
1 

Title-  

Virtual Monoenergetic Imaging in Rapid kVp-switching Dual energy CT (DECT) of the 

Abdomen: Impact on CT Texture Analysis  

Abstract 

Purpose  

To study the impact of keV levels of monoenergetic images generated from rapid-kVp-switching 

Dual-energy CT (rsDECT) on CT texture analysis (CTTA). 

Methods  

This study included 30 consecutive patients (59.3±12years; range:34-77years; 17M:13F) who 

underwent portal-venous-phase abdominal CT on a rsDECT scanner. Axial 5-mm monoenergetic 

images at 5-energy levels (40/50/60/70/80keV) were created and CTTA of liver was performed. 

CTTA comprised of a filtration-histogram technique with different spatial-scale filter (SSF) 

values (0-6). CTTA quantification at each SSF value included histogram based statistical 

parameters such as mean intensity, standard deviation (SD), entropy, mean-of-positive-pixels 

(MPP), skewness and kurtosis. The values were compared using repeated measures ANOVA. 

Results  

Amongst the different CTTA metrics, mean intensity (at SSF> 0), skewness and kurtosis did not 

show variability whereas entropy, MPP and SD varied with different keV levels. There was no 

change in skewness and kurtosis values for all 6 filters (p>0.1). Mean intensity showed no 

change for filters 2-6 (p>0.1). Mean intensity at SSF=0 i.e. mean attenuations were 91.2±2.9, 

108.7±3.6, 136.1±4.7, 179.8±6.9 and 250.5±10.1 HU for 80, 70, 60, 50 and 40 keV images 

respectively demonstrating significant variability (decrease) with increasing keV levels 
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(p<0.001). Entropy, MPP and SD values showed a statistically significant decrease with 

increasing keV of monoenergetic images on all 6 filters (p<0.001).  

Conclusion 

The energy levels of monoenergetic images have variable impact on the different CTTA 

parameters, with no significant change in skewness, kurtosis and filtered mean-intensity whereas 

significant decrease in mean attenuation entropy, MPP and SD values with increasing energy 

levels.  
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Introduction 

Tissue heterogeneity is an important histological feature of malignant tumors (1). One of the 

components of tissue heterogeneity is vascular variation which contributes to adverse tumor 

microenvironment and regional tumor hypoxia. Vascular heterogeneity leads to aggressive tumor 

biology facilitating increased risk of local invasion and systemic metastasis, impaired delivery of 

systemic chemotherapeutic agents and cellular resistance to chemotherapy (1). Imaging 

surrogates of tissue heterogeneity (especially vascular) on cross sectional radiological techniques 

such as CT and MRI include variable lesion attenuation/intensity and enhancement 

characteristics. Texture analysis is a method of quantifying the lesion heterogeneity on medical 

images (CT and MRI) and is emerging as a potentially useful tool for assessing prognosis and 

treatment response in cancer imaging (2,3). CT based texture parameters obtained from tumors 

have been shown to correlate with histological features, and in comparison to histological 

analysis it is less invasive and easier to perform (3). CT texture analysis (CTTA) has been shown 

to be useful in detection (4–9), characterization (10–14), staging and prognostication of various 

malignancies (15–22). CTTA has been shown to be a marker for tumor metabolism, 

angiogenesis, key molecular marker expression and patient survival in lung and gastrointestinal 

cancers (15–22,27). Texture analysis performed using CT and MRI has also emerged as a tool 

for therapeutic response assessment.  CTTA has been reported to be predictive biomarker for 

response to tyrosine kinase inhibitors in metastatic renal cell cancer (29), and chemotherapy in 

primary and metastatic colorectal cancer (30–32), non-small cell lung cancer (33), esophageal 

cancer (34) and soft tissue sarcoma (35). MRI image texture analysis has also been found to be a 

predictor of chemotherapeutic response in breast cancer (36–39). 
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Dual energy CT (DECT) allows simultaneous image acquisition at two different energies which 

leads to generation of material/energy specific attenuation information and a wide range of CT 

image data sets. Rapid kVp-switching (rsDECT) is a type of source-based DECT in which the 

single x-ray source rapidly switches between low and high tube voltages to generate near-

simultaneous dual energy projections. Virtual monoenergetic images are post-processed DECT 

images that provide projected attenuation maps equivalent to an actual acquisition at 

monochromatic X-ray beam of specific photon energy (40-190keV) (23,24). Generally, most of 

the DECT protocols generate arterial phase monochromatic images at 50-60keV and portal 

venous phase images at 60-75keV as they provide the most optimal balance between improved 

SNR and image noise. Monoenergetic images demonstrate variations in attenuation values (HU) 

based on the energy level of reconstruction (25). Similarly, corresponding pixels from various 

monoenergetic and material decomposition images differ in attenuation depending on the 

material composition. As texture analysis is based on mathematical description of pixel gray-

level intensity information, DECT postprocessing might have an impact on image texture 

analysis. Increasing use of DECT for routine clinical and research purposes means CTTA would 

be increasingly applied on post processed DECT data sets and understanding their interplay is 

imperative for precise interpretation of research findings and standardization of imaging 

protocols. The impact of various energy levels of mono-energetic images on CTTA has not been 

studied before. Therefore, we undertook this research with the purpose of studying the impact of 

the energy level (keV) of reconstructed virtual monoenergetic images generated from rapid kVp 

switching Dual energy CT on CTTA parameters.  

Materials & Methods 
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Patient population 

This study was IRB approved and HIPAA compliant. The retrospective study included 30 

consecutive patients (age- 59.3±12 years; range 34-77 years; 17 M: 13F, BMI 28.5±7) who 

underwent portal venous phase abdominal CT for oncologic work-up. The patients included in 

the cohort did not have documented liver disease such as hepatitis, cirrhosis or hepatic steatosis 

in the medical record. Careful evaluation of the CT scans in these patients revealed no evidence 

of focal liver lesions such as metastases/cysts. The hepatic parenchymal enhancement in these 

patients was homogeneous without evidence of diffuse liver disease such as hepatic steatosis or 

cirrhosis. A liver-spleen attenuation difference of -25 HU on the portal venous phase exam was 

taken as the criteria for hepatic steatosis. al The liver function tests were within normal limits. 

All the patients included in the study were treatment naïve without evidence of systemic or 

locoregional therapies such as ablation or trans-arterial chemoembolization.  

Imaging technique 

All the patients included in the study had undergone a portal venous phase abdominal CT exam 

on a rapid kVp-switching DECT scanner in the DE mode (See Table 1 for CT protocol). The 

DECT image datasets were transferred to a dedicated post processing workstation for creation of 

the monoenergetic images. Axial virtual monoenergetic images of 5-mm thickness were 

reconstructed on advantage 4.6 workstation at 5 different energy levels (40, 50, 60, 70 and 80 

keV). From the post processed monoenergetic image data sets, one single axial image at the level 

of porta hepatis was selected for CTTA analysis. A total of 150 axial CT images (30 DECT scans 

x 5 different keV levels) constituted the final data set for CTTA analysis. 
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CT Texture analysis 

The selected DICOM images were saved and uploaded to commercially available research 

software TexRAD (TexRAD Ltd www.texrad.com - part of Feedback Plc, Cambridge, UK) for 

image texture/heterogeneity assessment. This software has been extensively reported and 

validated for various oncologic applications (2,15–17,19,26–28). CTTA of the different 

monoenergetic image data sets were performed by placing regions of interest (ROIs) on the liver 

at corresponding locations on monoenergetic images of different keV levels. Large rectangular 

ROIs (3-5 cm2) were placed at the homogeneously enhancing liver parenchyma at the sub-

capsular location devoid of vessels. CTTA algorithm for liver employs a thresholding procedure 

that excludes any pixels corresponding to areas of fat, air and bright vessels with attenuation 

values outside the range of 0-300 HU. CTTA comprised of a filtration-histogram technique 

where the filtration step/technique produced a series of derived images extracting and enhancing 

objects/features of varying intensities and sizes corresponding to different spatial scale filter 

(SSF) values corresponding to fine (SSF=2, features of 2mm in radius), medium (SSF=3, 4, 5, 

features of 3, 4 or 5mm) and coarse (SSF=6, features of 6mm in radius) texture scales. Fine 

texture may represent parenchymal/tissue features; while medium/coarse texture may reflect 

larger vascular components, both representing different but biologically important information. 

As the CT scanner pixel resolution tends to be sub-mm voxel so any features less than twice the 

pixel resolution will most likely be reflecting photon noise hence SSF values less than 2mm were 

not considered. Filtration was followed by heterogeneity quantification using mean intensity 

(average brightness), SD (standard deviation; width of the distribution), mean value of positive 

pixels (MPP; the average value of all the pixels with positive value; represents location of 

distribution), entropy (a measure of irregularity or complexity), skewness (a measure of 
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asymmetry of the histogram) and kurtosis (a measure of peakedness or pointedness or sharpness 

of the distribution). In addition, these histogram parameters were also quantified from the 

conventional CT image without filtration (i.e. SSF=0). CTTA parameters included mean, 

standard deviation (SD), entropy, mean of positive pixels (MPP), skewness and kurtosis at 6 

different SSF values (0, 2, 3, 4, 5 and 6). A recent article (28) highlights  filtration-histogram 

based CTTA and described how various texture parameters reflect different components of 

visual image (heterogeneity) features such as number of objects/features, size of objects/features 

and variation in intensity of these objects/features in relation to the background of the tissue 

within the ROI (Figure 1).  

Statistical analysis 

Statistical analyses were carried out using the MedCalc software version 17.6 (Ostend Belgium) 

The mean attenuation values (HU which is mean intensity values at SSF = 0) and textural 

parameters (mean intensity, SD, entropy, MPP, skewness and kurtosis at different SSF values) 

from the different monoenergetic images were compared using repeated measures using 

ANOVA. For all comparisons, p< 0.05 was considered to indicate a statistically significant 

difference. 

Results 

CT attenuation and Monoenergetic Image keV level 

The mean attenuation of the liver parenchyma showed an increasing trend with decreasing keV 

level of the monoenergetic images. The mean attenuation was 91.2±2.9, 108.7±3.6, 136.1±4.7, 

179.8±6.9 and 250.5±10.1 HU for 80, 70, 60, 50 and 40 keV images respectively (p<0.001).  
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CTTA variables and Monoenergetic Image keV Level 

Amongst the different CTTA parameters measured at different monoenergetic levels kurtosis, 

skewness and filtered mean intensity showed least variability (more robust parameters) 

compared to entropy, SD and MPP. There was no significant change in the kurtosis values along 

the energy levels of the monoenergetic images for most comparisons across all 6 filters (p>0.1) 

(Table 2). The filtered mean intensity showed no significant change with varying energy levels 

of monoenergetic images for all filters (p>0.1) (table 3). There was no significant change in the 

skewness values at different keV levels for unfiltered images (SSF=0) and for fine (SSF=2) and 

coarse (SSF=6) filters (Table 4). The skewness values showed a significant decreasing trend with 

increasing keV values at medium size filters (SSF=3, 4 & 5) (table 4). But there was no 

significant difference for most subset comparisons on post hoc analysis (Table 4). The entropy, 

MPP and SD values showed a statistically significant decrease with increasing keV of 

monoenergetic images on all 6 filters (p<0.001; for all parameters), except for few individual 

subset comparisons on post hoc analysis(Tables 5-7).  

Discussion 

CT texture analysis which uses mathematical descriptors to describe the distribution of pixel 

intensity values within a ROI and therefore provide a marker for tumor biology has attracted a lot 

of recent interest in oncology research. In addition to its established applications of lung nodule 

characterization and detection of colonic polyps, its role as a biomarker for assessment and 

prediction of treatment response to various oncologic therapies is emerging. (4–9). (7–14). (29), 

(30–32), (33), (34) (36–39). Rising use of CTTA in oncological imaging has been paralleled by 
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the increasing performance of DECT in routine clinical and research practice across multiple 

centers. As the spectrum of the DECT data sets, particularly monoenergetic images are being 

investigated for their role in improving imaging diagnosis, it is crucial to understand their 

interplay with CTTA analysis.  

Post-processed DECT images have been shown to affect attenuation measurements depending on 

the material composition (23,24). We found that certain CTTA parameters demonstrate less 

variability (more robust) compared to others at different energy levels of monoenergetic images. 

There was no significant change in the kurtosis, skewness (showed no change at unfiltered 

images and with fine and coarse filters) and filtered mean intensity values along the different 

monoenergetic energy levels. Gaussian filter has a smoothening effect on the images and is 

probably mitigating the effects of dual energy post processing and hence the differences in 

attenuation/mean on unfiltered images is not reproduced on filtered images. Skewness is measure 

of the asymmetry of the texture histogram. The skewness value can be positive or negative. A 

negative skew indicates that the tail on the left side of the histogram is longer than the right side. 

A positive skew indicates that the tail on the right side is longer than the left side. A zero value 

indicates that the values are evenly distributed on both sides of the mean. The dual energy post 

processing did not have any impact on skewness in a homogenously enhancing liver 

parenchyma. It probably can be explained the fact that although the change in keV results in 

change in pixel intensity but this change is proportionate in all pixels and does not change their 

distribution around the mean (figure 2). Kurtosis is a measure of the peakedness of the 

histogram. The kurtosis value also can be positive or negative. A positive kurtosis indicates a 

histogram that is more peaked than a Gaussian (normal) distribution. A negative kurtosis 
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indicates that histogram is flatter than a Gaussian (normal) distribution. The relative stability of 

kurtosis can also probably be explained by the proportionate impact on all pixels that did not 

change the distribution of pixel intensities around the mean (Figure 2). The entropy, MPP, SD 

values across all filter levels and skewness (medium filter scale) showed a statistically significant 

decrease with increasing keV of monoenergetic images.  

The findings of our study have two key implications. First, all the results of the prior studies on 

CTTA with polychromatic CT should be applied with care to the future studies on DECT 

monoenergetic images. Texture parameters are quantitative entities and certain parameters are 

less prone to variations due to DECT image specifications rather than actual pathological 

process. Second and more importantly, there has been an increase in utilization of CTTA for the 

response assessment in various malignancies (29–35)with a simultaneous increase in 

performance of DECT for oncological applications (40–44). Thus, it is important to be aware of 

the impact of DECT post processing on image texture to ensure the comparability of imaging 

studies acquired at different time points. Our study has demonstrated that some of the texture 

parameters such as kurtosis, filtered mean intensity values and skewness values of unfiltered 

images and filtered images with fine and coarse filters do not change with changing keV and 

hence might be more reliable and robust compared to other quantifiers between different keV 

datasets. The quantifiers that demonstrate variability between different keV could benefit from 

some additional normalization techniques e.g. CT apparently normal appearing liver texture 

ratios at two filter (SSF) values (45–47)have shown to exhibit least variability with CT 

acquisition parameters - tube currents and tube voltages and predict patient survival in metastatic 

colorectal cancer study. Other normalization techniques could include dividing tissue texture of 
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interest by muscle/water texture. These approaches could make the quantifiers more reliable and 

robust and therefore applicable to DECT monoenergetic images. The implication of our study for 

clinical use and patient care translates to identification of CTTA parameters (e.g. kurtosis, 

skewness and filtered mean) which are less variant (more robust) to variations in energy levels of 

monoenergetic images making them suitable for use in DECT applications.  

Our study has few limitations. First, our sample size was small. Second, the measurements were 

performed on normal liver parenchyma and no measurements were made on actual focal lesions 

(45–47). However, since our intent was to identify variations in CTTA with monoenergetic 

images, we relied on using normal parenchyma of solid organ to negate the effect of various 

pathologies on CTTA parameters. The impact of energy levels of monoenergetic images on 

CTTA could be addressed on large cohort future studies. Additionally, future projects could 

focus on identifying ideal monoenergetic image energy levels to optimize the extraction of useful 

biological information, similar to keV optimization studies for different imaging applications 

(48,49). 

Conclusion: 

The energy levels of monoenergetic DECT images have a variable impact on the different CTTA 

parameters; certain CTTA parameters may be reliably compared between the images of different 

keV values such as skewness, kurtosis and filtered mean-intensity whereas mean attenuation, 

entropy, MPP and SD values decrease significantly with increasing energy levels of 

monoenergetic images. The energy levels of monoenergetic images must be standardized and/or 

appropriate normalization approaches to quantification (for certain metrics) should be undertaken 

to ensure greater comparability of different image data-sets for CTTA in oncological patients. 
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Knowledge of these relationships can assist the understanding of results obtained from clinical 

CTTA studies in oncological patients undergoing DECT. 
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Legends:

Figure 1- Illustration showing CTTA process. Large rectangular ROIs (arrow) were placed at the 

homogeneously enhancing liver parenchyma devoid of vessels. CTTA algorithm used for liver 

analysis employed a thresholding procedure that excludes any pixels corresponding to areas of 

fat, air and bright vessels with attenuation values outside the range of 0-300 HU. CTTA 

comprised of a filtration-histogram technique where the filtration step/technique produced a 

series of derived images extracting and enhancing objects/features of varying intensities and 

sizes corresponding to different spatial scale filter (SSF) values including 0,2,3, 4, 5 and 6. The 

CTTA parameters of image were derived of each value of SSF. 

Figure 2- Illustration showing the histogram plots of 40 to 80 keV images with fine filter (SSF 

2). There is difference in standard deviation (as demonstrated by the range on x-axis); however 

there is no difference in the shape/peakedness of the curve (kurtosis) and skewness. 
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Table 1- Scan parameters 

Parameters ssDECT

Tube potential (kVp) 80 kV/140 kV 

GSI parameters for patients 

under 150 lbs 

GSI 23 

CTDI 11.32 

mA (fixed) 375 

Rotation time 0.7 sec 

Pitch 1.375 

Collimation 64 x 0.625 

Speed 55 mm/sec 

GSI parameters for patients 

151-250 lbs 

GSI 3 

CTDI 13.33 

mA (fixed) 630 

Rotation time 1 sec 

Pitch 0.984 

Collimation 64 x 0.625 

Speed 39.37 mm/sec 

Slice thickness/interval 5 mm/ 5 mm 



Iterative Reconstruction ASIR (50%) 



Table 2- Kurtosis values with different filters (SSF) at different keV 

Kurtosis (mean±SD) 

SSF 40keV 50keV 60 keV 70 keV 80 keV P- value Post ANOVA 

0 0.49±0.17 1.61±1.3 0.18±0.04 0.24±0.08 -0.002±0.02 0.1082 Significant difference between 

60 & 80 keV and between 70 & 

80 keV. Rest of the comparisons 

were not different. 

2 0.18±0.10 0.15±0.1

1 

0.22±0.14 0.34±0.16 -0.09±0.06 0.1231 No significant difference on 

subset comparisons. 

3 0.09±0.15 0.14±0.1

5 

0.22±0.20 0.19±0.16 -0.22±0.07 0.1393 No significant difference on 

subset comparisons. 

4 0.01±0.13 0.003±0.

13 

0.07±0.16 0.03±0.13 -0.32±0.09 0.1027 No significant difference on 

subset comparisons. 

5 -

0.24±0.11

-

0.16±0.1

2 

-

0.20±0.16

-

0.17±0.14

-0.35±0.13 0.5449 No significant difference on 

subset comparisons. 

6 -

0.50±0.10

-

0.49±0.0

9 

-

0.36±0.15

-

0.44±0.12

-0.57±0.16 0.7961 No significant difference on 

subset comparisons. 



Table 3- Mean values with different filters (SSF) at different keV 

Parameter “Mean” (mean±SD) 

SSF 40keV 50keV 60 keV 70 keV 80 keV P- value Post-ANOVA 

0 

(attenuation)

250.5±10.1 179.8±6.9 136.1±4.7 108.7±3.6 91.2±2.9 <0.0001 All subset comparisons 

were significantly 

different. 

2 0.73±0.78 0.64±0.32 -0.05±0.31 0.25±0.16 -

0.008±0.1

8 

0.298 No significant difference 

on subset comparisons. 

3 1.56±1.02 0.99±0.45 0.21±0.55 0.02±0.28 0.03±0.34 0.0856 No significant difference 

on subset comparisons. 

4 0.52±1.3 0.43±1.02 0.95±0.69 -

0.18±0.68

0.17±0.58 0.6157 No significant difference 

on subset comparisons. 

5 1±1.9 -0.02±1.3 1.4±0.98 0.37±1.06 0.77±0.89 0.9883 No significant difference 

on subset comparisons. 

6 1.02±2.62 0.3±1.8 2.21±1.39 1.32±1.38 1.16±1.12 0.8071 No significant difference 

on subset comparisons. 



Table 4- Skewness values with different filters (SSF) at different keV 

Skewness (mean±SD) 

SSF 40keV 50keV 60 keV 70 keV 80 keV P- value Post-ANOVA 

0 0.008±0.06 -0.06±0.13 0.1±0.02 0.1±0.03 0.03±0.02 0.2018 No significant 

difference on subset 

comparisons. 

2 0.11±0.04 0.10±0.04 0.14±0.05 0.14±0.05 0.04±0.03 0.4362 No significant 

difference on subset 

comparisons. 

3 0.22±0.07 0.19±0.06 0.18±0.07 0.22±0.07 -0.007±0.04 <0.05 Only 40 & 80 keV were 

significantly different. 

4 0.28±0.08 0.25±0.08 0.19±0.08 0.20±0.08 -0.01±0.05 <0.05 Only 40 & 80 keV were 

significantly different. 

5 0.21±0.09 0.26±0.09 0.22±0.08 0.16±0.09 -0.04±0.08 <0.05 No significant 

difference on subset 

comparisons. 

6 0.017±0.1 0.08±0.09 0.06±0.1 0.02±0.1 -0.06±0.11 0.4969 No significant 

difference on subset 

comparisons. 



Table 5- Entropy values with different filters (SSF) at different keV 

Entropy (mean±SD) 

SSF 40keV 50keV 60 keV 70 keV 80 keV P- value Post-ANOVA 

0 4.6±0.05 4.3±0.04 4.03±0.05 3.7±0.05 3.6±0.04 <0.0001 All subset comparisons significantly 

different. 

2 5.3±0.05 5.08±0.04 4.8±0.04 4.5±0.04 4.5±0.04 <0.0001 No difference between 70 & 80 keV. 

Rest of the subset comparisons were 

significantly different. 

3 4.9±0.06 4.7±0.04 4.5±0.05 4.2±0.05 4.2±0.05 <0.0001 No difference between 70 & 80 keV. 

Rest of the subset comparisons were 

significantly different. 

4 4.5±0.1 4.4±0.06 4.2±0.06 3.9±0.05 3.8±0.06 <0.0001 No difference between 40 & 50 keV, 

between 40 & 60 keV and between 70 & 

80 keV. Rest of the subset comparisons 

were significantly different. 

5 4.5±0.07 4.1±0.07 3.9±0.1 3.7±0.07 3.5±0.09 <0.0001 No difference between 70 & 80 keV. 

Rest of the subset comparisons were 

significantly different. 

6 4.1±0.11 3.8±0.1 3.5±0.14 3.3±0.12 3.1±0.15 <0.0001 No difference between.60 & 70 keV and 

between 70 & 80 keV.. Rest of the 



subset comparisons were significantly 

different. 



Table 6- MPP values with different filters (SSF) at different keV 

MPP (mean±SD) 

SSF 40keV 50keV 60 keV 70 keV 80 keV P- value Post-ANOVA 

0 250.5±10.1 179.8±6.9 136.1±4.7 108.7±3.6 91.2±2.9 <0.0001 All subset comparisons significantly 

different. 

2 57.2±2.4 40.3±1.7 31.4±1.5 22.6±1.07 22.1±1.0

05 

<0.0001 No difference between 70 & 80 keV. 

Rest of the subset comparisons were 

significantly different. 

3 41.6±2.2 29.03±1.3 23.8±1.3 17.09±0.8

9 

15.9±0.7

8 

<0.0001 No difference between 70 & 80 keV. 

Rest of the subset comparisons were 

significantly different. 

4 33.2±2.8 22.8±1.2 19.4±1.2 13.5±0.75 12.1±0.7

3 

<0.0001 No difference between 70 & 80 keV. 

Rest of the subset comparisons were 

significantly different. 

5 29.04±2.8 19.09±1.5 16.09±1.5 11.4±0.96 10.4±0.9

5 

<0.0001 No difference between 70 & 80 keV. 

Rest of the subset comparisons were 

significantly different. 

6 24.02±2.8 15.2±2.8 13.4±1.7 9.7±1.2 8.6±1.1 <0.0001 No difference between 50 & 60 keV 

and between 70 & 80 keV. Rest of the 



subset comparisons were significantly 

different. 



Table 7- SD values with different filters (SSF) at different keV 

SD (mean±SD) 

SSF 40keV 50keV 60 keV 70 keV 80 keV P- value Post ANOVA 

0 29.1±1.4 20.4±0.9 15.07±0.8 11.2±0.5 10.3±0.4 <0.0001 All subset comparisons significantly 

different. 

2 71.03±3.

2 

50.1±2.2 38.8±1.8 28.3±1.3 27.4±1.2 <0.0001 No difference between 50 & 60 keV and 

between 70 & 80 keV. Rest of the subset 

comparisons were significantly different. 

3 50.3±2.7 35.2±1.7 29.2±1.6 20.7±1.1 19.5±0.9 <0.0001 No difference between 70 & 80 keV. Rest 

of the subset comparisons were 

significantly different. 

4 38.5±3.1 27.05±1.

6 

23.1±1.5 16.3±0.9 14.9±0.9 <0.0001 All subset comparisons were significantly 

different. 

5 33.5±2.6 22.2±1.6 18.2±1.6 13.2±0.8 11.8±1.1 <0.0001 No difference between 70 & 80 keV. Rest 

of the subset comparisons were 

significantly different. 

6 26.5±2.5 17.3±1.6 13.8±1.5 10.1±0.9 9.05±1.1 <0.0001 No difference between 70 & 80 keV. Rest 

of the subset comparisons were 

significantly different. 


