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GWAS	meta-analysis	(N=279,930)	identifies	new	genes	and	functional	links	to	intelligence	
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Intelligence	is	highly	heritable1	and	a	major	determinant	of	human	health	and	well-being2.	Recent	

genome-wide	meta-analyses	have	identified	24	genomic	loci	linked	to	intelligence3-7,	but	much	

about	its	genetic	underpinnings	remains	to	be	discovered.	Here,	we	present	the	largest	genetic	

association	study	of	intelligence	to	date	(N=279,930),	 identifying	206	genomic	loci	(191	novel)	

and	 implicating	 1,041	 genes	 (963	 novel)	 via	 positional	mapping,	 expression	 quantitative	 trait	

locus	(eQTL)	mapping,	chromatin	interaction	mapping,	and	gene-based	association	analysis.	We	

find	 enrichment	 of	 genetic	 effects	 in	 conserved	 and	 coding	 regions	 and	 identify	 89	

nonsynonymous	 exonic	 variants.	 Associated	 genes	 are	 strongly	 expressed	 in	 the	 brain	 and	

specifically	in	striatal	medium	spiny	neurons	and	cortical	and	hippocampal	pyramidal	neurons.	

Gene-set	 analyses	 implicate	 pathways	 related	 to	 neurogenesis,	 neuron	 differentiation	 and	

synaptic	 structure.	 We	 confirm	 previous	 strong	 genetic	 correlations	 with	 several	

neuropsychiatric	disorders,	and	Mendelian	Randomization	results	suggest	protective	effects	of	

intelligence	 for	 Alzheimer’s	 dementia	 and	 ADHD,	 and	 bidirectional	 causation	 with	 strong	

pleiotropy	 for	 schizophrenia.	 These	 results	 are	 a	 major	 step	 forward	 in	 understanding	 the	

neurobiology	of	intelligence	as	well	as	genetically	associated	neuropsychiatric	traits.			

	

We	 performed	 a	 genome	 wide	 meta-analysis	 of	 16	 independent	 cohorts	 totaling	 279,930	

participants	of	European	ancestry	and	9,398,186	genetic	variants	passing	quality	control	(Online	

Methods;	 Supplementary	Table	1;	 Supplementary	 Figure	1).	All	 genome-wide	analyses	were	

corrected	 for	 cohort-specific	 ancestry	 and	 covariates	 (Supplementary	 Information).	 Various	

measures	of	intelligence	were	used	in	each	study,	yet	genetic	correlations	between	cohorts	(rg,	

Online	Methods),	were	 considerable	 (mean=0.63),	warranting	meta-analysis	 (Supplementary	
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Table	2;	 Supplementary	Results	2.1).	 Separate	meta-analyses	 for	 children,	 young	adults,	 and	

adults	(Online	Methods)	indicated	high	genetic	correlations	between	age	groups	(rg>0.62),	and	

comparable	single	nucleotide	polymorphism	(SNP)-based	heritability	across	age	(h2SNP=0.19-0.22)	

(Supplementary	 Table	 3;	 Supplementary	 Results	 2.2).	 The	 inflation	 factor	 of	 the	 full	 meta-

analysis	 was	 λGC=1.95	 (Supplementary	 Table	 4;	 Supplementary	 Figure	 2),	 with	 h2SNP=0.18	

(SE=0.01),	in	line	with	previous	findings4,5,	and	an	LD	score	intercept8	of	1.09	(SE=0.02)	indicated	

that	most	of	the	inflation	could	be	explained	by	polygenic	signal	and	large	sample	size6.		

	

In	the	meta-analysis,	12,701	variants	indexed	by	531	independently	significant	SNPs	(r2<0.6)	and	

246	 lead	SNPs	 in	approximate	 linkage	equilibrium	(r2<0.1;	Online	Methods)	 reached	genome-

wide	significance	(GWS;	P<5×10-8)	(Figure	1a;	Supplementary	Table	5;	Supplementary	Figure	3).	

These	 were	 located	 in	 206	 distinct	 genomic	 loci,	 191	 of	 which	 are	 novel	 associations	

(Supplementary	Results	 2.3).	 Proxy	 replication	with	 the	 correlated	phenotype	of	 educational	

attainment	(EA;	rg=0.73)	in	an	independent	sample	(Online	Methods)	indicated	sign	concordance	

for	94%	of	GWS	SNPs	(P<1×10-300)	and	evidence	of	replication	for	51	loci	(Supplementary	Results	

2.3.2;	Supplementary	Table	6).	Using	polygenic	score	prediction9,10	(Online	Methods)	we	show	

that	 the	 current	 results	 explain	 up	 to	 5.4%	 of	 the	 variance	 in	 four	 independent	 samples	

(Supplementary	Table	7,	Supplementary	Results	2.3.3).		

	

We	observed	strong	enrichment	for	heritability	(Online	Methods;	Supplementary	Results	2.3.4)	

of	SNPs	located	in	conserved	regions	of	the	genome	(P=1.84×10-12),	coding	regions	(P=7.88×10-

7),	H3K9ac	histone	regions/peaks	(P<6.06×10-5),	and	super-enhancers	(P=9.61×10-5)	(Figure	1b;	
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Supplementary	Table	8).	Conserved	regions	have	previously	been	implicated	for	intelligence11	

but	coding	regions	have	not.	Heritability	was	disproportionately	found	among	common	variants	

(Supplementary	Figure	5)	with	greatest	enrichment	for	SNPs	with	a	minor	allele	frequency	(MAF)	

between	 0.4	 and	 0.5	 (P=5.81×10-12),	 but	was	 distributed	 proportionally	 across	 chromosomes	

(Supplementary	Figure	6).	

	

Functional	annotation	of	all	SNPs	(n=23,552)	in	the	associated	loci	was	performed	using	FUMA12	

(Online	Methods).	SNPs	were	mostly	located	in	intronic	(n=12,171;	51.7%)	and	intergenic	areas	

(n=9,923;	42.1%)	(Supplementary	Table	9;	Figure	1c),	yet	6.3%	(1,473	SNPs)	were	annotated	to	

functional	genic	regions,	with	1.4%	(318	SNPs)	being	exonic.	Of	these,	89	(41	GWS)	SNPs	were	

exonic	non-synonymous	(ExNS)	(Table	1,	Supplementary	Results	2.3.5).	Convergent	evidence	of	

strong	association	(Z=9.74)	and	the	highest	observed	probability	of	a	deleterious	protein	effect	

(CADD13	score=34)	was	found	for	rs13107325.	This	missense	mutation	(MAF=0.065)	in	SLC39A8	

was	the	lead	SNP	in	locus	71	and	the	ancestral	allele	C	was	associated	with	higher	intelligence	

scores.	The	effect	 sizes	 for	ExNS	were	 individually	 small,	with	each	effect	allele	 	0.01	 to	0.05	

standard	deviations.	Table	1,	Supplementary	Table	9	and	Supplementary	Results	2.3.5	present	

a	detailed	catalog	of	the	functional	impact	of	variants	in	the	genomic	risk	loci.	Apart	from	protein	

consequences,	 the	 implicated	SNPs	also	showed	some	evidence	of	 indirect	 functional	effects:	

4.4%	had	a	RegulomeDB14	score	of	1a-1f	(Figure	1d),	suggesting	a	regulatory	function,	and	the	

majority	 of	 SNPs	 (81.6%)	 were	 in	 open	 chromatin	 regions15,16,	 as	 indicated	 by	 a	 minimum	

chromatin	state	of	1-7	(Figure	1e).		
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To	 link	the	associated	genetic	variants	to	genes,	we	applied	three	gene-mapping	strategies	as	

implemented	in	FUMA12	(Online	Methods).	Positional	gene-mapping	aligned	SNPs	to	514	genes	

by	location,	eQTL	(expression	quantitative	trait	loci)	gene-mapping	matched	cis-eQTL	SNPs	to	709	

genes	whose	 expression	 levels	 they	 influence,	 and	 chromatin	 interaction	mapping	 annotated	

SNPs	 to	 226	 genes	 based	 on	 three-dimensional	 DNA-DNA	 interactions	 between	 the	 SNPs’	

genomic	 region	 and	 nearby	 or	 distant	 genes	 (Figure	 2;	 Supplementary	 Figure	 7-8;	

Supplementary	Table	10-12).	Of	882	total	unique	genes,	438	genes	were	implicated	by	at	least	

two	mapping	strategies	and	129	by	all	3	(Figure	3).	Of	these,	15	genes	are	particularly	notable	as	

they	 are	 implicated	 via	 chromatin	 interactions	 between	 two	 independent	 genomic	 risk	 loci	

(Supplementary	 Table	 11).	VAMP4	 (locus	 14),	 shows	 interactions	 in	 6	 tissue	 types	 including	

interactions	with	locus	15	in	the	left	ventricle	(Figure	2a).	SATB2	(locus	44)	is	linked	by	interaction	

in	liver	tissue	to	locus	43	(Figure	2b).	MEF2	(locus	82)	shows	interactions	with	locus	83	in	5	tissues	

(Figure	2c).	FBXL17	and	MAN2A1	are	in	two	independent	loci	(87	and	88	respectively);	they	are	

mapped	 by	 eQTL	 associations	 and	 chromatin	 interactions	 between	 the	 two	 loci	 in	 the	 left	

ventricle	(Figure	2c).	Loci	102	and	103	show	multiple	interactions	in	one	of	7	tissue	types	that	are	

mapped	 to	8	 genes	encoding	 zinc	 finger	proteins	or	histones	 (Figure	2d).	ELAVL2	 (locus	130)	

interacts	with	 locus	129	 in	 the	 left	ventricle	and	 is	also	mapped	by	 intra-locus	 interactions	 in	

other	tissues	(Figure	2e).	ATF4	(locus	212)	is	mapped	by	eQTLs	in	3	tissue	types	and	chromatin	

interactions	in	7	tissue	types,	and	interacts	with	locus	213	in	the	left	ventricle	(Figure	2f).		

	

We	performed	genome-wide	gene-based	association	analysis	(GWGAS)	using	MAGMA17	(Online	

Methods).	This	approach	provides	aggregate	association	P-values	based	on	all	SNPs	in	a	gene,	
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whereas	 FUMA	 annotates	 individually	 significant	 SNPs	 to	 genes.	 GWGAS	 identified	 524	

associated	genes	(467	novel)	(Figure	3a;	Supplementary	Table	13;	Supplementary	Results	2.4.1),	

of	which	159	were	outside	of	the	GWAS	risk	loci,	and	365	were	also	mapped	by	FUMA	(Figure	

3b).	In	total,	92	genes	were	implicated	by	all	four	strategies	(Supplementary	Table	14).	

	

In	gene-set	analysis	using	the	GWGAS	results	(Online	Methods),	six	Gene	Ontology18	gene-sets	

were	significantly	associated	with	intelligence:	neurogenesis	(Beta=0.153,	SE=0.030,	P=1.55×10-

7),	neuron	differentiation	 (Beta=0.178,	 SE=0.038,	P=1.36×10-6),	central	 nervous	 system	neuron	

differentiation	(Beta=0.398,	SE=0.089,	P=3.97×10-6),	regulation	of	nervous	system	development	

(Beta=0.187,	 SE=0.040,	 P=1.54×10-6),	 positive	 regulation	 of	 nervous	 system	 development	

(Beta=0.242,	SE=0.052,	P=1.93×10-6),	and	regulation	of	synapse	structure	or	activity	(Beta=0.153,	

SE=0.030,	P=5.87×10-6)	(Supplementary	Table	15).	Conditional	analysis	indicated	that	there	were	

three	 independent	 associations,	 for	 the	 neurogenesis,	 central	 nervous	 system	 neuron	

differentiation,	 and	 regulation	 of	 synapse	 structure	 or	 activity	 processes,	 which	 together	

accounted	for	the	associations	of	the	other	three	sets	(Supplementary	Results	2.4.2).	

	

Linking	gene-based	P-values	to	tissue-specific	gene-sets	(Online	Methods),	we	observed	strong	

associations	 across	 various	 brain	 areas	 (Figure	 3c;	 Supplementary	 Table	 16;	 Supplementary	

Results	 2.4.2),	 most	 strongly	 with	 the	 cortex	 (P=5.12×10-9),	 and	 specifically	 frontal	 cortex	

(P=4.94×10-9).	 In	 brain	 single-cell	 expression	 gene-set	 analyses	 (Online	Methods),	 we	 found	

significant	associations	of	striatal	medium	spiny	neurons	(P=1.47×10-13)	and	pyramidal	neurons	

in	the	CA1	hippocampal	(P=4×10-11)	and	cortical	somatosensory	regions	(P=3×10-9),	(Figure	3d;	
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Supplementary	Table	17).	Conditional	analysis	showed	that	the	independent	association	signal	

in	brain	 cells	was	driven	by	medium	 spiny	neurons,	 neuroblasts,	 and	pyramidal	 CA1	neurons	

(Supplementary	Results	2.4.2).	

	

Intelligence	has	been	associated	with	a	wide	variety	of	human	behaviors19	and	brain	anatomy20.	

Confirming	previous	reports5,6,	we	observed	negative	genetic	correlations	(Online	methods)	with	

ADHD	 (rg=−0.36,	 P=1.97×10-24),	 depressive	 symptoms	 (rg=−0.27,	 P=5.77×10-10),	 Alzheimer’s	

disease	 (rg=−0.26,	 P=5.77×10-10),	 and	 schizophrenia	 (rg=−0.22,	 P=2.58×10-18)	 and	 positive	

correlations	with	EA	(rg=0.70,	P<1×10-200)	and	longevity	(rg=0.43,	P=4.91×10-8)	(Supplementary	

Table	18;	Supplementary	Figure	9).	Comparison	of	our	results	with	the	contents	of	the	NHGRI-

EBI	 catalog21	 supported	 these	 correlations,	 showing	 numerous	 shared	 genetic	 variants	

(Supplementary	 Information	2.5;	 Supplementary	Table	19-20).	 Low	enrichment	 (91	of	 1,518	

genes,	hypergeometric	P=0.03)	was	found	for	genes	previously	linked	to	intellectual	disability	or	

developmental	delay	 (see	URLs;	Online	Methods).	However,	our	 results	 replicate	and	add	 to	

previous	genetic	research	on	normal	variation	in	intelligence,	as	catalogued	in	Supplementary	

Tables	21-22.	

	

We	 used	 Mendelian	 Randomization	 (Online	 Methods)	 to	 test	 for	 potential	 credible	 causal	

associations	 between	 intelligence	 and	 genetically	 correlated	 traits	 (Supplementary	 Table	 23;	

Supplementary	Figures	10-11).	We	observed	a	strong	effect	of	 intelligence	on	EA	(bxy=0.531,	

SE=0.006,	 P<1×10-320),	 that	 was	 bidirectional	 and	 showed	 a	 similar	 strong	 effect	 of	 EA	 on	

intelligence	(bxy=0.517,	SE=0.025,	P=1.06×10-96),	with	only	a	small	proportion	of	SNPs	showing	
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pleiotropic	 effects.	 Our	 result	 also	 suggested	 a	 protective	 effect	 of	 intelligence	 on	 ADHD	

(OR=0.46,	bxy=−0.778,	SE=0.051,	P=3.80×10-45)	and	Alzheimer’s	disease	(OR=0.66,	bxy=−0.411,	

SE=0.058,	P=1.75×10-12).	In	line	with	a	positive	genetic	correlation,	we	observed	that	intelligence	

was	associated	with	higher	risk	of	autism	(OR=1.47,	bxy=0.382,	SE=0.099,	P=1.10×10-4).	There	

was	evidence	of	a	bidirectional	association	between	intelligence	and	schizophrenia	including	a	

strong	 protective	 effect	 of	 intelligence	 on	 schizophrenia	 (OR=0.58,	 bxy=−0.551,	 SE=0.043,	

P=3.50×10-30),	and	a	relatively	smaller	reverse	effect	(bxy=	−0.195,	SE=	0.012,	P=2.02×10-57),	with	

additional	evidence	for	pleiotropy	(Supplementary	Results	2.5.3).	

	

In	conclusion,	we	conducted	a	large-scale	genome-wide	meta-analysis	of	intelligence	in	279,930	

individuals,	resulting	in	the	identification	of	191	novel	loci	and	963	novel	genes,	and	replicating	

previous	associations	with	15	loci	and	78	genes.	The	applied	combined	strategies	of	functional	

annotation	and	gene-mapping	and	the	use	of	unique	biological	data	resources	provide	extensive	

information	 on	 functional	 consequences	 of	 relevant	 genetic	 variants	 and	 novel	 insight	 into	

underlying	neurobiological	pathways,	and	point	towards	the	involvement	of	specific	cell	types.	

We	 also	 found	 suggestive	 evidence	 of	 causal	 associations	 between	 intelligence	 and	

neuropsychiatric	 traits.	 These	 results	 are	 important	not	only	 for	 understanding	 the	biological	

underpinnings	of	individual	differences	in	intelligence,	but	also	contribute	to	our	understanding	

of	cognitive	and	related	psychiatric	disorders.	
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FIGURES	

 
	
Figure	1.	SNP-based	associations	with	intelligence	in	the	GWAS	meta-analysis	of	N=279,930.	(a)	
Manhattan	plot	showing	the	─log10	transformed	P-value	of	each	SNP	on	the	y-axis	and	base	pair	
positions	 along	 the	 chromosomes	 on	 the	 x-axis.	 The	 dotted	 red	 line	 indicates	 genome-wide	
significance	 (P<5×10-8),	 the	 blue	 line	 the	 threshold	 for	 suggestive	 associations	 (P<1×10-5).	
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Independent	lead	SNPs	are	indicated	by	a	diamond.	(b)	Heritability	enrichment	of	28	functional	
SNP	 annotations	 calculated	with	 stratified	 LD	 score	 regression	 TSS	 =	 Transcription	 Start	 Site;	
CTCF=CCCTC-binding	 factor;	 DHS=DNase	 Hypersensitive	 Site.	 (c)	 Distribution	 of	 functional	
consequences	of	SNPs	in	genomic	risk	loci	in	the	meta-analysis.	(d)	Distribution	of	RegulomeDB	
score	for	SNPs	 in	genomic	risk	 loci,	with	a	 low	score	 indicating	a	higher	 likelihood	of	having	a	
regulatory	function	(Online	methods).	(e)	The	minimum	chromatin	state	across	127	tissue	and	
cell	types	for	SNPs	in	genomic	risk	loci,	with	lower	states	indicating	higher	accessibility	and	states	
1-7	referring	to	open	chromatin	states	(Online	Methods).		
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Figure	 2.	 Genomic	 risk	 loci,	 expression	 quantitative	 trait	 locus	 (eQTL)	 associations	 and	
chromatin	 interactions	 for	 chromosomes	 containing	 cross-locus	 interactions.	 Circos	 plots	
showing	genes	on	chromosomes	1	(a),	2	(b)	5	(c)	6	(d)	9	(e)	and	22	(f)	that	were	implicated	as	
genomic	risk	loci	(blue	regions)	by	positional	mapping,	eQTL	mapping	(green	lines	connecting	an	
eQTL	SNP	 to	 its	 associated	gene),	 and/or	 chromatin	 interaction	 (orange	 lines	 connecting	 two	
interacting	regions)	and	showed	evidence	of	 interaction	across	two	independent	genomic	risk	
loci.	Genes	implicated	by	both	eQTL	and	chromatin	interactions	mapping	are	in	red.	The	outer	
layer	 shows	a	Manhattan	plot	 containing	 the	─log10	 transformed	P-value	of	 each	SNP	 in	 the	
GWAS	 meta-analysis,	 with	 genome-wide	 significant	 SNPs	 in	 color	 corresponding	 to	 linkage	
disequilibrium	 patterns	with	 the	 lead	 SNP.	 Circos	 plots	 for	 all	 chromosomes	 are	 provided	 in	
Supplementary	Fig.	7.		
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Figure	3.	Mapping	of	genes	and	tissue-	and	cell	expression	profiles.	(a)	Manhattan	plot	of	the	
genome-wide	gene-based	association	analysis	(GWGAS).	The	y-axis	shows	the	─log10	
transformed	P-value	of	each	gene,	and	the	chromosomal	position	on	the	x-axis.	The	red	dotted	
line	indicates	the	threshold	for	genome-wide	significance	of	the	gene-based	test	(P<2.76×10-6;	
0.05/18,128),	and	the	blue	line	indicates	the	suggestive	threshold	(P<2.76×10-5;	0.5/18,128)	(b)	
Venn	diagram	showing	overlap	of	genes	implicated	by	positional	mapping,	eQTL	mapping,	
chromatin	interaction	mapping,	and	GWGAS.	(c)	Gene	expression	profiles	of	identified	genes	
for	53	tissue	types.	Expression	data	were	extracted	from	the	Genotype-Tissue	Expression	
(GTEx)	database.	Expression	values	(RPKM)	were	log2	transformed	with	pseudocount	1	after	
winsorization	at	50	and	averaged	per	tissue.	(d)		Single-cell	gene-expression	analysis	of	genes	
related	to	intelligence	in	24	cell-types.	The	dotted	blue	line	indicates	the	Bonferroni-corrected	
significance	threshold	(P=0.05/7,323=6.83×10-6).	 	
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TABLES	

Table	1.	Exonic	non-synonymous	(ExNS)	variants	in	the	genomic	loci	associated	with	
intelligence	and	in	LD	(r2>0.6)	with	one	of	the	independent	GWS	SNPs.		
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SNP	 Gene	 Exon	 CADD	 RDB	 A1	 A2	 MAF	 P	 Z	 Effect	Size	
rs4359027	 FOXO6	 2	 13.18	 2b	 A	 G	 0.47	 1.2E-07	 5.29	 0.014	
rs11264743	 CREB3L4	 3	 24.4	 4	 T	 C	 0.29	 5.2E-07	 -5.02	 -0.015	
rs11264875	 NUP210L	 32	 28.6	 6	 T	 C	 0.28	 2.5E-06	 -4.71	 -0.014	
rs2232819	 METTL13	 3	 22.8	 5	 A	 G	 0.19	 4.1E-07	 5.06	 0.017	
rs2820312	 LMOD1	 2	 2.65	 5	 A	 G	 0.34	 1.7E-08	 -5.64	 -0.016	
rs1804020	 ZNF638	 5	 7.18	 7	 A	 G	 0.24	 4.7E-11	 -6.58	 -0.021	
rs11542286	 ZNF638	 7	 22.4	 -	 T	 C	 0.09	 2.0E-07	 -5.20	 -0.024	
rs3813227	 ALMS1	 5	 0.09	 6	 T	 C	 0.24	 3.7E-07	 -5.08	 -0.016	
rs6546837	 ALMS1	 8	 0	 6	 C	 G	 0.24	 4.0E-07	 -5.07	 -0.016	
rs6724782	 ALMS1	 8	 0.01	 7	 A	 T	 0.24	 5.2E-07	 -5.02	 -0.016	
rs6546839	 ALMS1	 8	 17.18	 7	 C	 G	 0.24	 3.7E-07	 -5.08	 -0.016	
rs2056486	 ALMS1	 10	 0.29	 5	 T	 G	 0.24	 2.0E-07	 -5.20	 -0.016	
rs3828193	 CHST10	 2	 13.45	 -	 T	 G	 0.49	 8.8E-13	 7.15	 0.019	
rs2116665	 GPD2	 3	 11.61	 -	 A	 G	 0.3	 4.2E-09	 5.88	 0.017	
rs1064213	 PLCL1	 2	 26.1	 6	 A	 G	 0.48	 8.4E-07	 -4.93	 -0.013	
rs9834639	 TMEM89	 1	 13.65	 1f	 T	 G	 0.07	 2.0E-06	 4.76	 0.025	
rs13324142	 SLC26A6	 2	 25.6	 1f	 T	 C	 0.1	 6.7E-08	 5.40	 0.024	
rs34759087	 LAMB2	 22	 23.1	 5	 T	 C	 0.12	 3.1E-08	 5.53	 0.023	
rs13068038	 CCDC36	 10	 4.12	 7	 A	 C	 0.11	 6.9E-13	 7.18	 0.031	
rs13077498	 C3orf62	 1	 1.48	 4	 T	 C	 0.11	 3.2E-13	 7.29	 0.031	
rs34762726	 BSN	 5	 0.66	 5	 A	 G	 0.29	 3.0E-25	 10.38	 0.031	
rs2005557	 BSN	 8	 11.52	 2b	 A	 G	 0.47	 2.6E-08	 -5.57	 -0.015	
rs3197999	 MST1	 18	 25.5	 -	 A	 G	 0.29	 1.6E-23	 10.00	 0.029	
rs34823813	 RNF123	 24	 18.51	 7	 A	 G	 0.1	 3.6E-12	 6.95	 0.031	
rs73079003	 CDHR4	 8	 5.09	 3a	 A	 G	 0.13	 3.4E-08	 5.52	 0.022	
rs1046956	 SEMA3F	 13	 6.01	 4	 A	 T	 0.34	 1.7E-09	 6.02	 0.017	
rs11177	 GNL3	 3	 22.9	 -	 A	 G	 0.38	 5.7E-11	 6.55	 0.018	

rs2289247	 GNL3	 11	 12.82	 -	 A	 G	 0.41	 1.4E-10	 6.42	 0.017	
rs1029871	 NEK4	 5	 24.1	 1f	 C	 G	 0.38	 5.3E-10	 6.21	 0.019	
rs3617	 ITIH3	 9	 0.16	 -	 A	 C	 0.45	 4.6E-08	 5.47	 0.015	

rs61739170	 DHFRL1	 2	 0.01	 6	 C	 G	 0.26	 5.8E-06	 -4.54	 -0.014	
rs2269495	 TNIP2	 6	 10.93	 -	 A	 G	 0.44	 7.3E-07	 -4.95	 -0.013	
rs3795243	 NCAPG	 4	 10.85	 5	 C	 G	 0.13	 4.3E-11	 -6.59	 -0.026	
rs34811474	 ANAPC4	 20	 23.8	 6	 A	 G	 0.23	 4.5E-16	 8.12	 0.027	
rs13107325	 SLC39A8	 8	 34	 5	 T	 C	 0.08	 2.1E-22	 -9.74	 -0.048	
rs17610219	 TTC29	 6	 1.91	 7	 A	 G	 0.38	 4.2E-08	 5.48	 0.015	
rs2240695	 PCDHA1	 1	 21.9	 -	 T	 G	 0.47	 3.5E-08	 5.52	 0.015	
rs9686540	 PCDHA2	 1	 2.31	 5	 A	 G	 0.47	 8.6E-08	 5.35	 0.014	
rs7701755	 PCDHA3	 1	 22.6	 4	 T	 G	 0.47	 1.2E-07	 5.29	 0.014	
rs2240694	 PCDHA3	 1	 23	 -	 A	 G	 0.47	 5.1E-08	 5.45	 0.015	
rs3822346	 PCDHA4	 1	 0.02	 -	 T	 C	 0.47	 4.9E-08	 5.45	 0.015	
rs4141841	 PCDHA5	 1	 17	 -	 T	 C	 0.47	 3.3E-08	 5.53	 0.015	
rs10067182	 PCDHA7	 1	 0.07	 5	 A	 G	 0.47	 5.6E-08	 5.43	 0.015	
rs41266839	 BTN3A1	 5	 0	 4	 C	 G	 0.11	 1.9E-07	 5.21	 0.022	
rs13195401	 BTN2A1	 4	 24.4	 5	 T	 G	 0.11	 3.3E-07	 5.11	 0.022	
rs13195402	 BTN2A1	 4	 24.6	 5	 T	 G	 0.11	 1.4E-06	 4.82	 0.021	
rs13195509	 BTN2A1	 4	 23.6	 1f	 A	 G	 0.12	 7.9E-08	 5.37	 0.022	
rs3734542	 BTN2A1	 8	 7.52	 5	 A	 G	 0.12	 1.4E-07	 5.27	 0.022	
rs3734543	 BTN2A1	 8	 6.66	 5	 C	 G	 0.12	 5.4E-07	 5.01	 0.021	
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rs35555795	 BTN1A1	 7	 0.03	 7	 T	 C	 0.12	 1.1E-07	 5.31	 0.022	
rs3749971	 OR12D3	 1	 1.61	 -	 A	 G	 0.12	 4.0E-09	 5.89	 0.025	
rs3735478	 ZMIZ2	 9	 22.7	 1f	 T	 G	 0.29	 4.2E-11	 6.60	 0.020	
rs1801195	 WRN	 26	 0.08	 5	 T	 G	 0.46	 1.2E-07	 5.30	 0.014	
rs79460462	 TSNARE1	 3	 15.14	 5	 T	 C	 0.02	 7.4E-07	 4.95	 0.049	
rs1063739	 GPT	 1	 0.01	 4	 A	 C	 0.47	 2.0E-09	 -6.00	 -0.016	
rs4251691	 RECQL4	 18	 19.04	 -	 T	 C	 0.46	 3.3E-08	 -5.52	 -0.015	
rs184457	 IER5L	 1	 25	 4	 A	 G	 0.31	 8.1E-10	 6.14	 0.018	

rs11191274	 GBF1	 38	 0.01	 5	 A	 G	 0.13	 1.8E-06	 -4.78	 -0.019	
rs34473884	 PPP2R2D	 6	 24.6	 5	 A	 G	 0.25	 5.5E-08	 5.43	 0.017	
rs2030166	 NDUFS3	 5	 3.13	 6	 T	 C	 0.35	 1.3E-08	 -5.68	 -0.016	
rs1064608	 MTCH2	 12	 25.4	 6	 C	 G	 0.35	 1.1E-08	 -5.72	 -0.016	
rs4926	 SERPING1	 8	 23.5	 5	 A	 G	 0.27	 1.6E-07	 -5.25	 -0.016	

rs55865069	 KMT2D	 4	 19.8	 5	 T	 C	 0.03	 1.9E-06	 4.77	 0.038	
rs4647899	 AKAP6	 13	 13.13	 5	 A	 T	 0.3	 2.4E-07	 5.17	 0.015	
rs17524906	 DMXL2	 11	 12.26	 7	 A	 G	 0.24	 4.6E-07	 5.04	 0.016	
rs16973457	 FAM154B	 4	 27.7	 6	 T	 C	 0.49	 2.1E-07	 5.19	 0.014	

rs7140	 SPNS1	 11	 16.6	 -	 A	 C	 0.3	 3.4E-09	 5.91	 0.017	
rs12949256	 ARHGAP27	 5	 11.97	 4	 T	 C	 0.19	 2.8E-07	 -5.14	 -0.018	
rs16940674	 CRHR1	 6	 12.86	 1f	 T	 C	 0.23	 1.2E-07	 -5.29	 -0.017	
rs16940681	 CRHR1	 13	 1.76	 4	 C	 G	 0.23	 3.5E-07	 -5.09	 -0.016	
rs62054815	 SPPL2C	 1	 0	 5	 A	 G	 0.23	 3.5E-07	 -5.10	 -0.016	
rs12185233	 SPPL2C	 1	 25.6	 1f	 C	 G	 0.23	 1.5E-07	 -5.26	 -0.017	
rs12373139	 SPPL2C	 1	 0.53	 1f	 A	 G	 0.23	 1.4E-07	 -5.27	 -0.017	
rs63750417	 MAPT	 6	 8.68	 5	 T	 C	 0.23	 2.7E-07	 -5.14	 -0.017	
rs62063786	 MAPT	 6	 7.65	 5	 A	 G	 0.23	 2.3E-07	 -5.17	 -0.017	
rs17651549	 MAPT	 6	 34	 1f	 T	 C	 0.23	 8.5E-08	 -5.36	 -0.017	
rs2526374	 RNF43	 8	 13.78	 4	 T	 G	 0.36	 4.4E-08	 -5.47	 -0.015	
rs3744108	 MTMR4	 6	 23.1	 5	 C	 G	 0.38	 7.7E-14	 -7.48	 -0.021	
rs6503870	 TEX14	 20	 9.53	 7	 T	 C	 0.38	 3.9E-14	 7.56	 0.021	
rs2270951	 DCC	 22	 16.7	 6	 T	 C	 0.46	 1.1E-13	 -7.43	 -0.020	
rs8108738	 MAST3	 22	 13.96	 4	 A	 G	 0.47	 5.9E-10	 6.19	 0.017	
rs882610	 ZNF446	 7	 7.69	 -	 A	 G	 0.27	 1.6E-07	 5.24	 0.016	
rs3752109	 MZF1	 3	 12.56	 -	 T	 C	 0.28	 8.4E-09	 5.76	 0.017	
rs11553387	 DDX27	 6	 16.86	 -	 T	 G	 0.22	 2.1E-09	 5.99	 0.019	
rs1130146	 DDX27	 19	 26.2	 5	 A	 G	 0.39	 1.7E-11	 -6.73	 -0.018	
rs6512577	 ZNFX1	 14	 0	 5	 T	 C	 0.22	 1.8E-09	 6.01	 0.019	
rs12628603	 TRIOBP	 7	 23.2	 5	 A	 G	 0.38	 1.9E-06	 4.77	 0.013	
rs9610841	 TRIOBP	 7	 22.8	 5	 A	 C	 0.46	 1.1E-07	 5.32	 0.014	
rs8140207	 TRIOBP	 9	 14.09	 5	 T	 G	 0.28	 2.1E-07	 -5.19	 -0.015	

	
Note:	CADD:	Combined	Annotation	Dependent	Depletion	score;	RDB:	Regulome	DB	score;	MAF:	
minor	allele	frequency;	Z:	z-score	from	the	GWAS	meta-analysis;	Effect	size:	magnitude	of	Z	score	
association	 in	 standard	 deviation	 units.*=SNP	 is	 an	 independent	 lead	 SNP.	 Genes	 containing	
multiple	ExNS	are	in	bold.	
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Online	methods	

	

Study	Cohorts	

The	 meta-analysis	 included	 new	 and	 previously	 reported	 GWAS	 summary	 statistics	 from	 16	

cohorts:	UK	Biobank	(UKB),	Cognitive	Genomics	Consortium	(COGENT),	Rotterdam	Study	(RS),	

Generation	R	Study	(GENR),	Swedish	Twin	Registry	(STR),	Spit	for	Science	(S4S),	High-IQ/Health	

and	Retirement	Study	(HiQ/HRS),	Twins	Early	Development	Study	(TEDS),	Danish	Twin	Registry	

(DTR),	 IMAGEN,	 Brisbane	 Longitudinal	 Twin	 Study	 (BLTS),	 Netherlands	 Study	 of	 Cognition,	

Environment	and	Genes	(NESCOG),	Genes	for	Good	(GfG),	Swedish	Twin	Studies	of	Aging	(STSA),	

Atherosclerosis	Risk	in	Communities	Study	(ARIC),	and	the	Multi-Ethnic	Study	of	Atherosclerosis	

(MESA).	Detailed	descriptions	of	the	samples,	measures,	genotyping,	quality	control,	and	analysis	

procedures	for	each	cohort	are	provided	in	Supplementary	Information	1.1	and	Supplementary	

Table	1.		

	

Meta-analysis	

Stringent	quality	control	measures	were	applied	to	the	summary	statistics	for	each	GWAS	cohort	

before	combining.	All	files	were	checked	for	data	integrity	and	accuracy.	SNPs	were	filtered	from	

further	analysis	if	they	met	any	of	the	following	criteria:	imputation	quality	(INFO/R2)	score	<	0.6,	

Hardy-Weinberg	 equilibrium	 (HWE)	 P	 <	 5×10-6,	 study-specific	 minor	 allele	 frequency	 (MAF)	

corresponding	to	a	minor	allele	count	(MAC)	<	100,	and	mismatch	of	alleles	or	allele	frequency	

difference	greater	than	20%	from	the	Haplotype	Reference	Consortium	(HRC)	genome	reference	

panel16.	Some	cohorts	used	more	stringent	criteria	(see	Supplementary	Information	1.1).	Indels	
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and	SNPs	that	were	duplicated,	multi-allelic,	monomorphic,	or	ambiguous	(A/T	or	C/G)	with	a	

MAF	>0.4	were	also	excluded.	Visual	inspection	of	the	distribution	of	the	summary	statistics	was	

completed,	and	Manhattan	plots	and	QQ	plots	were	created	for	the	cleaned	statistics	from	each	

cohort	(Supplementary	Figure	1).		

The	SNP	association	P-values	 from	the	GWAS	cohorts	were	meta-analyzed	with	METAL22	 (see	

URLs)	in	two	phases.	First,	we	meta-analyzed	all	cohorts	with	quantitative	phenotypes	(all	except	

HiQ/HRS)	using	a	sample-size	weighted	scheme.	 In	 the	second	phase,	we	added	the	HiQ/HRS	

study	 results	 to	 the	 first	 phase	 results,	 weighting	 each	 set	 of	 summary	 statistics	 by	 their	

respective	non-centrality	parameter	(NCP).	This	method	improves	power	when	using	an	extreme	

case	sampling	design	such	as	HiQ23.	NCPs	were	estimated	using	the	Genetic	Power	Calculator24,	

as	described	by	Coleman	et	al.25.	After	combining	all	data,	meta-analysis	 results	were	 further	

filtered	to	exclude	any	variants	with	N	<	50,000.	

The	 X	 chromosome	was	 treated	 separately	 in	 the	meta-analysis	 because	 imputed	 genotypes	

were	not	available	for	the	X	chromosome	in	the	largest	cohort	(UKB),	and	there	was	little	overlap	

between	 the	 UKB	 called	 genotypes	 and	 imputed	 data	 from	 other	 cohorts	 (NSNPs	 <	 500).	We	

therefore	 included	 only	 the	 called	 X	 chromosome	 variants	 in	 UKB	 for	 these	 analyses	 after	

performing	X-specific	quality	control	steps26.			

We	conducted	a	series	of	meta-analyses	on	subsets	of	the	full	sample	using	the	same	methods	

as	above.	Age	group-specific	meta-analyses	were	run	in	the	cohorts	of	children	(age	<	17;	GENR,	

TEDS,	IMAGEN,	BLTS;	N=9,814),	young	adults	(age	~17-18;	S4S,	STR;	N=6,033),	and	adults	(age	>	

18,	 primarily	 middle-aged	 or	 older:	 UKB,	 RS,	 DTR,	 NESCOG,	 STSA,	 ARIC,	 MESA;	 N=214,291),	

excluding	 studies	 whose	 samples	 overlapped	 multiple	 age	 groups	 (COGENT,	 HiQ/HRS,	 GfG;	
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N=49,792).	To	create	independent	discovery	samples	for	use	in	polygenic	score	validation,	we	

also	conducted	meta-analyses	with	a	“leave-one-out”	strategy	in	which	summary	statistics	from	

four	 validation	 datasets	 were,	 respectively,	 excluded	 from	 the	 meta-analysis	 (see	 Polygenic	

Scoring,	below).		

	

Cohort	Heritability	and	Genetic	Correlation		

LD	score	regression8	was	used	to	estimate	genomic	inflation	and	heritability	of	the	intelligence	

phenotypes	in	each	of	the	16	cohorts	using	their	post-quality	control	summary	statistics,	and	to	

estimate	 the	 cross-cohort	 genetic	 correlations27.	 Pre-calculated	 LD	 scores	 from	 the	 1000	

Genomes	 European	 reference	 population	 were	 obtained	 from	

https://data.broadinstitute.org/alkesgroup/LDSCORE/.	Genetic	correlations	were	calculated	on	

HapMap3	SNPs	only.	LD	score	regression	was	also	used	on	the	age	subgroup	meta-analyses	to	

estimate	heritability	and	cross-age	genetic	correlations.	

	

Genomic	Risk	Loci	Definition	

Independently	 associated	 loci	 from	 the	 meta-analysis	 were	 defined	 using	 FUMA12	

(http://fuma.ctglab.nl/),	an	online	platform	for	functional	mapping	of	genetic	variants.	We	first	

identified	 independent	 significant	SNPs	which	have	genome-wide	 significant	P-value	 (<5×10-8)	

and	represented	signals	that	are	independent	from	each	other	at	r2<0.6.	These	SNPs	were	further	

represented	by	 lead	SNPs,	which	are	a	subset	of	 the	 independent	significant	SNPs	that	are	 in	

approximate	linkage	equilibrium	with	each	other	at	r2<0.1.	We	then	defined	associated	genomic	

risk	 loci	 by	 merging	 any	 physically	 overlapping	 lead	 SNPs	 (linkage	 disequilibrium	 [LD]	 blocks	
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<250kb	 apart).	 Borders	 of	 the	 genomic	 risk	 loci	 were	 defined	 by	 identifying	 all	 SNPs	 in	 LD	

(r2≧0.6)	with	one	of	the	independent	significant	SNPs	in	the	locus,	and	the	region	containing	all	

of	these	candidate	SNPs	was	considered	to	be	a	single	independent	genomic	risk	locus.	All	LD	

information	was	calculated	from	UK	Biobank	genotype	data.	

	

Proxy-replication	with	Educational	Attainment	(EA)	

We	conducted	GWAS	of	EA,	an	outcome	with	a	high	genetic	correlation	with	intelligence5,	in	a	

non-overlapping	 European	 subset	 of	 the	UKB	 sample	 (N=188,435)	who	did	not	 complete	 the	

intelligence	measure.	EA	was	coded	as	maximum	years	of	education	completed,	using	the	same	

methods	 as	 earlier	 analyses28	 and	 GWAS	was	 conducted	 using	 the	 same	 quality	 control	 and	

analytic	 procedures	 as	 described	 for	 the	 UKB	 intelligence	 phenotype	 (Supplementary	

Information	1.1).	To	test	replication	of	the	SNPs	with	this	proxy	phenotype,	we	performed	a	sign	

concordance	test	for	all	GWS	SNPs	from	the	meta-analysis	using	the	exact	binomial	test.	For	each	

independent	genomic	locus,	we	considered	it	to	be	evidence	for	replication	if	the	lead	SNP	or	

another	correlated	SNP	 in	 the	region	was	sign	concordant	with	 the	corresponding	SNP	 in	 the	

intelligence	 meta-analysis	 and	 had	 a	 P-value	 of	 association	 with	 EA	 smaller	 than	

0.05/246=0.0002.	

	

Polygenic	Scoring	

We	calculated	polygenic	scores	(PGS)	based	on	the	SNP	effect	sizes	of	the	leave-one-out	meta-

analyses,	from	which	four	cohorts	were	(separately)	excluded	and	reserved	for	score	validation.	

These	included	a	child	(GENR),	young	adult	(S4S),	and	adult	sample	(RS).	We	also	included	the	
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UKB-wb	 sample	 to	 test	 for	 validation	 in	 a	 very	 large	 (N	 =	 53,576)	 cohort	 with	 the	 greatest	

phenotypic	similarity	to	the	largest	contributor	to	the	meta-analysis	statistics	(UKB-ts),	in	order	

to	 maximize	 potential	 predictive	 power.	 PGS	 were	 calculated	 on	 the	 genotype	 data	 using	

LDpred10,	a	Bayesian	PGS	method	that	utilizes	a	prior	on	effect	size	distribution	to	remodel	the	

SNP	 effect	 size	 and	 account	 for	 LD,	 and	 PRSice9,	 a	 PLINK29-based	 program	 that	 automates	

optimization	of	the	set	of	SNPs	included	in	the	PGS	based	on	a	high-resolution	filtering	of	the	

GWAS	P-value	threshold.	LDpred	PGS	were	applied	to	the	called,	cleaned,	genotyped	variants	in	

each	 of	 the	 validation	 cohorts	with	UK	 Biobank	 as	 the	 LD	 reference	 panel.	 PRSice	 PGS	were	

calculated	on	hard-called	imputed	genotypes	using	P-value	thresholds	from	0.0	to	0.5	in	steps	of	

0.001.	 The	 explained	 variance	 (ΔR2)	 was	 derived	 from	 a	 linear	 model	 in	 which	 the	 GWAS	

intelligence	phenotype	was	regressed	on	each	PGS	while	controlling	for	the	same	covariates	as	

in	each	cohort-specific	GWAS,	compared	to	a	linear	model	with	GWAS	covariates	only.	

	

Stratified	Heritability	

We	 partitioned	 SNP	 heritability	 using	 stratified	 LD	 Score	 regression30	 in	 three	 ways:	 1)	 by	

functional	annotation	category,	2)	by	minor	allele	frequency	(MAF)	in	six	percentile	bins,	and	3)	

by	chromosome.	Annotations	for	22	binary	categories	of	functional	genomic	characteristics	(e.g.	

coding	 or	 regulatory	 regions)	 were	 obtained	 from	 the	 LD	 score	 website	

(https://github.com/bulik/ldsc).	 The	 Bonferroni-corrected	 significance	 threshold	 was	 .05/50	

annotations=.001.	

	

Functional	Annotation	of	SNPs	
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Functional	 annotation	 of	 SNPs	 implicated	 in	 the	meta-analysis	was	 performed	 using	 FUMA12	

(http://fuma.ctglab.nl/).	We	selected	all	candidate	SNPs	 in	genomic	risk	loci	having	an	r2≧0.6	

with	one	of	the	independent	significant	SNPs	(see	above),	a	P-value	(P<1e-5)	and	a	MAF>0.0001	

for	 annotations.	 Functional	 consequences	 for	 these	 SNPs	 were	 obtained	 by	 matching	 SNPs’	

chromosome,	 base-pair	 position,	 and	 reference	 and	 alternate	 alleles	 to	 databases	 containing	

known	 functional	 annotations,	 including	 ANNOVAR31	 categories,	 Combined	 Annotation	

Dependent	Depletion	 (CADD)	 scores13,	RegulomeDB14	 (RDB)	 scores,	and	chromatin	 states15,16.		

ANNOVAR	 categories	 identify	 the	 SNP’s	 genic	 position	 (e.g.	 intron,	 exon,	 intergenic)	 and	

associated	function.	CADD	scores	predict	how	deleterious	the	effect	of	a	SNP	is	likely	to	be	for	a	

protein	structure/function,	with	higher	scores	referring	to	higher	deleteriousness.	A	CADD	score	

above	 12.37	 is	 the	 threshold	 to	 be	 potentially	 pathogenic13.	 The	 RegulomeDB	 score	 is	 a	

categorical	 score	 based	 on	 information	 from	 expression	 quantitative	 trait	 loci	 (eQTLs)	 and	

chromatin	marks,	ranging	from	1a	to	7	with	lower	scores	indicating	an	increased	likelihood	of	

having	a	regulatory	function.	Scores	are	as	follows:	1a=eQTL	+	Transciption	Factor	(TF)	binding	+	

matched	TF	motif	+	matched	DNase	Footprint	+	DNase	peak;	1b=eQTL	+	TF	binding	+	any	motif	+	

DNase	Footprint	+	DNase	peak;	1c=eQTL	+	TF	binding	+	matched	TF	motif	+	DNase	peak;	1d=eQTL	

+	TF	binding	+	any	motif	+	DNase	peak;	1e=eQTL	+	TF	binding	+	matched	TF	motif;	1f=eQTL	+	TF	

binding	/	DNase	peak;	2a=TF	binding	+	matched	TF	motif	+	matched	DNase	Footprint	+	DNase	

peak;	2b=TF	binding	+	any	motif	+	DNase	Footprint	+	DNase	peak;	2c=TF	binding	+	matched	TF	

motif	+	DNase	peak;	3a=TF	binding	+	any	motif	+	DNase	peak;	3b=TF	binding	+	matched	TF	motif;	

4=TF	binding	+	DNase	peak;	5=TF	binding	or	DNase	peak;	6=other;7=Not	available.	The	chromatin	

state	 represents	 the	accessibility	of	genomic	 regions	 (every	200bp)	with	15	categorical	 states	
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predicted	by	a	hidden	Markov	model	based	on	5	chromatin	marks	for	127	epigenomes	in	the	

Roadmap	 Epigenomics	 Project16.	 A	 lower	 state	 indicates	 higher	 accessibility,	 with	 states	 1-7	

referring	to	open	chromatin	states.	We	annotated	the	minimum	chromatin	state	across	tissues	

to	 SNPs.	 The	 15-core	 chromatin	 states	 as	 suggested	 by	 Roadmap	 are	 as	 follows:	 1=Active	

Transcription	Start	Site	(TSS);	2=Flanking	Active	TSS;	3=Transcription	at	gene	5’	and	3’;	4=Strong	

transcription;	5=	Weak	Transcription;	6=Genic	enhancers;	7=Enhancers;	8=Zinc	finger	genes	&	

repeats;	 9=Heterochromatic;	 10=Bivalent/Poised	 TSS;	 11=Flanking	 Bivalent/Poised	 TSS/Enh;	

12=Bivalent	 Enhancer;	 13=Repressed	 PolyComb;	 14=Weak	 Repressed	 PolyComb;	

15=Quiescent/Low.	Standardized	SNP	effect	sizes	were	calculated	for	the	most	impactful	SNPs	

by	 transforming	 the	 sample	 size-weighted	 meta-analysis	 Z	 score,	 as	 described	 in	 Zhu	 et	 al.,	

201632.	

	

Gene-mapping	

Genome-wide	significant	loci	obtained	by	GWAS	were	mapped	to	genes	in	FUMA12	using	three	

strategies:	

1. Positional	 mapping	 maps	 SNPs	 to	 genes	 based	 on	 physical	 distance	 (within	 a	 10kb	

window)	 from	 known	 protein	 coding	 genes	 in	 the	 human	 reference	 assembly	

(GRCh37/hg19).		

2. eQTL	mapping	maps	SNPs	to	genes	with	which	they	show	a	significant	eQTL	association	

(i.e.	allelic	variation	at	the	SNP	is	associated	with	the	expression	level	of	that	gene).	eQTL	

mapping	uses	information	from	45	tissue	types	in	3	data	repositories	(GTEx33,	Blood	eQTL	

browser34,	BIOS	QTL	browser35),	and	is	based	on	cis-eQTLs	which	can	map	SNPs	to	genes	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/184853doi: bioRxiv preprint first posted online Sep. 6, 2017; 

http://dx.doi.org/10.1101/184853
http://creativecommons.org/licenses/by-nc-nd/4.0/


GWAS	META-ANALYSIS	OF	INTELLIGENCE		 	 29	

up	to	1Mb	apart.	We	used	a	false	discovery	rate	(FDR)	of	0.05	to	define	significant	eQTL	

associations.	

3. Chromatin	 interaction	mapping	was	performed	to	map	SNPs	to	genes	when	there	 is	a	

three-dimensional	 DNA-DNA	 interaction	 between	 the	 SNP	 region	 and	 another	 gene	

region.	Chromatin	interaction	mapping	can	involve	long-range	interactions	as	it	does	not	

have	a	distance	boundary.	FUMA	currently	contains	Hi-C	data	of	14	tissue	types	from	the	

study	 of	 Schmitt	 et	 al36.	 Since	 chromatin	 interactions	 are	 often	 defined	 in	 a	 certain	

resolution,	such	as	40kb,	an	interacting	region	can	span	multiple	genes.	If	a	SNPs	is	located	

in	a	region	that	interacts	with	a	region	containing	multiple	genes,	 it	will	be	mapped	to	

each	of	those	genes.	To	further	prioritize	candidate	genes,	we	selected	only	interaction-

mapped	genes	in	which	one	region	involved	in	the	interaction	overlaps	with	a	predicted	

enhancer	 region	 in	 any	 of	 the	 111	 tissue/cell	 types	 from	 the	 Roadmap	 Epigenomics	

Project16	and	the	other	region	is	located	in	a	gene	promoter	region	(250bp	up	and	500bp	

downstream	 of	 the	 transcription	 start	 site	 and	 also	 predicted	 by	 Roadmap	 to	 be	 a	

promoter	region).	This	method	reduces	the	number	of	genes	mapped	but	increases	the	

likelihood	that	those	identified	will	have	a	plausible	biological	function.	We	used	a	FDR	of	

1×10-5	to	define	significant	interactions,	based	on	previous	recommendations36	modified	

to	account	for	the	differences	in	cell	lines	used	here.	

	

Functional	annotation	of	mapped	genes	

Genes	implicated	by	mapping	of	significant	GWAS	SNPs	were	further	investigated	using	the	

GENE2FUNC	procedure	in	FUMA12,	which	provides	hypergeometric	tests	of	enrichment	of	the	
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list	of	mapped	genes	in	53	GTEx33	tissue-specific	gene	expression	sets,	7,246	MSigDB	gene-

sets37,	and	2,195	GWAS	catalog	gene-sets21.	The	Bonferroni-corrected	significance	threshold	

was	0.05/9,494	gene-sets=5.27×10-6.	

	

Gene-based	analysis	

SNP-based	P-values	from	the	meta-analysis	were	used	as	input	for	the	gene-based	genome-wide	

association	analysis	 (GWGAS).	18,128	protein-coding	genes	 (each	containing	at	 least	1	GWAS	

SNP)	 from	 the	 NCBI	 37.3	 gene	 definitions	 were	 used	 as	 basis	 for	 GWGAS	 in	 MAGMA	

(http://ctg.cncr.nl/software/magma)17.	 The	 Bonferroni-corrected	 genome-wide	 significance	

threshold	was	.05/18,128	genes=2.76×10-6.			

	

Gene-set	analysis	

Results	from	the	GWGAS	analyses	were	used	to	test	for	association	in	three	types	of	predefined	

gene-sets:		

1. 7,246	 curated	 gene-sets	 representing	 known	 biological	 and	metabolic	 pathways	were	

derived	from	9	data	resources,	catalogued	by	and	obtained	from	the	MsigDB	version	5.229	

(http://software.broadinstitute.org/gsea/msigdb/collections.jsp)		

2. gene	 expression	 values	 from	 53	 tissues	 obtained	 from	GTEx33,	 log2	 transformed	with	

pseudocount	1	after	winsorization	at	50	and	averaged	per	tissue			

3. cell-type	specific	expression	in	24	types	of	brain	cells,	which	were	calculated	following	the	

method	described	in	Skene	et	al.38	and	Coleman	et	al.25	Briefly,	brain	cell-type	expression	

data	was	drawn	from	single-cell	RNA	sequencing	data	from	mouse	brains.	For	each	gene,	
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the	 value	 for	 each	 cell-type	 was	 calculated	 by	 dividing	 the	 mean	 Unique	 Molecular	

Identifier	(UMI)	counts	for	the	given	cell	type	by	the	summed	mean	UMI	counts	across	all	

cell	 types.	 Single-cell	 gene-sets	were	derived	by	grouping	genes	 into	40	equal	bins	by	

specificity	of	expression.		

These	 gene-sets	 were	 tested	 using	 MAGMA.	 We	 computed	 competitive	 P-values,	 which	

represent	 the	 test	 of	 association	 for	 a	 specific	 gene-set	 compared	 to	 other	 gene-sets.	 This	

method	is	more	robust	to	Type	I	error	than	self-contained	tests	that	only	test	for	association	of	

a	gene-set	against	the	null	hypothesis	of	no	association39.	The	Bonferroni-corrected	significance	

threshold	was	0.05/7,323	gene-sets=6.83×10-6.	Conditional	analyses	were	performed	as	a	follow-

up	using	MAGMA	to	test	whether	each	significant	association	observed	was	independent	of	all	

others.	 The	 association	 between	 each	 gene-set	 was	 tested	 conditional	 on	 the	most	 strongly	

associated	set,	and	then	-	if	any	substantial	(p<.05/number	of	gene-sets)	associations	remained	

-	 by	 conditioning	 on	 the	 first	 and	 second	 most	 strongly	 associated	 set,	 and	 so	 on	 until	 no	

associations	remained.	Gene-sets	that	retained	their	association	after	correcting	for	other	sets	

were	considered	to	be	independent	signals.	We	note	that	this	is	not	a	test	of	association	per	se,	

but	 rather	a	 strategy	 to	 identify,	 among	gene-sets	with	known	significant	associations	whose	

defining	genes	may	overlap,	which	set(s)	are	responsible	for	driving	the	observed	association.	

	

Cross-Trait	Genetic	Correlation	

Genetic	correlations	(rg)	between	intelligence	and	38	phenotypes	were	computed	using	LD	score	

regression27,	 as	 described	 above,	 based	 on	 GWAS	 summary	 statistics	 obtained	 from	 publicly	

available	 databases	 (http://www.med.unc.edu/pgc/results-and-downloads;	
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http://ldsc.broadinstitute.org/;	Supplementary	Table	18).	The	Bonferroni-corrected	significance	

threshold	was	0.05/38	traits=1.32×10-3.	

	

GWAS	catalog	lookup	

We	used	FUMA	to	identify	SNPs	with	previously	reported	(P	<	5×10-5)	phenotypic	associations	in	

published	GWAS	listed	in	the	NHGRI-EBI	catalog21	which	overlapped	with	the	genomic	risk	loci	

identified	 in	the	meta-analysis.	As	an	additional	 relevant	phenotype	of	 interest,	we	examined	

whether	the	genes	associated	with	intelligence	in	this	study	(by	FUMA	mapping	or	GWGAS)	were	

overrepresented	 in	a	set	of	1,518	genes	 linked	to	 intellectual	disability	and/or	developmental	

delay,	 as	 compiled	 by	 RegionAnnotater	 (https://github.com/ivankosmos/RegionAnnotator).	

Many	of	these	have	been	identified	by	non-GWAS	sources	and	are	not	represented	in	the	NHGRI	

catalog.	We	tested	for	enrichment	using	a	hypergeometric	test	with	a	background	set	of	19,283	

genomic	protein-coding	 genes,	 as	 in	 FUMA.	Manual	 lookups	were	also	performed	 to	 identify	

overlapping	loci/genes	with	known	previous	GWAS	of	intelligence.	

	

Mendelian	Randomization	

To	 infer	 credible	 causal	 associations	 between	 intelligence	 and	 traits	 that	 are	 genetically	

correlated	 with	 intelligence,	 we	 performed	 Generalised	 Summary-data	 based	 Mendelian	

Randomization40	 (GSMR;	 http://cnsgenomics.com/software/gsmr/).	 This	 method	 utilizes	

summary-level	data	to	test	for	causal	associations	(bxy)	between	a	risk	factor	and	an	outcome	by	

using	genome-wide	significant	SNPs	as	instrumental	variables.	HEIDI-outlier	detection	was	used	

to	filter	genetic	instruments	that	show	clear	pleiotropic	effects	on	the	exposure	phenotype	and	
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the	outcome	phenotype.	We	used	a	threshold	p-value	of	0.01	for	the	outlier	detection	analysis	

in	HEIDI	which	removes	1%	of	SNPs	by	chance	if	there	is	no	pleiotropic	effect.	To	test	for	a	causal	

effect	of	intelligence	(bzx)	on	an	outcome	(bzy)	we	selected	traits	in	non-overlapping	samples	that	

showed	 significant	 genetic	 correlations	 (rg)	 with	 intelligence.	 We	 tested	 for	 bi-directional	

causation	 by	 repeating	 the	 analyses	 using	 independent	 GWS	 SNPs	 related	 to	 the	 outcome	

phenotypes	as	exposure	and	intelligence	as	the	outcome	phenotype.	For	each	trait,	we	selected	

independent	(r2=<0.1),	GWS	lead	SNPs	as	instrumental	variables	in	the	analyses.	For	traits	with	

less	than	10	lead	SNPs	(i.e.	the	minimum	number	of	SNPs	on	which	GSMR	can	perform	a	reliable	

analysis)	we	selected	independent	SNPs	(r2=<0.1),	with	a	GWS	P-value	(<5×10-8),	except	for	ADHD	

for	 which	 the	 threshold	was	 lowered	 to	 1×10-5	 due	 to	 the	 small	 number	 of	 GWS	 SNPs.	 The	

estimated	bzx	and	bzy	are	approximately	equal	to	the	natural	log	odds	ratio	(OR)40.	An	OR	of	2	can	

be	interpreted	as	a	doubled	risk	compared	to	the	population	prevalence	of	a	binary	trait	for	every	

SD	increase	in	the	exposure	trait.	For	quantitative	traits	the	bzx	and	bzy	can	be	interpreted	as	a	

one	 standard	 deviation	 increase	 explained	 in	 the	 outcome	 trait	 for	 every	 SD	 increase	 in	 the	

exposure	trait.		

	

	

Data	availability	

Summary	statistics	will	be	made	available	for	download	upon	publication	(https://ctg.cncr.nl).		
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