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We thank Tarabichi and colleagues for the constructive criticism of our Williams et al. 20161 work. 
Their critique has four main points that we address in this document using a simulation approach 
and reanalysis of public datasets. 
 
1. Impact of clonal copy number alterations 
 
In Williams et al. 20161, we assessed the cumulative VAF distribution M(f) over the frequency 
range of [0.12,0.24] in order to restrict our analysis to subclonal variants within a range that would 
be applicable to the diverse datasets we considered. Tarabichi and colleagues note that tumours 
with a tetraploid genome will have a ‘peak’ of clonal mutations at f~0.25 (mutations in a single 
allele, Supplementary Figure 1A), thus causing an ‘artificial deviation from the linear fit’ and 
incorrect rejection of neutrality. The integration range we chose was based on a triploid tumour 
with read depth of 100X, giving an upper threshold of 0.26 (see Supplementary Methods).Although 
this is suitable for the majority of cases, we agree that a tetraploid tumour could have a peak within 
our integration range, and therefore potentially more tumours could be consistent with neutral 
evolution. In Supplementary Figure 1B we show that the additional clonal peak causes a false 
rejection of neutrality, whereas identifying the tumour correctly as tetraploid and selecting the 
correct integration range fixes the problem (Supplementary Figure 1C). 
 
We do acknowledge that the 1/f integration method, while representing the correct analytical 
derivation, is sensitive to the choice of integration range and is most accurate when applied to the 
whole VAF spectrum of subclonal mutations only. We have recently developed better metrics, as 
well as a Bayesian model selection framework that directly compares the neutral model against 
models with selection using the entire VAF distribution2. We also contributed to the development of 
additional classification methods for neutrality that exploit multi-region sequencing3. We care to 
stress however, that the majority of cancers we analysed were not neutral and showed signs of 
subclonal selection.  
 
2. Interpretation of the 1/f statistical test 
 
Tarabachi and colleagues correctly note that failing to reject the null is not necessarily evidence for 
the null. This is absolutely true, but evolutionary analysis of cancer genomic data requires a 
hypothesis-driven approach based on a sensible null. Analysing data without knowing what to 
expect in the simplest scenarios may lead to wrong conclusions, as we have recently highlighted3. 
The fundamental message in our original manuscript is that neutrality, the null model of molecular 
evolution4, was often a sufficient explanation of the available data. This logic is a valid frequentist 
perspective on hypothesis testing5. The test we applied quantifies the deviation from the null 
distribution in terms of a change in model parameter (s = 0 vs s > 0). This structure arises from a 
frequentist approach and arguments for setting up the test in any other way are arbitrary. There 
are an infinite number of models of selection, some produce vanishing deviations from neutrality 
that are not measurable (e.g. weak selection), while others are biologically unrealistic (e.g. each 



mutation is a driver, constant population size in cancer). This is why in molecular evolution, 
neutrality is the null4. In our view, selection remains arguably the most important force in cancer, 
but maintaining a sensible null model is required to avoid over-interpreting the data. 
 
Tarabichi and colleagues state that the deterministic solution we report in our manuscript (Eq.7) 
relies on the strong assumption of synchronous cell divisions. That is not the case, Eq.7 is the 
convergent solution of a continuous-time stochastic branching process6. They also state that 
simulating stochastic processes is more realistic. This is indeed what we did in our original 
manuscript using stochastic simulations (Fig S9-S11), demonstrating the convergence to the 
deterministic solution. A comprehensive analysis of the underlying stochastic Luria-Delbrück model 
shows that the scaling behaviour remains unchanged even in the explicit presence of stochastic 
cell death7. In Tarabichi’s letter Figure 1b, the claim that a stochastic neutral model does not imply 
1/f is therefore incorrect, as also demonstrated by others before us6-8. 
 
3. Insights from simulated tumours 
 
Tarabichi and colleagues use a stochastic branching process, virtually identical to the one1, to 
generate synthetic genomic data and test our method. In their Figure 1, Tarabichi et al. present a 
synthetic analysis of the 1/f test using the analytical deterministic solution (Figure 1a) and 
stochastic simulations (Figure 1b). In both analyses, a new subclone is introduced at a certain 
fixed time point. First, we noted that the stochastic simulation result does not appear to converge 
to the deterministic one (i.e. Tarabichi’s Figure 1a is different from 1b), which is at odds with 
previous literature1,6-9.  
 
We note that the choice of simulated parameters in their synthetic test is unrealistic. The driver 
event in the newly selected subclone does not just induce a selective advantage, modelled as an 
increase net-growth rate (advsubclone), but at the same time, also a change in mutation rate. 
Curiously, the new subclone can have lower mutation rate (up to 8 times lower) or higher mutation 
rate (up to 100 times higher). A mutation rate of 1024 mutations per cell division (see Tarabichi’s 
Figure 1a, x-axis, 𝜇"#$%&'()=210) is found only in a very small set of colorectal or uterine cancers 
with mutations in the proof-reading domain of POLE or POLD. A POLE subclone arising within a 
POLE wild-type background appears to be a very rare event10. Thus, we urge caution when 
considering the implications of the parameters at the extremities of the range considered by 
Tarabichi et al.    
 
Nonetheless, we have reproduced Tarabichi’s Figure 1b using our stochastic branching process 
simulation with precisely the same parameters (Figure 1A in this document, see Supplementary 
Methods). We found that when selection generated a detectable subclonal cluster with 
fsubclone≥10%, this was correctly identified by the 1/f test in the majority of cases and neutrality was 
rejected (top left quadrant of Figure 1A, example in Figure 1B, 1/f tail of new subclone in green). 
For the majority of cases where the 1/f test failed, this was due to the new subclone being very 
small because of weak selection (advsubclone<0.5, bottom half of Figure 1A, example in Figure 1C). 
Figure 1D illustrates the relationship between selective advantage and the subclone cell fraction in 
the final tumour, highlighting the issue of the limit of detectability (LOD) even assuming 100x depth 
of coverage. We have specifically quantified this effect2, identifying a ‘wedge of selection’ that 
describes the detectability problem in cancer genomic data at current resolution. In general, the 
fact that selection is inefficient in expanding populations is well known in population genetics11 and 
we have demonstrated this effect in colorectal cancer12. If subclonal selection does not significantly 
change the clonal composition of the tumour, the signature of neutral growth (‘1/f tail’) dominates 
the detectable VAF spectrum (Figure 1C, bottom part of Figure 1A).  
 
Notably, on the right-hand side of Figure 1A, where the subclone had both a selective advantage 
and was also hypermutant (𝜇"#$%&'()>=64), the analysis showed that a hypermutant subclone 
generates a massive 1/f tail containing thousands of the subclone’s own private mutations that 
dominate the entire VAF distribution, obscuring the underlying subclonal structure (which was 
generated with the old mutation rate, and hence with many less mutations). In the VAF distribution 



of these tumours it is very difficult to identify the subclonal cluster because it is tiny with respect to 
the subclone’s enormous 1/f tail, generated with up to 1000 mutations per cell division (top right 
quadrant of Figure 1A, example in Figure 1E). It is not surprising that our test, or any other test, 
would struggle to detect any subclonal cluster or deviation from 1/f in these VAF distributions. 
Nevertheless, in this potentially unrealistic scenario Tarabichi and colleagues have clearly 
demonstrated how 1/f tails can be the dominant signal in cancer genomic data, to the extent where 
they can dominate the entire subclonal structure. Curiously, for moderate values of selection 
(advsubclone~0.5), a change in mutation rate from normal to hypermutant could be detected, leading 
to rejection of neutrality (mid-right area in Figure 1A and example in Figure 1F). An analogous 
deviation from 1/f caused by an increase in mutation rate was discussed in Williams et al. 2016, 
Figure S11H (see Supplementary Figure 2). For weak selection and a hypermutator subclone, the 
new subclone did not reach a detectable size and therefore neutrality could not be rejected (as in 
Figure 1C).  
 
Importantly, we note that the lack of discriminatory power under these peculiar scenarios is not 
dependent on our test, but rather on the intrinsic limitations and confounding factors in the data. To 
demonstrate this we compared the performance of our 1/f test using an extended VAF integration 
range of subclonal mutations (Figure 2G) with DPclust, an established subclonal reconstruction 
approach based on Dirichlet clustering13 developed by some of the authors of the letter (Figure 
2H). Application of these two methods to the same set of synthetic data in Figure 2A (see 
Supplementary Methods), demonstrated that severe identifiability issues affect clustering methods 
as well. Even under optimal circumstances of high selection, the sensitivity of a DPclust remained 
low in the vast majority of cases (Figure 2H).  
 
Importantly, we are pleased that in their letter, Tarabichi and colleagues confirm that both in the 
presence of a purely neutral process and in the case of subclonal selection, 1/f neutral tails are 
predicted to be pervasive in cancer data. In some of their simulations, they are so pervasive that 
they dominate the entire VAF distribution. This is because 1/f tails are a simple consequence of 
clonal growth, with each individual clone generating its own neutral tail during the expansion1,2. 
 
4. Analysis of subclonal selection using dN/dS ratios 
 
Using a test inspired by the classical dN/dS method, the authors claim to find evidence of 
subclonal selection in cancers classified as neutral with our 1/f test. Specifically, they first classify 
tumours as neutral/non-neutral using our 1/f method, and then pool the subclonal mutations in 192 
known cancer genes from different tumours to calculate a dN/dS value for neutral vs non-neutral 
groups. Subclonal mutations in the neutral group should not contain evidence of selection (dN/dS 
should not be significantly higher than 1). Conversely, subclonal mutations in non-neutral cancers, 
as well as clonal mutations in all cancers are expected to contain selected genes (in neutrally 
growing tumours selection was present during tumorigenesis), thus leading to dN/dS>1.  
 
In the attempt to address this criticism, we have reproduced Tarabichi et al’s analysis using the 
same dN/dS method14. We first measured dN/dS values in the colorectal and gastric cancers 
analysed in our original manuscript using the 369 cancer genes from Martincorena et al14. We 
could not fully reproduce Tarabichi et al pan-cancer TCGA analysis because the CAVEMAN 
somatic calls the authors used are not publicly available. We therefore reanalysed the pan-cancer 
TCGA dataset using the variant calls publicly available from the GDC data portal (see 
Supplementary Methods). 
 
We found that in all three cohorts, subclonal missense mutations in neutral-classified tumours, 
precisely as predicted by neutrality, had dN/dS vales that were not higher than 1, thus confirming 
our findings (Figure 2A-C, missense mutations on the left, green bars). This also recapitulated 
Tarabichi et al’s analysis for missense mutations. Moreover, in the pan-cancer cohort, missense 
mutations in non-neutral cancers were significantly higher than 1 (Figure 2C). 
 
We then inspected nonsense mutations and found a very small group of neutrally classified 
patients with 3 or more subclonal nonsense mutations in cancer driver genes in the gastric cohort 



(1/57 patients, 1.7%) and in the pan-cancer cohort (11/278, 3.9%). Another 7/278 pan-cancer 
cases (2.5%) had 2 subclonal nonsense mutations.  
 
It is important to note that dN/dS is a cohort-level analysis (all mutations from all patients are 
pooled together) whereas our neutrality test is a patient-specific analysis. dN/dS statistics are 
extremely sensitive to nonsense mutations because they are rare, and therefore even a single 
misclassified patient carrying several nonsense mutations in cancer driver genes would 
significantly boost the dN/dS value due to mutations in the same patient ‘counted’ multiple times. 
This results from the fact that, although dN/dS can reveal an excess or depletion of mutations in a 
cohort, it doesn’t differentiate whether this excess is coming from one or from multiple patients 
because the statistic is not normalised for the number of mutations per case. This means that a set 
with >90% neutral tumours could still show dN/dS>1, and the signal could be driven by a few 
outliers in the cohort.  
 
We manually explored the pan-cancer patients with multiple subclonal nonsense variant (see 
Supplementary Figure 3) and found that these were due to clonal mutations ‘bleeding’ into the 
subclonal range, as well as misclassifications caused by ploidy errors, and possibly the presence 
of selected subclonal clusters hidden underneath 1/f tails. Moreover, we note that these TCGA 
tumours were classified with our original 1/f test and limited integration range, and we have now 
developed better classification methods.  
 
Importantly, removing these few misclassified patients lowered the dN/dS value of the whole 
cohort to non-significant (Figure 2C, nonsense, green bars). After removing just 3.9% of patients 
with 3 or more nonsense mutations from the pan-cancer cohort (leaving 96.1% of putatively neutral 
cases), the dN/dS value for nonsense became not significant with respect to the background 
(Figure 3D, p=0.19). Even lower dN/dS values were reached by removing the additional 7/278 
patients with 2 or more subclonal nonsense mutations (p=0.36). We demonstrate this clearly by 
generating dN/dS values for ‘control sets’ of passenger genes using bootstrapping of 1,000 
random sets of 198 non-driver genes as well as neutral genes (Figure 3D). We noted that there 
was a systematic positive bias for the estimation of dN/dS that were consistently above 1. This 
could be due to the fact that public GDC calls are depleted of synonymous somatic mutations that 
were removed because present in the dbSNP database, thus skewing the dN/dS values, as 
mentioned in Martincorena et al 2017. Importantly, for tumours classified as non-neutral, dN/dS 
values remained higher than background for both missense and nonsense, in line with our 
classification. 
 
Although we do acknowledge that the original 1/f test was not optimal, removing a few 
misclassified patients and applying the dN/dS orthogonal method confirmed neutrality in >93% of 
tumours classified as neutral by our method proposed in Williams et al. 2016. Our analysis also 
highlights the fact that dN/dS values for nonsense mutations are not a representative summary 
statistic for a cohort because a few outliers can drive all the signal. For a fair comparison between 
these two methods, a per-patient dN/dS analysis is required. 
 
Despite some disagreements, Tarabachi and colleagues provided some valid constructive criticism 
of our original manuscript. In our assessment of this critique however, our original conclusion 
remains valid: that neutral evolution provides an entirely adequate description of the pattern of 
intra-tumour heterogeneity that has been observed to date across many tumours. Importantly, we 
thank Tarabichi and co-authors because they led us to the finding that VAF distribution analyses 
applied to single patients, like our neutrality test, can be carefully combined with cohort-level 
statistics like dN/dS to increase the power to discriminate between neutral dynamics and selection 
in cancer. 
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Figure Legends 
 

 
Figure 1. Insights from stochastic simulations of cancer growth. (A) Heatmap recapitulating 
Tarabichi’s Figure 1b with same parameter set and showing proportion of simulations where 
neutrality was rejected. (B) Example VAF distribution with a detectable subclonal cluster (dashed 
line indicates subclone frequency) in which the 1/f test rejects neutrality in favour of selection (R2 
reported). (C) Example VAF distribution with a weakly-selected subclone that remains below the 
limit of detection in the data (100X depth). (D) Subclone cell fraction in the final tumour as a 
function of fitness advantage, for advsubclone<0.5 the subclone rarely reaches the detectable size of 
~10% cell fraction, the approximate limit of detectability (LOD) of 100x depth of sequencing. (E) 
Example VAF distribution for a subclone with selective advantage and, at the same time, high 
mutation rate. (F) Example VAF distribution for a selected and extreme mutator subclone. (G) 
Sensitivity of the 1/f test applied to subclonal mutations in the extended range of VAF=[0.025, 0.45] 
from the simulations in panel A, numbers report proportion of cases where neutrality was rejected 
(R2<0.98). (H) Sensitivity of subclone detection of DPclust, a Dirichlet subclonal clustering method, 
when applied to the same simulated data in panel A. Numbers report the proportion of cases (20 
cases per parameter combination) where the correct subclone has been identified (allowing for a 
5% CCF error with respect to the true position).  

 
Figure 2. Detecting subclonal selection with dN/dS analysis. dN/dS analysis using 
Martincorena et al. 2017 method applied to the colorectal cancers (A), gastric cancers from ref15 
analysed in Williams et al. 2016 (B), and TCGA pan-cancer analysis using newly available GDC 
calls to reproduce Tarabichi’s dN/dS analysis (C). In each type of cancers, the cancers were 
classified as neutral or non-neutral using the 1/f test, and the dN/dS values of clonal and subclonal 
variants assessed using the Martincorena method for the pooled variants in each group. (D) 
Analysis of systematic bias in the dN/dS estimates calculated from neutral and non-neutral 
subclonal mutations from the pan-cancer cohort for three sets of genes unlikely to contain drivers: 
neutral genes from Zapata et al.16, non-driver genes (all but the 198 cancer genes), and neutral 
genes from Martincorena et al.{Martincorena:2017bla}.  
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