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Abstract— Quadratic boundedness is a notion of stability that
is adopted to investigate the design of observers for dynamic
systems subject to bounded disturbances. We will show how
to exploit such observers for the purpose of fault detection.
Toward this end, first of all we present the naive application of
quadratic boundedness to construct state observers for linear
time-invariant systems with state augmentation, i.e., where
additional variables may be introduced to account for the
occurrence of a fault. Then a Luenberger observer is designed
to estimate the augmented state variable of the system in such
a way to detect the fault by using a convenient threshold
selection. Finally, such an approach is extended to piecewise
affine systems by presenting a hybrid Luenberger observer and
its related design based on quadratic boundedness. The design
of all the observers for both linear time-invariant and piecewise
affine systems can be done by using linear matrix inequalities.
Simulation results are provided to show the effectiveness of the
proposed approaches.

I. INTRODUCTION

Reliability is a key requirement for modern systems.
Therefore, fault diagnosis is a research field that has been
in the front end of the technological evolution for a few
decades and has attracted the attention from the research and
industrial community, as testified by many important survey
papers and books (see [1]-[3] just as examples). Recent effort
has been directed at investigating solutions for monitoring
distributed, large-scale and interconnected systems [4]-[11].

When dealing with model-based approaches [2], due to
the presence of uncertainties, one of the main issues is the
definition of thresholds for some residual signals defined to
be sensitive to the presence of faults. Different solutions
have been proposed, either considering deterministic bounds
on the uncertainties so to guarantee the absence of false
alarms [12], or a stochastic characterization of noises and
disturbances in order to set bounds on the allowed false-
alarms rate [11]. A major challenge is represented by the
fact that, in order to be robust to the noises, thresholds
are often conservative, thus leading to scenarios where the
uncertainties may hide the presence of faults.
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In this paper, we propose a new design method for the
application of state estimation to the fault detection problem.
The proposed method is based on positive invariance and
quadratic boundedness (QB) [13]. Positive invariant sets have
already been exploited in the literature for the purpose of
fault detection and isolation (see, for example, [14]-[17]).
QB allows to deal with positively invariant sets in quite an
intuitive way and it provides upper bounds on the trajectories
of the state of a system subject to bounded disturbances,
which may be fruitfully exploited for the purpose of fault
diagnosis. Here we present some preliminary results on
how the QB properties can be adopted as a guidance for
the selection of suitable fault detection thresholds. Other
applications of QB are reported in the literature for both
output feedback control [18] and state estimation [19], [20].
No application of QB to fault diagnosis is known to the
authors.

Based on the availability of information on the plant and
practical experience on the possible malfunctions, one can
develop a model with additional state variables that can take
into account the occurrence of faults. The idea of enriching
the system model with new variables is pretty popular in
adaptive control and it is referred to as “‘state augmentation.”
For the purpose of fault detection, it can be useful as well
to monitor the system by estimating all the state variables
and especially those describing malfunctions such as sensor
bias or actuator block [21]. Estimation can be accomplished
by means of Luenberger observers and, if the modeling
framework is extended from linear time-invariant (LTI) to
piecewise affine (PWA) systems, by using hybrid observers
that account for the specific mode denoting the subset of the
state space in which the state trajectory lays. The importance
for methods aimed at performing estimation for PWA and
switched systems is motivated also by some recent results
concerning especially fault diagnosis [22]-[24].

There exists a vast literature on hybrid and switching
systems but very little can be found in estimation. The first
results are reported in [25]-[27] but, as pointed out in [28],
the problem to design state observers for such systems is
somehow still open because of the difficulty to deal with
the observability of the mode under realistic conditions.
Thus, we propose also an extension of the QB approach
to fault estimation for PWA systems by using a prediction
of the system mode and proving the boundedness of the
estimation error. Likewise for LTI systems, the design of the
fault estimators can be accomplished by using linear matrix
inequalities (LMIs), which allow for an effective design
thanks to well-established semi-definite programming (SDP)



tools [29].

The paper is organized as follows. In Section II, we
present the naive idea of applying QB to state-augmented LTI
systems for the purpose of fault diagnosis. The construction
of state observers to perform this task is described in Section
III, while Section IV is focused on a convenient design
procedure based on LMIs. Section V deals with the extension
of the proposed approach to PWA systems. Simulations
results are reported in Section VI. Finally, the conclusions
are drawn in Section VIIL.

Let (z,y):=[z",y"]", where z and y are column vectors.
The minimum and maximum eigenvalues of a real, sym-
metric matrix P are denoted by Apin(P) and Apax(P),
respectively. Moreover, P > 0 (P < 0) means that it
is also positive (negative) definite. Given a generic matrix
M, M| = Amax(MTM)Y? = (Ao (MM 7)) and
hence, for a vector v, |v|:= (v v)/? is its Euclidean norm.

II. PROBLEM FORMULATION
Let us consider the dynamic system

t=Az+Bu+Dw
y=Czx+ Fw

(1a)
(1b)

where x € R" is the state, u € RP is the control input,
y € R™ is the output; w € RY is a vector that collects all
the noises that may affect both dynamics and measurements.
Without loss of generality, we assume that such noises are
bounded as follows.

Assumption 1: The disturbance t — w(t) € R? is such
that |w;(¢)| <1,i=1,...,r for all ¢ > 0.

For the sake of simplicity, in this first part of the paper, we
assume that system (1) accounts for both the dynamics of the
process to monitor and additional variables that model the
occurrence of faults. This can be obtained by augmenting
the state vector with some variables describing the fault
dynamics. With this formulation we can model both process
and sensors* bias faults as well as additive faults with known
linear dynamical structure. In the following we give an
example.

Example 1: Consider a SISO plant described by
é = A¢+ Bu
y=0¢
where £ € R", v € R, and y € R. If such a system is
subject to sensor bias faults [30] so that the output equation
becomes y = C¢ + 6, where 0(t) € R can be considered an
additional state variable with a simple augmented dynamics

given by 6 = 0. Thus, one may refer to system (1) with
r=(£0) € R"! and

A 0, B ~
A=) o (2) cmen
where 0, is a column vector made of n zeros. Note also that

the pair (A4, C) is observable if (A4, C) is observable.

In the following, we will present an approach to fault
detection based on the idea to estimate the state of (1), which
includes state variables belonging to the original model of
the plant and additional variables introduced to account for
faults. The decision about the occurrence of a fault may be
taken by comparing the estimate of such additional variables
with their nominal values. In the case of Example 1, one can
detect the presence of a sensor bias fault by analyzing the
estimate of 6. Clearly, it is crucial to design a convenient
observer together with a reliable decision scheme by taking
into account the information available on the disturbances.
Quadratic boundedness turns out to be well-suited to dealing
with this problem. A bound on the estimation error will be
properly found out, by exploiting the notion of quadratic
boundedness. This property can be used for the selection of
less conservative thresholds for fault detection, by accepting
the possible presence of false alarms.

III. ESTIMATION FOR LTI SYSTEMS AND QUADRATIC
BOUNDEDNESS

A simple Luenberger observer for (1) is described by
t=Ai+Bu+L (y—C#a) 2)

where Z(t) € R"™ is the estimate of x(¢) and L € R™*™
is the observer gain to be chosen. Thus, we need to assume
the following.

Assumption 2: The pair (A, C) is detectable.

The assumption above allows one to construct an observer
with an asymptotically stable dynamics of the estimation er-
ror e(t) :=x(t) — &(t) € R™ in a noise-free setting. However,
in the presence of disturbances, it is important to reject their
effect in general and, in our specific context, to devise a
decision scheme able to detect faults or malfunctions.

Concerning the state-augmented framework, the estima-
tion error after the transient keeps staying in an invariant
set in the absence of fault, and the bigger the noises, the
larger such a set. Among the various choices, we will rely
on ellipsoidal invariant sets related to quadratic boundedness
[13], [18]-[20].

Using (1) and (2), the dynamics of the estimation error
reads

é=(A-LC)e+(D—LE)w 3)

Let define quadratic boundedness as follows [13].

Definition 1: The estimation error is said to be quadrati-
cally bounded with Lyapunov matrix P > 0 if

e"Pe>1=2e¢ P((A—LC)e
+(D—-LE)w) <0, Ywe [-1,1]7. (4)

Owing to (4), the set &,:= {e € R" :e" Pe < 1} turns
out to be positively invariant, it contains the reachable set
from the origin, and it is attractive (i.e., if the error is out of
&y, it approaches &, asymptotically). Moreover, the error is
upper bounded as follows:

1

le(t)]? < S (P)

max {e(0) " Pe(0),1} 5)



for all ¢ > 0. Clearly, such a bound combines the transient
and steady conditions. After the transient, we have

le(t)] < 1/v/Amin(P). (6)
Based on the aforesaid, we can state the following.

Theorem 1: The estimation error is quadratically bounded
if and only if there exist P > 0, Y € R™*"™, o € R‘;O, and
£ > 0 such that

ATP-C'YT+PA-YC+pBP PD-YE 0
* —diag(a)
(7a)

q

Z a;—B <0
i=1
with L = P7Y.
Proof: Let V(e):=e' Pe a Lyapunov function. Clearly,
the condition of quadratic boundedness can be reformulated
as follows

(7b)

dV (e)
1 AR
Vie)>1= @ < 0
for all w; € R s.t. w? < 1. Moreover, since
d‘;(f) — T [(A—LO) P+ P(A—LC)| e

+w ' P(D" —E"LMe+e"P(D— LE)w <0

and —e " Pe+1 < 0, using [29, S-procedure, p. 23] it follows
that there exist cr; > 0 and 8 > 0 s.t.

e [(A—LC)"P+PA-LO)e+w P(D'

q
—E"LNe+e"P(D—LE)w+e' fPe— Z aw?
i=1

q
+ Z a;, — B <0
i=1
and hence, using some well-known LMI technicality with
Y = PL, we get (7a) and (7b). |

The proof of Theorem 1 shows that (7a) can be satisfied
if and only if A — LC is Hurwitz.

IV. FAULT DETECTION LOGIC AND THRESHOLDING

Fault detection may be accomplished by analyzing the es-
timated state variables and especially the additional variables,
introduced to model the fault. The steady-state bound (6) can
be used for estimator design and both threshold selection.

To illustrate the motivation, consider Example 1 with the
last state variable accounting for the bias. Thus, in fault-
free conditions at steady state, the error associated with the
estimate of the bias with respect to its nominal value is not
larger than 1/4/Amin(P). Thus, a sufficiently high variation
of the bias may be estimated by the observer and detected
by the derived bound, that is, if in steady-state

le(t)] > 1/ Amin(P), (8)

then we have fault detection without false alarms.

Input: A, C, D, E, AB>0,and € >0
Output: L, pmax

1: solve max 8 w.rt. P > 0,Y, 3 > 0 s.t. (10) holds and
denote by 5° its solution

2: Bo + B°

3k« 0

4: do

5: solve max A w.r.t. P > 0, A > 0, diag(a) >0,V

s.t. P > A, (7a) and (7b) with 8 = S} hold

6 Ly + P~y

7: Pk «~— P

8: Br+1 < Br — AB

9

1

: k+k+1

0: while ((k==1) OR (|Ly — Li—1] > ¢€))
AND Bi11 >0

11: L + Lk

12: Pmax 1/\/ )\min(Pk)
TABLE I
DESIGN PROCEDURE

Owing to uncertainty the selection of a too tight detection
threshold may cause false alarms, whereas, in the case the
threshold is too large, this may lead to fault misdetection. The
bound in (8) guarantees the absence of false alarms in steady
state but may be conservative. Since this bound depends on
the choice of the matrix P, the goal of the design may consist
in maximizing Ay, (P) in order to reduce it. This can be
obtained by maximizing A subject to the LMI P > AI as
follows:

HlaXp7y7a7/3 A
s.t. P> 0,\> 0,diag(a) > 0,6 > 0, 9)
P > A, (7a), and (7b) hold.

Such a problem is not in an LMI form that can be solved
by using standard SDP tools. Toward this end, note that the
stability conditions require the satisfaction of the inequality

ATP-CTYT+PA-YC+BP <0 (10)

if w = 0. Such a condition is not an LMI in P, Y, and
(; however, one can solve a generalized eigenvalue (GEV)
problem by maximizing 5 to ensure a transient as fast as
possible [29] . Based on the solution of such a problem,
we may take the resulting maximum /[ as a starting upper
bound to be reduced so as to get the satisfaction of (7)
while maximizing Apin (P). The proposed design approach is
summarized in Table I, where € > 0 is the admitted tolerance
and the gain L is the final result of the procedure together
with the steady-state QB bounds ppax.

Remark 1: It is important to note that the proposed ap-
proach may be useful to design residual generators even in
case a model of the fault is not available. Based on the nom-
inal model, we can define the residual signal r(¢):=y(t) —
Ciz(t) and, by noting that r(¢) = Ce(t) + Ew(t), at each
time step we compare such a residual with a suitable fault
detection threshold, where the fault-free condition is

Ir(6)] < [Ce(t)] + | Ew(t)] < |C|// Amin(P) + | Elw]
< |C|/\/ )‘min(P) + Q|E| =:Tmax ; (11)



Thus, in case |r(t)] > 7max, We can detect the fault
guaranteeing the absence of false alarms. Moreover, the goal
of maximizing Apin(P) according to (9) allows to get a
threshold less conservative as much as possible.

Remark 2: The proposed QB bound p,;, 4., designed using
the procedure in Table I, represents the least conservative
threshold in the form of (6) able to guarantee the absence of
false alarms in steady state. In some real-world applications,
it may be anyway conservative, but it can be used as a
guidance for the definition of suitable less conservative fault
detection thresholds at the cost of accepting the possible
presence of false alarms.

V. EXTENSION OF FAULT ESTIMATION TO PWA SYSTEMS

In this section, we will address the same problem of
Section II for a class of PWA systems described by

t=Asr+Bu+Dw (12a)
y=Crx+ Fw (12b)
o) =F (z(t7),u(t")) (12¢)

where v € U C RP bounded and o € ¥:={1,...,s}
represents a discrete state, which will be denoted as “mode”
of the system. The matrices A; and Cj;, i € X, are known
as well as the impulsive mapping (z,t) — F(z,u) € 3 but,
since only y(t) is available though subject to measurement
noises and the continuous and discrete states are unknown
at any ¢ > 0 in general.

The PWA (12) allows to extend the applicability of the
proposed approach in such a way to deal with a more
general class of faults that may change the system dynamics.
In practice, we implicitly assume to know anyway all the
possible nominal and faulty dynamics.

Assumption 3: There exists a bounded set X C R" s.t.
z(t)e X forallt >0, u € U, and w € [—1,1]4.

To perform estimation for (12), we use the following
hybrid Luenberger observer:

T=Asi+Bu+Ls (y—Cs )
o(tt) =F (&), ult))

(13a)
(13b)

where Z(t) € R™ is the state estimate of x(¢) at any ¢ > 0.
The mode is predicted according to the impulsive law (13b).
The gain matrices L; associated with each estimated mode
can be determined by applying the same approach of Section
II. More specifically, the following theorem holds.

Theorem 2: If there exist P > 0 and Y; € R"*™ for
i=1,...,5, a € R, and B > 0 such that
AlP-CY," + PA;, —-Y,C; + BP PD —Y,E 0
* —diag(a)

i=1,...,s (14a)

(14b)

with L; = P~'Y;, i« = 1,...,s, the estimation error is
bounded.

Proof: Let us decompose the estimation error as follows
e=r—T=x—3,+3p 7
———
€p ép

where £,(t) € R" is the state of the “perfect” Luenberger
observer, namely an observer based on the instantaneous
knowledge of the mode o(t). More specifically, such an
observer is given by

ip=Agip+Bu+L, (y—C,i)

and provides an error ep(t) that is quadratically bounded
owing to (14). As a consequence, using Assumption 3 it
follows that also Z,(t) is bounded. Since we can easily find
that

éo = (As — LsCs)ép + (Ag — As + LsCs — LyCy) ity
+ (Lo — Ls)(Cox + Ew)

it is straightforward to conclude about the boundedness of
ep(t) and hence of e(t). [ |

Note that the pairs (A4;,C;), « = 1,...,s, must be
detectable to admit the existence of some solution to (14a).

VI. SIMULATION RESULTS

For the sake of space limitation, only one case study
concerning a PWA switching system will be presented. It
is inspired by the simple model presented in [31] about two
cascaded interconnected systems subject to mutual functional
dependencies. Such a model is an autonomous PWA system
with ¥ = {1,2,3}, where the first mode corresponds to
a “safe” plant, while the system undergoes an anomalous
behavior in the other two discrete states. Specifically, we
have chosen

—0.5 010 05 0 1 0
0 —05 0 1 0 -1 0 1
A= 0 000 Ay = 0 000
0 00 0 0 00 0
-1 01 0
0 —05 0 1
As= 0 00 0
0 0 0 0
1 00 0
C1_02_63_(0 1 0 0)
0 0 01 0
00 0 01 0.01 0 0 0
D‘ooooE_<oo.01oo)
00 0 0
and
1 ifzy<cgandxs <o
F(z,u)={ 2 ifz;<sandzy>a (15)

3 ifrxy>candazy <o

with ¢ = 0.4.



The design of the observer (13) has been accomplished by
using the design procedure in Table I. We have obtained the
following results:

94.1508 0 —20.9304 0
P 0  94.1508 0 —20.9304
~ | —20.9304 0  40.5391 0
0 —20.9304 0  40.5391
3.6486 0 2.7647 0
I 0 36486 | , _ 0 4.4939
L= 2.1926 0 2= 1.74 0
0 2.1926 0 2.1946
4.4939 0 0.0404
0 2.7647 0.0404
Ls =1 91946 0 | “=| 02026 | P =0486
0 1.74 0.2026

and hence pmax = 0.1732. We have designed a hybrid
Kalman filter with a careful tuning of the covariance matrices
in such a way to provide the best trade between transient and
steady-state behavior. Likewise for the hybrid observer, we
have applied the same mode estimator based on (15) with
the corresponding state estimate as input.

0.6

0.4

0 10 20 30 40 50 60 70 80 90 100
time

Fig. 1. Time behavior of y1 and y2 in a simulation run.

p KF QB obs.
> 0.20 0 0
0.15 70.0 0
0.10 75.7 0

0.05 100 59.6
<0.01 100 100

TABLE II
PERCENTAGE OF FALSE ALARMS FOR KF AND QB OBSERVER OVER
1000 RANDOM RUNS WITH THRESHOLD EQUAL TO p pmax-

Fig.s 1-5 show the result of a simulation run, in which the
proposed hybrid observer provides a quick reaction to the
occurrence of the fault. To achieve a similar result, the tuning
of the hybrid KF turns out to be quite difficult. Depending

0.4

X
0.35 QB obs. est. of x, )
====KF est. of x
03 !
0.25 N

0 10 20 30 40 50 60 70 80 90 100
time

Fig. 2. Time behavior of z; and its estimates in a simulation run.

0.6
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\j

04§

0.3

0.2

0.1r

X2

or QB obs. est. of X,[

==== KF est. of X,

0.1 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

time

Fig. 3. Time behavior of x2 and its estimates in a simulation run.

on the selection of covariance matrix of the measurement
noises, on one hand the response to the fault may be rapid
but with an estimation error very sensitive to the noises or,
on the other hand, slow but more robust to noises. Table II
shows that the proposed QB approach performs better also in
terms of false alarms. In practice, for the proposed approach
lower thresholds can be chosen that provide a much smaller
false alarm rate as compared with the KF.

VII. CONCLUSIONS

Fault detection has been addressed by using quadratic
boundedness with reliminary results for both LTI and PWA
models. The design of the proposed estimators is accom-
plished by minimizing a steady-state upper bound in order
to reduce the conservativity of the detection threshold. As a
future work we aim at analyzing the detectability properties
of the proposed approach and at deriving theoretical guaran-
tees for less conservative detection thresholds allowing false
alarms. Future investigation will regard the extension of our
approach to a wider class of plants, especially those usually
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referred to as distributed systems, and nonlinear systems.
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