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Brain-derived neurotrophic factor (BDNF) has recently been implicated in the modulation of receptor
activation leading to dynamic state transitions in temporal lobe epilepsy (TLE). In addition, the cru-
cial role of neuronal noise in these transitions has been studied in electrophysiological experiments.
However, the precise role of these factors during seizure generation in TLE is not known. Building
on a previously proposed model of an epileptogenic hippocampal network, we included the actions
of BDNF-regulated receptors and intrinsic noise. We found that the effects of both BDNF and noise
can increase the activation of N-methyl-D-aspartate receptors leading to excessive Ca2+ flux, which
induces abnormal fast spiking and bursting. Our results indicate that the combined effects have a
strong influence on the seizure-generating network, resulting in higher firing frequency and ampli-
tude. As correlations between firing increase, the synchronization of the entire network increases, a
marker of the ictogenic transitions from normal to seizures-like dynamics. Our work on the effects
of BDNF dynamics in a noisy environment might lead to an improved model-based understand-
ing of the pathological mechanisms in TLE. Published by AIP Publishing. https://doi.org/10.1063/1.
5036690

Electrophysiological data have demonstrated the capabil-
ity of brain-derived neurotrophic factor (BDNF) to lead
to seizure discharges in temporal lobe epilepsy (TLE). In
addition, experimental evidence indicates that neuronal
noise can induce the transition to seizures in TLE. Based
on these findings, we modify an existing hippocampal net-
work model by including BDNF-modulated receptors and
intrinsic noise to investigate transitions to seizure dynam-
ics. Results reveal that N-methyl-D-aspartate (NMDA)
receptors are activated excessively causing maximal per-
meability to Ca2+, when the concentration of BDNF and
the strength of noise are enhanced. These physiological
processes are therefore able to induce abnormal irregular
fast spiking and bursting events. Moreover, the combined
effects of BDNF and noise lead to an increase of the
degree of synchronization of the hippocampal network,
with increased amplitudes of the membrane potentials.
These computational results highlight the possible mech-
anisms of seizure-like transitions occurring within the
hippocampus.

I. INTRODUCTION

Temporal lobe epilepsy (TLE) is the most prevalent
refractory epilepsy characterized by complex pathogenesis.1

The dynamics within the hippocampus, which is a part of
the limbic system, are considered to play a significant role
in the initiation and propagation of TLE.2,3 One of the well-
studied molecules in the context of TLE is the brain-derived
neurotrophic factor (BDNF) which is a neurotrophin.4,5

Clinical evidence suggests that BDNF is involved in synaptic

a)Email: nmqingyun@163.com

plasticity, playing a role of a critical mediator in both learning
and memory.6,7 It is reported that BDNF effectively mod-
ulates excitatory and inhibitory synaptic transmission. For
example, BDNF enhances excitatory firing in the hippocam-
pus leading to increased excitatory postsynaptic potentials
(EPSPs).8,9 Previous research also investigated the impact of
BDNF on neural activity within the hippocampal region called
Cornu Ammonis 3 (CA3). Granule cells employ mossy fibers,
which contain a high level of BDNF, to innervate pyrami-
dal cells of CA3.10,11 This phenomenon shows the ability of
BDNF to increase the excitability of principal cells. At the
initial stage of TLE seizures, the level of BDNF increases
and thereby enhances the activation of the BNDF’s receptor
TrkB. Moreover, intrahippocampal overexpression of BDNF
or TrkB increases seizure susceptibility and severity.12,13

At a molecular level, the α-amino-3-hydroxy-5-methyl-
4-isoxazolepropinonic acid (AMPA) receptor and the N-
methyl-D-aspartate (NMDA) receptor are the two main types
of glutamate receptors. The AMPA receptor is responsible
for fast excitatory transmissions, while NMDA receptor acti-
vation leads to slower post-synaptic excitation. Some key
findings also indicated that BDNF-induced NMDA receptor
activation could facilitate AMPA receptor responses.14,15 Dur-
ing the process of membrane depolarization, Mg2+ is expelled
from the pore, allowing Na+, K+, and Ca2+ to pass.16 The cur-
rent view is that NMDA receptor activation presents the main
mechanism mediating glutamate-induced neuronal injury and
ictogenesis (seizure generation). Furthermore, the presence
of NMDA receptors is thought to allow maximal permeabil-
ity of Ca2+.17 Following activation, a high amount of Ca2+

enters the neuronal cell, which could trigger a dependent path-
way to induce neuronal death and thereby further worsen
epilepsy-related pathology.18–20
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Another widely studied factor that affects ictogenesis is
neuronal noise.21–23 Noise is ubiquitous in both natural and
engineering systems. The constructive effects of noise on sig-
nal transmission among neurons and in neural networks have
been extensively studied in electrophysiological experiments
and computational modeling, respectively.24,25 On the level
of macroscopic brain networks, afferent noise is used to rep-
resent input from distal brain regions or non-modeled parts of
the brain.26 Individual neurons can exhibit different firing pat-
terns depending on the type of external input.27 Within neu-
rons, conduction processes, membrane fluctuations, synaptic
background activity, and stochastic gating of ion channels
make the environment noisy. Sun et al.28 employed Hodgkin-
Huxley (HH) neurons to investigate the effects of channel
noise on firing coherence in Watts-Strogatz small-world net-
works and found that firing coherence of a neuronal network
depends on the source of channel noise. In addition, they also
studied the effects of noise correlations on the mean firing
rate.29 It is found that temporal correlations are beneficial for
the generation of epileptiform rhythmic waves. Noise-induced
alterations of neurons impact neuronal information process-
ing and synchronization in a variety of neurological disorders,
such as epilepsy and Parkinson’s disease.30,31 In animal mod-
els using hippocampal slice preparations, the introduction
of Gaussian noise can produce seizure-like events.24 In a
mathematical model of epileptic dynamics, it was observed
that the stochastic version of the model can reproduce kin-
dled seizure dynamics even if it operates in the non-epileptic
regime of the noise-free model.32 Fan et al.33 proposed a mod-
ified, spatially-extended Taylor-Baier neural field model and
identified paths between absence and tonic-clonic seizures.
Dynamic analysis revealed that the level of noise qualita-
tively mediates the collective behavior, including abnormally
synchronized oscillations of the network.34–37 In contrast, the
noise level can change single-spike activities, e.g., from tonic
firing to bursting discharges.38–44

Hence, attention should be paid to the effects of BDNF
and noise on the transitions to seizure dynamics in the hip-
pocampus. Here, we study these effects in a hippocampal
network which includes CA3 and the adjacent dentate gyrus
(DG). We impose a BDNF concentration pulse and Gaus-
sian white noise on the DG-CA3 network and investigate
the influence of the concentration strength and noise inten-
sity. Moreover, we study the effects at the level of individual
neurons and of the whole network.

We describe the network’s structure in Sec. II. Then, we
investigate the responses of individual neurons and of the
entire network to the combined effects of BDNF and noise,
respectively. Finally, some conclusions are drawn in Sec. IV.

II. METHODS

A. Description of the modified DG-CA3 framework

In this paper, we study a modified version of our
previously proposed DG-CA3 network model.45,46 Specifi-
cally, we introduce the BDNF-regulated activation of NMDA
receptors15 and Ca2+ (whose permeability is regulated by
NMDA receptors)-regulated activation of AMPA receptors.47

As seen in Fig. 1, the DG region is composed of three type

FIG. 1. Framework of the modified DG-CA3 network. The postsynaptic
granule cell (G) contains NMDA type, AMPA type, and GABAA type recep-
tors. The pyramidal cell (P) also has these three types of receptors. Like the
interneuron of CA3 (I), the O-LM cell (O) and the dendrites of mossy cell
(MD) lack the NMDA type receptors. In addition, DI does not contain type
GABAA receptors. The zoom in the upper left corner shows synapses between
G and the soma of mossy cell (MS) illustrating BDNF-induced synaptic activ-
ity. Glutamate is shown as dark purple spheres. Mature BDNF are shown as
yellow spheres. TrkB is symbolized by yellow columns. NMDA type recep-
tors are displayed as light purple columns, AMPA type receptors as green
columns, and GABAA type receptors as red columns.

of neurons. A HH type model simulates inhibitory interneu-
rons (DI)48 and granule cells (G).49 Representations of mossy
cells (soma-MS and dendrite-MD) are constructed by a two-
compartment model simplified by Pinsky and Rinzel from
Trub’s 19-compartment model.50 In the DG, an MS neuron
interacts with G and DI cells by AMPA type synapses and
NMDA type synapses, respectively. G affects other neurons
depending on AMPA type synapses. DI uses GABAergic
type synapses to influence other neurons. In addition, CA3
is equipped with HH-type pyramidal cells (P),51 inhibitory
interneurons (I),48 and O-LM cells (O).52 In this region, P con-
tacts with neurons by means of AMPA type synapses. O and I
connect with neurons using GABAergic synapses.53 Note that
the DG region and CA3 interact with each other. In particular,
DG delivers excitatory signals to CA3 through a fiber path,
while the backprojection from CA3 to DG is realized with a
path from P to MD.

The detailed activity of the presynaptic MS neuron lead-
ing to Ca2+ influx into the postsynaptic G neuron through
NMDA receptors is demonstrated in Fig. 1. Glutamate is
released from the pre-synaptic neuron when both NMDA
and AMPA receptors are activated. Mature BDNF activates
TrkB, and then increases the protein production of NMDA and
AMPA receptors. A strong BDNF signal enhances the activa-
tion of NMDA receptors, which leads to elevated intracellular
Ca2+ concentration and increased postsynaptic currents. The
detailed equations of the modified DG-CA3 network are
shown in Appendixes A–G.
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B. BDNF concentration pulse and noise distribution

The BDNF protein is encoded by the BDNF gene, and
its transcription is controlled by eight different promoters.54

The resultant BDNF is released from the post-synaptic mem-
brane in an activity-dependent manner. BDNF secreted into
the synaptic cleft will affect both the presynaptic and the
postsynaptic neuron. In our work, we simulate BDNF from
external sources in the synaptic cleft. Intracellular BDNF is
not considered explicitly. The detailed BDNF concentration
pulse is described as follows:

CBDNF = cBDNFH[sin(2π t/ρBDNF)]

· (1 − H{sin[2π(t + δBDNF)/ρBDNF]}), (1)

where the pulse period ρBDNF = 50 ms, the positive current
δBDNF = 5 ms, and the pulse amplitude cBDNF is within the

range 4–32 μmol, whose variation interval is 4 μmol in
each trial. H(t) is the Heaviside function, i.e., H(t) = 1
if t > 0, while H(t) = 0 if t ≤ 0. In addition, we impose
Gaussian white noise to simulate a noisy neuronal envi-
ronment. The detailed expression of the noise distribu-
tion can be written as N ∼ N(Mean I, σ 2), where Mean
I ∈ (2 μA/cm2, 8 μA/cm2) is the mean value with variation
interval of 2 μA/cm2. In addition, σ represents the standard
deviation. On the one hand, the additive noise term accounts
for biological phenomena like noise-induced bursts of indi-
vidual neurons. On the other hand, the level of noise in the
system is able to trigger its behavior, producing, for example,
synchronized oscillations of the whole network, desynchro-
nization of oscillating regimes, and it can stabilize or destabi-
lize stationary solutions.55 Hence, these complex and biologi-
cally relevant phenomena can be studied by introducing noise
terms to the model.

FIG. 2. Time series (of period from 7000 ms to 8000 ms) and detail (from 7500 ms to 7600 ms) corresponding to simultaneous effects of BDNF and neuronal
noise on the DG-CA3 network. (a) Potentials obtained with cBDNF = 4 μmol and Mean I = 2 μA/cm2. (a1): P, (a2): I, (a3): O, (a4): MS, (a5): G, and (a6): DI.
(b) cBDNF = 32 μmol and Mean I = 2 μA/cm2, where (b1): P, (b2): I, (b3): O, (b4): MS, (b5): G, and (b6): DI. (c) cBDNF = 4 μmol and Mean I = 6 μA/cm2,
where (c1): P, (c2): I, (c3): O, (c4): MS, (c5): G, and (c6): DI. (d) cBDNF = 32 μmol and Mean I = 6 μA/cm2, where (d1): P, (d2): I, (d3): O, (d4): MS, (d5): G,
and (d6): DI.
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FIG. 2. Continued.

C. Network synchronization

To quantify correlations between neurons, Pearson’s cor-
relation coefficient56 is one of the most common measures. It
is defined as the ratio of the covariance of samples x and y and

FIG. 3. Bars of mean ISIs. We consider four conditions: cBDNF = 4 μmol and
Mean I = 2 μA/cm2, cBDNF = 32 μmol and Mean I = 2 μA/cm2, cBDNF =
4 μmol and Mean I = 6 μA/cm2, and cBDNF = 32 μmol and Mean I =
6 μA/cm2. The blue bars indicate mean ISIs of P, the red bars mean ISIs
of I, and the green bars mean ISIs of MS.

the product of their respective standard deviations, i.e.,

r = cov(x, y)√
σ 2

x σ 2
y

, (2)

where cov means covariance. σx represents the standard devi-
ation of sample x, and σy indicates the standard deviation
of sample y. r varies from −1 to +1. |r| = 1 means perfect
correlation between x and y. |r| = 0 indicates no (zero-lag)
correlation between them.

In addition, we focus on the synchronization evolution of
the entire network in response to effects exerted by BNDF and
neural noise. Synchronization of a network with N oscillators
can be quantitatively described by the synchronization factor
η given as57

V(t) = 1

N

∑N

i=1
Vi(t), (3)

σ 2
V = 〈[V(t)]2〉t − [〈V(t)〉t]

2, (4)

σ 2
Vi

= 〈[Vi(t)]
2〉t − [〈Vi(t)〉t]

2, (5)



106322-5 Zhang et al. Chaos 28, 106322 (2018)

FIG. 4. The temporal evolution of the concentration of Ca2+ and the activation of NMDA receptors, respectively, in typical fast spiking neuron and bursting
neurons. Black lines denote the concentration of Ca2+; pink lines are the variations of the NMDA receptors. (a) cBDNF = 4 μmol and Mean I = 2 μA/cm2,
where (a1) is P, (a2) represents G, and (a3) denotes DI. (b) cBDNF = 32 μmol and Mean I = 2 μA/cm2, where (b1) shows P, (b2) is G, and (b3) denotes DI.
(c) cBDNF = 4 μmol and Mean I = 6 μA/cm2, where (c1) shows P, (c2) represents G, and (c3) denotes DI. (d) cBDNF = 32 μmol and Mean I = 6 μA/cm2,
where (d1) is P, (d2) represents G, and (d3) denotes DI.
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η2(N) = σ 2
V

1
N

∑N
i=1 σ 2

Vi

, (6)

where V(t) is the mean membrane potentials of a neu-
ron. Mean membrane potentials are calculated simultaneously
for the six individual membrane potentials. Vi(t) indicates
the membrane potential of an individual neuron. 〈. . .〉t =

1
Tm

∫ Tm
0 dt denotes time-averaging over a time interval Tm. σV

is the standard deviation of V(t); similarly, σVi is the standard
deviation of Vi(t). In our network, we employ six types of neu-
rons to construct the DG-CA3 network; therefore, the number
of coupled oscillators N = 6. η varies from 0 to 1, where
η = 0 means that the network is in a non-synchronized state
and η = 1 means that the network is completely synchronized.

III. SIMULATION RESULTS

A. Effects of BDNF and noise on individual neurons

Usually, interictal and preictal spikes are observed before
the onset of an epileptic event which is characterized
by abnormal oscillations persisting for a few seconds.58

Increased amounts of Mg2+ ions are removed by excessive
NMDA receptors, and the glutamate can bind with NMDA
receptors triggering ictal-like burst discharges. To study
the effects of the BDNF concentration pulse and neuronal
noise, we compare four situations: (A) low BDNF concen-
tration with low mean neuronal noise, (B) high BDNF con-
centration with low mean neuronal noise, (C) low BDNF
concentration with high mean neuronal noise, and (D) high
BDNF concentration with high mean neuronal noise. To
acquire a steady signal, the simulation time is set to 10 s,
and a (presumably stationary) period of 1 s from the simula-
tion (from 7000 ms to 8000 ms) is selected. We first consider
time series of neuronal potentials in response to the influ-
ence exerted by BDNF and neuronal noise on the DG-CA3
network.

It is seen from Fig. 2(a) that for the case when cBDNF =
4 μmol and Mean I = 2 μA/cm2, all neurons show spiking.
Especially, a low BDNF concentration with low noise levels
can induce spiking at various frequencies. Next, we increase
the concentration of BDNF at a fixed neural noise level, i.e.,
cBDNF = 32 μmol and Mean I = 2 μA/cm2. As shown in
Fig. 2(b1), neuron P displays spiking with higher frequency

in comparison with the situation in Fig. 2(a1). Similarly, I and
MS also demonstrate spiking, and this is shown in Figs. 2(b1)
and 2(b4), respectively. However, neuron O performs damped
oscillations displayed in Fig. 2(b3). It seems that strong BDNF
concentration prevents O from spiking with high amplitude.
In addition, a higher BDNF concentration triggers bursting
in both G and DI [shown in Figs. 2(b5) and 2(b6), respec-
tively]. It is worth noting that the whole time series of G
shows one big burst (duration time is about 400 ms) and
splits into small bursts (duration time is about 200 ms). The
membrane potentials between bursts are positive, so they do
not seem to need the process of repolarization. Likewise, DI
shows spiking, followed by a positive membrane potential
between bursts. Next, we consider low BDNF concentration
with high mean neuronal noise, i.e., cBDNF = 4 μmol and
Mean I = 6 μA/cm2. In comparison with Fig. 2(a), neurons
spike at a higher frequency [shown in Fig. 2(c)]. However,
the hyper-excitatory neuron I transmits more inhibitory input
to O, which inhibits O in the form of subthreshold oscil-
lation [see details in Fig. 2(c3)]. Lastly, we set both cBDNF

and Mean I to the high values, i.e., cBDNF = 32 μmol and
Mean I = 6 μA/cm2. It can be seen from Fig. 2(d) that the
enhanced mean value of noise accompanied by the increased
concentration of BDNF can induce fast spiking in P, I, and
MS (here we define “fast” spiking as having a frequency over
100 Hz) and hinder O from discharging dramatically. We also
see the process of splitting of spiking activity into shorter
bursts for both G and DI.

In addition, to test whether the combined effects of BDNF
and neuronal noise can promote P, I, and MS discharging at
higher frequencies, we calculate their mean interspike inter-
vals (ISI). Statistic cubes in Fig. 3 provide a visualization of
mean ISIs under the four conditions. We can observe that the
mean ISI of P is the smallest value of all neurons. In line
with this, the individual and combined effects also reduce the
mean ISIs belonging to I and MS, respectively. In summary,
the enhanced effects of BDNF and neuronal noise individually
and combined can abnormally elevate the spiking frequency
of neurons in the DG-CA3 network.

Next, we consider the calcium concentration and the acti-
vation of NMDA receptors in typical fast spiking and bursting
neurons, respectively. We study four sets of parameters as in
Fig. 2. Figure 4 shows the evolution of the concentrations

FIG. 5. Contour maps of the dominant neuronal frequency. Different color represents different frequency (see color bar on the right). (a): P, (b): I, and (c): DI.
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of Ca2+ and NMDA receptors under these conditions. In
Figs. 4(a1), 4(b1), 4(c1), and 4(d1), we see strong oscillations
of the concentration of Ca2+ in post-synaptic neuron P. As
the combined effects of BDNF and neuronal noise are grad-
ually enhanced, the oscillation of Ca2+ increase in amplitude
and becomes sharper. Also, the transition from low to higher
amplitude oscillation of the activation of NMDA receptors
can be observed. The overexpression of BDNF together with
the enhanced noise foster the activation of NMDA receptors,
and this in turn allows Ca2+ to permeate to the pre-synaptic
neuron, which activates spiking. Moreover, we can see from
Figs. 4(a2) and 4(c2) that the concentration of Ca2+ and the
activation of NMDA receptors oscillate with low amplitude
when low BNDF and low neuronal noise is applied to G. As
the impact becomes stronger, the amplitudes get larger [shown
in Figs. 4(b2) and 4(d2)]. Similar results can be found in DI,
shown in Figs. 4(a3), 4(b2), 4(c3), and 4(d3), where not only
NMDA receptors are activated but also the concentration of
Ca2+ is elevated, resulting in ictogenesis. Besides, we can also
observe that P is characterized by the presence of pre-ictal dis-
charges, while G and DI show burst discharges or ictal-like
burst events (compared to P).

To investigate the frequency characteristics of neurons
under the influence of BDNF and noise, we calculated the
dominant frequency in the neurons of DG and CA3, respec-
tively. As shown in Fig. 5(a), P exhibits complex frequency
characteristics. In general, the dominant frequency of P rises
when the impact of BDNF and noise is set to moderate val-
ues. Nevertheless, the picture is complex with a low frequency
region separating a second high frequency region where both
BDNF and noise are large. This could present hyper-excited
fast spiking. In contrast, I demonstrates the simple frequency
characteristics shown in Fig. 5(b), where the dominant fre-
quencies corresponding to I change monotonically as the
noise level increases. Here, BDNF has little impact on the
dominant frequencies, while these neurons are sensitive to
the noise level. In addition, domain frequency panels corre-
sponding to O, MS, and G are similar to panel (b), i.e., there is
a monotonous increase as a function of parameter in each case.
DI shows high frequency oscillations when BDNF is small
and noise is strong, as shown in Fig. 5(c). As the concentration
of BDNF is increased beyond a value of 16, the dominant fre-
quency does not change significantly any more, which implies
that at this value DI transits to a discharge dynamics of slow

frequency bursts. In brief, the effects of BDNF and noise have
a great influence on P, G, and DI, induce a high concentration
of Ca2+, lead to irregular fast spiking or ictal-like activity, and
result in complex dominant frequency transitions for some
parameter combinations.

B. Effects of BDNF and noise on the entire network

In this section, we will describe the response of the entire
network as a function of BDNF and noise. Figure 6 shows
the mean membrane potentials at different levels of BDNF
and noise. It is observed in Fig. 6(a) that the responses of
the network initially drops, which is caused varying BDNF
at a fixed noise level. When a high concentration of BDNF
is applied to the DG-CA3 network, the amplitude varies from
−20 mv to 0 mv in a sawtooth manner. Consistent with the
above approach, we then enhance the strength of the neuronal
noise. It is seen from Fig. 6(b) that the potential traces with
the value from −20 mv to 0 mv extend their scope during
the injection of higher neuronal noise. Larger sawtooth-like
waves evoked by the enhanced noise indicate that the regions
of discharges (under −20 mV) are compensated by the regions
of amplitude (above −20 mV). We conclude that the effects
of BDNF and noise lead the network potentials to transit
from low amplitude discharges to high amplitude discharges.
This implies an increase in the excitability of the DG-CA3
network.

In Fig. 7, we show the correlations calculated accord-
ing to Eq. (2) at Mean I = 2 μA/cm2, 4 μA/cm2, and
8 μA/cm2, respectively. Each small square represents the
color-coded correlation at fixed noise with varying BDNF
(increasing from left to right). There are eight correlation
columns (from left to right) in each panel, representing linear
changes in BDNF from 4. The majority of correlation coeffi-
cients in Fig. 7(a) are positive but small, which indicates that
neurons interact with each other weakly. Only G and DI are
strongly correlated, which suggests that G and DI mutually
promote discharges. In contrast, P and O are negatively corre-
lated for small BDNF, which could mean that their discharges
are reciprocally inhibited. As noise becomes stronger, i.e.,
Mean I = 4 μA/cm2 [see in Fig. 7(b)], all correlation coeffi-
cients become more positive, even though overall they remain
small. The correlation between G and DI remains strong. Fur-
ther increase of noise level does not result in further increase

FIG. 6. Transitions of the mean mem-
brane potentials in response to vary-
ing levels of BNDF and noise. Dif-
ferent colors express different values
of the mean membrane potentials. (a):
Mean I = 2 μA/cm2 and (b): Mean I =
8 μA/cm2.
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FIG. 7. Correlation matrix for the
DG-CA3 network neurons. Different
color means different correlation coeffi-
cients. (a) Variable BDNF at Mean I =
2 μA/cm2 and (b)Mean I = 4 μA/cm2.

of the correlations. This illustrates that correlations vary most
when noise is weak. However, beyond a certain threshold,
the correlation does not appear to increase further. Addition-
ally, dramatic changes of correlations between G and DI from
low to high correlation can be seen from the corresponding
squares in Figs. 7(a) and 7(b), which indicates that (in con-
trast to the noise) BDNF plays a significant role in promoting
the interaction between G and DI.

Finally, we investigate synchronization of the DG-CA3
network. Figure 8 shows synchronization curves as a function
of BDNF at different levels of mean noise. At small noise
level is small, i.e., Mean I = 2 μA/cm2; the synchroniza-
tion of the entire network strongly increases with increasing
BDNF. As the noise level increases, the increase in syn-
chronization occurs more slowly. At high noise levels, the
synchronization shows a more complex dependence with an
increase followed by a decrease for high concentrations of
BDNF (i.e., BDNF = 24 μmol and Mean I = 8 μA/cm2),
which indicates that overexpressed BDNF together with
strong noise suppresses further synchronization of the entire
network.

To conclude, the combined effects of BDNF and noise
facilitate the transition process from discharge at low potential
amplitudes to higher amplitudes by increasing the excitability

FIG. 8. Synchronization evolution of the entire network with respect to vari-
able BDNF concentrations at fixed mean noise, corresponding to Mean I =
2 μA/cm2 (blue line with triangle), I = 4 μA/cm2 (magenta line with cir-
cle), I = 6 μA/cm2 (brown line with hexagram), and 8 μA/cm2 (green line
with asterisk), respectively.

of the network, resulting in increased synchronization of the
whole DG-CA3 network.

IV. CONCLUSION

TLE is characterized by abnormal synchronous neuronal
fast spiking or bursting within the hippocampus. To reveal
the molecular and the neuronal noise-induced mechanisms
behind the transition from normal spiking to abnormal activ-
ity during TLE seizures, we studied a biophysically inspired
mathematical model of a hippocampal network in regions
CA3 and DG. We modified a previously proposed network
model by including the effects of BDNF and neuronal noise
and systematically investigated the dynamics in the time and
frequency domain of individual neurons and the entire net-
work. We show that the increasing BDNF and neuronal noise
activate more NMDA receptors owing to the membrane per-
meability of Ca2+, which in return induces preictal discharges
characterized by irregular fast spiking and ictal-like burst-
ing events, respectively. Increased excitation of individual
neurons is found, resulting in an increased dominant firing
frequency. Furthermore, the investigation at the network level
indicates that the effects play a crucial role in enhancing the
overall amplitude of the membrane potential. The enhance-
ment strengthens both correlation and synchronization of the
hippocampal network. Our results may thus provide an insight
into the possible mechanisms leading to abnormal spiking and
bursting and thereby help explain the transition to seizure
dynamics in TLE. A challenge of future research is to add
more units to account for the interplay between the hippocam-
pus and cortex, e.g., region Cornu Ammonis 1 (CA1) and
entorhinal cortex (EC), to obtain an integrated map of activity
from the cellular neuronal networks to the clinically relevant
macroscopic ictogenic network.
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APPENDIX A: MODEL OF GRANULE CELL VOLTAGE

We employ the somatic model proposed by Yuen and
Durand49 to simulate the voltage of a granule cell:

C
dVG

dt
= gNam3h(VNa − VG) + gKn4(VK − VG)

+ gskq2(VK − VG) + gL(VL − VG) + ICa2+−G

+ IG, (A1)

dx

dt
= αx(1 − x) − βxx for x = m, h, n, or q, (A2)

αm(VG) = −0.3(VG − 9)

exp[(VG − 9)/(−5)] − 1
, (A3)

βm(VG) = 0.3(VG − 37)

exp[(VG − 37)/5] − 1
, (A4)

αh(VG) = 0.23

exp[(VG + 13)/20]
, (A5)

βh(VG) = 3.33

exp[(VG − 39.5)/(−10)] + 1
, (A6)

αn(VG) = −0.007(VG − 31)

exp[(VG − 31)/(−6)] − 1
, (A7)

βn(VG) = 0.264

exp[(VG − 6)/40]
, (A8)

αq(Ca2+) = 0.0041

exp[(10 log Ca2+ + 4.48)/(−4.5)]
, (A9)

βq(Ca2+) = 0.01

exp[(10 log Ca2+ + 36.4)/35]
, (A10)

where C, IG, VG, t, and g denote capacitance density, exter-
nal electrical stimulus (pulse of BDNF or neuronal noise) for
the granule cell, membrane potential, time, and conductance
density, respectively. The units of the corresponding variables
are μF/cm2, μA/cm2, mV, ms, and ms/cm2. Parameters:
C = 3.4, gNa = 250, gK = 40, gL = 0.025, gsk = 4.7, VNa =
45, VK = −85, and VL = −67.46.

APPENDIX B: MODEL OF MOSSY CELL

According to Pinsky and Rinzel’s model formulation,50

the voltage-gated ion channels are described by the following

set of differential equations:

C
dVMS

dt
= gNam2∞h(VNa − VMS) + gKn(VK − VMS)

+ gc

p
(VMD − VMS) + gL(VL − VMS) + IMS

p
, (B1)

C
dVMD

dt
= gCas2(VCa − VMD) + gKAPH q(VK − VMD)

+ gKCχ(Ca)(VK − VMD) + gc

1 − p
(VMS − VMD)

+ gL(VL − VMD) + IMD

1 − p
+ INMDA + IAMPA

p − 1
,

(B2)

dCa2+

dt
= 0.13gKCχ(Ca)(VK − VMD) − 0.0075Ca, (B3)

dy

dt
= y∞(VMS,MD) − y

τy(VMS,MD)
for y = h, n, s, c, or q, (B4)

y∞(VMS,MD) = αy(VMS,MD)

αy(VMS,MD) + βy(VMS,MD)
, (B5)

τy(VMS,MD) = 1

αy(VMS,MD) + βy(VMS,MD)
, (B6)

INMDA = gNMDASi(t)

1 + 0.28 exp[−0.062(VMD − 60)]
(VMD − Vsyn),

(B7)

IAMPA = gAMPAWi(t)(VMD − Vsyn), (B8)

dSi

dt
=

∑
j

H(VG/DI/P − 10) − Si

150
, (B9)

dWi

dt
=

∑
j

H(VG/P − 10) − Wi

2
, (B10)

H(x) =
{

1 x ≥ 0,
0 x < 0,

(B11)

αm(VMS) = 0.32(13.1 − VMS)

exp[(13.1 − VMS)/4] − 1
, (B12)

βm(VMS) = 0.28(VMS − 40.1)

exp[(VMS − 40.1)/5] − 1
, (B13)

αn(VMS) = 0.016(35.1 − VMS)

exp[(35.1 − VMS)/5] − 1
, (B14)

βn(VMS) = 0.25 exp(0.5 − 0.025VMS), (B15)

αh(VMS) = 0.128 exp((17 − VMS)/18), (B16)

βh(VMS) = 4

1 + exp[(40 − VMS)/5]
, (B17)

αs(VMD) = 1.6

1 + exp[−0.072(VMD − 65)]
, (B18)

βs(VMD) = 0.02(VMD − 51.1)

exp[(VMD − 51.1)/5] − 1
, (B19)
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αc(VMD) = exp[(VMD − 10)/11] − exp[(VMD − 6.5)/27]

18.975

for VMD ≤ 50, (B20)

αc(VMD) = 2 exp[(6.5 − VMD)/27] for VMD > 50, (B21)

βc(VMD) = 2 exp[(6.5 − VMD)/27] − αc for VMD ≤ 50,
(B22)

βc(VMD) = 0 for VMD > 50, (B23)

αq(VMD) = min[(0.00002)Ca2+, 0.01], (B24)

βq(VMD) = 0.001, (B25)

with C = 3, gNa = 250, gKDR = 15, gL = 0.1, gKAPH = 0.8,
gCa = 10, gKC = 15, and gc = 2.1. The reversal potentials are
VNa = 120, VK = −85, VCa = 140, Vsyn = 60, and VL = 0.
In addition, χ(Ca2+) = min(Ca2+/250, 1). p = 0.5, which
represents the percentage of total area in the soma-like
compartment.

APPENDIX C: MODEL OF CA3 AND DG GABAERGIC
INTERNEURONS

The mathematical model of inhibitory interneuron is
based on Wang and Buzsáki.48 Kinetic equations are given
as follows:

C
dVI,DI

dt
= gNam∞(VI,DI)

3h(VNa − VI,DI)

+ gKn4(VK − VI,DI) + gL(VL − VI,DI)

+ ICa2+−I,DI + II,DI , (C1)

dCa2+

dt
= −Ca2+

τd
− ICa2+−I

wzF
, (C2)

ICa2+−I = gcae2w(VCa − VI), (C3)

dx

dt
= x∞(VI,DI) − x

τx(VI,DI)
for x = m, w, e, h, or n, (C4)

x∞(VI,DI) = αx(VI,DI)

αx(VI,DI)+βx(VI,DI)
for x = m, w, e, h, or n,

(C5)

τx(VI,DI) = 0.2

αx(VI,DI) + βx(VI,DI)
for x = w, e, h, or n,

(C6)

αm(VI,DI) = 0.1(VI,DI + 35)

1 − exp[−(VI,DI + 35)/10]
, (C7)

βm(VI,DI) = 4 exp[−(VI,DI + 60)/18], (C8)

αw(VI) = 3 × 10−6

exp[(VI − 11.5)/17.5]
, (C9)

βw(VI) = 3 × 10−4

exp[(VI − 19.5)/(−14)] + 1
, (C10)

αe(VI) = −0.031(VI − 24.5)

exp[(VI − 24.5)/(−3)] − 1
, (C11)

βe(VI) = 0.031(VI − 40)

exp[(VI − 40)/3] − 1
, (C12)

αh(VI,DI) = 0.07 exp[−(VI,DI + 58)/20], (C13)

βh(VI,DI) = 1

exp[−0.1(VI,DI + 28)] + 1
, (C14)

αn(VI,DI) = 0.01(VI,DI + 34)

1 − exp(−0.1(VI,DI + 34))
, (C15)

βn(VI,DI) = 0.125 exp[−(VI,DI + 44)/80], (C16)

where C = 1, VNa = 55, VK = −90, VL = −65, VCa = 70,
gNa = 35, gK = 9, gCa = 1, and gL = 0.1.

APPENDIX D: MODEL OF PYRAMIDAL CELL

The pyramidal cell is simulated with the following set of
equations:51

C
dVp

dt
= gNam∞(Vp)

3h(VNa − Vp) + gKn4(VK − Vp)

+ gL(VL − Vp) + ICa2+−P + Ip, (D1)

dx

dt
= x∞(VP) − x

τx(VP)
for x = m, h, or n, (D2)

x∞(VP) = αx(VP)

αx(VP)+βx(VP)
for x = m, h, or n, (D3)

τx(VP) = 1

αx(VP)+βx(VP)
for x = h or n, (D4)

αm(VP) = 0.32(VP + 54)

1 − exp[−(VP + 54)/4]
, (D5)

βm(VP) = 0.28(VP + 27)

exp[(VP + 27)/5] − 1
, (D6)

βh(VP) = 4

1 + exp[−(VP + 27)/5]
, (D7)

αn(VP) = 0.032(VP + 52)

1 − exp[−(VP + 52)/5]
, (D8)

βn(VP) = 0.5 exp[−(VP + 57)/40]. (D9)

The following set of parameters is used: C = 1, VNa = 50,
VK = −100, VL = −67, gNa = 100, gK = 80, and gL = 0.1.



106322-11 Zhang et al. Chaos 28, 106322 (2018)

APPENDIX E: MODEL OF O-LM CELL

O-LM cell is modeled by Tort’s et al.’s equations,52

which are as follows:

C
dVO

dt
= gNam3h(VNa − VO) + gKn4(VK − VO)

+ gAab(VA − VO) + ghr(Vh − VO)

+ gL(VL − VO) + ICa2+−O + IO, (E1)

dCa2+

dt
= −Ca2+

τd
− ICa2+−I

wzF
, (E2)

ICa2+−O = gcae2w(VCa − VI), (E3)

dx

dt
= x∞(VO) − x

τx(VO)
for x = m, w, e, h, n, a, b, or r, (E4)

x∞(VO) = αx(VO)

αx(VO)+βx(VO)
for x = m, w, e, h, or n, (E5)

τx(VO) = 1

αx(VO)+βx(VO)
for x = m, w, e, h, or n, (E6)

αm(VO) = −0.1(VO + 38)

exp[−(VO + 38)/10] − 1
, (E7)

αw(VO) = 3 × 10−6

exp[(VO − 11.5)/17.5]
, (E8)

βw(VO) = 3 × 10−4

exp[(VO − 19.5)/(−14)] + 1
, (E9)

αe(VO) = −0.031(VO − 24.5)

exp[(VO − 24.5)/(−3)] − 1
, (E10)

βe(VO) = 0.031(VO − 40)

exp[(VO − 40)/3] − 1
, (E11)

βm(VO) = 4 exp[−(VO + 65)/18], (E12)

αh(VO) = 0.07 exp[−(VO + 63)/20], (E13)

βh(VO) = 1

1 + exp[−(VO + 33)/10]
, (E14)

αn(VO) = 0.018(VO − 25)

1 − exp[−(VO − 25)/25]
, (E15)

βn(VO) = 0.0036(VO − 35)

exp[(VO − 35)/12] − 1
, (E16)

a∞(VO) = 1

1 + exp[−(VO + 14)/16.6]
, (E17)

τa(VO) = 5, (E18)

b∞(VO) = 1

1 + exp[(VO + 71)/7.3]
, (E19)

τb(VO) = 1
0.000009

exp[(VO−26)/18.5] + 0.014
0.2+exp[−(VO+70)/11]

, (E20)

r∞(VO) = 1

1 + exp[(VO + 84)/10.2]
, (E21)

τr(VO) = 1

exp(−14.59 − 0.086VO) + exp(−1.87 + 0.0701VO)
,

(E22)

where C = 1.3, VK = −100, VA = −90, Vh = −32.9, VCa = 70,
VL = −70, VNa = 90, gNa = 30, gK = 23, gCa = 1, gL = 0.05,
gA = 16, and gh = 12.

APPENDIX F: RECEPTORS AND CALCIUM MODELS
MEDIATED BY BDNF

Dynamical equation of NMDA receptors relying on
BDNF can be modeled as47,59

dgNMDA−x

dt
= kbN + kgN

CBDNF

KgN + CBDNF
− kdN gNMDA−x,

for x = G, DI, and P, (F1)

where kbN = 5 × 10−8 mS/cm2 ms−1, kgN = 1 × 10−7mS/

cm2ms−1, kdN = 0.004 ms−1, and KgN = 50 μM.
Dynamic equation of AMPA receptors determined by

Ca2+ can be described as47,59

dgAMPA−x

dt
= kbA + kgA

Ca2+
x

KgA + Ca2+
x

− kdAgAMPA−x,

for x is suitable for G, MS, P, I, and O, (F2)

where kbA = 1 × 10−7 mS/cm2 ms−1, kgA = 5 × 10−6 mS/

cm2ms−1, kdA = 0.002 ms−1 and KgA = 0.2 μM.
In terms of Ca2+, equation depending on activation of

NMDA receptors is given as47,59

dCa2+
x

dt
= kb + kN gNMDA−xSx − Ca2+

x

τCa
, for x = G, DI, and P,

(F3)
where kb = 1 × 10−4 mM ms−1, kN = 0.02 mM ms−1, and
τCa = 9 ms. Sx is the weight of NMDA receptors, whose form
is similar to Eq. (B9). Thus, ICa2+

x
has its form49

ICa2+−x = gca−xsx
2(VCa−x − Vx), for x = G, DI, and P, (F4)

where gCa−G = gCa−P = gCa−DI = 1 mS/cm2 and VCa−G =
VCa−P = VCa−DI = 70 mV.

APPENDIX G: MODEL OF SYNAPSE

We employ Ermentrout’s and Kopell’s53 synaptic model
to imitate the dynamics of neuronal connectivity. The synaptic
gating variable s is defined as 0 ≤ s ≤ 1 and obeys the rule:

ds

dt
= ρ(V )

1 − s

τR
− s

τD
, (G1)

where V is the membrane potential and ρ represents the
Heaviside function

ρ(V ) = 1 + tanh
(

V /4
)

2
, (G2)

where τR and τD are the rise and decay time constants, respec-
tively. The mathematical expression of the synaptic model is
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given as

Isyn = gijsi(t)(Vrev − Vj), (G3)

where Vrev is the synaptic reversal potential, gij denotes the
conductance strength, and si denotes the gating variable.
Furthermore, Vj is the membrane potential of neuron j.

G receives an AMPA type synaptic current and an NMDA
type synaptic current from MS, and receives a GABAA type
synaptic current from DI.

IsynG = Isyn_MS−G + Isyn_DI−G

= IAMPA_MS−G + INMDA_MS−G + IGABAA_DI−G,

= gAMPA−GsMS(t)(Vrev_AMPA − VG)

+ gNMDA−GSMS−G(t)

1 + 0.28 exp[−0.062(VG − 60)]
(VG − Vsyn_G)

+ gDI−GsDI (t)(Vrev_GABAA − VG), (G4)

where gDI−G = 0.001, Vsyn_G = 60, Vrev_AMPA = 0, and
Vrev_GABAA = −80.

MD receives an AMPA type synaptic current from G and
P, respectively, and a GABAA type synaptic current from DI.

IsynMD = Isyn_G−MD + Isyn_P−MD + Isyn_DI−G

= IAMPA_G−MD + IAMPA_P−MD + IGABAA_DI−MD,

= gAMPA_G−DI Wi(t)(VMD − Vsyn_MD)

+ gAMPA−MDsP(t)(Vrev_AMPA − VMD)

+ gDI−MDsDI (t)(Vrev_GABAA − VMD), (G5)

where gDI−MD = 0.001 and Vsyn_MD = 60.
DI receives an AMPA type synaptic current and an

NMDA type synaptic current from MS and receives an AMPA
type synaptic current from G.

IsynDI = Isyn_MS−DI + Isyn_G−DI

= IAMPA_MS−DI + INMDA_MS−DI + IAMPD_D−DI ,

= gAMPA−DI sMS(t)(Vrev_AMPA − VDI )

+ gNMDA−DI SMS−DI (t)

1 + 0.28 exp[−0.062(VDI − 60)]
(VDI − Vsyn_DI )

+ gAMPA−DI sDI (t)(Vrev_AMPA − VDI ), (G6)

where Vsyn_DI = 60.
P receives an AMPA type synaptic current and an NMDA

type synaptic current from MS. It also receives a GABAA type
synaptic current from I and O, respectively.

IsynG = Isyn_MS−P + Isyn_I−P + Isyn_O−P

= IAMPA_MS−P + INMDA_MS−P + IGABAA_I−P

+ IGABAA_O−P,

= gAMPA−PsMS(t)(Vrev_AMPA − VP)

+ gNMDA−PSMS−P(t)

1 + 0.28 exp[−0.062(VP − 60)]
(VP − Vsyn_P)

+ gI−PsI (t)(Vrev_GABAA − VP)

+ gO−PsO(t)(Vrev_GABAA − VP), (G7)

where gI−P = 0.001, gO−P = 0.001, and Vsyn_P = 60.

I receives an AMPA type synaptic current from P and
receives a GABAA type synaptic current from O.

IsynI = Isyn_P−I + Isyn_O−I = IAMPA_P−I + IGABAA_O−I ,

= gAMPA−I sP(t)(Vrev_AMPA − VI )

+ gO−I sO(t)(Vrev_GABAA − VI ), (G8)

where gO−I = 0.001.
Finally, O receives an AMPA type synaptic current from

P and a GABAA type synaptic current from I.

IsynO = Isyn_P−O + Isyn_I−O = IAMPA_P−O + IGABAA_I−O,

= gAMPA−OsP(t)(Vrev_AMPA − VO)

+ gI−OsI (t)(Vrev_GABAA − VO), (G9)

where gI−O = 0.001.
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