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ABSTRACT
We perform a comparison of different approaches to star–galaxy classification using the broad-
band photometric data from Year 1 of the Dark Energy Survey. This is done by performing
a wide range of tests with and without external ‘truth’ information, which can be ported to
other similar data sets. We make a broad evaluation of the performance of the classifiers in
two science cases with DES data that are most affected by this systematic effect: large-scale
structure and Milky Way studies. In general, even though the default morphological classifiers
used for DES Y1 cosmology studies are sufficient to maintain a low level of systematic
contamination from stellar misclassification, contamination can be reduced to the O(1 per cent)
level by using multi-epoch and infrared information from external data sets. For Milky Way
studies, the stellar sample can be augmented by ∼20 per cent for a given flux limit. Reference
catalogues used in this work are available at http://des.ncsa.illinois.edu/releases/y1a1.

Key words: Methods: data analysis – Methods: statistical – Techniques: photometric.

1 IN T RO D U C T I O N

Accurate classification of astrophysical sources is essential for in-
terpreting photometric surveys. Specifically, separating foreground
stars from background galaxies is important for many astronomical

� E-mail: nsevilla@gmail.com

research topics, from Galactic science to cosmology. Conventional
morphological classification techniques separate point sources
(mostly stars) from resolved sources (galaxies) using selections in
magnitude–radius space or similar variables (MacGillivray et al.
1976; Kron 1980; Heydon-Dumbleton, Collins & MacGillivray
1989; Yee 1991). For bright sources, morphology has proven to
be a sufficient metric for classification. In this regime, for weak-
lensing applications, a very pure, but also abundant, star sample
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is vital for deriving the correct point spread function (PSF) in the
images, which is used to later infer cosmic shear (Soumagnac et al.
2015; Jarvis et al. 2016; Zuntz et al. 2017). At fainter magnitudes,
unresolved galaxies will begin to contaminate catalogues of point-
like sources and noisy measurements of stars will contaminate the
galaxy sample. Blended sources become an issue as well because
distant and/or faint sources start to merge into single detected ob-
jects with spurious shapes. Misclassification of stars and galaxies at
faint magnitudes can introduce spurious correlations in galaxy sur-
veyCrocces (Ross et al. 2011) and will hamper the study of stellar
distributions (Drlica-Wagner et al. 2015).

The advent of CCD detectors provided larger, more reliable data
sets that became an obvious target for machine learning (ML) clas-
sification algorithms (e.g. Odewahn et al. 1992; Bertin & Arnouts
1996; Sevilla-Noarbe & Etayo-Sotos 2015; Machado et al. 2016;
Kim & Brunner 2017). In addition, many large, multiband imag-
ing surveys use morphology, such as for Sloan Digital Sky Survey
(SDSS; Stoughton et al. 2002) and/or have incorporated colour
information into their classifiers (see Ball et al. 2006 for SDSS
as well, Hildebrandt et al. 2012 for CFHTLS or Saglia et al.
2012 for Pan-STARRS). Adopting a Bayesian approach to in-
corporate fits to stellar and galaxy templates has been shown to
be a promising avenue (Fadely, Hogg & Willman 2012) as well
as the use of infrared data to complement the optical band ob-
servations (Małek et al. 2013; Banerji et al. 2015; Kovács &
Szapudi 2015).

In this paper, we test different strategies for classifying objects
as point-like or extended sources in the Dark Energy Survey (DES)
Year 1 data (Y1). We subsequently analyse the impact in two broad
science cases and possible developments to improve object classifi-
cation in future analyses of these data. Throughout this paper, ‘ex-
tended’ will be used as a synonym for ‘galaxy’, whereas ‘point-like’
includes both stars and quasi-stellar objects (QSOs) on first approx-
imation, and we will collectively call them ‘stars’ in this work. For
the case studies considered here and the general catalogue, the con-
tamination of QSOs in the large-scale stellar and galactic catalogue
is not deemed important. However, a good star–QSO separation is
needed for quasar science, as studied in detail in Tie et al. (2017) for
DES data.

After a description of the data set in Section 2 and the classifiers
we are considering here in Section 3, we compare the classifiers
in calibration fields (Section 4) and then analyse the response in
the complete Y1 data set for a few selected ones (Section 5). Then,
we study the impact on large-scale structure (LSS) and Milky Way
studies (Section 6). Finally, Section 7 presents the conclusions and
discusses possible additional developments.

2 DA R K ENER GY SURV EY DATA SETS

The DES consists of a 5000 deg2 ‘wide’ survey using the grizY
photometric bands to AB 10σ magnitude limits of (24.6, 24.4, 23.7,
22.7, 21.5), respectively, for 2 arcsec apertures, together with a
∼27 deg2 supernovae (SNe) survey observed in the griz bands with
an approximately weekly cadence. In 2018 February, the project
completed the original five planned observing seasons (Years 1
through 5, Y1–Y5). Additional science-quality data were collected
during an earlier Science Verification (SV) season. The core goal
of DES is a multiprobe study of dark energy at different cosmo-
logical epochs using the same DECam instrument (Flaugher et al.
2015) and DES Data Management (DESDM) pipeline (Morganson
et al. 2018), as showcased with its first results in DES Collaboration
(2017). However, the richness of this data set allows astronomers

and cosmologists to go beyond this initial objective (DES Collabo-
ration 2016).

For this study, we use the subset of highest quality data from DES
SV1 and Y12(Drlica-Wagner et al. 2018) comprising the ’Gold’
catalogue. We note the following features that are relevant for this
study:

(i) The object catalogues are obtained applying SExtractor
(Bertin & Arnouts 1996) to coadded images with typically two to
four overlapping exposures in each band in the case of Y1 or ∼10
for SV data, with object detection performed on a combined riz
image.

(ii) SExtractor magnitudes have been calibrated through a
global calibration module (Tucker et al. 2007) and subsequently ad-
justed through a fit to the stellar locus (High et al. 2009) anchored
to the i band.3 This procedure also corrects for Galactic extinc-
tion. In general, MAG AUTO is used for photometry (for binning
purposes and as inputs for the template-based method described
next), as it behaves more robustly for these coadded catalogues.
MAG MODEL, MAG DETMODEL4 and MAG PSF are used as inputs
for the ML methods as well. Shape measurements in this code
include FLUX RADIUS, CLASS STAR and SPREAD MODEL,
some of which will be specifically studied here.

(iii) In addition, a multi-object, multi-epoch fitting pipeline
(MOF) has been run on the single-epoch image counterparts for
each coadd catalogue detection to obtain more precise photomet-
ric measurements for the objects. It simultaneously fits a Gaussian
mixture model to the individual images, also modelling light from
nearby neighbours for each object (more details in Drlica-Wagner
et al. 2018). The main flux measurements used for the methods de-
scribed here are the fluxes using this composite Gaussian mixture
model (CM MAG) and the PSF magnitudes derived from the same
MOF pipeline (PSF MAG). CM T is a size estimator from the code
before PSF convolution, which will be studied here in detail.

(iv) All objects are required to be in areas for which there is at
least one exposure in each of the griz bands.

We define two distinct regions in which we will perform our tests:

(i) A calibration field: defined by those areas that overlap exter-
nal data sets that we can use to train, validate, and test our methods.
These are the SN fields from the DES SN survey, which over-
lap specific spectroscopic surveys and miscellaneous Hubble Space
Telescope (HST) data sets; and the area of the survey overlapping
the SDSS (York et al. 2000) Stripe 82 region (Frieman et al. 2008).
In addition, the COSMOS field5 has been imaged with DECam,
providing a very useful data set given the richness of multiband
imaging and spectroscopy available. Table 1 summarizes the num-
bers of objects matched to various external data sets (details in
Section 4.3). Some of these fields have a large number of DES ex-
posures, due to their application for SN searches, so special coadds
were made from ∼4 exposures in each band in order to resemble
the Y1 depth. The selection of these exposures was made so that
their coaddition would provide similar characteristics in terms of

1https://des.ncsa.illinois.edu/releases/sva1
2https://des.ncsa.illinois.edu/releases/y1a1
3This calibration approach was eventually superseded in Y3 data products
with the Forward Global Photometric Calibration approach described in
Burke et al. (2018).
4In this case, the exponential model used in SExtractor is fitted on the
detection image and scaled in the measurement images of each band.
5http://cosmos.astro.caltech.edu/
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Table 1. External data sets used in this work. SDSS–Stripe 82 data show two numbers according to simultaneous 2MASS and WISE matches, and VHS
matches. More details are provided in Appendix B.

Catalogue Type Usage in this work Nb. matched objects Reference

ACS–COSMOS Space optical imaging Truth table 116 017 Leauthaud et al. (2007)
Hubble–SC Space optical imaging Truth table 12 927 Whitmore et al. (2016)
SDSS–Stripe 82 Ground optical spectroscopy Truth table 18 984/46 700 Albareti et al. (2017)
VVDS Ground optical spectroscopy Truth table 4442 Le Fèvre et al. (2013)
WISE Space NIR imaging Complementary data 18 984 Wright et al. (2010)
2MASS Ground NIR imaging Complementary data 18 984 Skrutskie et al. (2006)
VHS Ground NIR imaging Complementary data 46 700 McMahon et al. (2013)

sky brightness and seeing as the wide survey coadds (Neilsen et al.
2016; Drlica-Wagner et al. 2018). This procedure is not needed in
forthcoming releases as the wide survey extends to cover the SN
regions.

(ii) An application field: the remaining area of the DES footprint
for which suitable external data sets for training are not presently
available. This includes the so-called ‘SPT’ region due to the overlap
with the South Pole Telescope6 (Ruhl et al. 2004) observations, in
which we can make some quality assessment as well, though limited
by the lack of external references.

3 D E S C R I P T I O N O F TH E O B J E C T
CLASSIFIERS

Table 2 summarizes the methods explored in this paper to perform
object classification. These include a variety of algorithms using
ML methods (training on morphological and/or colour information),
pixel-level flux measurements, and template fitting. For the sake of
clarity and conciseness, not all algorithms are subjected to every test
in this paper, but usually a selection is made in each case. Additional
details and references are given next.

3 . 1 CL ASS S TA R

This is the standard SEXTRACTOR star–galaxy classifier, providing
a neural network real number output (a ‘stellarity’ index from 0 to
1) based on the training on a large simulation of galaxy and star
images on CCDs.
Input data: For every object, eight isophotal areas above the back-
ground are measured, plus the value of the intensity at the peak
pixel in the object, and the value of the full width at half-maximum
(FWHM) for the image.
Method: It uses a back-propagation model (Werbos 1982) for learn-
ing, based on simulations that include a wide range of PSF profiles
and sizes, though they are optimized to work best on intermediate
magnitude ranges (in the DES magnitude scale) of V ∼ 8 − 22 due
to the types of galaxies simulated and relative star–galaxy mixture.

3 . 2 SPREAD MODEL

This quantity is a linear discriminant-based algorithm available with
the SExtractor package. The SPREAD MODEL estimator was
originally developed as a star–galaxy classifier for the DESDM
pipeline and has also been used in other surveys (e.g. Desai et al.
2012; Bouy et al. 2013).

6https://pole.uchicago.edu/

Input data: The image data at pixel level are used for each detected
object in SExtractor.

Method: SPREAD MODEL indicates which of the best-fitting lo-
cal PSF model φ (representing a point source) or a slightly more
extended model G (representing a galaxy) better matches the im-
age data. G is obtained by convolving the local PSF model with
a circular exponential model with scale length = 1/16 FWHM.
SPREAD MODEL is normalized to allow comparing sources with
different PSFs throughout the field:

SPREAD MODEL = GT W p
φT W p

− GT W φ

φT W φ
, (1)

where p is the image vector centred on the source.7 W is a weight
matrix constant along the diagonal except for bad pixels where the
weight is 0. By construction, SPREAD MODEL is close to zero for
point sources, positive for extended sources (galaxies), and negative
for detections smaller than the PSF, such as cosmic ray hits. The
RMS error on SPREAD MODEL is estimated by propagating the
uncertainties on individual pixel values:

SPREADERR MODEL = 1

(φT W p)2

(
GT V G (φT W p)2

+ φT V φ (GT W p)2

− 2GT V φ (GT W p φT W p)
)1/2

,

(2)

where V is the noise covariance matrix, which is assumed to be
diagonal.

An example of a classifier derived from SPREAD MODEL is the
default classification scheme (MODEST CLASS) used in the Y1
Gold catalogue, which includes the following criteria:

galaxies ⇐⇒
SPREAD MODEL I+
(5/3) × SPREADERR MODEL I > 0.005

AND NOT

(|WAVG SPREAD MODEL I| < 0.002

AND

MAG AUTO I < 21.5)

,

(3)

7This definition of SPREAD MODEL differs from the one given in previous
papers (Desai et al. 2012; Bouy et al. 2013), which was incorrect. In practice
both estimators give very similar results.
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Table 2. Summary of classification methods. Type of data denotes whether measurements or direct pixel data are used, and in the first case if it is based on
morphological and/or flux measurements. The specific algorithmical approach is named on the third column.

Name Type of data used Algorithm

CLASS STAR Isophotal level measurements, morphological Neural network
SPREAD MODEL Pixel-level Normalized linear discriminant
CM T Measurements on fitted shape, morphological Second moments of Gaussian mixture fit (object)
MCAL RATIO Measurements on fitted shape, morphological Second moments of Gaussian mixture fit (noisified object and PSF)
ADA PROB Most discriminating features Boosted decision trees

from a combination of simple functions
used over all catalogue columns.

GALSIFT PROB All catalogue columns (PCA) Random forests
SVM MAG AUTO,FLUX RADIUS,SPREAD MODEL, Support vector machine

flux and morphology
CONCENTRATION Catalogue information, morphological Direct subtraction of magnitudes measured with model and PSF
W1-J, J-K Catalogue information, fluxes Colour cut
HB PROB Catalogue information, fluxes Template fitting of spectral energy distributions

stars ⇐⇒
|SPREAD MODEL I+
(5/3) × SPREADERR MODEL I| < 0.002

,

(4)

where WAVG SPREAD MODEL has been computed from a weighted
average of the SPREAD MODEL values of single-epoch shapes
corresponding to that coadd object. These provide a better sep-
aration (DES Collaboration 2018) with respect to the standard
SPREAD MODEL on coadd images, albeit with a limited depth
reach, as not all coadd objects have single-epoch detections from
which a weighted averaged can be computed (a faint object could be
detected only in the coadded image and not in the individual epochs
contributing to the image). The weights come from the weight map
of the data management processing outputs and the band chosen is
the i band, where the images have a higher signal to noise and have
also demonstrated best performance in detailed simulations. Ob-
jects that do not fall into the categories expressed by equations (3)
and (4) are grouped into either a ‘fringe’ category between both
or an ‘artefact’ category (approximately 5 per cent of the catalogue
considered here).

3 . 3 CM T

CM T is an intrinsic size estimator for the object from the image
fitting provided by the MOF pipeline.
Input data: The fitted Gaussian mixture model using the shapes
across the images composing the coadd detection.
Method: The MOF code estimates the shapes and fluxes of objects
detected in the coadd catalogues, using a mixture of Gaussians89 to
simulate the PSF light profile and then convolve them with assumed
bulge and disc models (fitted independently for each object, finding
the best linear combination) likewise approximated using Gaussian
mixtures (Hogg & Lang 2013). This is done by fitting across several
images of the same object in multiple epochs and bands and then
subtracting the flux of neighbours accurately. Concretely, CM T is
defined as

CM T = 〈x2〉 + 〈y2〉, (5)

8https://github.com/esheldon/ngmix
9https://github.com/esheldon/ngmixer

where x and y denote the distance from the object’s centre deter-
mined by the model fit. The value 〈x2〉 + 〈y2〉 can be obtained
analytically from the individual component Gaussians. The PSF is
convolved with the fitted model to obtain these pre-PSF values. An
associated uncertainty is computed as well, and our best-performing
classifier, as tested10 in the COSMOS field, is based on the quan-
tity CM T + 2 × CM T ERR. Typical values are in the range
between −0.5 and 0.5.

3 . 4 MCAL RATIO

This measurement is derived from the size estimates obtained by
the metacalibration technique, developed for shear measurement in
weak-lensing studies (Sheldon & Huff 2017), in which the single
epoch objects are artificially sheared to quantify the response of
such an effect in the image.
Input data: The object size and PSF model size obtained using this
technique.
Method: This approach uses the same ngmix code as MOF above.
However, this measurement is much noisier as the metacalibration
technique (Huff & Mandelbaum 2017) adds extra noise as part of the
correlated noise correction. This is part of the procedure to correct
for selection effects in shear inference, as detailed in Sheldon &
Huff (2017). The discriminating quantity used is

MCAL RATIO = Tmcal

TPSF
, (6)

where Tmcal and TPSF are sizes of the object or PSF, respectively,
as defined in equation (5). In this case, the size is obtained from
a single Gaussian fit, so the suffix CM (composite model) is not
used. Values are not constrained, but typical ranges explored for
star–galaxy separation are between 0 and 1.

3 . 5 ADA P RO B

This is the name given to a ML framework using the scikit-
learn package (Pedregosa et al. 2011).

10Technically, a different, validation set would be required to tune this
classifier in terms of the quantity multiplying CM T ERR, to avoid a bias
towards a specific value, though in practice the differences are small between
different choices.
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Input data: This method uses feature generation (using various
simple mathematical functions of various catalogue variables) and
feature pre-selection (selecting the most informative variables).
Method: The selected quantities are fed into several ML algorithms
(including AdaBoost) that are drawn from scikit-learn with
an additional probability recalibration step. The details of the frame-
work are described in detail in Appendix A. Two variants have
been used of this approach, using either SExtractor quantities
ADA PROB or MOF quantities ADA PROB MOF.

3 . 6 G A L S I F T P RO B

A probabilistic estimate based on ML approach over principal com-
ponents, as used in the ‘Multi class’ algorithm in Soumagnac et al.
(2015).
Input data: A principal component analysis (PCA) over the cata-
logue quantities is performed to outline the correlations between
the object parameters and extract the most relevant information. We
perform a calculation of the Fisher discriminant (Fisher 1936) for
each of the new parameters to quantify their aptitude to separate
between the classes:

Fi = (XG,i − XS,i)2

σ 2
G,i + σ 2

S,i

, (7)

where G and S corresponding to the galaxy and star classes, respec-
tively.
Method: We select the parameters with the highest Fisher discrim-
inant (hence the highest ‘separation power’ of the classes) and use
them as input to a ML classification algorithm. Although in Sou-
magnac et al. (2015) the authors used ANNz (Collister & Lahav
2004), in this application we have replaced it by a random for-
est classification algorithm implemented as part of the scikit-
learn package for PYTHON (Pedregosa et al. 2011). The output
is a probability of the object being a star or a galaxy. In this case,
we have used a classifier based only on MOF quantities, GAL-
SIFT PROB MOF.

3 . 7 S V M

Following Wei et al. (in preparation), the support vector machine
(SVM) is a single-band, purely morphological, and magnitude-based
classifier.
input data: The input features used by the SVM are MAG AUTO I,
FLUX RADIUS I and SPREAD MODEL I.
Method: SVM is a supervised ML algorithm that constructs a sep-
arating hyperplane in any arbitrary n-dimensional space that max-
imizes the margins of objects to the hyperplane. To make the SVM
robust across various data sets with intrinsic variations in observa-
tion conditions, the algorithm performs linear transformations on
the three input features to remove the means and make the stan-
dard deviations across all objects to be one. This pre-processing
procedure also allows all three features to have equal levels of fea-
ture importance. This prevents any features with particularly large
numerical values from dominating the SVM classification decision.
The SVM uses a Gaussian radial basis function kernel, where the
hyperparameters, γ = 0.01 and C = 46.4, are selected while train-
ing the SVM through an exhaustive cross-validated grid search.
The SVM outputs distances of objects to the hyperplane, where a
high positive (negative) value corresponds to a high confidence star
(galaxy) classification.

3 . 8 CONCENTRATION

A parameter similar to what was used as a star–galaxy classifier for
SDSS (Abazajian et al. 2004).
Input data: The PSF and model magnitudes for each object.
Method: In the case of DES, this translates to the use of the dif-
ference between the MOF PSF magnitude and a bulge + disc, or
composite, model magnitude computed by the MOF pipeline:

CONCENTRATION = PSF MAG I − CM MAG I. (8)

3 . 9 W 1 – J , J – K infrared bands

In the Stripe 82 region, we will compare with the information pro-
vided by the Vista Hemisphere Survey DR3 (McMahon et al. 2013)
as proposed in Banerji et al. (2015) up to the available depth. We
will also estimate the classification power of a cut in the infrared
bands from WISE (Wright et al. 2010), 2MASS (Skrutskie et al.
2006), as described in Kovács & Szapudi (2015).
Input data: Magnitudes W1 (WISE), J (2MASS, VHS), and K
(VHS).
Method: Colour cuts in W1–J and J–K.

3 . 1 0 H B P RO B

Additionally, we implemented a hierarchical Bayesian method
(HB PROB) developed and explored by Fadely et al. (2012) and
Kim et al. (2015) with CFHTLS data. The lack of u-band in our
case severely impacted the performance of this method, so it was
not pursued further in our analysis.

Table 3 shows the specific selection methods used with respect
to a varying threshold t for each of the algorithms used in this work.

4 PE R F O R M A N C E O N C A L I B R AT I O N FI E L D S

In this section, we will look first at the metrics used to compare clas-
sifiers using the calibration fields, describe the data sets (including
training and validation), and finally analyse the results.

4.1 Receiver operating characteristic curves

We compare the performance of the different classification tech-
niques using the calibration fields by calculating Receiver operat-
ing characteristic (ROC; Bradley 1997; Fawcett 2006) curves that
compare the true positive rate (TPR) of galaxy or star detection,
given a specific threshold for the classifier, versus the false positive
rate (FPR), as defined by

T PR = T P

T P + FN
, (9)

FPR = FP

FP + T N
, (10)

where TP are correctly identified galaxies, given a cut for a specific
classifier; FN are incorrectly classified galaxies as stars; FP are
incorrectly classified stars as galaxies and TN correctly identified
stars (in the assumption of using ‘truth’ for galaxy type). See Table 4
for a reference on these concepts. Therefore, the ROC curve is
confined by construction to an area spanning from 0 to 1 in FPR
and TPR. As we vary the threshold t for classification for a given
classifier (Table 3), a curve will be drawn across the area from (0,0)
to (1,1). A completely random ‘classifier’ would show as a diagonal
line.
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Table 3. Selection methods.

Name Selection method for galaxies using threshold t

CLASS STAR CLASS ST AR < t

SPREAD MODEL SPREAD MODEL + 1.67 ∗ SPREADERR MODEL > t

CM T CM T + 2 ∗ CM T ERR > t

MCAL RATIO MCAL RAT IO > t

ADA PROB ADA PROB > t

GALSIFT PROB GALSIFT PROB > t

SVM SV M PROB > t

CONCENTRATION PSF MAG I − CM MAG I > t

WISE J-K (J − K − 0.6)/(MAG AUT O G − MAG AUT O I ) > t

Table 4. Definitions of different figures of merit for classifiers, according to the outcome of the classification using a ‘truth’ reference (also termed ‘confusion
matrix’). The term ‘positive’ can refer to ‘galaxy’ or ‘star’ classes depending on the use case. The metrics examined in this work are emphasised in bold.
‘Purity’ can be used as a synonym for the positive predictive value (PPV), whereas ‘completeness’ can be interchanged with the TPR.

Prediction

Positive Negative

Positive True positive False negative True positive rate False negative rate
(TP) (FN) (TPR) = TP/(TP+FN) (FNR) = FN/(TP+FN)

Truth
Negative False positive True negative False positive rate True negative rate

(FP) (TN) (FPR) = FP/(FP+TN) (TNR) = TN/(FP+TN)
Positive predictive value False omission rate

(PPV) = TP/(TP+FP) (FOR) = FN/(FN+TN)

False discovery rate Negative predictive value
(FDR) = FP/(TP+FP) (NPV) = TN/(FN+TN)

In particular, the area under the ROC curve (AUC) has been
classically used as a threshold-independent metric to compare the
performance of classifiers as well as being relatively insensitive to
the specific positive to negative composition (as long as sufficient
statistics are available). The closer the AUC gets to unity, the better
the discriminating power of the classifier associated with that par-
ticular curve. Again, a random classifier would show an AUC value
of 0.5.

There are, however, some caveats to be aware of, namely the
possibility of misleading results when ROC curves cross each other
(Hand 2009) and that misclassification costs can be different accord-
ing to the scientific case, and this is not reflected in ROC curves.
We address this by extending the range of metrics used for different
classifiers, in order to have a broader view of the performance for
our particular needs.

4.2 Purity and completeness

In astronomy, we are interested in evaluating the performance of
classifiers in terms of their impact on measurable on parameters of
interest. It is common to find the requirements for a survey defined
in terms of purity and completeness. In Soumagnac et al. (2015),
for example, the authors formulate the scientific requirements for
weak-lensing and LSS studies in terms of these two observables.

‘Purity’ is a measurement of the contamination of a sample by
misclassified objects, which can also be called precision or PPV:

PPV = T P

T P + FP
. (11)

‘Completeness’ (also known as, recall) is another name for the
TPR defined in equation (9). A good approach to easily compare

the performances of several classifiers is to use the Precision-Recall
(PR) curve, where both quantities can be visualized simultaneously.

4.3 Training and testing fields

The data set on which we train the ML codes is the weak-lensing
catalogue from HST-ACS in the COSMOS field(Leauthaud et al.
2007), as this provides a largely unbiased measurement of all ex-
tended and point-like sources from DES (albeit the star–galaxy mix-
ture is affected by the specific position in the sky with respect to the
Galactic plane). In particular, the MU CLASS parameter is used for
this reference, defined in the peak surface brightness – MAG AUTO
space, which in space-based imaging shows very distinct loci with
respect to the same objects viewed through the atmosphere. This
has been used previously in star–galaxy separation assessments in,
e.g. Crocce et al. (2016) and Aihara et al. (2018).

This training set, after a 1arcmin positional match with DES
sources, contains ∼114 k extended and ∼12 k point-like sources.
The COSMOS data set will also be used for some tests only with
the non-ML codes in order to avoid biased conclusions based on
their training in that same area.

Even in the case in which we use unbiased, imaging data, the
particular position on the sky of the field will condition the relative
mixture of stars and galaxies in a prominent way. Therefore, we
add some extra imaging data extracted from the Hubble Source
Catalog11 (Hubble-SC; Whitmore et al. 2016) where it overlaps
the DES survey. Most of it is either too inhomogeneous or targets
specific objects (nearby, large galaxies or globular clusters), but a

11https://archive.stsci.edu/hst/hsc/
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few deep fields can be matched with some of the SN fields from
DES. In this case, we use the Hubble-SC catalogues’ concentration
index with a cut of 1.2 that seems optimal in the concentration–
magnitude plane.

Spectroscopy is also a valuable resource to provide a one-to-one
truth table for our classifications. However, the spectroscopic tar-
geting and measurement efficiency is not complete in a statistical
sense relative to the DES catalogue, as certain types of sources
were given higher priority and some types are more difficult to clas-
sify spectroscopically therefore the testing of purity/completeness
can be strongly biased. The photometric properties of the stars and
galaxies selected can also be highly skewed to particular types that
introduce additional biases. This limits the usefulness of any purity
metric we try to derive from these fields. For this reason, the spectro-
scopic data sets have been limited to those that provide a relatively
unbiased sample by construction, which includes the VVDS-DEEP
and VVDS-CDFS (Le Fèvre et al. 2013) data releases. The SDSS
DR13 (Albareti et al. 2017) updated spectro-photometric sample
over Stripe 82 is also used due to the relative variety of spec-
tra available, and the possibility to test our classification methods
against ‘true’ spectroscopic typing. We use redshifts (a cut in z <

0.001) as the method to identify stars. However, we also consider
a selection based on SDSS spectroscopic CLASS obtaining similar
conclusions. For the VVDS data, we require the redshifts to be ‘re-
liable’ according to the classification in Le Fèvre et al. (2013), that
is, values of 2, 3, 4, or 9 in their redshift quality estimate.

Both the COSMOS catalogues and the ones recovered from the
Hubble-SC have been cross-tested against spectroscopic catalogues
VIMOS-Ultra Deep Survey DR1 (Tasca et al. 2017), zCOSMOS
DR3 (Lilly et al. 2009), and VVDS-CDFS (Le Fèvre et al. 2013)) to
check the robustness of their morphological classifications against a
‘true’ type based on their spectra. In both cases, around 5 per cent of
spectroscopically classified stars are misclassified as galaxies when
using these space-imaging based measurements, whereas around
2 per cent of spectroscopically classified galaxies are misclassified
as stars. This misclassification happens at faint magnitudes (F814W
from ACS-HST > 24 for COSMOS, F814W > 23 for the other
Hubble fields used), denoting possible compact galaxies that are
unresolvable by HST, errors in the spectroscopic measurement, or
matching. These corrections are not considered for the purity es-
timates derived here as they belong to fainter fluxes than the truth
tables used in our tests.

See Table 1 and Appendix B for details on the reference data in
different fields including the data base queries used to create these
data sets.

4.4 Results

4.4.1 Using HST imaging

We compare here the results for the classifiers used on the COSMOS
field (excluding the ML codes that were trained on this field) and
the SN fields for which we have found publicly available deep HST
data from the Hubble-SC.

(i) The results for the ROC comparison are shown in Fig. 1 for
the COSMOS field and Fig. 2 for the SN fields with Hubble-SC
data. The AUC of the respective curves are tabulated in Table 5.
From these plots, it can be readily seen that among the morpholog-
ical classifiers, the algorithms based on a linear discriminant over
coadded images, SPREAD MODEL, and intrinsic size on MOF esti-
mates, CM T, are the best-performing ones. It is also seen that the

Figure 1. ROC plot for classifiers tested on the COSMOS field. Only
non-ML codes are shown, as the machine-learning ones were trained in
this data set. Magnitude range is given by MAG AUTO I = (17,24). The
SPREAD MODEL-based cut is similar to MODEST CLASS used in Y1 anal-
yses. The ROC curve is obtained by varying the threshold at which the
classification divides the galaxy and star sample.

Figure 2. ROC plot for classifiers tested on the SN fields over the Hubble-
SC catalogue. Magnitude range is given by MAG AUTO I = (17,24). The
SPREAD MODEL-based cut is similar to MODEST CLASS used in Y1 anal-
yses. The ROC curve is obtained by varying the threshold at which the
classification divides the galaxy and star sample.

ML classifiers (in Figs 2 and 3) do perform better, even considering
a different field with respect to training as in the case of the Hubble-
SC test. It is noteworthy to point out that most of the differences
showcased in Figs 1 and 2 become more evident when we restrict
ourselves to faint objects (i > 22). The SPREAD MODEL-based cut
does a good job at avoiding stellar contamination but suffers from
decreased galaxy completeness. This is a result of the galaxy locus
merging with the stellar locus in the magnitude-SPREAD MODEL
space where noisier measurements will increase the effect even fur-
ther. CM T fares better in this respect, but a conservative cut will
provide a more pure galaxy sample using SPREAD MODEL. On the
other hand, the metacalibration size ratio does not perform as well
as the other morphological classifiers, though this measurement is
noisier than the direct assessment of sizes and shapes from the MOF
pipeline.
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Table 5 Area under the ROC curves for different classifiers. Dashes indicate tests that have not been run for that specific code and dataset combination.

Name COSMOS, imaging SN fields, imaging SN fields, spectroscopy Stripe 82, spectroscopy

CLASS STAR 0.898 0.885 0.950 0.976
SPREAD MODEL 0.954 0.956 0.975 0.962
CM T (MOF) 0.957 0.959 0.971 0.972
CONCENTRATION (MOF) 0.938 0.953 0.950 0.967
MCAL RATIO 0.910 0.924 – –
VHS J-K vs G-I – – – 0.993
ADA PROB – 0.978 0.983 0.967
ADA PROB (MOF) – 0.967 0.980 0.967
GALSIFT PROB (MOF) – 0.969 0.981 0.962
SVM – 0.962 – –

Figure 3. Precision-Recall (or completeness-purity) plot for classifiers
tested on the SN fields over the Hubble-SC catalogue, using galax-
ies as truth. Magnitude range is given by MAG AUTO I = (17,24). The
SPREAD MODEL-based cut is similar to the MODEST CLASS used in DES
Y1 analyses.

(ii) Fig. 2 shows that ML classifiers are able to take advantage
of ancillary information for very faint objects, where shape mea-
surements are uncertain. Results with SVM in the SN fields show
that an ML approach based exclusively on morphological and mag-
nitude information can provide some advantage over simple cuts
on morphological variables. SVM is shown to be robust outside its
training field, however, other ML algorithms provide an extra edge
in performance as shown by the higher AUC values. This is due
to forgoing the additional information encoded in the rest of the
variables available in the catalogue. However, this approach could
provide a middle-ground solution to the issues one might encounter
when incorporating colour-based information, which can incorpo-
rate interesting physics we would not like to be entangled with our
star–galaxy sample selection (see Section 6). Further developments
of this approach are explored in Wei et al. (in preparation).
The comparison between the COSMOS and Hubble-SC fields re-
veals that the CM T classification is more robust as we switch be-
tween fields. SPREAD MODEL and CLASS STAR, which are de-
rived from coadded PSFs, are more vulnerable to the contribution
of bad exposures and PSF inhomogeneities in the coadded image.
It is worthwhile noting here that preliminary tests on Y3 data (DES
Collaboration 2018) using Hyper Suprime Camera deep data (Ai-
hara et al. 2018) reinforce this idea, which will be explored further
in a future publication therefore favouring in general the use of a
multi-epoch classifier (such as CM T based on the MOF pipeline).
Both the COSMOS field data set and SN field coadds have a much

Figure 4. Precision-Recall (or completeness-purity) plot for classifiers
tested on the SN fields over the Hubble-SC catalogue, using stars
as truth. Magnitude range is given by MAG AUTO I = (17,24). The
SPREAD MODEL-based cut is similar to the MODEST CLASS used in DES
Y1 analyses.

smaller dithering than the wide-field exposures. This might artifi-
cially bias classifications based on the coadded PSF to somewhat
better performances than actually present in the wide-field data.

(iii) Figs 3 and 4 show the PR metric, for galaxies and stars,
respectively (COSMOS plots not shown for conciseness but provide
similar conclusions).
These plots provide a similar conclusion as the ROC curves, though
in terms of more useful quantities with respect to scientific re-
quirements such as the recall (i.e. completeness) and precision (i.e.
purity). Again, the CM Tmorphological classifier and the ML codes
provide the best results, and this manifests even more strongly for
selecting a star sample (these results motivate the choice for stellar
classification based on multi-epoch pipelines in Shipp et al. 2018).
It is noteworthy to add that the ML classifiers using MOF quantities
do not add much more than a straight cut in CM T itself due to
the large information content included in this classifier regarding
star–galaxy classification. On the other hand, the ML classifiers
based on SExtractor quantities are able to extract more value
from the different outputs of this code, with respect to a simple
SPREAD MODEL cut.

(iv) In Figs 5 and 6, we can appreciate the dependence of the
completeness with the magnitude as we go to the fainter end in the
sample, in the galactic and stellar case, respectively.
Unlike in the previous plots, in this case a choice of threshold has to
be made. We have decided to pick cuts in the variables in question in
order to have a similar galaxy purity (99 per cent) in each magnitude
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Figure 5. Completeness of a galaxy sample as a function of magnitude
for classifiers tested on the COSMOS field, for a fixed galaxy purity of
99 per cent.

Figure 6. Completeness of stellar sample as a function of magnitude for
classifiers tested on the COSMOS field, for a fixed 80 per cent purity.

bin, so we can compare completeness appropriately, and similarly
for stars (80 per cent). We chose the COSMOS field that has good
statistics to faint magnitudes, though this disallows using the ML
codes in the comparison. This example shows a case where classi-
fiers such as the concentration estimation from the MOF pipeline,
not necessarily favoured at first sight from the integral under the
ROC curve, works better in this regime due to its good selection
of very pure samples. The ROC curve only informs about overall
classifier performance (i.e. considering all possible thresholds), and
different classifiers have to be tested for the specific science case at
hand.
For stars, a similar behaviour is seen for CM T, CONCENTRATION
andSPREAD MODEL.CLASS STAR for instance suffer from a poor
completeness near the faint end, as a high thresholding cut in this
case removes most of the objects, which in the neural network tend
to cluster towards intermediate values when the object classifica-
tion is uncertain. MCAL RATIO incorporates noisier measurements
and additional cuts to the sample that make it less complete when
providing a classified sample.

(v) In addition, in Fig. 7 a similar comparison is shown as a
function of a realization of the photometric redshift from the proba-
bility distribution function obtained from the Bayesian Photometric
Redshift algorithm (BPZ, Benı́tez 2000), this time also adding the

Figure 7. Purity of the galaxy sample as a function of photo-z for classifiers
tested on Hubble-SC matches over the SN fields field, for a fixed 90 per cent
completeness. We use a random Monte Carlo sampling of the probability
distribution function of redshift predicted by BPZ for that particular object
as an estimate of its photo-z.

Figure 8. ROC plot for classifiers tested on the SN fields over the VVDS
catalogues. Magnitude range is given by MAG AUTO I= (17,24). The ROC
curve is obtained by varying the threshold at which the classification divides
the galaxy and star sample.

ML classifiers (again over the SN fields with Hubble-SC). A similar
conclusion is drawn from these plots; MOF fitting methods and ML
classifiers perform best, as indicated by the ROC curves. Note the
stability of the purity of the galaxy sample with respect to photo-z,
suggesting that a photo-z selected sample would not be biased by
the star–galaxy separation classifiers analysed here (however, see
Section 6.1 for an important caveat to this conclusion).

4.4.2 Using ground-based spectroscopy

Turning now to tests on the overlapping spectroscopic data, we show
ROC plots to demonstrate the consistency with the results from
the previous section and add a comparison with external infrared
information.

Fig. 8 shows the ROC for the VVDS test, and Fig. 9 shows
the ROC for the Stripe 82 test. The former does not add much to
the conclusions mentioned above but provides an assurance that
conclusions are consistent with a different class of ‘truth’ typing.
We also add here a test on the SN fields computing the ROC curves
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Figure 9. ROC plot for classifiers tested on the Stripe 82 region overlapping
SDSS and VHS data. Magnitude range is given by MAG AUTO I= (17,21).
Note the logarithmic scale in the x-axis in this instance. The ROC curve
is obtained by varying the threshold at which the classification divides the
galaxy and star sample.

Figure 10. Area under the curve measured for the same classifiers as Fig. 8,
for different signal-to-noise thresholds, using the MAGERR AUTO quantity.

and their areas, versus the signal to noise of the detected objects, to
demonstrate it behaves as expected as well, including the ML codes
(see Fig. 10).

The Stripe 82 data set is shallower and therefore does not allow
for a clear distinction between the performance of most of the
algorithms described here. The comparison with the combination
with external infrared colour cuts on the other hand, shows an
important increase in performance, specifically when attempting to
select a very pure stellar sample, as already advanced in Baldry et al.
(2010) and Banerji et al. (2015). It is important to note here again
that the nature of the test is different with respect to the ones based on
space imaging. In this case, we are using spectroscopic redshifts to
determine the nature of the object (galactic or extra-galactic) and not
its extendedness. What we see here is that infrared information will
select out the stars from the galaxy and QSO (which are point-like
generally) population. We have also attempted to add W1-J version
from 2MASS and WISE (as suggested in Kovács & Szapudi 2015),
but the matches proved too shallow to be of any interest for these
samples.

Unfortunately, the current VHS data do not cover the full breadth
and depth of the survey and a careful combined catalogue with

adequate matching is needed (overcoming the less-precise infrared
astrometry) beyond what was done here for comparison purposes.
Cross-matching with bright sources will be explored in more detail
with DES Y3 data with the goals of enhancing star selection for cre-
ating PSF models and reference catalogues for LSS. A combination
of classifiers, as done for instance in Kim et al. (2015) or Molino
et al. (2014), seems to be an appropriate option in this case and even
more so if matched-aperture photometry of VHS data can be per-
formed survey wide for DES (Banerji et al. 2015). This would also
have important applications for photometric redshift determination
(Banerji et al. 2008).

5 PE R F O R M A N C E O N A P P L I C AT I O N FI E L D

It has been shown by Fadely et al. (2012) that ML techniques in star–
galaxy classification will perform better if a representative training
data set is found. We have studied the impact of this effect by testing
ML algorithms over different fields other than the training set in
Section 4. However, all these additional areas are quite constrained
either in depth or area, when compared to the complete DES volume.

In this section, we extend the scope of the performance tests in
classification to have a broader picture by making the following
checks on the application field (see Section 2):

(i) General distribution of the classifier-flux space to qualitatively
analyse the algorithms’ outputs.

(ii) Number count distributions of stars against a well-tested sim-
ulation, both as a function of magnitude and as function of galactic
latitude.

(iii) Galaxy versus star density profiles in search of correlations,
using different proxies for the true stellar distribution.

(iv) Density of classified galaxies as a function of proximity to
the Large Magellanic Cloud (LMC).

(v) Consistency of classified stars with the expected stellar locus
(Covey et al. 2007).

Except where noted, the sample sizes for each of these cases are
approximately 1 million objects, limited by the size of tested region,
magnitude range, or photo-z binning.

5.1 Classifier outputs

A first step towards understanding the quality of classification for
different algorithms in the application field of DES is to study
the outputs as a function of magnitude and the number counts of
classified objects.

In Fig. 11, several density plots showcase how objects dis-
tribute in the classifier-magnitude space. These distributions are
based on a 1 per cent sample of the Y1 Gold catalogue. Direct
morphological outputs from the DESDM pipeline (CLASS STAR,
SPREAD MODEL and CM T) show two loci that merge in the faint
end. CLASS STAR outputs merge into a region of 50 per cent prob-
ability by construction of its base neural network. This uncertainty
region appears at shallower magnitudes than other classifiers as
shown previously, due to the characteristics of the simulations used
for its training. However, a classifier using a feature importance
selection12 manifests a more ‘clear-cut’ classification of objects,
with a large predominance of galaxies at the faint end, as expected.
This can be attributed to the fact that there is a large predominance

12A pre-selection of the input variables that provide the most predictive
power for the task at hand, e.g. star–galaxy separation.
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Figure 11. Object classification heat maps as a function of magnitude for different classifiers. The black line represents the cut for which a 99 per cent galaxy
purity is obtained in the Hubble-SC sample in the i = (17,24) magnitude range. With the exception of CLASS STAR, all classifiers assign higher values to
extended sources.

Figure 12. Counts for stars as classified by different algorithms compared
to a Galaxia simulation (Sharma et al. 2011) using DES photometry, in
the patch of the Y1 DES footprint with 45 < RA < 50, −45 < Dec. < −50.

of galaxies over stars in raw numbers (a very imbalanced data set)
at faint magnitudes, so the algorithms will ‘learn’ that the most
probable classification for a given object in this range is a galaxy.

5.2 Number counts of classified stars

On the other hand, if we limit our study to the point in which Y1 data
are fairly complete over a large area (r ∼ 22.5), we can assess for
instance the similarity of the stellar distribution in magnitude versus
a detailed simulation such as Galaxia (Sharma et al. 2011), which
has been tested against Gaia DR1 data (Gaia Collaboration 2016;
Koposov, private communication). This is shown in Fig. 12 for a
few selected classifiers, spanning a varied range of those mentioned
in Section 3, in the DES r band. Thresholds were used to provide
a similar number of stars as MODEST CLASS, the default DES
Y1 Gold star–galaxy classifier based on SPREAD MODEL. Up to

r ∼ 21, the behaviour for most of them with respect to the simulation
is similar. Two ML classifiers based on MOF quantities show a
significant lack of bright objects (r < 19) due to failures from the
Y1 version of the MOF pipeline in fitting stars in this regime.13

This has been identified as failures of the galaxy fits for which MOF
was designed when applied to moderately bright stars. A consistent
overestimation of stars by Galaxia with respect to DES stars is
apparent for all classifiers, as was seen in Li et al. (2016). On the
other hand, other simulations such as the ones described in Robin
et al. (2003) and Girardi et al. (2005) show discrepancies of this
size as well at this latitude and longitude. This disappears at the
faint end, as compact galaxies start to leak into the stellar sample.
After that, a completeness drop kicks in as we enter the survey’s
magnitude limit. At the faint end, CLASS STAR shows a drop in
completeness sooner than the other classifiers. The nature of this
classifier, which provides an intermediate value of probability for
‘uncertain’ sources, is such that a fixed threshold cut tends to ‘lose’
stars at the faint end, if we adjust all classifiers to the same number
of stars.

5.3 Stellar density as a function of Galactic latitude

As a complementary measure of goodness of stellar identification,
we compare the number of stars as a function of Galactic latitude
(Fig. 13). We limit the comparison to the range in which any pos-
sible issues deriving from the current MOF processing are avoided
(see Section 5.2). A slight deficit is seen none the less as was veri-
fied before, but the comparison of all these different approaches is
qualitatively in the same range, without any preferred or outstanding
behaviour from any of the classifiers tested here.

13Y3 Gold MOF photometry has solved this issue.
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Figure 13. Counts for stars as classified by different algorithms compared
to a Galaxia simulation (Sharma et al. 2011) for the application field (SPT
region of the DES-Y1 footprint) for the magnitude range r = (19,21.5).

5.4 Galaxy versus stellar density

As mentioned in Section 4.2, we do not have a large-scale ‘truth’
table available that we could use as reference to check the precision
of our classification on an object-by-object basis. However, several
studies of LSS (e.g. Ross et al. 2011) have devised an estimate of
the purity of the galaxy sample, for a given classification scheme,
by measuring correlations of classified galaxy density versus some
reliable measurement of the relative stellar distribution (using a
very pure cut for stars, a model, or an external catalogue). This is
done via the pixelization of the field using the HEALPix software
(Górski et al. 2005) and fitting a linear relation between the galaxy
overdensity as a function of stellar density in said pixels. For this
study, we used a pixelization parameter NSIDE = 512, which
corresponds to a pixel size of approximately 0.01 deg2.

In Fig. 14, we show a comparison of the galaxy density as a
function of stellar density for several classifiers, tested on the appli-
cation field for the galaxy sample with the magnitude cuts shown in
Table 6. Errors for each point are computed using the jackknife
method (Efron & Stein 1981), whereas the ones in the table corre-
spond to the estimated error from the fit.

The galaxy density over samples of increasing stellar density
would theoretically increase with a linear relationship, if stellar
contamination was the only effect that a dense star field would
introduce. However, as seen already in Ross et al. (2011; in their
fig. 3), moderately bright stars can also induce an ‘occultation’
effect that makes detection around them more difficult. This effect
is more predominant for fainter sources. This will create an inverse,
possibly non-linear, relationship between galaxy density and stellar
density. The overall effect is to create a proportionality relationship
at low to moderate stellar densities, which may or may not change
in slope and even decrease, depending on the separation power of
the classifier, as galaxies get removed from the catalogue due to the
presence of foreground bright stars. For our purposes here, i.e. to
understand the star–galaxy separation power for different classifiers,
we use the intercept value of the linear fit to the first part of the plot,
in order to estimate the purity of the galaxy sample. We adjusted
the cuts for the classifiers to provide a similar number of detected
‘galaxies’ (i.e. a similar completeness) asMODEST CLASS, in order
to get a better handle on how purity compares on the same grounds,
similar to what we did on Section 4.4.1.

We note that using the application sample in bulk shows no strong
contamination component for the SPREAD MODEL- or MOF-based
quantities or for the ML approaches using magnitude and colour
information. Slightly better performance is found using MOF quan-

Figure 14. Galaxy versus star density plot for several classifiers, for i <

22 (top) and i < 23 (bottom). Star density is traced by an external map of
‘secure’ moderately bright stars.

tities and the ADABOOST code, especially for fainter objects. This is
explained by the more accurate shape measurement of the MOF code
and by how additional information is captured by ADA PROB MOF.

One of the components of these calculations is the choice of a
star map to establish the density relationships. We have derived a
∼1 per cent systematic uncertainty in the estimation of the impu-
rity derived from comparing brighter and fainter stellar samples
(Fig. 15). The 2MASS and Tycho-2 (Skrutskie et al. 2006; Høg
et al. 2000) stellar maps are included for completeness, but their
magnitude range does not track accurately the range of brightness
we need to account for Milky Way distribution in DES. Gaia’s DR2
corresponds to the data described in Gaia Collaboration (2018).

5.5 Galaxy ratio near the Large Magellanic Cloud

Using the same pixelization as above, we also approach the com-
parison of different classifiers using a figure of merit based on the
identified galaxy density in each of these pixels, as compared to
the one found at a certain distance to the centre of the LMC, set
at (α, δ) = (5h23m34.s.5, −69◦45′11′′). This value is normalized
to one at 30 deg from the centre of the LMC (Fig. 16). Here, we
use a flux-limited sample with i < 23. In this case, we can see a
clear advantage in using a classifier with multiple input attributes
(including colour), possibly helped by the fact that in a crowded
field such as the peripheries of the LMC, morphology starts to have
a smaller discriminating power. On the other hand, the LMC has a
bluer population, but this doesn’t seem to offset the ML classifica-
tion significantly, though this aspect is worth studying further in a
future work.
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Table 6. Contamination for different classification methods for the galaxy versus stellar density tests. Threshold cuts were selected to adjust to the same
number of detected galaxies as provided by MODEST CLASS.

Sample MODEST CLASS CLASS STAR ADA PROB ADA PROB MOF GALSIFT PROB MOF CM T

i < 22 2.7 ± 0.4 per cent 2.1 ± 0.5 per cent 2.2 ± 0.4 per cent 2.2 ± 0.4 per cent 2.3 ± 0.4 per cent 2.3 ± 0.4 per cent
i < 23 3.2 ± 0.4 per cent 4.6 ± 0.2 per cent 2.4 ± 0.4 per cent 2.1 ± 0.4 per cent 2.8 ± 0.3 per cent 2.4 ± 0.4 per cent

Figure 15. Star contamination levels for different stellar maps. A
∼1 per cent systematic uncertainty, derived by comparing the MOD-
EST CLASS moderate to bright stars, is estimated from this plot. Tycho
and 2MASS stars are added for comparison, but their magnitude ranges
(much brighter than the stellar sample considered as contaminants) do not
make them good candidates for deriving this uncertainty.

Figure 16. Galaxy ratio (with respect to galaxy density at 30 deg from
LMC) for as a function of angular distance from the LMC centre.

Using a metric such as this at a given fixed distance of the LMC
could be useful as a figure of merit. In this case, 10 deg seems
convenient, but we must remark that this could be due to the odd
geometry available around the LMC, so other photometric surveys
might find other ranges for comparison more valuable.

5.6 Stellar locus of classified stars

Finally, we tested the consistency of the stellar locus derived in r −
i versus. g − r colour space to a similar fit to stars in the COSMOS
field. The stellar locus was fit by a fifth-order polynomial, as shown
in Fig. 17, similar to what is realized in Covey et al. (2007). The
same fit curve from Fig. 17 is shown again versus several classifiers
in Fig. 18. In general, a good agreement is seen except for the faintest
end, where classified stars seem to deviate from the expected stellar
locus for CLASS STAR.

Figure 17. Fit to stellar locus using a fifth-order polynomial.

Figure 18. Stellar locus for star samples from various classifiers, for a
bright sample (i < 21, top) and a fainter one (i < 24, bottom).

6 D I SCUSSI ON: IMPLI CATI ONS FOR
L A R G E - S C A L E ST RU C T U R E A N D M I L K Y WAY
STUDIES

In the previous section, we explored a variety of tests both with and
without truth information assessing the relative performance of a
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wide range of star–galaxy classifiers in DES Y1 data. We now turn
to the impact of making different selections on scientific analyses of
interest to astronomers and cosmologists. Though it is beyond the
scope of this work to define specific choices for any arbitrary study,
in this section we sketch out the general implications of the results
shown here for two broad ranging topics of interest, namely the
LSS of galaxies and Milky Way analyses within DES. Regarding
weak-lensing shear catalogues, Zuntz et al. (2017) have shown that
star–galaxy contamination is at most a second-order contaminant
when either MODEST CLASS or MCAL RATIO are used for the
DES Y1 cosmology analyses. For a thorough discussion on LSS and
weak-lensing requirements for star–galaxy separation, Soumagnac
et al. (2015) provides an in-depth review.

6.1 Large-Scale Structure

The impact of stellar contamination on studies of clustering ampli-
tude has been well studied for several years now (e.g. Ross et al.
2011; Crocce et al. 2016) with an impact of the order of (1 − I)2 in
the angular correlation function ω(θ ) if we assume an unclustered
component that contaminates the galaxy population with impurity
fraction I. A large contamination can severely dilute the signal
(reducing the significance of the BAO peak as shown by Carnero
et al. 2012), or even create a large-scale component if unaccounted
for, thus mimicking an effect such as primordial non-Gaussianities
(Giannantonio & Percival 2014). However, in the range I ∼ O
(2 per cent), the accuracy by which we determine I becomes much
more relevant, as this is the systematic that will dominate in the
determination of the uncertainty in galaxy bias measurements and
multiple probe analyses.

Fig. 14 implies that the choice of classifier does not matter too
much for cosmology analyses in the broadest sense. However, going
into a more realistic sample for LSS studies, using a selection for red
galaxies that have better estimated photo-z and galaxy bias (Crocce
et al. 2017) for BAO analysis for example, some evident differences
appear for the highest redshifts (where due to their colours, many
faint stars are misclassified into those bins of photo-z). This is the
main photo-z region of interest for BAO for DES. Also between the
classifiers, which become more evident, when the flux cut is driven
to fainter magnitudes as shown before. See Fig. 19.

These results show that a realistic LSS sample, is more severely
affected by stellar contamination, driving the impurity levels up
to 5–6 per cent in some redshift bins. This is seen more clearly in
Fig. 20 where photo-zs are shown for the true stars in the fields
overlapping the COSMOS region for a general selection and an
LSS-like, red galaxy selection. One way to drive down this impurity
therefore is to either apply more stringent constraints to the star–
galaxy thresholds, sacrificing a per centage of true galaxies along the
way. For the case of MODEST CLASS and ADA PROB MOF, we can
push down to 2 per cent by removing ∼9 per cent and ∼4 per cent
galaxies, respectively. Though an ML approach seems more con-
venient in this case, the use of colour and magnitude information
may lead to potential correlations between object classification and
photo-z determination that must be investigated in more detail. As
for the uncertainty of determining I using the density plots, Fig. 15
shows that using fainter stellar maps to derive the impurity via
this method generates a different contamination rate. This can be
due to tracing of different components of the Galaxy, but for maps
built upon possibly contaminated data it could well be that the star
maps themselves are not ideal (e.g. the bright MODEST CLASS
stars could have a small component from misclassified compact
galaxies). An improvement in understanding the underlying Galac-

Figure 19. Stellar contamination level as a function of redshift for a bright
sample (top, i < 22) and a faint sample (bottom, i < 23), derived with
the method described in Section 5.4 for different samples classified by
photometric redshift.

Figure 20. Normalized distribution of BPZ redshifts for a typical red galaxy
sample that would be used for LSS studies, over a region with known
identification of stars and galaxies through Hubble Space Telescope imaging.

tic stellar structure through simulations or an adequate culling of
the reference stellar maps to improve agreement would reduce this
limitation in the determination of the impurity level, I.

6.2 Milky Way

In the case of Milky Way studies, in broad terms we are interested
in obtaining a more complete and pure stellar sample, down to faint
magnitudes. Studies, such as those in Fadely et al. (2012), show
that currently this can become a major systematic effect in deriving
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Figure 21. Star–galaxy ratio in differential MAG AUTO bins, taken from
the COSMOS ACS catalogue. Point sources are overwhelmed by extended
sources in the faint end.

the Galaxy structure. Additionally, misclassified galaxies become
a limiting factor for discovering faint resolved stellar overdensities
(e.g. Willman 2010; Bechtol et al. 2015; Drlica-Wagner et al. 2015;
Pieres et al. 2017). This problem is evidenced returning to the
COSMOS ACS catalogue used in Section 4, which can be used
to understand the ratio of stars to galaxies up to a very faint limit
(shown in Fig. 21).

In this sense, the results in Pieres et al. (2017) or Shipp et al.
(2018), for example, show that the very good results can be ob-
tained based on a multi-epoch based classifier such as the weighted
averaged SPREAD MODEL quantity or the MOF pipeline.

The use of ML codes in this case is limited by the fact that if we
want to study the distribution of specific types of stars, or search
for Milky Way neighbours with a particular range of colours and
magnitudes, we have to be very careful with introducing biases or
complex selection functions in our application sample, much like
what happens with photometric redshifts for the LSS case.

What the results of this study show (e.g. Fig. 4) is that the MOF
technique has the potential of being the best candidate for selecting
stellar candidates from its very tight morphological stellar locus
and its capacity of reaching deeper into the separation of extended
and point-like sources, increasing by ∼20 per cent the amount of
stars in the sample for a given purity and magnitude cut versus a
‘classical’ SPREAD MODEL cut (in this plot, at 0.8 purity we go
from 0.70 to 0.84 completeness). However, additional fine tuning
of the algorithm is needed to reach a good completeness in the
bright end, where the model fit is not especially attuned to fits of
stellar shapes. This is an open line of development in the algorithm
in DES.

7 C O N C L U S I O N S

In this paper, we have compiled a wide variety of tests over a diverse
array of star–galaxy classifiers for the DES Y1 data set. These tests
can be ported or used as examples for any other photometric data set.
The classifiers range from well-tested algorithms in the literature,
to new developments using morphological information and/or flux
information, using priors for stars/galaxies or training sets for ML
codes based on space imaging information from the Hubble Space
Telescope. We have studied their relative performance both using
accurate truth information from spectroscopic and space imaging

external data sets, and devised tests over the broad DES Y1 footprint
that do not require this information. In the light of these results, we
have analysed the impact of using these algorithms on two broad
science cases of interest to users of the DES data, namely, LSS
analyses and Milky Way studies. Star–galaxy classification remains
as a non-dominant but important systematic source of error for
cosmology, and very critical for Milky Way structure measurements
and discoveries. These are the specific items that were highlighted
in this work:

(i) ML methods perform very well on calibration fields tests
(Figs 2–4 and Table 5). In the application field the results are slightly
better than for non-ML classification, especially in the faint end
(Fig. 19). Optical colour-based classifiers, however, could poten-
tially introduce biases in sample selection.

(ii) Although CLASS STAR has been used in the past to good ef-
fect, its lack of performance in the faint end (see e.g. Figs 1 and 12)
leads us to recommend alternative classification methods such as
SExtractor’SSPREAD MODEL or a multi-epoch fit to the shape.
In this sense, using multi-epoch, multi-object fitting instead of di-
rectly using coadded information is the preferred option for object
classification in optical wavelengths (as shown in Section 4).

(iii) As has been demonstrated in the past, the addition of infrared
data is very valuable, albeit limited currently by the depth and
extension of such surveys (Section 4.4.2).

(iv) Photometric redshift binning will affect stellar contamination
of specific galaxy samples (Fig. 20).

7.1 Expected improvements for Y3 and beyond

Considering these results, we have identified very clear future di-
rections to expand and improve star–galaxy classification in forth-
coming DES science analyses (Y3 and beyond):

(i) Improvement of the MOF quantities to better fit stellar shapes
and prevention of fitting failures.

(ii) Understanding the impact of using colour information on
specific science cases (photo-z, stellar type selections) to ascertain
whether or not the usage of this information in ML codes hampers
their utility for star–galaxy separation in extragalactic and Milky
Way studies, respectively, in exchange of an additional 2–5 per cent
in purity depending on the case.

(iii) The combination of information as done in Kim et al.
(2015) from different approaches, especially adding external in-
frared colours, could greatly benefit the performance of some clas-
sifiers. Once an adequate template set is studied for the DES data,
trying to overcome the impact of the lack of u-band information,
template-based codes could be considered as well to complement
this impact study. In addition, this would provide a truly proba-
bilistic output that could be employed in statistical studies of LSS,
removing the need of having to eliminate a subsample of galaxies
according to an arbitrary threshold.

(iv) Besides VHS data, the addition of Gaia’s DR2 information
(Gaia Collaboration 2018) will provide a robust and broad comple-
ment to these tests at magnitudes r < 21.

7.2 Ideas for further study

Finally, we call attention to other approaches and tests that we have
not specifically investigated here that could be relevant for future
studies:
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(i) Adding available u band and specially infrared band informa-
tion using matched-aperture photometry as part of the algorithms
used here.

(ii) With respect to a template-fitting approach, the characteris-
tics of this data set (lack of u band or infrared information), severely
limit its usability. But expanding the data set, jointly with an accurate
understanding of the template range to be used can be considered
as a promising approach, if these requirements are met, to be used
in a joint probabilistic method.

(iii) Including very detailed image-based simulations for train-
ing, such as Balrog (Suchyta et al. 2016) or UFIG (Chang et al.
2015), to understand the failure modes of different classifiers.

(iv) Adding seeing as part of the features of the ML classifiers
as well as for characterization of the performance of the different
approaches.

(v) Usage of the object position in the sky can also provide an
additional lever for a probabilistic approach, as a prior to be added
to the overall posterior estimation. This should be approached with
care for certain analysis (e.g. Milky Way structure).

(vi) PSF homogeneization will improve the SExtractor esti-
mates as shown in Desai et al. (2012). However, using MOF-based
photometry is a more promising alternative that avoids some of the
problems associated with homogenization.

(vii) Convolutional neural networks (e.g. Kim & Brunner 2017)
can be applied directly to the images to provide a new and com-
plementary approach to ML applied at catalogue-level. Image-level
analyses may benefit using information from multiple (>10) bands
(e.g. Cabayol et al. 2018).

The data used in this paper are provided at http://des.ncsa.illinoi
s.edu/releases/y1a1.
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APP ENDIX A : ADA PROB T E C H N I C A L D E TA I L S

This appendix describes the details of one of the ML frameworks
called ADA PROB.

The framework first selects an exhaustive list of photometric
properties, or features, and generates linear combinations of these
features to produced new features. This may include unphysical
combinations, such as magnitudes and radii being combined. We
also generate features ‘intelligently’, by using the current state of
the art. For the problem of star–galaxy separation for DES, this
means including both a binary MODEST CLASS class value, and a
continuous MODEST CLASS variable for both stars and galaxies.

Next, the enormous feature list is sorted by rank, using the value
of the mutual information,14 which is a non-linear correlation co-
efficient, between the selected feature and the target class. Finally
the top 150 features are selected to form the inputs to the ML
algorithms.

The framework then explores many ML algorithms, each of
which are trained with random variations of each of their own
hyper-parameters. The framework explores a plethora of algorithms,
drawn from the sci-kit-learn (Pedregosa et al. 2011) package. These
include AdaBoost, which often performs well, and also Random
Forests, Extra Randomised Trees, Quadratic Discriminant Analysis
and the K-Nearest Neighbours Classifier.

The performance of each selected algorithm and set of hyper-
parameters is quantified by measuring the average F1 score on 30
held out samples during 30 fold cross validation. The F1 score is the
geometric mean between the precision and the recall, and 30 fold
cross validation is akin to making 30 jackknife samples of the data,
training on all but the held out sample, and then making predictions
on that held out sample, and then repeating. The held out jackknife
results, or ‘class weights’, for each training object are retained for
future classification calibration.

The winning algorithm and hyper-parameter set is then retrained
on the full training sample. The training procedure is deemed to have
been completed once at least 50 systems have been explored and
when the F1 score has not been improved upon after 20 iterations. In
our empirical experience, we find this to be a generally stable point
at which one can stop the exploration of the different algorithms,
hyper-parameters, and move on to the final stage of the framework.

This final stage then uses isotonic regression to calibrate the held
out class weights of the training data. This enforces the statistical
properties of the class weights to more closely resemble a probabil-
ity. This rescaling is performed by comparing the total number of
those objects within a class weight bin, with the fraction of objects

14https://en.wikipedia.org/wiki/Mutual information

to have the true class value. This comparison leads to a rescaling of
class weights to class probabilities which we note are conditional
on the training data.

The winning ML algorithm, which happened to be AdaBoost in
this case, is then used to make class weight predictions on both the
test sample and the science samples, and their output class weights
are scaled using the previously learned rescaling, to make them
more closely resemble probabilities.

We can also perform a feature importance analysis (see, e.g.
Hoyle et al. 2015) which suggests that the features with the
most predictive power are indeed those derived from MODEST,
with other ranking features being WAVG SPREAD MODEL R and
MAGERR MODEL I.

A PPEN D IX B: EX TER NA L DATA SETS

B1 Access to external catalogues used in this work

The catalogue used in Section 4 and listed on Table 1 can be obtained
from the following website: http://des.ncsa.illinois.edu/releases/y1a
1.

B2 Queries used to extract the data sets

Query to the SDSS CASJOBS interface (used as imaging truth table
for some tests) to obtain 2MASS, WISE matches with SDSS data,
to match with DES data on same area.

SELECT
s.ra, s.dec, s.dered r,
w.w1mpro as w1, w.j m 2mass as j, s.z,
s.class

INTO
mydb.stripe82 wise 2mass z match

FROM
wise xmatch as xm

JOIN
specPhoto as s on xm.sdss objid = s.objid

JOIN
wise allsky as w on xm.wise cntr = w.cntr

WHERE
((s.dered g < 23.0) or (s.dered r < 23.0)
or (s.dered i < 23.0)) and
((s.ra > 0 and s.ra < 5 and s.dec > -

2.5 and
s.dec < 3.5) or (s.ra > 315 and s.dec > -

3
and s.dec < 3)) and s.zWarning = 0
and s.zErr < 0.001

Query to the SDSS CASJOBS interface (used as imaging truth table
for some tests) to match with DES and VHS data on same area.

SELECT
s.ra, s.dec, s.dered r, s.z, s.class

INTO
mydb.stripe82 z dr13

FROM
specPhoto as s

WHERE
((s.ra > 0 and s.ra < 5 and
s.dec > -2.5 and s.dec < 3.5) or
(s.ra > 315 and s.dec > -3 and
s.dec < 3)) and s.zWarning = 0
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and s.zErr < 0.001

Query to the Hubble-SC CASJOBS interface (used as imaging truth
table for some tests):

SELECT
p.MatchRA, p.MatchDEC, p.MatchID as hscv2 id,
p.CI, p.CI Sigma, m.A F814W, m.A F814W Sigma

INTO
hsc source catalogue

FROM
SumPropMagAutoCat p

JOIN
SumMagAutoCat m ON p.MatchID = m.MatchID

WHERE
m.A F814W > 0 and m.A F814W Sigma is not null
and p.numimages > 2

Query to the VISTA Science Archive, using the VHSDR3 data
base.

SELECT ra, dec, jpetromag, jpetromagerr,
jmksext, jmksexterr

FROM
vhsSource

WHERE
jerrbits = 0 and kserrbits = 0 and
(priOrSec=0 OR priOrSec=frameSetID) and
dec between -2 and 2 and (ra > 315 or

ra < 5)

Query to Gaia’s DR2, using the CosmoHub (Carretero et al. 2017)
interface.

SELECT ‘ra‘, ‘dec‘, ‘phot g mean mag‘,
‘l‘, ‘b‘,
‘phot g mean flux over error‘,
‘astrometric primary flag‘

FROM gaia dr2
WHERE
((‘ra‘ > 305) or (‘ra‘ < 90)) and

(‘dec‘ > -61)
and (‘dec‘ < -35) and phot g mean mag > 18.5
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20921-400, Brazil
27Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
28Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid,
E-28049 Madrid, Spain
29Institut d’Estudis Espacials de Catalunya (IEEC), E-08193 Barcelona,
Spain
30Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can
Magrans, s/n, E-08193 Barcelona, Spain
31Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
32Department of Physics, The Ohio State University, Columbus, OH 43210,
USA
33Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138,
USA
34Department of Astronomy/Steward Observatory, 933 North Cherry Av-
enue, Tucson, AZ 85721-0065, USA
35Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak
Grove Dr., Pasadena, CA 91109, USA
36Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
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