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Information	 sampling	 is	 often	 biased	 towards	 seeking	 evidence	 that	 confirms	

one’s	 prior	 beliefs.	 Despite	 such	 biases	 being	 a	 pervasive	 feature	 of	 human	

behavior,	their	underlying	causes	remain	unclear.	Many	accounts	of	these	biases	

appeal	to	limitations	of	human	hypothesis	testing	and	cognition,	de	facto	evoking	

notions	 of	 bounded	 rationality,	 but	 neglect	 more	 basic	 aspects	 of	 behavioral	

control.	 Here	 we	 demonstrate	 involvement	 of	 Pavlovian	 approach	 biases	 in	

determining	which	 information	 humans	will	 choose	 to	 sample.	We	 collected	 a	

large	 novel	 dataset	 from	 32,445	 human	 subjects,	 making	 over	 3	 million	

decisions,	who	played	a	gambling	task	designed	to	measure	the	latent	causes	and	

extent	 of	 information-sampling	 biases.	 We	 identified	 three	 novel	 approach-

related	 biases,	 formalized	 by	 comparing	 subject	 behavior	 to	 a	 dynamic	

programming	model	of	optimal	information	gathering.	These	biases	reflected	the	

amount	of	 information	 sampled	 (‘positive	evidence	approach’),	 the	 selection	of	

which	 information	 to	 sample	 (‘sampling	 the	 favorite’),	 and	 the	 interaction	

between	 information	 sampling	 and	 subsequent	 choices	 (‘rejecting	 unsampled	

options’).	The	prevalence	of	all	three	biases	was	related	to	a	Pavlovian	approach-

avoid	 parameter	 quantified	within	 an	 entirely	 independent	 economic	 decision	

task.	Our	 large	 dataset	 also	 revealed	 that	 individual	 differences	 in	 information	

seeking	 are	 a	 stable	 trait	 across	 multiple	 gameplays,	 and	 can	 be	 related	 to	

demographic	 measures	 including	 age	 and	 educational	 attainment.	 As	 well	 as	

revealing	 limitations	 in	 cognitive	 processing,	 our	 findings	 suggest	 information	

sampling	 biases	 reflect	 the	 expression	 of	 primitive,	 yet	 potentially	 ecologically	

adaptive,	 behavioral	 repertoires.	 One	 such	 behavior	 is	 sampling	 from	 options	

that	will	eventually	be	chosen,	even	when	other	sources	of	information	are	more	

pertinent	for	guiding	future	action.		 	
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Introduction	 	

Many	 spheres	 of	 human	 behavior	 depend	 upon	 gathering	 and	

understanding	 evidence	 appropriately	 to	 inform	 decision-making.	 Yet	 the	 best	

way	to	sample	information	is	a	nontrivial	problem,	necessitating	deciding	where	

to	 sample	 information	 (1,	 2),	 when	 to	 cease	 information	 gathering	 (3,	 4)	 and	

weighing	 up	 how	 such	 evidence	 should	 guide	 behavior	 (5,	 6).	 Normative	

approaches	 can	 help	 address	 these	 questions	 (7),	 but	 their	 computational	

complexity	 renders	 them	unlikely	 candidates	 for	 controlling	 behavior.	 Instead,	

these	approaches	can	be	better	used	as	a	basis	for	understanding	limitations	in	

cognitive	processes	and	why	biases	emerge	in	human	behavior	(8,	9).	

A	 particularly	well-studied	 bias	 is	 that	 of	 confirming	 one’s	 prior	 beliefs	

(10).	 Inspired	 by	 classic	 rule	 discovery	 and	 falsification	 studies	 of	Wason	 (11,	

12),	explanations	of	confirmation	bias	 frequently	appeal	 to	 limits	 in	hypothesis	

testing	 as	 their	 latent	 cause.	 Several	 alternative	 accounts	 have	 been	 proposed.	

The	 ‘positive	 test	 account’	 (13)	 posits	 that	 humans	 form	 beliefs	 about	 a	

particular	hypothesis,	and	subsequently	selectively	seek	and	interpret	evidence	

in	support	of	this	rule	rather	than	against	it.	Yet	it	has	been	pointed	out	that	this	

strategy	may	be	normative	in	situations	where	possible	competing	hypotheses	to	

explain	the	data	are	sparse	(14).	Other	accounts	suggest	that	humans	are	simply	

limited	in	the	number	of	hypotheses	they	can	consider	at	any	given	time	(15).		

It	is	widely	acknowledged	that	humans	are	also	subject	to	more	primitive	

influences	 on	 behavioral	 control.	 Whilst	 these	 have	 been	 overlooked	 as	 a	

potential	 source	 of	 confirmation	 bias,	 they	 are	 known	 to	 impact	 upon	

information	seeking	in	other	domains.	For	instance,	a	primitive	behavior	present	

in	several	species	is	the	observing	response	(16,	17).	Here,	animals	select	actions	

to	 yield	 information	 (reduce	 uncertainty)	 about	 the	 probability	 of	 receiving	

future	 reward,	 even	when	 these	 actions	 have	no	bearing	upon	 reward	 receipt.	

This	can	also	be	related	to	human	preferences	for	revealing	advance	information	

about	 rewards	 when	 that	 information	 is	 immaterial	 to	 the	 task	 at	 hand	 (18).	

Critical	 here	 is	 the	 notion	 that	 in	 nature,	 advance	 information	 typically	 is	

valuable	 in	 guiding	 future	 action	 (unlike	 in	 the	 experimental	 tasks	 used	 to	

demonstrate	 these	 behaviors).	 Preferences	 for	 early	 temporal	 resolution	 of	
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uncertainty	 (19)	 is	 thus	 conserved	 across	 humans	 and	 other	 species,	 and	

persists	in	influencing	behavior	even	when	rendered	instrumentally	irrelevant.	

These	 considerations	 led	 us	 to	 consider	 how	 other	 primitive	 behaviors	

might	 bias	 information	 sampling.	 A	 notable	 characteristic	 of	 reward-guided	

behavior	 in	many	 species	 is	 that	 of	 Pavlovian	 approach.	Animals	 show	greater	

efficacy	in	 learning	approach,	as	opposed	to	avoidance,	actions	that	will	 lead	to	

the	 delivery	 of	 reward	 (20,	 21).	 Humans	 are	 also	 subject	 to	 similar	 approach	

biases	 (22).	 Pavlovian	 approach	 effects	 also	 spill	 over	 into	 the	 domain	 of	

attentional	control,	as	stimuli	previously	ascribed	a	high	value	capture	attention	

even	 when	 they	 are	 contextually	 irrelevant	 (23).	 As	 the	 locus	 of	 attention	 is	

intimately	 linked	 to	 information	 sampling	 during	 choice	 (24),	 this	 raises	 the	

possibility	that	Pavlovian	approach	may	similarly	influence	information	search.		

To	 test	 this	 idea	 we	 examined	 gameplay	 data	 from	 a	 large-scale	

smartphone	 app	 (25)	where	we	manipulated	 several	 factors	 of	 interest	whilst	

probing	subjects’	information	sampling	behavior.	In	brief,	subjects	played	a	card	

game	in	which	they	paid	to	sample	information	from	different	locations	prior	to	

deciding	which	option	was	most	likely	to	yield	reward.	A	framing	manipulation	

meant	that	in	half	of	all	gameplays,	approaching	(choosing)	the	“biggest”	option	

would	 be	 rewarded,	 but	 in	 the	 other	 half,	 approaching	 the	 “smallest”	 option	

would	be	rewarded.	Crucially,	the	information	structure	of	the	task	was	identical	

across	these	matched	conditions,	such	that	any	effects	on	information	sampling	

could	be	ascribed	to	our	manipulation	as	to	the	option	subjects	were	instructed	

to	approach.		

We	compared	observed	behavior	to	predictions	derived	from	a	normative	

dynamic	programming	model	that	computes	the	expected	value	associated	with	

a	perfect	model	of	the	task,	treated	as	a	Markov	decision	process	(see	methods	

and	(26)).	This	enabled	us	to	isolate	three	distinct	biases	in	subjects’	information	

search	 that	 respectively	 influenced	 where	 information	 was	 sought,	 when	

information	 collection	 terminated,	 and	 how	 information	 was	 used	 to	 guide	

eventual	choices.	Relevant	here	is	our	recent	quantification	of	human	Pavlovian	

approach	behavior	parametrically	in	an	approach-avoidance	decision	model	on	a	

separate	economic	decision	task	(27).	We	demonstrate	that	the	prevalence	of	all	

three	biases	is	related	to	this	parameter.		
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Results	

Information	Seeking	Task	Design		

Subjects	 played	 a	 binary	 choice	 game	 that	 involved	 paying	 escalating	

costs	for	 information	(by	turning	over	playing	cards),	while	gambling	on	which	

option	was	best	based	upon	card	values	that	were	revealed	(Fig	1A).	There	were	

six	possible	 conditions	 that	 subjects	might	play	 (Fig	1B).	Across	 three	of	 these	

conditions,	 subjects’	 objective	was	 to	 identify	 the	 pair	 (row)	 of	 cards	with	 the	

largest	product	(‘MULTIPLY	BIGGEST’),	largest	sum	(‘ADD	BIGGEST’),	or	largest	

single	 card	 (‘FIND	 THE	 BIGGEST’).	 Across	 the	 remaining	 three	 conditions,	 the	

objective	 was	 inverted,	 such	 that	 they	 now	 sought	 the	 row	 with	 the	 smallest	

product,	sum,	or	single	card.		

	

	
Fig	1.	 Information	seeking	task	design.	(A)	Subjects	aim	to	select	the	‘winning	row’	(in	

this	example,	the	row	with	the	largest	product).	After	the	first	card	is	revealed	(here,	the	7	

of	diamonds),	subjects	enter	task	stage	1.	Here	they	choose	between	the	two	yellow	options,	

either	 sampling	 another	 card	 (costing	 10	 points)	 or	making	 a	 guess	 about	which	 is	 the	

winning	row	(no	cost).	Greyed-out	cards	cannot	yet	be	sampled.	If	choosing	to	sample,	then	

task	stage	2	is	entered,	where	either	remaining	card	may	be	sampled	(costing	15	points)	or	

the	 subject	may	 again	 guess.	 In	 task	 stage	 3,	 sampling	 the	 last	 remaining	 card	 costs	 20	

points.	At	any	task	stage,	making	a	guess	means	that	subjects	enter	the	choice	stage.	Here,	
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after	choosing,	all	cards	are	revealed	and	the	subjected	either	wins	60	points	if	correct,	or	

loses	50	points	if	 incorrect.	(B)	The	six	task	conditions,	in	a	3-by-2	design.	Subjects	either	

select	 the	 row	 with	 biggest	 (or	 smallest)	 sum,	 the	 biggest	 (or	 smallest)	 product,	 or	 the	

biggest	(or	smallest)	single	card.	

	

	 At	 the	 beginning	 of	 each	 trial,	 all	 cards	 start	 face	 down.	 Subjects	 then	

touch	 the	 first	 card	 (randomly	 located)	 to	 turn	 it	over,	 for	no	 cost.	This	 enters	

Task	Stage	1	(Fig	1A).	One	of	the	three	remaining	cards	is	made	available	to	be	

sampled	 at	 a	 cost	 of	 10	 points,	 but	 subjects	 can	 alternatively	 make	 a	 guess	

(gamble	on	which	option	will	be	rewarded)	at	no	cost.	If	they	choose	to	sample,	

the	value	of	the	second	card	is	revealed	and	they	enter	Task	Stage	2.	Either	of	the	

two	remaining	cards	can	then	be	sampled	at	a	cost	of	15	points,	or	subjects	can	

again	 choose	 to	make	 a	 guess	 at	 no	 cost.	 If	 they	 choose	 to	 sample	 again,	 they	

enter	Task	Stage	3.	The	last	remaining	card	can	be	sampled	at	a	cost	of	20	points,	

or	they	may	again	guess	at	no	cost.	At	any	Task	Stage,	making	a	guess	means	that	

subjects	enter	the	Choice	Stage.	Here	subjects	choose	which	row	they	think	will	

be	rewarded,	and	all	remaining	cards	are	then	turned	face	up.	The	subject	wins	

60	 points	 if	 the	 gamble	 is	 correct,	 and	 loses	 50	 points	 if	 incorrect,	 minus	 the	

points	 paid	 for	 information	 sampling.	 Card	 values	 ranged,	 with	 a	 uniform	

distribution	 (sampled	 with	 replacement),	 from	 1	 to	 10,	 with	 ‘picture	 cards’	

removed	from	the	deck.	

	 On	 each	 gameplay,	 subjects	 were	 randomly	 assigned	 to	 play	 two	 short	

blocks	 (11	 trials	 each)	 of	 two	 from	 the	 six	 possible	 conditions.	 The	 symmetry	

between	 the	 ‘approach	 big’	 and	 ‘approach	 small’	 conditions	 is	 crucial	 to	 our	

experimental	 design.	 Revealing	 a	 card	 of	 a	 particular	 value	 yields	 the	 same	

information	content	in	both	versions	of	the	task	(with	the	exception	of	the	FIND	

THE	BIGGEST	and	FIND	THE	SMALLEST	conditions).	This	means	 that	 subjects’	

information	 gathering	 behavior	 should,	 normatively,	 be	 matched	 across	 these	

conditions.	The	only	behavior	that	should	change	is	the	final	gamble	made	by	the	

subject,	which	 should	 reverse.	 By	 comparing	 across	ADD	BIG	 and	ADD	SMALL	

conditions,	 and	 across	 MULTIPLY	 BIG	 and	 MULTIPLY	 SMALL	 conditions,	 we	

could	 probe	 the	 influence	 of	 the	 approach	 direction	 (i.e.,	 big/small)	 on	

information	sampling	behavior,	and	vice	versa.	
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‘Positive	evidence	approach’	bias	

	 The	 first	 question	 we	 asked	 pertained	 to	 Task	 Stage	 1	 (Fig	 1A).	 Here	

subjects	 decided	 whether	 to	 sample	 or	 guess	 based	 upon	 two	 variables:	 the	

information	seen,	i.e.	the	card	value,	and	also	the	location	where	information	was	

made	available	for	sampling.	We	label	the	first	row	sampled	as	‘row	A’.	In	some	

trials,	subjects	were	constrained	to	sample	the	next	card	from	row	A	(‘AA	trials’),	

whilst	in	other	trials	they	were	constrained	to	sample	from	row	B	(‘AB	trials’).		

As	can	be	seen	 from	the	optimal	dynamic	programming	model	 (Fig	2A),	

the	 card	 value	 and	 (to	 a	 lesser	 extent)	 the	 trial	 type	 influences	 the	 relative	

expected	 value	 of	 choosing	 to	 guess	 versus	 choosing	 to	 sample.	 The	 U-shaped	

function	 of	 the	 graph	 reflects	 an	 intuition	 that	 high-	 or	 low-valued	 cards	 are	

informative	 about	 the	 correct	 option	 to	 approach,	making	 it	more	 valuable	 to	

guess	early.	Mid-valued	cards,	by	contrast,	provide	less	information	and	make	it	

more	 valuable	 to	 sample	 more	 information.	 The	 differential	 influence	 of	 AA	

versus	AB	trials	is	because	the	potential	reduction	in	uncertainty	depends	upon	

the	 information	 that	 has	 already	 been	 revealed.	 Intuitively,	 on	 a	 MULTIPLY	

TRIAL	where	a	1	has	been	revealed,	then	sampling	from	row	A	again	yields	little	

information	relative	to	row	B,	as	it	is	already	known	that	row	A	will	have	a	low	

value	(between	1	and	10).	On	a	MULTIPLY	TRIAL	where	a	10	has	been	revealed,	

then	sampling	from	row	A	yields	more	information	than	row	B	as	it	reduces	the	

range	of	possible	row	A	values	from	between	10	and	100	to	an	exact	value.	
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Fig	2.	Positive	evidence	approach	bias	at	task	stage	1.	At	task	stage	1,	subjects	decide	

whether	to	make	a	guess	or	pay	10	points	to	sample.	The	available	card	to	sample	may	be	

on	the	same	row	(‘AA	trials’)	or	the	opposite	row	(‘AB	trials’)	as	the	first	card.	(A)	Model	

predictions.	 The	 relative	 expected	 value	 (in	 points)	 of	 guessing	 vs.	 sampling	 from	 the	

dynamic	programming	model,	in	the	MULTIPLY	conditions.	Mid-valued	cards	make	it	more	

valuable	to	sample,	whereas	extreme	valued	cards	make	it	more	valuable	to	guess.	There	is	

a	 weaker	 influence	 of	 the	 location	 of	 available	 information	 (compare	 ‘AA	 trials’	 vs.	 ‘AB	

trials’).	 Crucially,	 optimal	 behaviour	 is	 identical	 for	 both	MULTIPLY	 BIG	 and	MULTIPLY	

SMALL	 conditions.	 (B)	 Subject	 behaviour.	 The	 probability	 of	 guessing	 in	 both	 conditions	

shows	 a	 broad	 similarity	 to	 the	 predictions	 of	 the	 dynamic	 programming	 model,	 but	

behaviour	in	MULTIPLY	BIG	and	MULTIPLY	SMALL	shows	systematic	differences.	(See	Fig	

S1	 for	 AA	 and	 AB	 trials	 plotted	 together,	 rather	 than	 MULTIPLY	 BIG	 and	 MULTIPLY	

SMALL.)	 (C)	 Positive	 evidence	 approach	 bias	 is	 revealed	 by	 subtracting	 the	 MUTLIPLY	

SMALL	condition	from	the	MULTIPLY	BIG	condition.	Subjects	are	more	likely	to	guess	early	

if	they	have	seen	evidence	that	supports	them	approaching	row	A,	rather	than	avoiding	it.	

This	effect	is	strengthened	in	AB	trials,	where	subjects	only	have	the	opportunity	to	sample	

further	information	about	row	B.	See	also	Figs	S2/S3	for	other	conditions.	

	

As	expected,	the	dynamic	programming	model	predicts	identical	behavior	

irrespective	of	the	subject’s	approach	goal.	As	an	example,	consider	revealing	a	2	
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in	the	MULTIPLY	BIG	condition	on	an	AA	trial.	This	yields	a	probability	of	0.764	

that	the	‘B’	row	will	be	rewarded,	and	the	expected	value	of	guessing	is	therefore	

0.764	*60	+	(1-0.764)*(-50)	=	34.	The	expected	value	of	sampling	again	from	the	

A	 row,	 calculated	 using	 dynamic	 programming,	 is	 28.8,	 and	 so	 the	 relative	

expected	 value	 of	 guessing	 is	 5.2	 (Fig	 2A).	 Now	 consider	 seeing	 a	 2	 in	 the	

MULTIPLY	SMALL	condition.	This	now	yields	the	exact	same	probability	of	0.764	

that	the	‘A’	row	will	be	rewarded.	Hence	the	expected	value	of	guessing	remains	

34.	The	expected	value	of	sampling	further	information	remains	28.8,	and	so	the	

relative	expected	value	of	guessing	remains	5.2.		

In	 contrast	 with	 these	 model	 predictions,	 subjects’	 actual	 behavior	

showed	a	systematic	difference	between	MULTIPLY	BIG	and	MULTIPLY	SMALL	

conditions	 (compare	 circles	 and	plus	 signs	 in	Fig	2B,	 see	also	Fig	S1).	 Subjects	

became	 more	 likely	 to	 guess	 if	 they	 had	 seen	 evidence	 that	 supported	 them	

approaching	row	A	rather	than	avoiding	it.	In	MULTIPLY	BIG,	a	high	valued	card	

(6	or	above)	carries	evidence	for	choosing	row	A.	Subjects	become	more	likely	to	

guess	 than	 when	 seeing	 the	 same	 card	 in	 MULTIPLY	 SMALL.	 However,	 a	 low	

valued	card	in	MULTIPLY	BIG	(5	or	below)	carries	evidence	for	avoiding	row	A.	

Subjects	now	become	more	likely	to	sample	than	when	seeing	the	same	card	in	

MULTIPLY	 SMALL.	 This	 framing	 effect	 is	 seen	 most	 clearly	 when	 subtracting	

behavior	in	MULTIPLY	SMALL	from	MULTIPLY	BIG	(Fig	2C).	

The	observed	bias	is	one	of	approaching	an	option	if	positive	evidence	has	

been	 provided	 in	 support	 of	 that	 option,	 consequently	 we	 term	 this	 ‘positive	

evidence	 approach’.	 We	 observed	 positive	 evidence	 approach	 was	 more	

pronounced	in	AB	trials	than	AA	trials	(Fig	2C).	This	is	again	consistent	with	our	

hypothesis,	 as	 subjects	 are	 less	 inclined	 to	 sample	 further	 information	 if	

available	on	a	row	they	wish	to	avoid,	than	a	row	they	wish	to	approach.		

To	 quantify	 positive	 evidence	 approach	 across	 our	 population,	we	 used	

the	following	summary	statistic:	

	

(𝑝𝐺𝑢𝑒𝑠𝑠!"#,! − 𝑝𝐺𝑢𝑒𝑠𝑠!"#$$,!)
!"

!!!

+ (𝑝𝐺𝑢𝑒𝑠𝑠!"#$$,! − 𝑝𝐺𝑢𝑒𝑠𝑠!"#,!)
!

!!!
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where	pGuessbig,i	 and	pGuesssmall,i	 denote	 the	 average	 probability	 of	 guessing	 in	

MULTIPLY	BIG	and	MULTIPLY	SMALL	respectively,	having	revealed	card	value	i.	

As	 there	 should	 be	 no	 difference	 in	 the	 probability	 of	 guessing	 across	 the	 two	

conditions,	the	expected	value	of	this	statistic	from	the	normative	model	is	0.	By	

contrast,	 the	value	of	 this	 statistic	 across	our	population	was	0.42	 in	AA	 trials,	

and	0.70	 in	AB	 trials.	To	estimate	our	confidence	 in	 this	 summary	statistic,	we	

recomputed	 it	 on	 1,000	 bootstrapped	 samples	 of	 10,000	 gameplays	 from	 our	

population.	This	yielded	95%	confidence	intervals	of	[0.30,	0.54]	in	AA	trials,	and	

[0.62,	 0.79]	 in	AB	 trials.	 	 (Throughout	 the	 paper,	we	 focus	 on	 the	 reporting	 of	

effect	 sizes	 and	 95%	 confidence	 intervals	 rather	 than	 p-values,	 as	 our	 large	

sample	size	renders	p-values	less	informative	(28)).	

Similar	 results	 are	 seen	 by	 comparing	 the	 ADD	 BIG	 and	 ADD	 SMALL	

conditions	 (Fig	 S2;	AA	 trials:	mean	0.52,	 95%	CIs	 [0.40,	 0.64];	AB	 trials:	mean	

0.79,	 95%	CIs	 [0.70,	 0.89]).	 See	 also	 Fig	 S3	 for	 FIND	THE	BIGGEST/FIND	THE	

SMALLEST,	which	are	not	directly	matched	for	information	content.	

It	 is	 also	 notable	 that	 overall,	 subjects’	 behavioral	 choices	 to	 sample	

information	were	similar	to	predictions	arising	from	the	optimal	model	(Fig	2B),	

although	 not	 identical	 (Fig	 S1).	 This	 alone	 does	 not	 imply	 that	 subjects	 are	

implementing	 the	 optimal	 model.	 Instead,	 it	 may	 simply	 reflect	 the	 fact	 that	

relatively	 simple	 behavioral	 strategies	will	 often	 recapitulate	many	 features	 of	

more	 sophisticated	 strategies(29).	 For	 example,	 one	 straightforward	 strategy	

would	 be	 to	 compare	 the	 value	 of	 the	 presented	 card	 to	 the	 average	 value,	

estimate	the	current	degree	of	uncertainty	in	making	a	choice,	and	then	use	these	

values	with	a	softmax	transformation	(30)	to	calculate	a	probability	for	selecting	

row	 A,	 selecting	 row	 B,	 or	 sampling	 further	 information.	 We	 consider	 this	

question	 further	 in	 a	 latter	 section	 of	 the	 paper	 and	 show	 that	 this	 can	

approximate	the	average	behavior	of	subjects	in	the	task	without	recourse	to	an	

optimal	model.		

	

‘Rejecting	unsampled	options’	bias	

	 We	 next	 asked	 how	 decisions	 to	 sample	 or	 reject	 information	 might	

influence	subsequent	choices.	If	subjects	elected	to	guess	at	the	first	stage,	they	

entered	 the	 Choice	 Stage,	 where	 they	 gambled	 on	 which	 option	 would	 be	
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rewarded	 (Fig	 1A).	 In	ADD	BIG,	 the	 relative	 expected	 value	 of	 choosing	 row	A	

over	row	B	increases	with	the	value	of	the	first	card	(Fig	3A,	blue	line),	while	in	

ADD	SMALL	it	decreases	with	the	value	of	the	first	card	(Fig	3A,	purple	line).	This	

was	reflected	in	subjects’	choices	in	both	sets	of	trials	(Fig	3B;	see	Fig	S4-S5	for	

other	 conditions).	However,	 this	decision	arises	on	 two	different	 types	of	 trial.	

The	 subject	 will	 either	 have	 just	 declined	 the	 opportunity	 of	 sampling	

information	 from	 the	 A	 row	 (on	 AA	 trials),	 or	 the	 B	 row	 (on	 AB	 trials).	 Our	

hypothesis	 was	 that	 information	 sampling	 depends	 upon	 the	 underlying	

approach	value	of	an	item.	A	corollary	is	that	declining	to	sample	an	item	reflects	

an	underlying	preference	for	not	approaching	it.	

	

	
Fig	3.	Rejecting	unsampled	option	bias	at	 choice	 stage.	 If	subjects	choose	to	guess	at	

task	stage	1,	they	then	select	between	row	A	and	row	B.	(A)	Model	predictions.	The	relative	

expected	 value	 (in	 points)	 of	 choosing	 row	A	 vs.	 row	B,	 in	 the	ADD	BIG	 (cyan)	 and	ADD	

SMALL	(purple)	conditions.	Crucially,	the	decision	is	identical	for	AA	and	AB	trials;	the	only	

difference	 between	 these	 conditions	 is	 which	 row	 subjects	 have	 previously	 declined	 to	

sample.	 (B)	 Subject	 behaviour.	 The	 probability	 of	 choosing	 row	 A	 shows	 a	 softmax	

relationship	to	the	relative	values	shown	in	Fig	3A.	Note	that	the	green	line	(AB	trials)	 is	

higher	 than	 the	 blue	 line	 (AA	 trials)	 at	 nearly	 all	 card	 values,	 and	 particularly	 near	 the	

point	 of	 subjective	 equivalence.	 (C)	 Rejecting	 unsampled	 option	 bias	 is	 revealed	 by	

subtracting	AB	trials	from	AA	trials,	in	both	ADD	BIG	and	ADD	SMALL	conditions.	Subjects	
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are	more	likely	to	choose	row	A	if	they	have	declined	to	sample	row	B.	See	also	Figs	S4/S5	

for	other	conditions.	

			

When	we	compared	choice	preferences	on	AA	and	AB	trials	for	identical	

card	 values	 on	 the	 same	 condition	we	 observed	 that,	 across	 all	 six	 conditions,	

subjects	showed	a	systematic	shift	towards	being	less	likely	to	choose	the	option	

that	had	just	been	left	unsampled.	Hence,	subjects	presented	with	the	same	card	

value	on	an	AA	trial	were	more	likely	to	choose	option	B	than	on	an	equivalent	

AB	trial	(Fig	3B).	This	effect	was	most	pronounced	near	the	point	of	subjective	

equivalence	 in	 subjects’	 choices,	 and	 is	 revealed	 most	 clearly	 by	 subtracting	

subjects’	choice	behavior	in	AB	from	AA	trials	(Fig	3C).		

We	 term	 this	 a	 ‘rejecting	unsampled	options’	 bias.	To	quantify	 rejecting	

unsampled	 options	 across	 our	 population,	 we	 used	 the	 following	 summary	

statistic:	

	

𝑝 𝐶ℎ𝑜𝑖𝑐𝑒 = 𝐴 !,!" − 𝑝(𝐶ℎ𝑜𝑖𝑐𝑒 = 𝐴)!,!!

!"

!!!

	

	

where	 p(Choice	 =	 A)i,AB	 denotes	 the	 probability	 of	 choosing	 row	 A	 having	

observed	card	i	on	an	AB	trial,	and	p(Choice	=	A)i,AA	denotes	the	same	probability	

on	an	equivalent	AA	trial.	There	is	no	difference	in	the	choice	that	is	presented	to	

the	subject	between	AB	and	AA	trials,	and	the	expected	value	of	this	statistic	 is	

therefore	0.	 The	mean	value	of	 this	 statistic	 across	 the	population	was	0.21	 in	

ADD	BIG	(95%	CIs	[0.10,	0.32])	and	0.30	in	ADD	SMALL	(95%	CIs	[0.18,	0.41]).	

	 We	also	found	the	rejecting	unsampled	options	bias	to	be	present	across	

all	the	other	conditions:	MULTIPLY	BIG	(mean	0.24,	95%	CIs	[0.12,	0.35];	Fig	S4),	

MULTIPLY	SMALL	(mean	0.27,	95%	CIs	[0.15,	0.39];	Fig	S4),	FIND	THE	BIGGEST	

(mean	0.22,	95%	CIs	[0.11,	0.35];	Fig	S5)	and	FIND	THE	SMALLEST	(mean	0.21,	

95%	CIs	[0.09,	0.34];	Fig	S5).	

	

‘Sampling	the	favorite’	bias	

Our	design	enabled	us	to	also	investigate	where	subjects	chose	to	sample	

information.	At	Task	Stage	2	on	AB	trials,	we	could	determine	subjects’	relative	
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preference	 for	 sampling	 from	 row	 A	 versus	 row	 B	 (Fig	 1A).	 Here,	 different	

conditions	 have	 different	 predictions	 for	 which	 row	 is	 more	 advantageous	 to	

sample.	For	example,	in	both	the	ADD	BIG	and	ADD	SMALL	conditions,	sampling	

from	either	row	yields	exactly	the	same	amount	of	information	about	which	row	

might	 be	 rewarded.	 The	 optimal	 dynamic	 programming	 model	 predicts	 no	

relative	advantage	for	sampling	from	row	A	versus	row	B	(Fig	S6).		

In	 both	 MULTIPLY	 BIG	 and	 MULTIPLY	 SMALL	 conditions,	 however,	

dynamic	 programming	predicts	 that	 sampling	 from	 the	 row	 that	 currently	 has	

the	higher-valued	card	will	be	more	informative.	The	intuition	behind	this	is	that	

the	 range	 of	 possible	 outcomes	 on	 the	 row	 with	 the	 higher-valued	 card	 is	

greater,	 and	 so	 sampling	 further	 information	 on	 this	 row	 leads	 to	 a	 greater	

reduction	in	uncertainty	than	sampling	the	row	with	the	lower-valued	card.	This	

is	 borne	 out	 in	 a	 heatmap	 of	 model	 predictions,	 showing	 the	 difference	 in	

relative	 value	 from	 sampling	 from	 row	 A	 versus	 row	 B	 (Fig	 4A).	 Importantly,	

these	 predictions	 are	 identical	 for	 both	MULTIPLY	 BIG	 and	MULTIPLY	 SMALL	

conditions.	 Somewhat	 counterintuitively,	 it	 is	 therefore	more	 advantageous	 to	

sample	from	the	row	with	the	largest	card	even	in	MULTIPLY	SMALL.	(Note	that	

this	 is	 different	 from	 the	 relative	 expected	 value	 of	 guessing	 versus	 sampling,	

which	is	shown	in	Fig	S8).			
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Fig	4.	Sampling	the	favourite	bias	at	task	stage	2.	If	subjects	choose	to	sample	at	task	

stage	1,	they	enter	task	stage	2.	If	this	is	on	an	AB	trial,	they	then	may	sample	again	from	

row	A,	or	from	row	B,	or	make	a	guess.	(A)	Model	predictions.	The	relative	expected	value	

(in	points)	of	sampling	from	row	A	vs.	sampling	from	row	B,	in	the	MULTIPLY	conditions.	It	

is	 generally	more	 valuable	 to	 sample	 from	 the	 row	 that	 currently	 has	 the	 higher	 valued	

card	 (e.g.	 the	 7,	 in	 the	 example	 shown).	 Crucially,	 this	 prediction	 is	 the	 same	 in	 both	

MULTIPLY	BIG	and	MULTIPLY	SMALL	conditions.	(B)	Subject	behaviour.	Subjects	show	a	

propensity	to	sample	from	the	row	containing	the	high-valued	card	in	MULTIPLY	BIG,	but	

this	 trend	 is	 reversed	 in	MULTIPLY	SMALL.	Subjects	are	 therefore	 inclined	 to	 sample	 the	

option	 that	 is	 currently	most	 likely	 to	 be	approached.	 (C)	 Sampling	 the	 favourite	 bias	 is	

revealed	by	subtracting	MULTIPLY	SMALL	trials	from	MULTIPLY	BIG	trials.	The	normative	

model	predicts	this	heatmap	to	show	no	difference	between	conditions,	yet	there	is	a	clear	

tendency	 to	 sample	 the	currently	 favoured	row.	See	also	Figs	S6/S7	 for	other	conditions,	

and	Fig	S8	for	relative	value	of	guessing	versus	sampling	across	all	six	conditions.	

	

In	 contrast	 to	 model	 predictions,	 we	 found	 that	 subjects	 preferred	 to	

sample	from	the	option	that	currently	had	the	higher	value	in	the	MULTIPLY	BIG	

condition	alone	(Fig	4B,	left).	In	the	MULTIPLY	SMALL	condition,	they	preferred	

to	sample	from	the	option	that	currently	had	the	lower	value	(Fig	4B,	right).	The	

influence	of	this	bias	in	subjects’	 information	sampling	is	revealed	more	clearly	

by	 subtracting	 behavior	 in	MULTIPLY	 SMALL	 from	 that	 of	MULTIPLY	BIG	 (Fig	

4C).	 Whereas	 the	 optimal	 model	 shows	 no	 difference	 between	 these	 two	
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conditions	 (i.e.	 the	 entire	 heatmap	 should	 equal	 0),	 subjects	 reliably	 sampled	

information	 from	 the	 row	 that	 they	 currently	 sought	 to	 approach	 rather	 than	

avoid.		

We	 term	 this	 bias	 ‘sampling	 the	 favorite’.	 	 To	 quantify	 sampling	 the	

favorite,	we	derived	two	statistics	for	trials	in	which	subjects	decided	to	sample	a	

third	piece	of	information.	We	calculated	one	‘strong	evidence’	statistic	for	trials	

in	which	the	‘favorite’	(the	item	that	would	eventually	be	approached)	was	clear.	

We	defined	this	as	trials	where	the	difference	in	card	values	was	4	or	greater	in	

magnitude:	

	

𝑝 𝑆𝑎𝑚𝑝𝑙𝑒 = 𝐴 !,!,!"# − 𝑝 𝑆𝑎𝑚𝑝𝑙𝑒 = 𝐴 !,!,!"#$$

!!!

!!!

!"

!!!

−	

𝑝 𝑆𝑎𝑚𝑝𝑙𝑒 = 𝐴 !,!,!"# − 𝑝 𝑆𝑎𝑚𝑝𝑙𝑒 = 𝐴 !,!,!"#$$

!!!

!!!

!"

!!!

	

	

where	P(Sample	=	A)i,j,big	refers	to	the	relative	probability	of	choosing	to	sample	

from	row	A	over	row	B,	when	card	i	is	presented	on	row	A	and	card	j	presented	

on	 row	B,	 on	MULTIPLY	BIG	 trials.	 The	 top	 row	of	 the	 equation	denotes	 trials	

where	 row	A	 has	 a	 higher-valued	 card	 than	 row	B,	 favoring	 approaching	 A	 in	

MULTIPLY	BIG	but	approaching	B	in	MULTIPLY	SMALL.	The	converse	is	true	for	

the	bottom	row.		

We	 calculated	 a	 second	 ‘weak	 evidence’	 statistic	 for	 trials	 in	which	 the	

‘favorite’	was	 less	clear.	 	We	defined	 this	as	 trials	where	 the	difference	 in	card	

values	was	between	1	and	3	in	magnitude:	

	

𝑝 𝑆𝑎𝑚𝑝𝑙𝑒 = 𝐴 !,!,!"# − 𝑝 𝑆𝑎𝑚𝑝𝑙𝑒 = 𝐴 !,!,!"#$$

!!!

!!!"# (!,!!!)

!"

!!!

−	

𝑝 𝑆𝑎𝑚𝑝𝑙𝑒 = 𝐴 !,!,!"# − 𝑝 𝑆𝑎𝑚𝑝𝑙𝑒 = 𝐴 !,!,!"#$$

!!!

!!!"# (!,!!!)

!"

!!!
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Crucially,	 because	 the	 optimal	 model	 predicts	 identical	 values	 for	

sampling	from	row	A	versus	row	B	on	MULTIPLY	BIG	and	MULTIPLY	SMALL,	the	

expected	value	for	both	statistics	is	always	0.	In	contrast,	the	value	of	the	‘strong	

evidence’	 statistic	 across	 our	 population	 was	 12.35	 (95%	 CIs	 [10.55,	 14.01]),	

whilst	the	value	of	the	‘weak	evidence’	statistic	was	7.21	(95%	CIs	[5.85,	8.48]).	

Note	 this	bias	was	also	observed	 in	 the	ADD	BIG/ADD	SMALL	condition	

(Fig	 S6),	where	 the	value	of	 the	 ‘strong	evidence’	 statistic	was	11.93	 (95%	CIs	

[10.39,	13.51]),	whilst	 the	value	of	 the	 ‘weak	evidence’	statistic	was	6.86	(95%	

CIs	[5.61,	8.14]).	See	Fig	S7	for	FIND	THE	BIGGEST/FIND	THE	SMALLEST,	which	

are	not	directly	matched	for	information	content.	

	

A	parametric	model	of	subject	behavior	

	 We	 consider	 that	 subjects	 are	 unlikely	 to	 be	 implementing	 dynamic	

programming	when	 they	 perform	 the	 task,	 yet	 their	 overall	 behavior	 shows	 a	

surprising	resemblance	to	model	predictions	(e.g.	Fig	2B,	Fig	3B).	We	therefore	

constructed	 a	 simpler	 model	 that	 describes	 subjects’	 performance	 without	

recourse	to	dynamic	programming.		

In	this	model,	subjects	first	compute	the	value	of	choosing	each	option	by	

comparing	the	presented	value	to	the	average	value	of	all	possible	cards.	In	ADD	

BIG	trials,	at	stage	1,	for	example,	this	would	be:	

	

V(A)	=	β1(1stCardValue-<1stCardValue>)	

V(B)	=	β1(<1stCardValue>-1stCardValue)	

	

where	<1stCardValue>	is	the	expected	value	of	the	1st	card	(5.5),	and	β1		

is	 a	 free	 parameter.	 In	 ADD	 SMALL	 trials,	we	 simply	 inverted	 the	 value	 of	 the	

each	card,	such	that	10	became	1,	9	became	2,	and	so	on.		

We	also	considered	an	AB	trial	(e.g.	Fig	4B),	where	the	values	of	option	A	

and	B	become:	

	

V(A)	=	β1(1stCardValue-2ndCardValue)	

V(B)	=	β1(2ndCardValue-1stCardValue)	
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At	 both	 stages,	 we	 compute	 the	 degree	 of	 uncertainty,	 ω,	 in	 choosing	

either	option:	

	

ω = −( !
!!!! ! !! !  ! !.!)!	

	

This	is	then	used	to	derive	the	value	of	sampling	information	from	option	

A	or	option	B:	

	

V(sample	A)	=	β2	+	β3	ω	

V(sample	B)	=	β2	+	β3	ω	

	

	 The	probability	of	each	action	is	finally	generated	using	a	softmax	choice	

rule:	

	

𝑝 𝐶 = 𝑜 =
𝑒
!(!)
!

𝑒
!(!)
!!

	

	

We	 fit	 parameters	 β1,	β2,	β3,	and	 τ,	 using	maximum	 likelihood	 estimation	

separately	at	stage	1	and	stage	2.	This	model	does	not	explicitly	feature	terms	for	

the	 costs	 associated	 with	 sampling	 information;	 instead,	 these	 are	 implicitly	

factored	into	the	constant	term	β2.	

This	model	captures	the	main	features	of	the	behavioral	data	(Fig	S9).	At	

stage	1,	it	displays	a	U-shaped	effect	of	card	value	on	information	sampling	(as	in	

Fig	 2B)	 caused	 by	 the	 effects	 of	 choice	 uncertainty	 on	 the	 value	 of	 sampling	

information.	 It	 also	 displays	 a	 softmax	 choice	 curve	 (as	 in	 Fig	 3B)	 between	

options	A	and	B,	matching	subjects’	real	choice	probabilities	between	these	two	

options.	At	stage	2,	it	displays	choice	probabilities	between	options	A	and	B	that	

again	closely	match	subjects’	behavior.	

However,	 because	 this	model	makes	 symmetric	 predictions	 for	BIG	 and	

SMALL	 trials,	 it	 fails	 to	 capture	 the	 three	 biases	 described	 above	 (fig	 S9).	We	

therefore	adapted	the	model	with	three	additional	parameters	to	capture	these	

biases	 (Fig	 5).	 At	 stage	 1,	 before	 entering	 values	 into	 the	 softmax	 choice	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/047787doi: bioRxiv preprint first posted online Apr. 8, 2016; 

http://dx.doi.org/10.1101/047787
http://creativecommons.org/licenses/by-nc-nd/4.0/


18	
	

equation,	 we	 captured	 the	 ‘rejecting	 unsampled	 options’	 bias	 (Fig	 5D-F)	 by	

adding	 an	 ‘approach	 bonus’	 (β4)	 to	 the	 value	 of	 the	 item	 which	 could	 not	 be	

sampled.	 This	makes	 subjects	more	 likely	 to	 choose	 this	 option	 if	 they	 do	 not	

sample	information.	

	

V(A)	=	V(A)	+	β51stCardValue	[on	AB	trials	only];	

V(B)	=	V(B)	+	β5<1stCardValue>	[on	AA	trials	only].	

	

We	also	found	that	we	could	capture	the	‘positive	evidence	approach’	bias	

(Fig	5A-C)	by	modulating	the	value	of	sampling	option	A:	

	

V(sample	A)	=	β2	+	β3	ω	–	β5(1stCardValue)	

	 	

	 Notably,	we	 found	 increasing	1st	 card	value	had	a	negative	 influence	on	

the	value	of	sampling	A,	reflected	by	the	negative	sign	in	front	of	parameter	β5.	

We	infer	that	on	AA	trials	(where	option	A	is	available	to	be	sampled),	subjects	

are	more	 inclined	 to	 choose	 option	A	when	 it	 is	 of	 high	 value,	 than	 to	 sample	

again	from	it.	

	 Finally,	 at	 stage	 2,	 we	 found	 that	 we	 could	 capture	 the	 ‘sampling	 the	

favorite’	 bias	 (Fig	 5G-I)	 by	 introducing	 a	 parameter	 that	 affected	 subjects’	

propensity	to	sample	from	higher	valued	cards:	

	 	

V(sample	A)	=	β2	+	β3	ω	+	β6(1stCardValue-2ndCardValue)	

V(sample	B)	=	β2	+	β3	ω	+	β6(2ndCardValue-1stCardValue)	

	

	 Parameter	fits	for	stage	1	and	stage	2	for	both	ADD	and	MULTIPLY	trials	

are	given	in	supplementary	table	S1.		
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Fig	 5.	Behavioral	 predictions	 from	 the	 full	 parametric	model	 of	 subject	 behavior,	

with	 best-fit	 parameters.	 (A)	Predicted	probability	of	guessing	at	 stage	1	 for	AA	 trials	

(compare	 to	 Fig.	 2Bi)	 and	 (B)	 AB	 trials	 (compare	 to	 Fig.	 2Bii)	 in	 ‘add’	 condition.	 (C)	

Predicted	 ‘positive	evidence	approach’	bias.	Compare	to	fig.	2C.	(D)	Predicted	probability	

of	choosing	row	A,	having	chosen	to	guess,	at	stage	1,	 for	 ‘add	big’	 (compare	to	Fig.	3Bi)		

and	(E)	 ‘add	small’	 (compare	to	Fig.	3Bii)	conditions.	(F)	Predicted	 ‘rejecting	unsampled	

options’	 bias.	 Compare	 to	 Fig	 3C.	 (G)	 Predicted	 probability	 of	 sampling	 row	 A	 in	 ‘big’	

(compare	 to	 Fig	 4Bi)	 and	 in	 (H)	 ‘small’	 (compare	 to	 Fig	 4Bii)	 conditions.	 (I)	 Predicted	

‘sampling	the	favorite’	bias.	Compare	to	Fig	4C.	See	also	Fig	S9.	

	

The	close	fit	between	model	predictions	and	subject	behavior	reveals	that	

a	far	simpler	framework	(comparing	a	card	value	to	the	average	expected	value)	

can	approximate	 an	optimal	dynamic	programming	model.	Moreover,	 subjects’	
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approach-induced	biases	in	 information	sampling	can	be	readily	parameterized	

within	this	 framework.	We	anticipate	that	 further,	more	refined	models	will	be	

subsequently	tested	by	downloading	the	raw	behavioral	data	from	DataDryad	at	

http://dx.doi.org/10.5061/dryad.nb41c.	

	

Relationship	of	biases	to	Pavlovian	approach-avoid	parameter	

	 An	advantage	of	large-scale	data	collection	via	a	smartphone	app	is	that	it	

allows	data	to	be	gathered	on	a	range	of	cognitive	tasks	across	a	large	cohort	of	

subjects.	 Recently	 we	 reported	 learning	 and	 choice	 behavior	 on	 another	

gambling	task	contained	within	the	same	app	platform	(27,	31).	 In	this	simpler	

gambling	 task,	 subjects	make	binary	choices	between	safe	and	risky	options	 in	

three	 types	 of	 trials:	 gain	 trials	 (a	 certain	 gain	 versus	 a	 larger	 gain/zero	 gain	

gamble),	mixed	 trials	 (certain	zero	gain	versus	a	mixed	gain/loss	gamble),	 and	

loss	trials	(a	certain	loss	versus	a	larger	loss/zero	loss	gamble).	Notably,	subject	

behavior	 in	 this	 task	 was	 best	 characterized	 within	 a	 Pavlovian	 approach-

avoidance	 decision	 model	 when	 compared	 to	 a	 range	 of	 models	 that	 also	

included	a	 standard	Prospect	 theory	model	 (27).	This	decision	model	 captures	

the	 influence	 on	 risk-taking	 behavior	 of	 both	 economic	 preferences	 and	

Pavlovian	 influences.	 It	 describes	 subjects’	 value-independent	 propensity	 to	

approach	or	avoid	gain	gambles	with	a	single	parameter,	βgain,	 and	 their	value-

independent	 propensity	 to	 approach	 or	 avoid	 loss	 gambles	 with	 a	 second	

parameter,	βloss.	Full	details	of	modeling	are	provided	in	(27)	and	methods.	
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Fig	6.	Expression	of	all	three	biases	is	differentially	present	in	subjects	with	high	vs.	

low	 Pavlovian	 approach,	 quantified	 in	 a	 separate	 gambling	 task.	Blue	bars	 denote	

subjects	with	 below-median	 values	 for	 βgain	 –	 βloss	;	 red	 bars	 denote	 subjects	with	 above-

median	 values.	 (A)	 The	 positive	 evidence	 approach	 bias	 is	 quantified	 using	 the	 β5	

parameter	in	the	parametric	model	of	subject	behaviour;	in	both	conditions,	subjects	with	

high	 approach-avoid	 parameter	 differences	 show	more	 positive	 evidence	 approach	 than	

subjects	with	low	parameter	differences.	(B)	The	rejecting	unsampled	option	is	quantified	

using	the	β4	parameter	in	the	parametric	model	of	subject	behaviour;	in	the	add	conditions,	

there	 is	 considerably	 greater	 expression	 of	 rejecting	 unsampled	 option	 in	 subjects	 with	

high	 approach-avoid	 parameter	 differences;	 there	 is	 a	 weaker	 trend	 in	 the	 opposite	

direction	 in	 the	multiply	 condition.	 (C)	 The	 sampling	 the	 favourite	 bias	 is	 by	 quantified	

using	 the	β6	parameter	 in	 the	parametric	model	of	 subject	behaviour;	 in	both	conditions,	

subjects	with	high	approach-avoid	parameter	differences	show	more	sampling	the	favorite	

bias	than	subjects	with	low	parameter	differences.	Bars/error	bars	reflect	mean/s.d.	across	

1,000	bootstrapped	samples	of	10,000	gameplays.	

	

	 For	each	subject	who	played	both	games	within	the	app	(n=21866	users)	

we	 estimated	 βgain	and	 βloss	 and	 computed	 the	 difference	 between	 these	 two	

parameters.	 We	 performed	 a	 median	 split	 on	 these	 values	 to	 derive	 two	

subpopulations	 of	 subjects,	 one	 exhibiting	 a	 larger	 bias	 for	 approach	 potential	

rewards	over	avoid	potential	losses,	and	one	exhibiting	a	weaker	bias.	Next,	we	

calculated	 the	 average	 behavior	 in	 our	 task	 of	 the	 subjects	 within	 these	 two	

subpopulations.	 We	 then	 fit	 the	 model	 described	 in	 the	 previous	 section	 to	

subjects’	 aggregate	behavior,	 and	 compared	 the	 fits	 of	β4	 (rejecting	unsampled	

options),	β5	(positive	evidence	approach)	and	β6	(sampling	the	favorite)	statistics	
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across	 the	 different	 subpopulations.	 To	 estimate	 our	 confidence	 in	 these	

statistics,	we	performed	100	bootstraps	using	10,000	samples	drawn	from	each	

subpopulation.	

	 All	three	of	our	information	sampling	biases	were	differentially	present	in	

the	 high	 approach-avoid	 versus	 low	 approach-avoid	 groups.	 Positive	 evidence	

approach	was	greater	in	the	high	approach-avoid	group	in	both	add	and	multiply	

trials	 (Fig	 6A).	 Rejecting	 the	 unsampled	 option	 was	 also	 greater	 in	 the	 high	

approach-avoid	group	in	the	add	condition,	although	this	difference	was	slightly	

reversed	 in	 the	 multiply	 condition	 (Fig	 6B).	 Sampling	 the	 favorite	 showed	 a	

subtler	 pattern	of	 expression	was	 greater	 in	 the	high	 approach-avoid	 group	 in	

both	 add	 and	multiply	 trials	 (Fig	 6C).	 All	 of	 the	 different	 observed	 biases	 are	

linked	by	the	tendency	to	sample	information	from	locations	that	will	eventually	

be	 approached.	 The	 present	 results	 show	 that	 this	 is	 also	 reflected	 in	 the	

expression	 of	 these	 biases	 in	 groups	 exhibiting	 differential	 levels	 of	 Pavlovian	

approach	influence	on	their	behavior.	

	

Variability	in	information	sampling	across	age	and	education	groups	

An	 additional	 advantage	 of	 acquiring	 data	 via	 smartphone	 is	 that	 it	

enables	examination	of	variation	 in	 information	sampling	across	a	much	wider	

range	 of	 subjects	 than	 is	 typically	 examined	 in	 laboratory	 studies.	 In	 an	 initial	

exploration	of	 this,	we	 examined	 variation	 in	 a	 simple	measure	 of	 information	

seeking,	 namely	 the	 average	 number	 of	 cards	 turned	 relative	 to	 the	 optimal	

model.		

Subjects	 reliably	 sampled	 less	 information	 than	 predicted	 from	 the	

optimal	 model,	 but	 there	 was	 substantial	 variation	 across	 the	 population	 (Fig	

7A).	It	is	important	to	remember,	however,	that	the	model	is	only	‘optimal’	in	the	

sense	 of	 maximizing	 expected	 points	 per	 gameplay.	 It	 does	 not,	 for	 example,	

include	 additional	 factors	 such	 as	 the	 subjective	 cost	 of	 sampling	 information.	

Indeed,	we	found	that	by	adding	a	‘subjective	sampling	cost’	of	5	points	per	turn	

to	the	optimal	model	shifted	the	distribution	in	Fig	7A	so	that	it	was	now	centred	

around	zero	(Fig	S10).	Nonetheless,	variability	in	the	extent	to	which	individual	

subjects	 sampled	 information	 was	 highly	 reproducible	 across	 repeated	

gameplays	(Fig	7B/S10),	and	we	also	found	it	to	be	stable	irrespective	of	which	
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set	 or	 ordering	 of	 conditions	 subjects	 played	 (Fig	 S11).	 This	 suggests	 that	 it	

provides	 a	 measure	 that	 might	 be	 related	 to	 performance	 on	 other	 cognitive	

tasks	or	demographic	information	about	participants.	An	example	of	the	latter	is	

our	finding	that	the	number	of	cards	gathered	was	positively	related	to	both	the	

highest	level	of	attained	education	and	age	group	of	our	participants	(Fig	7C,	top	

panels).	Importantly,	this	measure	was	decoupled	from	general	performance	on	

the	 task,	which	was	positively	related	 to	educational	attainment	but	negatively	

related	 to	 age	 (Fig	 7C,	 bottom	 panels).	 There	 was	 a	 very	 slight	 tendency	 for	

subjects	with	in	the	‘high	approach-avoid	group’	to	gather	more	evidence	versus	

subjects	 in	 the	 ‘low	 approach-avoid	 group’,	 but	 this	 difference	 was	 negligible	

relative	 to	 the	 overall	 variance	 in	 information	 sampling	 across	 the	 population	

(mean	 of	 0.0066	 more	 cards	 sampled	 in	 high	 approach-avoid	 group,	 95%CIs	

[0.0037,	0.0094]).	

	

	
Fig	 7.	 Individual	 differences	 in	 information	 seeking.	 (A)	 Histogram	 of	 the	 mean	

number	 of	 cards	 sampled	 in	 each	 trial,	 relative	 to	 how	many	 would	 be	 sampled	 by	 the	

optimal	 model.	 Subjects	 show	 a	 propensity	 to	 guess	 early,	 but	 there	 is	 considerable	

individual	 variation.	 (B)	 Individual	 variation	 in	 information	 sampling	 reproduces	 across	

subsequent	 gameplays.	 Each	 dot	 is	 a	 subject;	 subjects	 who	 were	 inclined	 to	 seek	 little	

information	 in	gameplay	1	also	sought	 little	 information	 in	gameplay	2.	(C)	Variation	 in	

information	seeking	(top)	and	subject	performance	(bottom)	as	a	function	of	educational	

attainment	(left	panels)	and	age	(right	panels).	General	Certificate	of	Secondary	Education	

(GCSE)	 is	 equivalent	 to	 10th	 Grade	 in	 United	 States;	 A	 Level	 (ALev)	 is	 equivalent	 to	 12th	

Grade.	Datapoints	denote	mean	+/-	s.e.m.	 	
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Discussion	

Information	 seeking	 comprises	 interlinked	 decisions	 that	 includes	 how	

much	to	sample,	where	to	sample	from	and	finally	which	option	to	choose	based	

upon	 sampled	 information.	 Whilst	 the	 complexity	 of	 our	 task	 allowed	 these	

different	features	to	be	indexed	simultaneously	within	a	single	scenario,	the	task	

was	sufficiently	constrained	that	it	can	be	treated	as	a	Markov	decision	process.	

As	 such,	 an	 optimal	 model	 of	 the	 task	 can	 be	 derived	 using	 dynamic	

programming	 (26).	 Dynamic	 programming	 has	 rarely	 been	 considered	 as	 a	

normative	 basis	 for	 analysis	 of	 information	 search	 strategies	 in	 human	

information	 search	 (7).	 Although	 computationally	 expensive,	 a	 distinct	

advantage	 for	 our	 purposes	 is	 that	 it	 straightforwardly	 derives	 a	 common	

currency	 for	 the	 expected	 value	 of	 sampling	 in	 different	 locations	 against	 the	

value	of	choosing	a	particular	option.		

Subjects	rapidly	learnt	the	task,	with	their	performance	in	terms	of	points	

gained	becoming	relatively	stable	within	~4	trials	(data	not	shown);	moreover,	

basic	 features	 of	 subject	 behavior	 (e.g.	 Figs	 2B,	 3B)	 matched	 with	 the	 overall	

pattern	 of	 predictions	 from	 the	 normative	 model.	 This	 confirms	 our	 previous	

observations	concerning	the	validity	of	behavioral	data	acquired	via	smartphone	

(25).	We	make	 the	 large	 behavioral	 dataset	 freely	 available	 for	 download	 (via	

DataDryad,	 see	 http://dx.doi.org/10.5061/dryad.nb41c),	 providing	 an	 empirical	

testing	ground	for	models	of	human	information	seeking.	

Crucially,	 three	 features	 of	 subject	 behavior	 at	 different	 task	 stages	

showed	 demonstrable	 biases	 in	 information	 seeking.	 Two	 of	 these	 biases,	

positive	 evidence	 approach	 and	 sampling	 the	 favorite,	 were	 elicited	 as	 a	

consequence	 of	 our	 manipulation	 of	 which	 item	 subjects	 approached	 across	

different	 conditions.	 A	 third	 bias,	 rejecting	 unsampled	 options,	 was	

demonstrated	as	an	effect	of	 rejecting	an	option	on	 the	preference	of	a	 subject	

for	 choosing	 that	 option.	 All	 three	 biases	were	 a	 consequence	 of	 the	 item	 that	

subjects	 currently	 sought	 to	 approach.	 Although	 manifesting	 as	 suboptimal	

biases	in	our	experiment,	we	contend	that	these	behaviors	are	present	because	

they	 are	 likely	 to	 be,	 and	 have	 been,	 adaptive	 ecologically	 (32).	 In	 nature,	

foraging	decisions	(such	as	whether	to	stay	or	depart	from	a	patch,	or	whether	to	

engage	 with	 or	 reject	 an	 item	 of	 prey)	 are	 more	 common	 than	 those	 made	
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between	 binary	 mutually	 exclusive	 options	 (33).	 In	 such	 contexts,	 we	

hypothesise	 that	 an	 adaptive	 strategy	 is	 to	 engage	 with	 the	 most	 valuable	

alternative	first,	and	then	accept	or	reject	this	alternative	having	acquired	more	

information	 about	 its	 value.	 It	 would	 be	 intriguing	 to	 test	 whether	 approach-

induced	 information	 sampling	 can	 produce	 optimal	 information	 sampling	 in	

more	naturalistic	foraging	paradigms.	

All	 three	 of	 our	 observed	 biases	 were	 differentially	 expressed	 in	 two	

groups	who	varied	 in	the	strength	of	expression	of	a	Pavlovian	approach-avoid	

parameter	 derived	 from	 a	 separate	 decision	 task.	 This	 provides	 a	 tentative	

suggestion	 of	 an	 underlying	 dopaminergic	mechanism	 for	 control	 of	 Pavlovian	

approach	on	information	seeking	behaviors,	given	our	recent	demonstration	that	

Pavlovian	 approach	 is	 boosted	 in	 subjects	 treated	with	 L-DOPA	 (27).	We	 also	

note	that	Polymorphisms	 in	genes	controlling	dopamine	function	have	recently	

been	 linked	 to	 individual	 differences	 in	 confirmation	 bias	 (34).	 Moreover,	

recordings	 from	 midbrain	 dopaminergic	 neurons	 reveal	 that	 they	 signal	

information	 in	 a	 manner	 consistent	 with	 the	 animal’s	 preference	 for	 advance	

information,	 in	 the	 same	 manner	 that	 they	 encode	 information	 about	 reward	

(17).	 Future	 studies	 could	 easily	 exploit	 possibilities	 of	 data	 collection	 via	

smartphone	 to	 test	 this	 and	 related	 hypotheses	 via	 combined	 collection	 of	

genetic	and	behavioral	data	across	large	populations.	It	might	also	be	possible	to	

design	future	versions	of	our	task	with	a	larger	number	of	trials/conditions	per	

subject,	 so	 as	 to	 elicit	 each	 of	 the	 three	 observed	 biases	within-subject,	 rather	

than	depending	upon	examining	amalgamated	data	across	a	population.	

It	is	possible	that	subjects	had	miscalibrated	beliefs	about	task	structure.	

For	example,	they	may	not	have	realized	that	there	was	a	card	value	1,	which	is	

normally	replaced	by	an	‘ace’	in	a	regular	deck	of	playing	cards;	or	they	may	have	

believed	 that	 the	 average	 card	 value	 is	 5,	 rather	 than	 5.5.	 Such	 beliefs	 can	

straightforwardly	 be	 factored	 into	 the	 dynamic	 programming	 model,	 as	 can	

misunderstandings	 about	 the	 cost	 structure	 of	 the	 task,	 or	 additional	

opportunity	 costs	 for	 sampling	 further	 evidence.	 We	 found	 that	 such	

manipulations	 did	 indeed	 influence	 the	 relative	 preference	 of	 the	 model	 for	

guessing	 or	 sampling	 at	 different	 card	 values	 (not	 shown).	 Crucially,	 however,	

none	 of	 these	 belief-based	 manipulations	 predict	 any	 of	 the	 three	 biases	
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observed.	 ‘Positive	evidence	approach’	and	‘sampling	the	favorite’	depend	upon	

comparisons	of	 SMALL	and	BIG	 conditions:	any	 normative	model	 predicts	 that	

subjects’	 information	 sampling	 should	 be	 identical	 between	 these	 conditions,	

and	that	they	should	simply	flip	their	final	choice.	Similarly,	‘rejecting	unsampled	

options’	depends	upon	a	comparison	of	final	choice	behavior	in	AA	and	AB	trials,	

in	 situations	where	 the	 subject	 has	 received	 identical	 information	 in	both	 trial	

types.	

It	 would	 also	 be	 possible	 to	 explore	 alternative	 versions	 of	 the	 current	

experiment	 that	 might	 examine	 the	 generality	 of	 our	 approach-avoidance	

account	 of	 information	 seeking	 biases.	 For	 instance,	 it	 would	 be	 intriguing	 to	

manipulate	 the	 affective	 valence	 of	 ‘points’	 such	 that	 they	 became	 aversive,	

rather	 than	 rewarding.	 In	 such	 an	 experiment,	 we	 would	 predict	 that	 the	

approach-induced	biases	 in	 information	 sampling	would	 reverse.	 It	would	also	

be	 interesting	 to	 parametrically	 manipulate	 the	 costs	 involved	 in	 sampling	

different	 cards,	 as	 this	 would	 allow	 the	 experimenter	 to	 directly	 quantify	 the	

value	 of	 sampling	 information	 from	 different	 locations.	 It	 is	 also	 important	 to	

bear	 in	mind	 that	 even	when	 information	 sampling	 is	 biased,	 posterior	 beliefs	

can	 remain	 unbiased	 if	 belief	 updating	 is	 performed	 normatively	 (35,	 36).	 It	

would	 be	 informative	 in	 future	 experiments	 to	 formally	 dissociate	 subjects’	

apparent	biases	in	information	sampling	from	their	biases,	if	any,	in	their	belief	

updating.	

Our	findings	are	closely	linked	to	other	evidence	from	recent	studies	that	

relates	 the	value	of	 stimuli	 to	deployment	of	 attention	 (23,	37,	38).	Both	 these	

studies,	 and	our	own,	 suggest	 that	valuable	 items	capture	attention,	and	hence	

cause	more	information	to	be	sampled	from	the	associated	location.	In	contrast	

with	 these	 previous	 studies,	 however,	 we	 show	 that	 the	 influence	 of	 value	 on	

information	 sampling	occurs	 rapidly,	 can	be	 reshaped	depending	upon	current	

task	 goals,	 and	 can	 manifest	 as	 several	 distinct	 behavioral	 biases	 that	 affect	

multiple	 stages	 of	 information	 sampling.	 Combined,	 this	 evidence	 argues	 that	

choice	 models	 in	 which	 attention	 and	 information	 sampling	 are	 determined	

purely	 stochastically	 (6)	 require	 revision.	 Whereas	 these	 models	 convincingly	

demonstrate	 an	 important	 role	 for	 the	 locus	 of	 attention	 on	 valuation,	 the	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/047787doi: bioRxiv preprint first posted online Apr. 8, 2016; 

http://dx.doi.org/10.1101/047787
http://creativecommons.org/licenses/by-nc-nd/4.0/


27	
	

present	 data	 imply	 that	 the	 converse	 is	 also	 true.	 In	 simple	 terms,	 the	 value	

subjects	ascribe	to	a	location	influences	how	likely	they	are	to	sample	from	it.	 	
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Materials	and	Methods	

	

Smartphone-based	data	acquisition.	Researchers	at	the	Wellcome	Trust	Centre	for	

Neuroimaging	at	University	College	London	worked	with	White	Bat	Games	to	develop	

The	Great	Brain	Experiment	(25),	available	as	a	free	download	on	iOS	and	Android	

systems	(see	http://thegreatbrainexperiment.com).	Ethical	approval	for	this	study	was	

obtained	from	University	College	London	research	ethics	committee,	application	

number	4354/001.	On	downloading	the	app,	participants	filled	out	a	short	demographic	

questionnaire	and	provided	informed	consent	before	proceeding	to	the	games.	Each	

time	a	participant	started	a	game,	a	counter	recording	the	number	of	plays	was	

incremented.	At	completion	of	a	game,	if	internet	connectivity	was	available,	a	dataset	

was	submitted	to	the	server	containing	fields	defining	the	game's	content	and	the	

responses	given.	The	first	time	a	participant	completed	any	game	the	server	assigned	

that	device	a	unique	ID	number	(UID).	All	further	data	submissions	from	that	device,	as	

well	as	the	demographic	information	from	the	questionnaire,	were	linked	to	the	UID.	No	

personal	identification	of	users	was	possible	at	any	time.		

The	information-seeking	game	was	available	by	clicking	on	‘Am	I	a	risk-taker?’,	

which	launched	the	game.	On	each	gameplay,	subjects	were	randomly	assigned	to	play	

short	blocks	(11	trials	each,	as	outlined	in	Fig	1A	and	main	text)	of	two	different	

conditions	randomly	selected	from	six	possibilities	(Fig	1B).	In	two	of	these,	subjects	

had	to	select	the	row	that	they	believe	contained	the	largest	sum	(‘ADD	BIGGEST’)	or	

largest	product	(‘MULTIPLY	BIGGEST’).	In	a	further	two	conditions,	subjects	has	to	

reverse	their	eventual	choice	and	select	the	row	containing	the	smallest	sum	(‘ADD	

SMALLEST’)	or	product	(‘MULTIPLY	SMALLEST’).	The	remaining	two	conditions	

required	participants	to	select	the	row	with	the	largest	or	smallest	individual	card	

(‘FIND	THE	BIGGEST’	and	‘FIND	THE	SMALLEST’,	respectively).	Full	instructions	for	the	

task	can	be	seen	in	Supplemental	Text	S1	and	Movie	S1.	Raw	data,	along	with	MATLAB	

scripts	for	reproducing	all	figures	shown	in	the	paper,	are	made	available	for	download	

on	http://datadryad.org	(doi:10.5061/dryad.nb41c).	

The	economic	gambling	task	was	available	by	clicking	on	‘What	makes	me	

happy?’	Subjects	started	the	game	with	500	points	and	made	30	choices	in	each	play.	In	

each	trial,	subjects	chose	between	a	certain	option	and	a	gamble.	Chosen	gambles,	

represented	as	spinners,	were	resolved	after	a	brief	delay.	Subjects	were	presented	with	

the	question,	“How	happy	are	you	at	this	moment?”	after	every	two	to	three	trials.		
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Dynamic	Programming	Model.	The	probabilistic	structure	of	the	task	means	that	it	is	

straightforward	to	derive	a	normative	solution	of	task	performance	that	maximises	the	

expected	average	number	of	points	to	obtained	from	a	given	set	of	moves.	This	is	

achieved	by	applying	dynamic	programming	to	the	task	(30).	At	each	step,	dynamic	

programming	calculates	the	expected	value	of	every	possible	action	(seeking	more	

information	in	a	particular	location,	or	making	a	guess).	To	do	so,	it	takes	into	account	

the	full	probability	distribution	of	currently	hidden	cards,	and	the	possible	gain	in	

information	that	can	be	obtained	from	sampling	further.	

Each	combination	of	presented	cards	is	defined	as	a	state	s.	The	best	possible	

action	a	that	a	subject	can	take	in	a	given	state	is	defined	as:	

	

𝑄!∗ =
𝑚𝑎𝑥
𝑎

𝑄!,!	

	

In	a	given	state,	the	action	value	Q	of	making	a	particular	guess	in	a	particular	

state	s	can	be	calculated	as:	

	

𝑄!,!"#$$ =  60 ∗ 𝑝 𝑤𝑖𝑛 − 50 ∗ 𝑝 𝑙𝑜𝑠𝑒 + 𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡	

	

where	p(win)	is	the	current	probability	of	winning	by	making	that	guess,	p(lose)	the	

probability	of	losing,	and	totalcost	the	incurred	costs	for	sampling	information	thus	far.		

By	contrast,	sampling	further	information	has	a	fixed	probability	(0.1)	of	

transitioning	into	one	of	10	possible	subsequent	states	(10	different	card	values	may	be	

revealed).	The	value	of	sampling	can	then	be	calculated	as	the	best	action	value	in	the	

subsequent	state,	multiplied	by	the	probability	of	transitioning:	

	

𝑄!,!"#$%& =  0.1 ∗
!"

!!!
𝑄!!
∗ 	

	

where	si	is	the	state	that	the	subject	would	transition	into	if	card	value	i	is	revealed.	To	

calculate	the	value	of	sampling,	one	works	backwards	from	the	terminal	state	(all	four	

cards	revealed,	where	Qs,guess	=	15	(=60-10-15-20))	to	calculate	𝑄!∗	in	all	previous	states.	

Full	MATLAB	model	code	is	provided	online	at	DataDryad,	at	

http://dx.doi.org/10.5061/dryad.nb41c	

	

Pavlovian	approach-avoidance	model.	Full	details	of	the	approach-avoidance	

decision	model	are	given	in	reference	(27).	In	brief,	subjects’	expected	utilities	for	
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choosing	the	safe	option	(Ucertain)	and	risky	option	(Ugamble)	were	fitted	using	an	

established	parametric	decision	model	based	on	Prospect	theory	(39).	The	

probability	of	choosing	to	gamble	was	then	modelled	by	modifying	the	softmax	

function:	

	

𝑃!"#$%& =
1− 𝛽

1+ 𝑒!!(!!"#$%&!!!"#$%&')
+ 𝛽 𝑖𝑓 𝛽 ≥ 0	

	

𝑃!"#$%& =
1+ 𝛽

1+ 𝑒!!(!!"#$%&!!!"#$%&')
 𝑖𝑓 𝛽 < 0	

	

This	causes	a	value-independent	change	in	the	probability	of	gambling,	mapping	

choice	probabilities	to	be	bounded	at	(𝛽,1)	if	𝛽	is	greater	than	zero,	and	(0, 𝛽)	if	

𝛽	is	less	than	zero.	𝛽	is	fit	separately	for	gain	trials	and	loss	trials,	yielding	two	

parameters,	𝛽!"#$	and	𝛽!"##.	 	
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Supporting	Information	Figure	legends	
	
Fig	S1.	Probability	of	guess	in	MULTIPLY	condition	for	MULTIPLY	BIG	(left)	and	
MULTIPLY	SMALL	(right)	conditions.	Data	are	the	same	as	in	main	figure	2B,	but	are	
replotted	with	AA	and	AB	trials	on	top	of	each	other	to	facilitate	comparison	with	dynamic	
programming	model	predictions.		
	
Fig	S2.	Figure	layout	as	per	main	Fig	2,	but	for	ADD	conditions.	Note	that	there	is	now	
no	difference	between	normative	model	predictions	for	AA	vs.	AB	trials.	
	
Fig	S3.	Figure	layout	as	per	main	Fig	2,	but	for	single	card	trials.	Note	that	in	single	
card	trials,	the	same	card	value	carries	different	amounts	of	information	between	the	two	
conditions	(hence	part	A	is	split	into	two	plots).	As	such,	there	is	no	direct	equivalent	for	
the	positive	evidence	approach	bias.	
	
Fig	S4.	Figure	layout	as	per	main	Fig	3,	but	for	multiply	trials.	
	
Fig	S5.	Figure	layout	as	per	main	Fig	3,	but	for	single	card	trials.	
	
Fig	S6.	Figure	layout	as	per	main	Fig	4,	but	for	add	trials.	Note	that	there	is	no	relative	
advantage	for	sampling	row	A	over	row	B	in	the	normative	model	(part	A).	
	
Fig	S7.	Figure	layout	as	per	main	Fig	4,	but	for	single	card	trials.	Note	that	in	single	
card	trials,	the	same	card	value	carries	different	amounts	of	information	between	the	two	
conditions	(hence	part	A	is	split	into	two	plots).	As	such,	there	is	no	direct	equivalent	for	
the	sampling	the	favourite	bias.	
	
Fig	S8.	The	relative	expected	value	of	guessing	(and	choosing	the	best	option)	minus	
the	expected	value	of	sampling	further	information,	at	Task	Stage	2	on	AB	trials,	
derived	using	dynamic	programming.	(A)	ADD	conditions,	where	predictions	are	
identical	for	ADD	BIG	and	ADD	SMALL.	(B)	MULTIPLY	conditions,	where	predictions	are	
identical	for	MULTIPLY	BIG	and	MULTIPLY	SMALL.	(C)	SINGLE	CARD	conditions.	Top	row	
=	FIND	THE	BIGGEST	condition,	bottom	row	=	FIND	THE	SMALLEST	condition.	
	
Fig.	S9.	Behavioral	predictions	from	the	reduced	(4-parameter)	model	of	subject	
behavior,	with	best-fit	parameters.	Data	is	plotted	as	in	main	Fig.	5.	(A)	Predicted	
probability	of	guessing	at	stage	1	for	AA	trials	(compare	to	Fig.	2Bi)	and	(B)	AB	trials	
(compare	to	Fig.	2Bii)	in	‘add’	condition.	(C)	Predicted	‘positive	evidence	approach’	bias.	
Compare	to	fig.	2C.	(D)	Predicted	probability	of	choosing	row	A,	having	chosen	to	guess,	at	
stage	1,	for	‘add	big’	(compare	to	Fig.	3Bi)	and	(E)	‘add	small’	(compare	to	Fig.	3Bii)	
conditions.	(F)	Predicted	‘rejecting	unsampled	options’	bias.	Compare	to	Fig	3C.	(G)	
Predicted	probability	of	sampling	row	A	in	‘big’	(compare	to	Fig	4Bi)	and	in	(H)	‘small’	
(compare	to	Fig	4Bii)	conditions.	(I)	Predicted	‘sampling	the	favorite’	bias.	Compare	to	Fig	
4C.	
	
Fig.	S10.	Data	plotted	as	in	main	figure	7A/B,	but	with	an	additional	‘subjective	
sampling	cost’	of	5	points/turn	added	to	the	normative	model.	The	mean	of	the	
distribution	of	the	number	of	cards	sampled	relative	to	the	model	(left	panel)	now	lies	close	
to	0.	
	
Fig	S11.	Information	seeking	is	a	stable	trait	irrespective	of	condition	ordering.	
Along	the	bottom	of	the	matrix	is	the	condition	experienced	in	the	first	11	trials	of	
gameplay	1	(1	=	FIND	BIGGEST,	2	=	FIND	SMALLEST,	3	=	ADD	BIG,	4	=	ADD	SMALL,	5	=	
MULTIPLY	BIG,	6	=	MULTIPLY	SMALL),	whilst	along	the	left	of	the	matrix	is	the	condition	
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experienced	in	the	first	11	trials	of	gameplay	2.	The	color	of	the	heatmap	reflects	the	
correlation	coefficient	between	information	sampling	(relative	to	the	optimal	model)	
across	the	two	gameplays	(as	in	main	Fig	7B).	
	
Supporting	Information	Table	
	
Table	S1.	Maximum	likelihood	estimates	of	parametric	model	of	subject	behavior.	
	
Supporting	Information	Text	
	
Text	S1.	Instructions	provided	to	subjects	when	performing	the	task.	
	
	
Supporting	Information	Movie	
	
Movie	S1.	Example	movie	of	subject	performing	several	trials	of	the	task,	starting	
from	the	home	screen.	(Readers	can	also	download	the	app,	at	
http://www.thegreatbrainexperiment.com).	
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