey et al. 1993). Most suggested susceptibility genes of 

periodontitis were not met the significance threshold of association or have not been successfully 

replicated(Vaithilingam et al. 2014), but some genes are considered as true genetic susceptibility factors by giving 

evidence through independent identification, e.g. NPY(Divaris et al. 2013; Freitag-Wolf et al., 2014), 

CAMTA1/VAMP3 (Divaris et al. 2012; Bochenek et al. 2013), or repeated replication in independent case-control 

populations, e.g. ANRIL(Ernst et al. 2010) and GLT6D1(Schaefer et al. 2010; Hashim et al. 2015).  

Chromosomal regions responsible for the genetic variance of complex traits in mice can be mapped as quantitative 

trait loci (QTL) in experimental populations available for precise study under defined conditions(Iraqi, 2000), and 

subsequently orthologous genes can be extended successfully to humans. Recently, two QTL studies of periodontitis 

traits were reported using F2 population(Shusterman et al. 2013) and recombinant inbred lines (RIL)(Sima et al. 

2015) mapping approaches. While the F2 study reported three QTL (Perl1-on chr5, Perl2-on chr3 and Perl3-on chr1) 

associated with residual bone volume in response to oral bacterial infection(Shusterman et al. 2013), the RIL mapping 

approach suggested one QTL (iABLL-on chr2) associated with ligature-induced periodontitis phenotype(Sima et al. 

2015).  
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The CC is a novel RIL population, specifically designed for high-resolution mapping QTL(Churchill et al. 2004; 

Iraqi et al. 2008). It was created from a full reciprocal mating of five classical inbred strains (A/J, C57BL/6J, 

129S1/SvImJ, NOD/ShiLtJ, and NZO/HlLtJ) and three wild-derived strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ) 

to capture a much greater level of genetic diversity than existing mouse genetic reference populations (GRPs)(Anon 

2012). Recently, we showed that the CC lines respond differently to experimental periodontitis induced by mixed 

infection with Porphyromonas gingivalis (P.g) and Fusobacterium nucleatum (F.n)(A Shusterman et al. 2013).  

Here, we focused to identify genetic variants associated with periodontal disease in humans, by performing for the 

first time, an integrated analysis of mouse QTL mapping results using the CC population in conjunction with a 

genetic analysis of the human orthologous chromosomal regions using comprehensive genotype data of two sizeable 

AgP and CP case-control samples.  

Methods:   

Mouse production and housing:  

286 CC mice, at age 8-12 week old from 25 different CC lines (8- 12 mice on average per line) were provided by the 

Small Animal Facility, Faculty of Medicine, Tel-Aviv University, Israel. after approval by the Institutional Animal-

Care and Use Committee (approved-number: M-08-044). Mice were divided into two groups; infected (138 mice) 

and control (148 mice). Full details of the development of CC lines were reported previously(Iraqi et al. 2008).  

Bacterial cultivation:  

P.g strain 381 & F.n strain PK 1594 were  grown in peptone yeast extract containing Hemin and Vitamin-K (Wilkins 

Chalgren broth, Oxoid Ltd, UK), in an anaerobic chamber with 85% N2, 5% H2  and 10% CO2  followed by three 

washes in phosphate-buffered saline (PBS). Bacterial concentrations were measured spectrophotometrically 

standardized to OD650nm = 0.1 for P.g, corresponding to 1010 bacteria/ml, and OD660nm = 0.26 for F.n, corresponding 

to 109 bacteria/ml(Genco et al. 1991; Polak et al. 2009). 

Oral Mixed Infection Model:  

Initially, mice were treated with sulfamethoxazole (0.8 mg/ml) in drinking water for a continuous period of 10 days, 

followed by an antibiotic-free period of three days, before oral application of mixed culture of P.g and F.n (400ul of 

109 bacteria/ml per mouse) at days 0, 2 and 4 (control groups were treated with PBS and 2% carboxymethycellulose 

instead)(Polak et al. 2009). 42 days post infection, mice were sacrificed after complete anesthesia, using two 

anesthetic materials (Xylisine and Ketamine) and maxillary jaws were harvested for Micro-CT analysis.  
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Estimation of percentage of alveolar bone loss (PBL) phenotype:  

Compact fan-beam-type computerized tomography system (MicroCT40, Scanco Medical, Bassersdorf, Switzerland) 

was used for quantitative 3-dimensional analysis  as described previously(Wilensky et al. 2005). Because the µCT 

measurement is a destructive procedure, control bone volume (CBV) and residual bone volume due to infection 

(RBV) cannot be measured in the same mouse. Consequently, it was not possible to obtain estimates of bone loss 

due to infection for individual animals. However, since the CC mice are at an advanced inbred stages, genetic 

differences would not present among the mice in a given line, as discussed prviously( Shusterman et al. 2013). 

Therefore, the percentage of alveolar bone loss (PBL) for each infected mouse was calculated relatively to a control 

group from the same line.  

Statistical analysis and calculation of heritability: 

Data analysis performed using SPSS-software version 23. Analysis of variance (ANOVA) was performed to test the 

differences of response between and within CC lines. We used the ANOVA output of the phenotypic traits to 

calculate the heritability (H2)(Iraqi et al. 2014). 

Genotyping of mice:  

CC lines were genotyped with the mouse diversity array (MDA), which contains 620,000 SNP markers(Yang et al. 

2009) and their genome reconstruction was presented(Durrant et al. 2011). The CC lines were re-genotyped at 

advanced generations with the new 7500 custom-designed mouse universal genotype array (MUGA), which provided 

the genome architecture of the CC lines(Anon 2012).  

QTL Analysis and founder effect:  

QTL analysis was performed using R-software including HAPPY.HBREM R-package(Mott et al. 2000). The 

probability distribution of descent from the eight founders at each interval was calculated and used to test for 

association between founder haplotype at each locus and PBL phenotype. Permutations of the CC lines between the 

phenotypes were used to set genome-wide significance thresholds levels and false-discovery rate (FDR) was 

calculated.  

Merge analysis: 

We used Sanger mouse genomes database in merge analysis(Yalcin et al. 2005) to test which variants under QTL 

peak were compatible with pattern of action at the QTL. This takes advantage of the ancestry of the CC to infer the 

alleles of each CC line based on its genome mosaic (determined from its SNPs) and sequence variation data in the 
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founder strains. Where a QTL is caused by a single diallelic variant, we expect to have a high chance of testing a 

very tightly linked tagging SNP with the identical strain distribution pattern, have a higher -logP-value than the 8-

way haplotype test in the interval containing the variant, due to the reduction in the dimension of the test. 

Mouse QTL and human GWAS integration: 

Orthologous human genes were identified using the Ensembl database (www.ensembl.org). Candidate genes that 

were nominated by merge-analysis and genes within significant loci were selected for genetic analysis in human 

case-control samples. Additionally, to minimize the likelihood of false negatives, genes at suggestive QTL were 

analyzed. In addition, genome-wide loci from GWAS studies of different human periodontal disease forms were 

identified from the GWAS-Catalog(Welter et al. 2014) . 

Human study populations:  

AgP (Germany). The AgP patients were recruited throughout Germany, the Netherlands, and Austria. Only patients 

of German and Dutch ethnical background were included, determined by the location of both parental birthplaces 

and German and Dutch family names. Inclusion criteria for the AgP cases were at least two affected teeth with >30% 

alveolar bone loss under the age of 35 years, documented by dental radiographs, and no diabetes. The case sample 

consisted of 896 AgP patients. The study cases were described, previously(Schaefer et al. 2009; Offenbacher et al. 

2016).  

The AgP control sample consisted of 7,104 controls from Germany and The Netherlands. They were recruited from 

the Competence Network "FoCus - Food Chain Plus"(Müller et al. 2015), Dortmund Health Study (DHS)(Berger 

2012) and the Heinz Nixdorf Recall Studies 1-3 (HNR1-3)(Schmermund et al. 2002). The Dutch control sample 

consisted of 2,891 (1,453 males 1,438 females), being individuals from the B-Proof Study(Van Wijngaarden et al. 

2011).  

CP (USA). The American CP cohort was used as described in(Divaris et al. 2012)  and consisted of European 

American participants of the Dental Atherosclerosis Risk In Communities (ARIC) study with moderate CP (n = 

1,961 cases; 939 females, 1,022 males; mean age = 63 years) and severe CP (n = 785 cases; 279 females, 506 males; 

mean age = 64 years). Individuals who were periodontally-healthy or had mild periodontitis were used as controls 

(N = 1,864 controls; 1,197 females, 667 males; mean age = 62 years)(Hill et al. 1989). 

Genotyping and Statistical Tests 

All AgP cases and AgP controls were genotyped with OmniExpress arrays on an iScan System (Illumina, USA). 

SNPs were imputed using 1000G Phase 3 SNPs of Northern Europeans from the HapMap CEPH reference 

populations (Utah residents with ancestry from northern and western Europe) and the software Impute v2(Howie et 

al. 2009). After imputation, the control studies were merged using the genetic analysis software Gtools 
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(http://www.stats.ox.ac.uk/~marchini/software/gwas/gwas.html). Association tests were performed for the AgP 

case-control sample with SNPTEST v2.5.2(Marchini et al. 2007) assuming an additive genetic model with sex and 

a binary variable smoking status (never smoked = 1, ever smoked = 0) as covariates. Results of association analyses 

of the CP sample are publicly available for single makers (SNPs)(Divaris et al. 2013) and gene-centric 

associations(Rhodin et al. 2014).  

 

Linkage disequilibrium (LD) calculation: 

LD between SNPs was analyzed using the 1000GENOMES: phase_3 sub-population CEU (Utah Residents [centre 

d’etude du polymorphisme humain; CEPH] with Northern and Western Ancestry) as provided by The Ensembl 

Project (www.ensembl.org).  

  

Results:  

Measurement of susceptibility of different CC lines: Our results showed no significant sex effect on bone volume 

(two- way ANOVA P value>0.05); consequently, both sexes were pooled and treated as same population. The CC 

strains showed a significant variation in their response to infection (P<0.01). Six lines (IL-26, IL-182, IL-551, IL-

711, IL-785, IL-57), showed a significant decrease (P<0.05) in bone volume and considered to be susceptible lines 

while others were not (Figure 1A). While some lines showed substantial bone loss, other lines showed negative 

values of percentage of bone loss, indicative of bone formation processes (Figure 1B). One line (IL-519) showed 

significant increase of bone volume after infection. Heritability estimates of CBV, RBV and PBL were 0.42, 0.45 

and 0.33, respectively.  

QTL Analysis and founder effect: We identified two significant QTL (Table1) associated with percentage of bone 

loss on chr1 (180-181.5 Mb) and on chr14 (93.5-96.5 Mb) at a significance threshold of minus log P-value=5.3 (FDR 

= 0.061 in permutation test; Figure 2A), and designated as Periodontitis Resistant Locus 3 (Perl3) and Perl4, 

respectively. Of note, Perl3, which was mapped in the present study, overlaps with the previous suggested Perl3-

QTL in the F2 population (Chr1:178Mb-181Mb)(Shusterman et al. 2013). In total, 80 genes were underlying Perl3 

and Perl4 (with flanking region of ~0.5 Mb; listed in Table S1+S2). In addition, eight suggestive QTLs (defined as 

P-value<3×10-4; designated as Perl 3-10) were mapped on chr1, 14, 15 (two QTL), 14, 2, 7 and 17, respectively 

(Table1). In total, 1,309 mouse genes were underlying all QTL (Genes are listed in Tables S3-S10). At the two most 

significant QTL (Perl3 and Perl4), we estimated the effect of each founder haplotype on alveolar bone loss QTL 

(Figure 2B). Both loci on chr1 and chr14 were shown to be less affected by the genetic background of WSB/EiJ 

(wild-derived strain) rather than the rest of the parental strains. 

http://www.stats.ox.ac.uk/~marchini/software/gwas/gwas.html
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Association analysis of sequence variants:  

The merge analyses for QTL, Perl3 and Perl4, are shown in Figure 2C+2D. Table S11 lists the seven candidate 

genes (CAPN8, DUSP23, PCDH17, SNORA17, PCDH9, LECT1, LECT2) with the significant merge adjacent SNPs. 

Both genes, Protocadherin 17 (PCDH17) and Protocadherin 9 (PCDH9) were shown to have a high influence on 

Perl4. While the PCDH17 reached the highest significance in the merge analysis (minus logP-value=6.9), PCDH9 

was found to be the closest gene, with two SNPs with minus logP-value=5.3 and 5.6. Two genes, leukocyte cell 

derived chemotaxin 1 and 2 (LECT1 and LECT2) had a minus log P-value of ~5.4 and were nominated as suggestive 

candidate genes. However, the two genes on chr1, Calpain 8 (CAPN8) and dual specificity phosphatase 23 (DUSP23) 

had lower association P-values than in the haplotype mapping (-logP-value 5.04 and 4.91, respectively).  

 

Integration of mouse QTL analysis and human GWAS:  

None of seven candidate genes that selected from merge analysis (Table 2) showed significant single SNP-marker 

associations with human periodontitis in either AgP or CP. However,  three genes  showed gene-centric associations 

of periodontal sub-phenotypes; LECT1 (“orange complex”, p= 3.72×10-4), DUSP23 (P.g colonization, P=0.037) and  

PCDH17 (P.g colonization, P=0.049) (Rhodin et al. 2014).  

The human orthologous genes (31 human orthologous genes– Table S1+S2) of both significant QTL Perl3 and Perl4 

were analyzed for their association to periodontal disease in the AgP and CP GWAS data. We found that one 

orthologous gene; coiled-coil domain containing 121 genes (CCDC121), which was underling the significant QTL-

Perl3 (minus log p-value = 5.3 at FDR=0.06), is located 5 Kb upstream of a variant (rs111571364) that was reported 

as a suggestive risk variant of CP(Teumer et al. 2013) (P-value =8.0×10-6, OR=3.46). However, we could not 

replicate this association in our AgP and CP samples. In addition, fourteen genes, out of 31 human orthologous genes 

, have showed gene-centric associations (P<0.05) with periodontal sub-phenotypes; severe CP, ‘orange-complex’, 

‘red-complex’, A.a and P.g colonization(Rhodin et al. 2014) (Table S12). 

We analyzed the human corresponding genes for additional 1,229 mouse genes underlying suggestive QTLs (defined 

as P-value<3×10-4). We found that six genes (NRG3, ZNF579, FIZ1, ZNF524, PARK2, and PACRG) showed 

significant associations with either AgP or CP or both and we suggested them as candidate genes. While three genes 

[ZNF579  (rs149546760, P-value 5.1×10-6), FIZ1 (rs140900046: P-value 4.4×10-6), and ZNF524] showed an 

association with CP(Teumer et al. 2013), the other  three genes (NRG3, PARK2 and PACRG) showed an association 

with both AgP and CP (either moderate or severe) in our data. Regional association plots of these genes are shown 

in Figure 3. In total, seven candidate genes were nominated and are summarized in Table 2, based on the integration 

of mouse QTL and human GWAS.  
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Discussion:  

Previous studies showed the effects of genetic factors on the pathobiology of periodontitis. Because of study 

limitations of investigations of complex traits in humans, genetic components underlying susceptibility to 

periodontitis remain largely unknown. In the present study, we performed a combined analysis of high resolution 

mapping QTL in CC mice and analysis of the orthologous human chromosomal regions using imputed genotype sets 

of human periodontitis. Our analyses suggest a set of genes to be associated with periodontitis through the combined 

QTL-GWAS analysis.  

Recently, QTL analysis associated with residual bone volume after periodontal infection was reported using F2-

population approach(Shusterman et al. 2013) and have successfully mapped two significant QTL with genomic 

interval of 33Mb on Chr5 and Chr3, and designated Perl1 and Perl2,respectively, and one suggestive QTL on 

chromosome 1 with genomic interval of ~3 Mb (Perl3). In addition, a suggested genomic region on Chr2 (iBALL-

QTL Chr2:20-76.8Mb) was, recently reported as associated with ligature-mediated periodontal inflammation(Sima 

et al. 2015). By using the genetically diverse high CC model, we mapped two significant QTL with ~ 1.5-3 Mb 

resolution (80 mouse genes/31 orthologous human genes), validating previous reports upon the power of the CC 

mouse model for high resolution QTL mapping(Durrant et al. 2011). While the previous reported QTL Perl1, Perl2 

and iABLL were not replicated in our study, interestingly, our significant Perl3 (Chr1) was found to overlap with the 

previous reported QTL, Perl3, which mapped in the F2 approach, showing a stronger, and more precise association. 

We believe that the discrepancies between the previously reported F2-QTL (Perl1 and Perl2) and our study are 

caused by the different genetic diversity of the CC founders compared to the F2 founders and the phenotype 

definition; while the monitored phenotype in the current study was defined as the percentage of bone loss after 

periodontal infection compared to a control group using the µ-CT technique, the F2 study was associated with 

residual bone volume after periodontal infection quantified by µ-CT. We also speculate that iBALL-QTL was not 

replicated in our study due to the different phenotype definition, disease induction, phenotype quantification 

techniques and genetic characteristics of the CC-lines compared to the classical RIL. 

Merge analysis revealed six SNPs at Perl4 interval showed higher P values than the haplotype mapping data, thus 

these polymorphisms could be considered as candidate causal variants, responsible for the QTL rise. On the other 

hand, two SNPs on Perl3 showed lower values than the haplotype mapping; one possibility other than a false positive 

observation is that Perl3 is raised by a combination of linked variants effect. While three genes, out of seven, showed 

gene-centric association with periodontal sub-phenotypes, none of human orthologous regions showed significant 
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single SNP marker association with either CP or AgP. This could be due to differences in the frequency of these 

variants between CC mice compared to human and/or different regulatory elements affect periodontitis susceptibility.  

Out of 31 orthologous genes underlying the significant QTLs, Perl3 and Perl4, one genetic locus at Perl3 

(CCDC121-GPN1) was reported to be associated with chronic periodontitis (rs111571364, MAF EUR = 

0.02%)(Teumer et al. 2013). However, this association did not replicate in our CP and AgP samples. This could 

indicate a false positive association of the previous study or be an expression of the trait heterogeneity of 

periodontitis, as the three GWAS studies applied different diagnostic criteria. The precise function of CCDC121 is 

unknown and it is not clear if the yet-unknown causative variant has a cis effect on CCDC121 or on other genes. 

Interestingly, 3.4 Kb upstream of the CP associated SNP at CCDC121 lies a SNP (rs6547741, MAF EUR = 0.50%), 

which is associated with oral cavity cancer at a genome-wide significance level(Lesseur et al. 2016). The association 

with an additional trait that affects the oral cavity adds to the hypothesis that this genomic region has a role in oral 

health. Interestingly, both SNPs are in linkage disequilibrium (D’=1) and for the common variant rs6547741, eQTL 

studies reported several effects on gene expression on a chromosomal region 200-100kb upstream (from SNX17, p= 

8.6x10-15; tissue: skeletal muscle, to GKCR, p= 2.3x10-8; tissue: spleen)( Kristin G et al. 2015), a region that carries 

numerous GWAS lead SNPS of lipid and glycemic traits, but also Crohn’s disease. Taking into account that the 

mouse QTL encompassed CCDC121 but not the genes from SNPX17 to GKCR, it is possible although speculative 

that the associated SNPs may exert their tans-regulatory effects by influencing CCDC121 function.   

Although the analysis revealed significant QTL with high resolution in the CC mice, we did not find evidence of 

association of the orthologous regions in our AgP and CP samples. It is possible that the molecular mechanisms that 

regulate gene expression are different in humans compared to mice and that the orthologous regions do not carry risk 

variants in both mice and humans. Accordingly, we may have missed the regions that are relevant for human 

periodontitis by focusing on the confined mouse QTL. Additionally; the lack of validated associations in the human 

samples may be explained by the instance that the effects of potential causative variants within the orthologues 

regions are too small for identification in limited size of our case-control samples. Of note, common GWAS employ 

sample sizes of up to 100.000s individuals. 

By analyzing genes (1,229) in the suggestive QTL, additional five genetic regions suggested to be associated with 

periodontal disease susceptibility. Two regions (NRG3, PARK2-PACRG) showed nominal significant association in 

the AgP and CP samples, but these association signals were located at different regions of these genes. Interestingly, 

both genes PARK2 and PACRG are located near the gene plasminogen (PLG) which is shown to be significantly 

associated with AgP (Schaefer et al. 2015) and CP. It is possible that the observed associations at these loci are false 

positives or that they point to different regulatory elements of the analyzed sub-phenotypes of periodontitis. Two 
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more loci at ZNF579 and at FIZ1-ZNF524 were not associated with our AgP and CP samples, but they had previously 

been reported to be associated with CP(Teumer et al. 2013). The non-validation of these two reported associations 

may again indicate false positives or indicate the heterogeneity of the different periodontitis phenotypes.  

In conclusion, the CC populations enabled mapping confined QTL that confer susceptibility to alveolar bone loss in 

mice. However, larger human phenotype-genotype samples and additional genome-wide expression data from 

gingival tissues are likely required to identify true positive associations. 
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