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In their letter, McDonald, Chakrabarti & Michor question our assertion that the distribution of 
mutations in tumour bulk sequencing data suggests an underlying neutral evolutionary process in a 
proportion of cancers (Williams, Werner et al. 20161), and instead propose alternative explanations 
that incorporate subclonal selection. We agree with the authors’ demonstration that it is possible, in 
principle, to construct models of selection that produce patterns similar to the neutral model. 
However, the key issue is whether the proposed models of selection are realistic, meaningful, and 
most importantly more appropriate than the null neutral model. Before examining this issue, we 
first note that we extensively stressed in the Williams, Werner et al. 2016 manuscript that the 
majority of cases we examined were not consistent with neutral evolution (~70% appeared non-
neutral), and we did cite specifically Gerlinger et al. 20123 as an example of data dominated by 
selection1. Our finding that the majority of cancers do show evidence of subclonal selection is 
consistent with previous literature, including the cases highlighted by McDonald, Chakrabarti & 
Michor2,3. 
 
Arguably, clonal evolution results from the interplay of three fundamental processes: random 
alterations (genetic, epigenetic, etc…), random drift, and non-random selection, the third being the 
most complex to define and model. In the established field of population genetics, extensive effort 
has been dedicated to model the first two processes without selection, the so-called neutral 
dynamics4-6. This includes the development of entire statistical frameworks based on neutrality, 
such as coalescent theory7. On the contrary, models that include selection, especially in growing 
populations, have been much harder to derive analytically due to the large number of assumptions 
in the definition of selection, including whether selection is clone-intrinsic or clone-extrinsic 
(microenvironmentally defined), and whether the magnitude of selection is constant or fluctuating 
in response to population dynamics. Importantly, most models of selection describe cancer 
dynamics in terms of time8,9 (e.g. time to fixation of a selected mutant) and therefore, although 
insightful, are hard to apply to cancer genomic data where temporal dynamics are often 
unobservable. 
 
In the light of this complexity, in our study we asked the simple question: what happens to the 
mutations in a growing tumour in the case where only the first two processes above, namely 
random mutations and drift, are operating? This leads to a relatively simple model, which is 
analytically tractable, wherein subclonal mutations accumulate following a 1/f cumulative 
distribution1. We note that this is the underlying solution of the fully stochastic Luria-Delbrück 
model, as previously demonstrated10,11. Importantly, this model is based on the ‘null hypothesis’ of 
molecular evolution in cancer12-14 and predicts what the absence of subclonal selection should look 
like in a growing tumour. We tested this hypothesis against subclonal mutations from large body of 
sequencing data and found that in about 30% of cases we could not reject this null hypothesis, at 
least within the resolution of the currently available data.  



 
In their letter, McDonald, Chakrabarti & Michor and colleagues propose a more complex scenario 
that includes on-going selection and report that in some cases their model also fits the 1/f 
cumulative distribution. First, we examine the fit of their proposed model to the data, and highlight 
that considering the stochastic nature of selection mutants would change the interpretation of their 
analysis. Second, we discuss the distinction between evaluating the power of a test versus the 
limitations of the information content in thedata the test is applied to, in this case single-sample 
bulk sequencing. Third, we analyse the plausibility of the authors’ biological assumptions 
underlying their model.  
 
McDonald, Chakrabarti & Michor’s letter shows that in a considerable proportion of simulations 
with subclonal selection, neutrality was correctly rejected (R2<0.98; their Figure 1b). The exact 
proportion of cases incorrectly classified as neutral is not reported, but a few specific examples are 
shown in their Figures 1c-f. Importantly, in those cases, the mutant proportion at the time of 
sampling is not reported, nor the time when the mutant was introduced. Both are key factors in 
judging the strength of the selection signal, for two reasons: (1) in the case of strong and early 
selection, wherein a selected mutant sweeps to fixation, the evolutionary dynamics revert to 
neutral, and hence accepting the null for the final tumour is correct (as all cells in the tumour bear 
the selected mutation, so there is no subclonal selection). (2) due to the inherent stochasticity of 
the evolutionary process, selected mutants can occur either too late to grow to a detectable size or 
are weakly selected so that the clonal population of the tumour remains virtually unchanged with 
respect to the neutral expectation. Judging from the authors’ Figure 2A this seems to be what 
happens often: most mutants have fitness slightly higher than one (1=neutral), and many even 
lower than one (should be negatively selected), but all persist in the population. In such model it is 
clear that selection is not sculpting the population by removing unfit clones and benefitting fitter 
ones, since any mutant fit or unfit, seems to survive. Thus, the dynamics described in the models 
of McDonald, Chakrabarti & Michor are “effectively neutral”, and relatedly it is not surprising that 
deviations from neutrality are hard to detect.  
 
We highlight that it is fundamentally important to consider the size of differentially selected 
subclones when considering whether or not a tumour can be classified as neutrally evolving or not. 
In the authors’ second simulation model (their Figure 2), many clones arise very late and are 
therefore undetectable in the data (high frequency of red dots representing clone size of one cell in 
their Figure 2A). We argue that no test will ever be able to detect a subclone made of a single cell 
in a whole malignancy – and indeed it is debatable whether a clone of size 1 can even be 
considered to have been selected. We discuss the detection limits imposed by current data in our 
original manuscript1 (Figure 5), as well as in subsequent work15,16.  
 
To demonstrate the impact of subclone size in determining whether a tumour is classified as 
(effectively) neutral or not we performed a more thorough analysis of our previous model of a 
stochastic branching process under selection (Figure 1 in this article). These simulations show 
that, in the presence of a subclone of detectable size in the data (e.g. not too small to be out of the 
frequency distribution, and which has not swept through the whole tumour), the 1/f test is powered 
to rejected neutrality (1/f test calculated over the frequency range [0.05-0.5] of subclonal mutations 
from simulated diploid tumours – Figure 1).  
 
McDonald, Chakrabarti & Michor also suggest that improved fits to a 1/f distribution are found in 
larger populations, irrespective of the underlying model. This assertion is based on the three 
individual examples presented in figure 2B-C, but appears to be contradicted by their figure 2D, 
which summarises the results of 25 simulations across different selection regimes and no 
difference in the distribution of goodness-of-fit values is evident between small or large tumours 
(no tests of significance were reported). Aside, the frequency interval for inferences is also 
changed 20-fold between realisations of their models (Figure 2B, C, E), making comparisons 
difficult. 
 
In general, we agree with the authors’ suggestion that R2 values are not the optimal measurement 
of fit of a cumulative distribution. Moreover, we note that a limitation of the 1/f statistical test is the 



sensitivity to the choice of integration range in the variant allele frequency (VAF) distribution. To be 
optimal, the 1/f test should be applied to subclonal mutations only, and the whole detectable 
frequency spectrum should be used (e.g. for ~100x depth sequencing, from a minimum of 5% to a 
maximum of 50% VAF in a diploid tumour – Figure 1). We note that in follow up work we have 
developed more sensitive tests, as well as a Bayesian model selection method that uses the whole 
VAF distribution to directly compare neutrality vs selection16. Our original threshold of R2<0.98 to 
reject neutral evolution as an explanation for the data was ad hoc but based on an estimation of 
the variability in the cumulative VAF due to stochasticity into the neutral evolution process together 
with the stochasticity caused by library preparation and moderate depth sequencing. 
 
Next, we consider key biological assumptions of McDonald, Chakrabarti & Michor’s proposed 
models.  
 
Both models include a strong assumption that almost all mutations affect fitness. In the first 
scenario (their Figure 1A) all mutations increase fitness in an additive manner, implying that all 
mutations in a tumour would be categorised as ‘drivers’. This would include non-coding mutations 
(>98% of all mutations in a cancer genome) and even synonymous variants (~25% of all exonic 
mutations). This assumption is at odds with what we currently know about the human genome and 
with a whole body of evidence from large scale cross-sectional genomic studies that have 
identified a relatively small number of driver alterations17 amongst a large number of passengers18.  
Consequently, we think this is an implausible assumption. Furthermore, recognizing that most 
point mutations in cancer genomes are passengers is key to performing subclonal analysis from 
bulk samples19,20 as it is the increase in frequency of passenger mutations hitchhiking within a 
selected mutant that allows to detect subclones. 
	

 A second questionable assumption of the presented subclonal selection models is that of infinite 
improvement. In this model, populations evolve by climbing a fitness slope and leading to linear 
evolution. The “fitness landscape” interpretation has now replaced this model21, wherein the fitness 
is defined by a complex landscape of peaks and valleys corresponding to distinct phenotypes in 
the population, which is a model that is consistent with clonal evolution as well22. We note that 
some of the authors have recently rejected an infinite improvement model as unsupported by their 
data in their interesting recent publication23. 
 
In summary, we argue that if the data are equally consistent with the simple mechanistic null model 
incorporating cell division, cell death, mutation and absence of selection, and also a complex 
model of selection, then by Occam’s razor, we should not reject the null in favour of the complex 
alternative. Thus, when faced with only a 1/f distribution as evidence, we think it would be a fallacy 
to assume the complex model rather than the neutral model produced it.  
 
We do agree however that it is paramount to recognise the limitations of currently available data. 
Specifically, single-sample bulk sequencing data at moderate depth are intrinsically limited in 
capturing the subclonal evolutionary dynamics and intra-tumour heterogeneity of a tumour. To 
better measure evolutionary dynamics in cancer, we advocate the need for better data, such as 
extremely deep sequencing, multi-region sampling and ultimately, single-cell point mutation 
sequencing. 
 
Figure 1. Sensitivity of the 1/f test to subclone cancer cell fraction. (A) We simulated tumour 
evolution using a stochastic birth-death process as in Williams, Werner et al. 2016, where we could 
either model a neutral evolutionary process or a process whereby a selected subclone reaches a 
certain proportion, or cancer cell fraction (CCF) in the tumour. We chose parameters in our model 
that matched the characteristics of our TCGA colon cancer cohort, namely that we observe around 
300 mutations per exome per sample. Simulation parameters: mutation rate=8 per division, 
cellularity=1, ploidy=2, read depth=100X, birth rate=ln(2), death rate=ln(2)/2. To implement 
selection, a cell at a random time tevent is given a random selection coefficient s, which either 
decreases the death rate or increases the birth rate. We ran 1000 neutral simulations and for 
simulations with selected subclones we ran 1000 simulations for each of the following resultant 
subclone cancer cell fraction, CCF: i) 0.1<CCF<0.9, ii) 0.2<CCF<0.8, iii) 0.3<CCF<0.7. The 



distribution of R2 values (1/f integrated over VAF range [0.05,0.5] of tumour subclonal mutations 
only) is significantly different between neutral and non-neutral tumours (green line shows 0.98 
cutoff). Box plots show the median and IQR; the upper whisker is the 3rd quantile + 1.5 × IQR; and 
the lower whisker is the 1st quantile – 1.5 × IQR. (B) A ROC analysis also shows that the R2 metric 
has more discriminatory power for subclones that are in the centre of the VAF distribution, as one 
would expect since their subclonal cluster becomes more evident. 
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