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ABSTRACT 15	

Chronic obstructive pulmonary disease (COPD), one of the leading causes of death worldwide, is 16	

substantially influenced by genetic factors.  Alpha-1 antitrypsin deficiency demonstrates that rare coding 17	

variants of large effect can influence COPD susceptibility. To identify additional rare coding variants in 18	

patients with severe COPD, we conducted whole exome sequencing analysis in 2,543 subjects from two 19	

family-based studies (Boston Early-Onset COPD Study and International COPD Genetics Network) and one 20	

case-control study (COPDGene). Applying a gene-based segregation test in the family-based data, we 21	

identified significant segregation of rare loss of function variants in TBC1D10A and RFPL1 (P < 2x10-6), 22	
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but were unable to find similar variants in the case-control study.  In single variant, gene-based, and 1	

pathway association analyses, we were unable to find significant findings that replicated or were significant 2	

in meta-analysis.  However, we found that the top results in the two datasets were in proximity to each other 3	

in the protein-protein interaction network (p=0.014), suggesting enrichment of these results for similar 4	

biological processes.  A network of these association results and their neighbors was significantly enriched 5	

in the transforming growth factor beta-receptor binding and cilia-related pathways.  Finally, in a more 6	

detailed examination of candidate genes, we identified individuals with putative high-risk variants, 7	

including patients harboring homozygous mutations in genes associated with cutis laxa and Niemann-Pick 8	

Disease Type C.  Our results likely reflect heterogeneity of genetic risk for COPD along with limitations of 9	

statistical power and functional annotation, and highlight the potential of network analysis to gain insight 10	

into genetic association studies. 11	

 12	

Introduction 13	

Chronic obstructive pulmonary disease (COPD) is a heterogeneous and complex disease, with a significant 14	

genetic component to its susceptibility(1). Using genome-wide association analysis (GWAS), a number of 15	

COPD susceptibility loci have been identified, including FAM13A (2), HHIP (3, 4), and 16	

CHRNA3/CHRNA5/IREB2 (5-7). Complementary studies have identified more than a hundred loci 17	

associated with lung function, many of which likely also affect risk of COPD(8, 9). However, identified loci 18	

only explain 5-10% of the heritability of COPD or quantitative measures of lung function traits (8, 10). 19	

GWAS effectively tests common variants, but the well-known examples of alpha-1 antitrypsin 20	

deficiency(11), cutis laxa (12-16), and the more recently described association between telomere-related 21	

genes (17-19) indicate that, as has been shown for other diseases(20-24), rare coding variants also contribute 22	

to COPD risk. 23	

We previously analyzed exome sequencing data of 49 families with severe, early-onset COPD, and, 24	

although we found several candidate genes, none showed convincing evidence of replication (25, 26). We 25	
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further showed using simulations that genetic heterogeneity may be a major contributor to this failure to 1	

replicate(26). In this study, we applied additional sequencing and analytic strategies to increase the sample 2	

size and the power of the analysis. We applied a recently developed family-based method, GEne-based 3	

SEgregation (GESE) (25), to a larger family-based dataset enriched for severe COPD, and also performed 4	

single-variant, as well as set-based tests using SKAT-O for both genes and pathways in the family-based 5	

and in an additional case-control study.   We tested for enrichment of our results in gene expression and 6	

monogenic models of disease, and examined the overlap between case-control and family-based results 7	

using network analysis.  Finally, we investigated a set of candidate genes identified in previous genetic 8	

studies, including Mendelian syndromes, for potentially deleterious rare variants.  9	

Results 10	

Gene-based segregation test on the ICGN and Boston EOCOPD pedigrees 11	

Baseline characteristics of the studied subjects are shown in Table 1. Additional information on the 12	

probands can be found in Supplementary Table S1. To identify causal variants in our exome sequencing 13	

data with the characteristics of Mendelian variants for COPD (e.g. alpha-1 antitrypsin deficiency), we 14	

applied our recently described gene-based segregation (GESE) test (25) to the family-based data. We 15	

focused on ultra-rare (MAF < 0.1%) predicted loss-of-function variants. Two genes were significant after 16	

Bonferroni correction for the total of 18268 genes: RFPL1 (p = 1.60e-06) and TBC1D10A (p=1.10e-06). 17	

RFPL1 segregated in 4 families, including two singleton families and two families with affected sibling 18	

pairs of severe COPD. TBC1D10A segregated in a parent-offspring pair and a singleton family. TBC1D10A 19	

is intolerant to loss-of-function variants (ExAC intolerance probability = 0.98 (27)). The top 10 genes from 20	

this analysis are shown in Table 2. All 10 of these genes are expressed in the adult lung (see Methods, 21	

enrichment p = 0.17), and the expression of 5 out of 9 of those genes was associated with forced expiratory 22	

volume in 1 second (FEV1) % predicted, a measure of COPD severity, in our lung tissue data (enrichment p 23	

= 0.024). We further sought supportive evidence for association of these genes in the COPDGene case-24	

control dataset.  However, no subjects harbored loss of function variants in these genes.  We additionally 25	
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tested for evidence of higher burden of rare (MAF < 0.1%), non-synonymous variants in the cases, and did 1	

not find convincing evidence of association (RFPL1 p=0.576; TBC1D10A p=0.081). 2	

Single-variant association analysis in the case-control and family data 3	

Next, we performed single variant association analysis. We tested both rare coding variants (moderate effect 4	

by SNPEff, and MAF < 5%) as well as all variants. We found no significant results (Supplementary Table 5	

S2 and S3) in either our primary analysis using COPDGene as the discovery cohort (using a Bonferroni 6	

significance level of 1.32e-06 for non-synonymous variants with MAF < 5%, and 5.07e-07 for all variants), 7	

or using the family-based data (3.55e-07 for non-synonymous variants with MAF < 5% and significance 8	

level 1.86e-07 for all variants).  However, top variants in the case-control analysis included rs8040868 9	

(MAF = 0.41) and rs1051730 (MAF = 0.35) in CHRNA3(28) with p = 5.05e-05 and 7.39e-05 respectively, 10	

which reside at a previously described GWAS locus (Supplementary Table S2). Top variants in the 11	

family-based analysis included rs2232710 (MAF = 0.012; p = 4.05e-05) in SERPINA10 (in high D’ with the 12	

alpha-1 Z allele, which causes alpha-1 antitrypsin deficiency – note that severe alpha-1 antitrypsin 13	

deficiency, including ZZ homozygosity, was an exclusion criteria for these studies) and rs10507051 (MAF 14	

= 0.063; p = 1.28e-04) in VEZT (Supplementary Table S3), near a locus associated with COPD in a recent 15	

GWAS of lung function(8).  We also considered whether any variants were significant in meta-analysis by 16	

combining results from the two studies (case-control status in the COPDGene data, and lung function in the 17	

BEOCOPD-ICGN data) using the Stouffer method. Meta-analysis did not identify significant variants 18	

among the rare coding variants (significance level 2.82e-06) or among all variants (significance level 7.08e-19	

07) (Supplementary Table S4, Supplementary Table S5); top results overall included variants in 20	

CHRNA3 and SERPINA10. 21	

Gene-and pathway-based analyses in case-control and family data 22	

Next, we performed gene-based analyses. In the analysis using SKAT-O and predicted deleterious variants 23	

with a MAF < 1%, we found no significant genes in the COPDGene data. The top 10 genes are shown in 24	

Supplementary Table S6. We found no significant enrichment of genes expressed in lung (enrichment p = 25	
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0.97) among the top 10 genes. However, four genes have expression associated with FEV1 % predicted (p = 1	

0.087), including the top two genes VNN1 and PLA1A. EGFL8, the 3rd ranked gene in the list, is located near 2	

the AGER locus which was previously associated with risk of COPD (8, 9). In the pathway analysis using 3	

the KEGG(29) database, we found one significant pathway using the burden test, the Jak-STAT signaling 4	

pathway (p = 6.78e-05)(30). However, association with this pathway was not replicated in the family-based 5	

analysis (p = 0.54) using the burden test. Top results from family-based analyses can be found in 6	

Supplementary Table S7. We also conducted a meta-analysis of the COPDGene dataset and the 7	

BEOCOPD-ICGN dataset; however, no gene achieved significance (Supplementary Table S8). 8	

Enrichment and network-based approach to overlap 9	

Given our lack of significant associations using standard association tests, we sought evidence that our top 10	

case-control and family-based results were enriched for associations with COPD. We tested for enrichment 11	

of overlap of genes yielding nominal significance (i.e. p < 0.01) between the case-control and the family-12	

based association results using a standard hypergeometric approach. The enrichment p-value was 1, which 13	

was consistent with our lack of overlap and meta-analysis findings.  14	

While we did not observe overlap between the top results in the case-control analysis and the family-based 15	

analysis using a simple hypergeometric test, we were interested in studying common biological pathways 16	

shared by the two sets of top genes. Recently, network-based methods have demonstrated the ability to 17	

identify related diseases in the protein-protein interactome (31). We hypothesized that application of this 18	

method to two independent association results for COPD would a) identify whether there were overlapping 19	

association signals, despite the lack of replication; and b) identify genes or pathways of highest priority. We 20	

computed the network-based separation (31) defined as the normalized average shortest path between 21	

members from the two modules to see whether top genes from the case-control and family-based analysis 22	

were close to each other in the protein-protein interaction (PPI) network. For the analysis of rare and 23	

deleterious variants, we found genes with p < 0.01 from the case-control analysis and the family-based 24	

analysis had significantly overlapping neighborhoods with negative separation score (score = -2.29, p = 25	

0.014). To explore the neighborhood of these genes and the common pathways that connect the top genes, 26	
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we added the first neighbors of the top genes in the PPI. These genes (top genes, along with all of their first-1	

degree neighbors - a total of 522 genes) formed a largest connected component (LCC) of 513 genes, which 2	

means almost all the top genes and their first neighbors were connected. Figure 1 shows the network 3	

module containing the largest connected component formed by the top genes from the two analyses and 4	

their first neighbors. There were 19 genes with p < 0.01 in the family-based data, which had 274 first-degree 5	

neighbors in the LCC network; there were 14 genes with p < 0.01 in the COPDGene data, which had 216 6	

first-degree neighbors. Between the two groups of 274 and 216 first-degree neighbors, 10 overlapped, thus 7	

these genes together formed a network module of 513 genes.  14 genes at loci previously associated with 8	

COPD or lung function (out of 329 genes in the curated set, see Methods) were in this set (enrichment p = 9	

0.065, Supplementary Material). Additional examination of these genes in murine models showed that the 10	

513 genes were significantly enriched for genes associated with the respiratory system (enrichment p = 11	

0.045) and were enriched for genes involved in normal murine lung development in three common inbred 12	

strains of mice (enrichment p = 1.35e-02, 1.96e-03 and 2.40e-03, respectively) (See Methods). From this 13	

result, we postulate that there is a large disease network module exists likely including a subset of these 513 14	

genes for severe COPD, and only part of this disease module was observed using either analysis alone due 15	

to limited power. However, since the two sections of disease module share similar function and pathways, 16	

they were significantly close to each other in the PPI network. 17	

To further explore the functions of this network, we also looked at the pathways enriched for these 513 18	

genes using ToppFun in the ToppGene Suite(32), and found a large number of Gene-ontology pathways 19	

were significantly enriched. To examine more specific pathways, we examined GO pathways with fewer 20	

than 100 genes in total. The top two pathways meeting these criteria were “GO:0005160: transforming 21	

growth factor beta (TGFB) receptor binding” and “GO:0030991: intraciliary transport particle A”. Fourteen 22	

out of fifty three genes in the TGFB receptor binding pathway were present in the network module. Multiple 23	

lines of evidence, including genetic association (which has identified TGFB2) and other genomic and 24	

mechanistic studies have implicated this pathway in risk to COPD (33-35). Twelve of these fourteen genes 25	

are expressed in human lung tissue (two genes have missing data). The right panel in Figure 1 shows the 26	
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small network formed by genes in this pathway and ACVR2B, which was the top-ranked gene from this set 1	

of genes in the association analysis and was also the second largest hub in the network. For the “intraciliary 2	

transport particle A pathway” (36) , seven out of eight genes were in the network, which are shown in the 3	

left panel in Figure 1. Six out of seven genes were expressed in human lung tissue (one gene had missing 4	

data). TULP3 was in the top ranked genes from the family-based analysis and was the largest hub in the 5	

module. TULP3 is a known target of the Hedgehog pathway. Notably, genome-wide association studies and 6	

follow-up functional studies have identified an important role for HHIP in the development of COPD(7); 7	

TULP3 has been shown to change expression after HHIP silencing (37). Also, WDR35 and IFT140 were 8	

associated with respiratory system abnormalities in mouse models (WDR35 leads to lung hypoplasia and 9	

mutations in IFT140 produces severely misshapen lungs). Additional top results from this GO analysis can 10	

be found in Supplementary Table S9. Thus, our network results highlight ACVR2B and TULP3, which 11	

may be prioritized for further examination of functional rare variants. 12	

Evidence of association for candidate genes 13	

A substantial proportion of rare variants identified for complex disease are located at loci that also harbor 14	

common risk variants (38, 39). In addition, several Mendelian syndromes have COPD, emphysema, or 15	

obstructive lung disease as a manifestation of disease. Therefore, in addition to looking at exome-wide 16	

results, we examined a list of the 329 curated genes (see Methods, Supplementary Table S10) (1, 7-9, 12-17	

19, 40-45). This included regions identified from 105 SNPs from GWAS analyses(8, 9) and 29 Mendelian 18	

genes with manifestations that include COPD or emphysema in their resulting syndromes (Supplementary 19	

Material). We examined functional and rare variants with MAF < 5%, and found multiple genes to be 20	

nominally associated with COPD status or FEV1  % predicted value, including CHRNA5, AGER, and 21	

CYP2A6 (Supplementary Table S11). To identify whether there was any independent evidence of rare 22	

variant effects at these loci in the COPDGene cohort, we conditioned on the risk allele for the 104 SNPs 23	

identified by GWAS.  Several genes were still nominally significant after conditioning on the GWAS SNPs, 24	

including CYP2A6 (full results shown in Table 3); whether these rare variants have independent effects on 25	

COPD susceptibility at these loci will likely need to be addressed by additional, larger studies.  26	
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We also looked closely at the 29 genes causing Mendelian syndromes including emphysema or obstructive 1	

lung disease as part of their syndrome. To determine whether there was enrichment in these genes in our 2	

dataset, we performed a burden test including only variants with MAF < 0.1% in ExAC and predicted 3	

deleterious by FATHMM, SIFT, and CADD (>15). We found that the burden-based tests gave a p = 0.80 in 4	

the COPDGene case-control study, and a p = 0.018 for the family-based EOCOPD and ICGN data. Thus, 5	

we observed some significant accumulation of deleterious variants in these genes in the family-based data, 6	

suggesting that ultra-rare variants in these Mendelian genes contributing to lung function may be related to 7	

severe COPD risk in our family-based datasets. 8	

To examine these variants individually, we intersected variants in these genes with Clinvar, using an 9	

annotation of significance level 4 (likely pathogenic) and above, and additionally included variants in 10	

published reports associated with respiratory disease in TERT (17-19, 41-43). We found 47 of these variants 11	

in our datasets. These variants are listed in Supplementary Table S12 along with their counts among cases 12	

and controls separately.  Given the strong evidence of pathogenicity for variants in SERPINA1 and 13	

telomere-related genes, these findings are shown in Table 4. We also assessed the carriers of these rare 14	

variants using a recessive model of inheritance, and those variants with homozygous genotypes present in 15	

any dataset are listed in Table 5. Among our findings for Mendelian genes were two previously identified 16	

cases from COPDGene with heterozygous TERT variants (19), and evidence for an increased burden (cases 17	

> controls) for the SERPINA1 Z and PI P (Lowell) (rs121912714) (Table 4). For recessive variants, we 18	

identified rs140130028, a splice-donor variant in NPC2, which is a gene for Niemann-Pick disease type C2, 19	

a disease previously associated with emphysema (46) (Table 5). One pair of sibs with severe COPD in the 20	

ICGN study was homozygous for this variant; two of their half-siblings carried one copy, one with severe 21	

COPD. None of these subjects had known Neimann-Pick disease.  Also, variant rs61748181 in TERT was 22	

present as homozygous in 7 unrelated cases in the datasets (Table 5). While this association did not reach 23	

candidate-wide significance (p = 0.167), this variant was experimentally demonstrated to induce telomere 24	

dysfunction (47) and predicted to be disease causing by Mutation Taster (48). For variants not annotated by 25	

Clinvar or annotated with a significance level of 3 (uncertain significance) or below, we filtered based on 26	



	 11	

MAF < 0.1% in ExAC v0.3 non-Finnish Europeans and predicted deleterious effects by FATHMM, SIFT, 1	

or CADD (>15). There were in total 346 such variants in our datasets. One of these variants occurred in 2	

homozygous form in a proband with severe COPD in the BEOCOPD study. This variant is an ultra-rare 3	

splice-acceptor variant in ATP6V0A2 (novel in ExAC database) (Table 4), a Mendelian gene for cutis laxa. 4	

A chest CT scan of this subject showed severe emphysema, however, no phenotypic information related to 5	

dermatological characteristics was available. In addition, 66 variants were predicted to be deleterious by all 6	

three annotations: FATHMM, SIFT and CADD (>15), and had supportive evidence in our datasets (with 7	

greater counts in cases than in controls, Supplementary Table S13). Multiple variants have supportive 8	

evidence in both case-control and family-based datasets. For example, rs141310608 in EFEMP2 is present 9	

in 2 cases in COPDGene study and 2 cases in BEOCOPD-ICGN study, while none in controls. Also, there 10	

are multiple ultra-rare variants in COL3A1 are carried by cases and none by controls. We have also listed the 11	

variants that are predicted to be deleterious by all annotations, but are present in more controls than cases; 12	

these variants are less likely to be high penetrance COPD susceptibility variants (Supplementary Table 13	

S14). We also applied a more liberal filtering criteria (MAF < 0.05, CADD > 10 or predicted to be 14	

deleterious by SIFT and FATHMM) for TERT, RTEL1, CFTR and SERPINA1. Detailed information about 15	

these genes can be found in Supplementary Tables S15, S16 and S17 respectively.  16	

Discussion 17	

COPD is a common and heterogeneous disease; under the common-disease-common-variants hypothesis, 18	

we expect that multiple common variants should contribute to a large proportion of COPD risk. However, 19	

even though a number of COPD GWAS loci have been discovered through large-scale collaborative efforts, 20	

most of the estimated heritability remains unexplained. Examples such as alpha-1 antitrypsin deficiency, 21	

cutis laxa, and more recently, telomeropathies are associated with COPD and emphysema (17-19). These 22	

results motivated us to search the entire exome for large effect variants that could represent a Mendelian 23	

subtype of COPD, in the hope of finding new treatment strategies for a subset of the patients. In this study, 24	

we examined multiple cohorts representing the largest exome sequencing study of COPD to date ascertained 25	

under an extreme phenotype approach (where samples were enriched for sever COPD and normal controls 26	
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heavily exposed to smoking but with normal pulmonary function), to screen through the entire exome to 1	

identify rare coding variants controlling risk to COPD. Results failed to identify new genes, pathways, or 2	

variants consistently significant across all of our analyses, suggesting that single-variant or single-gene 3	

effects of a contribution as large as alpha-1 antitrypsin deficiency are unlikely to exist (26). Yet, a network-4	

based analysis identified a significant relationship between the two modules formed by the top results of the 5	

two analyses. These two sets of top genes, along with their first neighbors in the protein-protein interaction 6	

network, form a well-connected network component. This largest connected component was significantly 7	

enriched in genes involved in fetal lung development in mouse models (49). Additionally, this module sheds 8	

light on related functions or pathways where such rare variants may be contributing to risk to COPD. For 9	

example, multiple studies have suggested the transforming growth factor beta pathway is associated with 10	

COPD(50), and the TGFB2 locus was associated with COPD in genome-wide association studies (GWAS) 11	

(51). Our study identified ACVR2B as a potential candidate; of interest, ACVR1B, an activin receptor which 12	

interacts with ACVR2B (52) was identified in a network-informed genetic association study of COPD (53) 13	

and in a integrative analysis of emphysema distribution (54).  14	

Our finding lends further support to the transforming growth factor beta pathway and also suggests that rare 15	

variants related to ACVR2B may contribute to COPD risk. Similarly, the identification of TULP3 lends 16	

further support to the identification of HHIP as a causal gene at this GWAS locus and the importance of the 17	

hedgehog pathway in the development of COPD.  The identification of cilia-related pathways is intriguing 18	

given the importance of cilia to lung function (55), including reports from a smaller exome study of resistant 19	

smokers (56) and reports of shortened cilia in smokers and in COPD patients (36).  20	

Finally, we identified subjects carrying homozygous genotypes of rare and deleterious variants in Mendelian 21	

genes for cutis laxa and Niemann-Pick disease, which are themselves intriguing candidates for causing 22	

severe COPD. These findings illustrate the potential relevance of using filtering-based technique for 23	

identifying syndromic forms of COPD. While we do not have enough power to individually test these or 24	

other individual rare variants here, our results may provide support for future studies in these recognized 25	

candidate genes. 26	
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COPD is known to be a highly heterogeneous disease, with varying contributions of emphysema and small 1	

airway disease. We did not examine specific subsets of COPD, as detailed phenotyping was not available in 2	

all cohorts. Multiple analysis methods are available for rare variant analysis ((57)), and the optimal methods 3	

are still not clear. Our sequencing of a large number of affected individuals in families was appropriate for 4	

methods such as GESE, which leverages a large reference dataset (ExAC); an alternative approach using 5	

association would require large scale exome harmonization of controls with normal lung function, 6	

preferably with heavy cigarette smoke exposure. Our results highlight the importance of integration with 7	

other types of data (e.g., gene expression, protein-protein interaction) to better understand the results from 8	

one data type.  However, our analysis does not attempt to identify the confidence of individual genes in this 9	

network; we cannot rule out the possibility that this network includes many genes that are false positives, 10	

and our pathway analysis should be considered descriptive and exploratory.  Additional investigation, 11	

including genetic studies, integration of multi-omics data, and careful functional studies will be needed to 12	

further infer biological mechanisms and potential disease causality for our identified genes.    13	

In summary, in an exome sequencing study of COPD, we were unable to identify exome-wide significant 14	

associations, but through network analysis we identified candidate genes in related pathways and a disease 15	

module driven by rare variants. Our study is consistent with a potential contribution of multiple, 16	

heterogeneous rare variants in COPD, and demonstrates the insight that network-based methods can offer.  17	

Materials and Methods 18	

The COPDGene study 19	

The COPDGene study is a multi-center epidemiologic and genetic study of 10,192 current or ex-smokers, 20	

which has been previously described (58). COPDGene subjects were sequenced in two sets. The first set 21	

sequenced as part of the NHLBI Exome Sequencing Project (ESP; named COPDGene ESP) included severe 22	

COPD cases with GOLD (Global Initiative for Chronic Obstructive Lung Disease) Grade 3 or 4 (post-23	

bronchodilator FEV1 < 50% predicted and FEV1/FVC < 0.70), and age < 65 years old, with substantial 24	

emphysema (> 15% at -950 HU) by quantitative chest CT scan. Controls were selected to be resistant 25	
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smokers with frequency-matched pack-years of cigarette smoking, normal lung function (FEV1 > 80% 1	

predicted and FEV1/FVC > 70%), age > 65 years old, and no significant emphysema (< 5% at -950 HU). 2	

The second set sequenced at Baylor (named COPDGene Baylor) included severe COPD cases (GOLD 3	

Grade 3 or 4) with no age requirement. Controls were selected to be resistant smokers with normal lung 4	

function with age > 55. 5	

The Boston Early-Onset COPD study and the International COPD Genetics Network study  6	

The family-based data contained samples selected from the Boston Early-Onset COPD study (BEOCOPD) 7	

(59) and the International COPD Genetics Network (ICGN) study(45). Probands from BEOCOPD were 8	

selected to be physician-diagnosed COPD cases with FEV1 ≤ 40% predicted, age ≤ 53. All first-degree 9	

relatives, older second-degree relatives and additional affected family members were enrolled.  Probands in 10	

the ICGN study were subjects with known COPD and were required to have FEV1 < 60% predicted, 11	

FEV1/FVC < 90% predicted at age 45-65, pack-years ≥ 5, and have at least one eligible sibling. An initial 12	

set of 49 pedigrees selected from the Boston Early-Onset COPD Study were described and analyzed 13	

previously (26). To this sample we added 147 families from BEOCOPD and 462 families from the ICGN 14	

study. The COPDGene, BECOPD, and ICGN studies all excluded subjects with severe alpha-1 antitrypsin 15	

deficiency. 16	

Exome sequencing 17	

We sequenced all subjects using Nimblegen capture and Illumina platforms. The COPDGene ESP, 18	

BEOCOPD, and ICGN subjects were all sequenced at the University of Washington, using Nimblegen V2 19	

exome capture; COPDGene Baylor samples used VChrome capture. Alignment, variant calling, and quality 20	

control were performed using bwa, GATK, and in-house pipelines respectively. As COPDGene ESP and 21	

COPDGene Baylor used slightly different capture platforms, calling was performed on these datasets 22	

separately. All BEOCOPD and ICGN subjects were called together (joint calling) and went through the 23	

same quality control steps together to provide the final family-based data (named BEOCOPD-ICGN) for 24	
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analysis. Baseline characteristics of the subjects in each of the cleaned datasets are shown in Table 1 and 1	

our overall study design is shown in Figure 2. More details can be found in the Supplementary Material.   2	

Analysis strategy 3	

Loss of function variants using the Gene-based Segregation test (GESE) 4	

We first performed the gene-based segregation test (GESE)(25) on loss of function variants (defined by 5	

SnpEff (60)) with MAF < 0.1% in the family-based BEOCOPD-ICGN data using COPD affection status as 6	

the outcome. We included only the most severe COPD subjects (GOLD spirometry grade 3 or 4) and 7	

resistant smoking control subjects (normal spirometry, age > 40 yr, with at least 5 pack-years of cigarette 8	

smoking). This analysis took advantage of the unique properties of a family-based strategy, including 9	

having multiple copies of rare variants, and assumes a Mendelian model with a few rare variants with very 10	

large effects. We sought supportive evidence for identified causal genes in COPDGene dataset by 11	

attempting to identify similarly deleterious variants. 12	

Association analyses 13	

Second, we performed single variant, gene-based, and pathway-based association analyses.  For all 14	

association analyses, we used Bonferroni correction based on the number of genes, pathways, or variants 15	

tested. For the COPDGene case-control data, COPD affection status was used as the outcome, which was 16	

adjusted for pack-years, gender, age, and ancestry-based principal components (PCs) in the COPDGene 17	

Baylor data, and the top PCs alone in the COPDGene ESP data due to the selection criteria, and as 18	

performed previously (Supplementary Material). For the family-based data, due to the low number of 19	

controls with normal lung function, but a wider range of FEV1 available through family members, we 20	

analyzed FEV1 (forced expiratory volume in one second), a lung function measure highly correlated with 21	

COPD (9) instead of COPD affection status itself. The outcome in the family-based association tests was the 22	

rank of the residuals from regressing raw post-bronchodilator FEV1 value on height, pack-years, sex, age, 23	

top 5 genetic ancestry PCs and batch indicator variable. 24	
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 1	

Single-variant association analysis 2	

For single-variant analyses, we applied the Stouffer method to meta-analyze the results from the hybrid 3	

method in SKATBinary_Single function (SKAT package) in the COPDGene case-control data, since the 4	

two cohorts selected from the COPDGene study were sequenced and called separately. The hybrid method 5	

in SKATBinary_Single function selects the most appropriate approach to compute p-values for each variant. 6	

For single variant analysis in family-based data, we applied the variant-based generalized linear mixed 7	

model association test (GMMAT(61)). In addition to using COPDGene as discovery and BEOCOPD-ICGN 8	

as replication, we also examined using BEOCOPD-ICGN and both datasets as discovery by meta-analyzing 9	

the results from the COPDGene case-control data and the BEOCOPD-ICGN data using the Stouffer method. 10	

For single variant analyses, we tested all variants, and also the subset with moderate effect with MAF < 5%. 11	

Gene- and pathway-based association analysis 12	

For both the gene-based and pathway-based analyses, we applied SKAT-O tests.  In the COPDGene case-13	

control datasets, we applied the hybrid method in the SKATBinary function, implemented in the SKAT 14	

package to each of the datasets, and meta-analyzed the two datasets using Fisher’s method. For the 15	

BEOCOPD-ICGN family-based data, we applied MONSTER(62), which is a generalized version of SKAT-16	

O for family-based studies. We also meta-analyzed all results (case-control and family-based results) using 17	

Fisher’s method. Our primary gene- and pathway-based association analyses focused on deleterious variants 18	

defined using FATHMM (57, 63) with MAF < 1% in the association analysis. In one study of amyotrophic 19	

lateral sclerosis (ALS), FATHMM was found to give the best power to identify known causal genes for 20	

ALS in gene-based association tests(57). Our secondary analyses included association testing on functional 21	

variants with moderate effects (defined by SnpEff (60)) with MAF < 5%. This is a less stringent filtering 22	

criterion on the variants to prevent missing signals in this set of variants. Pathways were defined using 23	

KEGG pathways(29) and the c2 collection of curated gene sets from the Molecular Signatures Database 24	

(MsIGdb) in GSEA(64). 25	
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Identification of enrichment in gene expression 1	

To help determine whether the identified genes were relevant for our phenotypes, we used publicly available 2	

FPKM (per kilobase of gene model per million mapped reads) results from gene expression data from the 3	

Lung Genomics Research Consortium (LGRC, http://www.lung-genomics.org) to identify whether any gene 4	

was expressed in the lung (using a cutoff of 0.5(26)). We also used the results of differential expression for 5	

lung function and COPD case-control status in an independent set of lung tissue from severe COPD subjects 6	

and controls (65). In addition, enrichment for genes associated with respiratory system in mouse was carried 7	

out using a curated set of genes associated with respiratory phenotype in the Mouse Genome Database 8	

(http://www.informatics.jax.org/marker) (66). Gene expression information in human and normal murine 9	

lung development for three common inbred strains of mice were obtained from the GEO dataset (GSE14334 10	

and GSE74243), and genes involved in fetal lung development were obtained using methods described in 11	

(49). 12	

Network-based analysis 13	

Finally, we applied the network-based separation measure defined in (31) to examine how closely connected 14	

the top genes from the two independent analyses are in the protein-protein interaction (PPI) network. This 15	

measure has been shown to predict pathobiological similarity of two sets of disease genes(31). In our 16	

application here, since the two outcomes analyzed for the COPDGene and BEOCOPD-ICGN dataset are 17	

highly correlated, genes that are causal for these outcomes should have much shorter network-based 18	

distance. Therefore, a significant result tells us that at least a subset of the top genes from the two analyses 19	

are topologically overlapping and exert some effect on risk of COPD. 20	

Examination of previously identified genetic associations with COPD 21	

To examine loci previously described to be associated with risk of COPD or lung function itself in GWAS 22	

or harboring Mendelian variants related to COPD, we curated a set of 329 genes for closer examination 23	

(Supplementary Table S12)(8, 9). At COPD GWAS loci, we identified all variants in a European reference 24	

population with an r2 > 0.8 with the lead variant, and then expanded these borders by 100kb. For Mendelian 25	
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syndromes, we included connective tissue disorders such as cutis laxa (12-16), as well as telomere-related 1	

genes including TERT, TERC, RTEL1, and NAF1 (17, 18, 41-43). We looked for supportive evidence of 2	

association for these genes using several methods. First, we examined the association results in both primary 3	

and secondary analyses as described above. Since 104 of the previously described lead SNPs based on 4	

GWAS of lung function or COPD were also available for the COPDGene subjects, we additionally 5	

performed conditional analyses for these genes by conditioning on the GWAS SNPs in proximity in an 6	

attempt to identify independent rare variants contributing to COPD susceptibility. For both the marginal 7	

association analyses and conditional analyses, COPD affection status was the outcome in the COPDGene 8	

case-control analyses and FEV1 was the outcome in the family-based analyses. Finally, we examined 9	

Mendelian genes for evidence of pathogenic variants using Clinvar and other public annotation resources. 10	
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Legends to Figures 4	

Figure 1. Network of the two sets of top genes with p-value < 0.01 in the case-control and family-based 5	

analyses focusing on rare, deleterious variants. The nodes in red are the top genes identified in the 6	

COPDGene case-control analysis; the nodes in pink are the first neighbors of the red nodes. The nodes in 7	

blue are the top genes identified in the BEOCOPD-ICGN family-based analysis; the nodes in light blue are 8	

the first neighbors of the blue nodes. Genes that are in both sets are colored in purple. Edges connecting 9	

genes to the largest hub TULP3 are colored in red. These genes form one large well-connected component. 10	

Larger sized nodes indicate hubs (circle) and genes reported to be associated with COPD or lung function 11	

(diamond). Hubs include TULP3, VNN2, ACVR2B, KCNA5, and GRB2, which are the top genes with the 12	

most number of degrees in this network. 14 genes out of 513 are near GWAS loci for COPD or lung 13	

function (CHRM3, DNLZ, EFEMP1, EFEMP2, EGFL8, GANAB, GNG3, PARN, PIP4K2B, NOTCH4, 14	

RUVBL1, SEC16A, TARS, TEKT5, THSD4). The zoomed-in panel on the left shows the genes in the 15	

intraciliary transport particle A pathway (GO:0030991). The zoomed-in panel on the right shows the genes 16	

in the transforming growth factor beta-receptor binding pathway (GO:0005160) and ACVR2B. 17	

Figure 2. A flow chart of the study design. COPDGene (pink) samples were sequenced in two batches 18	

(Baylor and ESP, see Methods). The family-based studies (blue) included two cohorts. Forty-nine pedigrees 19	

of the Boston Early-Onset study samples were sequenced and analyzed previously (26); we combined these 20	

data with another subset of these BEOCOPD and additional samples from the ICGN study. All of these 21	

sequenced subjects from BEOCOPD and ICGN were called together, forming the BEOCOPD-ICGN dataset 22	

(blue). We applied the family-based GESE test to the most severe cases and resistant controls in the 23	

BEOCOPD-ICGN dataset. We also performed single-variant, gene-based and pathway-based association 24	

tests in COPDGene and the BEOCOPD-ICGN samples. A final network analysis was conducted to look at 25	

the topological relationship between the top results from the two datasets. 26	

 27	
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Tables 1	

Table 1. Baseline characteristics.   2	

 COPDGene ICGN-BEOCOPD 
Datasets ESP Baylor 
 Case Control Case Control Severe 

Cases1 
Moderate 
Cases 

Resistant 
controls1 

Other 
Controls 

Other 

N  192 188 293 316 853 431 101 118 512 

# Females 92 103 117 146 412 199 53 68 30 
# Males 100 85 176 170 441 232 48 50 21 
Age, yr  58.2 

(5.1) 
69.5 
(5.6) 

68  
(6.4) 

61.9 
(5.6) 

56.1 
(12.2) 

59.4 (12.1) 55.5 (11.3) 37.0 
(20.4) 

53.9 
(24.4) 

Pack-years 45.0 
(26.2) 

45.0  
(23.5) 

51.0  
(29.0) 

50.6  
(19.1) 

43.8 
(31.0) 

37.4  
(25.6) 

30.8 
(21.9) 

 0.0 
(7.6) 

24.0 
(39.9) 

FEV1 % 
predicted 

30.0 
(15.9) 

98.2 
 (12.8) 

30.2  
(15.8) 

92.7  
(14.3) 

30.0 
(17.6) 

65.5  
(14.1) 

98.0 
(15.3) 

96.3 
(14.6) 

77.4  
(10.6) 

FEV1/FVC 0.33 
(0.10) 

0.78 
(0.07) 

0.35 
(0.12) 

0.76 
(0.07) 

0.33 
(0.14) 

0.56 
(0.13) 

0.76 
(0.06) 

0.81 
(0.10) 

0.71 
(0.12) 

N – Number of subjects 3	

Median (IQR) is presented for age, pack-years, FEV1 % predicted, and FEV1/FVC ratio for each dataset. 4	

1 Only severe cases (GOLD level III and IV) and resistant controls (see text) were included in the GESE test 5	

of the family-based data. All subjects were included in the association analysis of the family-based data. 6	

2 51 subjects in the ICGN-BEOCOPD data had lung function values not consistent with either case or 7	

control status. 8	

 9	

 10	

Table 2. Results of the GESE analysis on the BEOCOPD-ICGN dataset.  11	

GENE 

p-value 

GESE p-value  

 

Number of segregating families 
TBC1D10A* 1.1E-06 2 
RFPL1* 1.6E-06 4 
DHODH*# 6.9E-05 2 
CYP4F12* 1.0E-04 4 
ANAPC7* 1.5E-04 1 
RGS5*# 1.5E-04 2 
CD101*# 1.7E-04 5 
KCNMB4*# 1.8E-04 1 
ARMC12* 2.1E-04 4 
VPS41*# 3.9E-04 5 
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Variants included are loss-of-function variants with MAF < 0.1%. The third column shows the number of 1	

families each gene is segregating in (present in all the cases and not in the controls). Genes marked with * 2	

show expression in the lung (defined as at least 50% of samples with FPKM > 0.5 in the Lung Genomics 3	

Resource Consortium RNA-seq samples). Genes marked with # are differentially expressed by FEV1% 4	

predicted in lung tissue (65). 5	

  6	

 7	

Table 3. Nominally significant gene-based results in COPDGene for 329 candidate genes after 8	

conditioning on the lead GWAS SNP.  9	

Gene 
(conditioned on) lead 
GWAS SNP 

#SNV SKATO 
(unadjusted) 

SKATO 
(conditional) 

SEC16A rs10870202 38 9.52E-04 1.05E-03 
CDC7 rs1192404 5 5.87E-03 6.78E-03 
CCDC38 rs12820313 5 7.20E-03 7.66E-03 
CYP2A6 rs12459249 11 6.87E-03 1.15E-02 
TRIP11 rs7155279 24 1.53E-02 2.47E-02 
CNGB1 rs12447804 26 3.27E-02 2.89E-02 
PBLD rs7095607 3 6.99E-02 3.43E-02 
RRP15 rs10429950 2 3.75E-02 4.07E-02 
TNXB rs2070600 63 5.95E-02 4.39E-02 
CYFIP2 rs10515750, rs1990950 4 4.13E-02 4.46E-02 
EGFL8 rs2070600 9 8.11E-02 4.60E-02 
CHRNA5 rs17486278 5 1.83E-02 1.22E-01 
AGER rs2070600 12 4.89E-03 1.36E-01 

The SKAT-O tests included functional (MODERATE effect defined by SnpEff) and rare (MAF < 5%) 10	

variants in the COPDGene study. 11	

 12	

 13	

 14	

  15	
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Table 4. Selected set of likely pathogenic variants annotated by ClinVar in SERPINA1 and telomere-related genes.  1	

  COPDGene 
BECOPD-
ICGN      

GENE SNP Case  Cont Case Cont MAF IMPACT CLNSIG Disease association 
RTEL1 20:62324513:T:C 0 1 . . 6.11E-05 missense_variant 5 Telomeropathy 
SERPINA1 rs28929474 29 12 60 8 1.83E-02 missense_variant 5|5 Alpha-1 antitrypsin deficiency 
SERPINA1 rs17580 53 29 148 32 3.04E-02 missense_variant 5 Alpha-1 antitrypsin deficiency 
SERPINA1 rs28929470 4 6 5 1 4.95E-03 missense_variant 5 Alpha-1 antitrypsin deficiency 
SERPINA1 rs28931570 2 4 8 2 1.62E-03 missense_variant 4|5 Alpha-1 antitrypsin deficiency 
SERPINA1 rs121912714 . . 3 0 7.04E-04 missense_variant 4 Alpha-1 antitrypsin deficiency 
TERT rs61748181 40 33 92 16 4.97E-02 missense_variant 5|2 Telomeropathy 
TERT 5:1278865 1 0 . . 7.49E-05 missense_variant 5 Telomeropathy 
TERT 5:1280427 1 0 . . . missense_variant . Telomeropathy 
TERT rs35719940 27 22 . . 2.11E-02 missense_variant 5|2|2 Telomeropathy 

TERT rs34094720 4 7 . . 1.53E-02 missense_variant 
5|5|5|3|2|
2 Telomeropathy 

TERT rs141425941 1 1 . . 2.68E-04 missense_variant 5 Telomeropathy 
TINF2 rs142777869 2 1 1 0 7.25E-04 missense_variant 5 Telomeropathy 

  2	

Case, Cont - number of alternative alleles carried by the cases and controls in each dataset.  Note that in the family-based data, there are approximately 6 3	

times more cases than controls. MAF - minor allele frequency using Non-Finnish Europeans from ExAC. IMPACT - functional impact of each variant 4	

annotated by SnpEff. CLNSIG and Disease association are annotations from ClinVar; 2 = benign, 3 = likely benign, 4 = likely pathogenic, 5= pathogenic. 5	

 6	

 7	
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 1	

Table 5. Homozygous variants in COPD-related Mendelian genes.   2	

 3	

Variants with homozygous genotypes in 29 Mendelian genes and were annotated with significance 4 and above by ClinVar, or have potential deleterious 4	

effects (MAF < 0.1% and predicted to be deleterious by FATHMM, SIFT, and CADD (>15).  Case, Cont - number of alternative alleles carried by the cases 5	

and controls in each dataset.  Note that in the family-based data, there are approximately 6 times more cases than controls. MAF - minor allele frequency 6	

using Non-Finnish Europeans from ExAC. IMPACT - functional impact of each variant annotated by SnpEff. CLNSIG and Disease association are 7	

annotations from ClinVar; 2 = benign, 3 = likely benign, 4 = likely pathogenic, 5= pathogenic.8	

 9	

 10	

  COPDGene BECOPD-ICGN     
GENE SNP Case Cont Case Cont MAF IMPACT CLNSIG Disease association 
ATP6V0A2 12:124206896* 0 0 1 0 . Splice_acceptor_variant . Cutis laxa 
CFTR rs1800076 0 1 3 0 2.48E-02 missense_variant 2|2|5 Cystic fibrosis 
NPC2 rs140130028 . . 2 0 0.00551 splice_donor_variant 5 Niemann-Pick disease type C2 
SERPINA1 rs17580 1 1 4 1 3.04E-02 missense_variant 5 Apha-1-antitrypsin deficiency 
TERT rs61748181 5 0 2 0 4.97E-02 missense_variant 5|2 Telomeropathy 
TERT rs35719940 1 0 . . 2.11E-02 missense_variant 5|2|2 Telomeropathy  



29	

	 29	

Abbreviations 11	

COPD: Chronic obstructive pulmonary disease 12	

GWAS: Genome-wide association study 13	

MAF: Minor allele frequency 14	

GESE: Gene-based segregation test 15	

FEV1: Forced expiratory volume in 1 second 16	

GOLD: Global Initiative for Chronic Obstructive Lung Disease 17	

FPKM: Fragments Per Kilobase of transcript per Million mapped reads 18	

PPI: Protein-protein interaction network 19	
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