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The success of fMRI places constraints on the nature of the neural code. The fact that re-
searchers can infer similarities between neural representations, despite limitations in what
fMRI measures, implies that certain neural coding schemes are more likely than others. For
fMRI to be successful given its low temporal and spatial resolution, the neural code must be
smooth at the sub-voxel and functional level such that similar stimuli engender similar internal
representations. Through proof and simulation, we evaluate a number of reasonable coding
schemes and demonstrate that only a subset are plausible given both fMRI’s successes and its
limitations in measuring neural activity. Deep neural network approaches, which have been
forwarded as computational accounts of the ventral stream, are consistent with the success of
fMRI, though functional smoothness breaks down in the later network layers. These results
have implications for the nature of neural code and ventral stream, as well as what can be
successfully investigated with fMRI.
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Introduction

Neuroimaging and especially functional magnetic reso-
nance imaging (fMRI) has come a long way since the first
experiments in the early 1990s. These impressive findings
are curious in light of fMRI’s limitations. The blood-oxygen-
level-dependent (BOLD) response measured by fMRI is a
noisy and indirect measure of neural activity (Logothetis,
2002, 2003, 2008) from which researchers try to infer neural
function.

The BOLD response trails neural activity by 2 seconds,
peaks at 5 to 6 seconds, and returns to baseline around 10 sec-
onds, whereas neural activity occurs on the order of millisec-
onds and can be brief (Huettel, Song, & McCarthy, 2009). In
terms of spatial resolution, the BOLD response may spillover
millimeters away from neural activity due to contributions
from venous signals (Turner, 2002). Likewise, differences
in BOLD response can arise from incidental differences in
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the vascular properties of brain regions (Ances et al., 2009).
Such sources of noise can potentially imply neural activity in
regions where there should not necessarily be any.

The data acquisition process itself places limits on fMRI
measurement. Motion artefacts (e.g., head movements by
human subjects) and non-uniformity in the magnetic field re-
duce data quality. In analysis, three-dimensional images are
constructed from slices acquired at slightly different times.
Once collected, fMRI data are typically smoothed during
analyses (Carp, 2012). All these factors place limits on what
fMRI can measure.

Despite these weaknesses, fMRI has proved to be an in-
credibly useful tool. For example, we now know that ba-
sic cognitive processes involved in language (Binder et al.,
1997) and working memory (Pessoa, Gutierrez, Bandettini,
& Ungerleider, 2002) are distributed throughout the cortex.
Such findings challenged notions that cognitive faculties are
in a one-to-one correspondence with brain regions.

Advances in data analysis have increased what can be in-
ferred by fMRI (De Martino et al., 2008). One of these ad-
vances is multi-voxel pattern analysis (MVPA), which de-
codes a pattern of neural activity in order to assess the infor-
mation contained within (D. D. Cox & Savoy, 2003). Rather
than computing univariate statistical contrasts, such as com-
paring overall BOLD activity for a region when a face or
house stimulus is shown, MVPA takes voxel patterns into
account.

Using MVPA, so-called ‘mind reading’ can be carried out
— specific brain states can be decoded given fMRI activity
(Norman, Polyn, Detre, & Haxby, 2006), revealing cortical

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 9, 2016. ; https://doi.org/10.1101/071076doi: bioRxiv preprint 

http://dx.doi.org/10.1101/071076
http://osf.io/v8baz
https://doi.org/10.1101/071076
http://creativecommons.org/licenses/by/4.0/


2 GUEST AND LOVE

representation and organization in impressive detail. For ex-
ample, these analysis techniques paired with fMRI we can
determine whether a participant is reading an ambiguous sen-
tence, we can infer the semantic category of a word they are
reading (Mitchell et al., 2004), and we can know whether a
participant is being deceitful in a game (Davatzikos et al.,
2005).

Representational similarity analysis (RSA), another mul-
tivariate technique, is particularly suited to examining repre-
sentational structure (Kriegeskorte, Mur, & Bandettini, 2008;
Kriegeskorte, 2009). We will rely on RSA later in this con-
tribution, so we will consider this technique in some detail.
RSA directly compares the similarity (e.g., by using correla-
tion) of brain activity arising from the presentation of differ-
ent stimuli. For example, the neural activities arising from
viewing a robin and sparrow may be more similar to each
other than between a robin and a penguin.

These pairwise neural similarities can be compared to
those predicted by a particular theoretical model to determine
correspondences. For example, Mack, Preston, and Love
(2013) identified brain regions where the neural similarity
structure corresponded to that of a cognitive model of human
categorization, which was useful in inferring the function
of various brain regions. The neural similarities themselves
can be visualized by applying multidimensional scaling to
further understand the properties of the space (Davis, Xue,
Love, Preston, & Poldrack, 2014). RSA has been useful in a
number of other endeavors, such as understanding the role of
various brain areas in reinstating past experiences (Tompary,
Duncan, & Davachi, 2016; Mack & Preston, 2016).

Given fMRI’s limitations in measuring neural activity, one
might ask how it is possible for methods like RSA to be suc-
cessful. The BOLD response is temporally and spatially im-
precise, yet it appears that researchers can infer general prop-
erties of neural representations that link sensibly to stimulus
and behavior. The neural code must have certain properties
for this state of affairs to hold. What kinds of models or
computations are consistent with the success of fMRI? If the
brain is a computing device, it would have to be of a partic-
ular type for fMRI to be useful given its limitations in mea-
suring neural activity.

Smoothness and the Neural Code

For fMRI to recover neural similarity spaces, two notions
of smoothness must be satisfied. Firstly, we consider sub-
voxel smoothness and then we introduce the notion of func-
tional smoothness.

Sub-voxel Smoothness

Sub-voxel smoothness implies that neural activity varies
in a smooth manner in temporal and spatial terms such that
differences in activity can be measured at the level of a voxel.

Smooth Non-smooth

Figure 1. The top left quadrant depicts a spatially smooth
representation at the sub-voxel level, whereas the represen-
tation to its right is non-smooth. Each square in the grid
represents a voxel which averages activity within its frame
as shown in the bottom panels. For the sub-voxel smooth
representation, the average of each voxel (bottom left) cap-
tures the changing gradient from left to right depicted in the
top-left, whereas for the non-smooth representation all vox-
els average to the same orange value (bottom right). Thus,
differences in activation of yellow vs. red neurons would be
possible to detect using fMRI for the smooth case, but not for
the non-smooth case regardless of the precise boundaries of
the voxels which quantize the brain.

Two fMRI analogues are shown in Figure 1; paralleling neu-
rons with pixels and voxels with the squares on the superim-
posed grid. The left image shows a neural representation that
is sub-voxel smooth. In such a spatially smooth representa-
tion, the transitions from red to yellow occur in progressive
increments. Averaging within a square, i.e., a voxel, will not
dramatically alter the high-level view of a smooth transition
from red to yellow. Altering the grid (i.e., voxel) size will not
have a dramatic impact on the results as long as the square
does not become so large as to subsume most of the pixels
(i.e., neurons). This result is in line with basic concepts from
information theory, such as the Nyquist-Shannon sampling
theorem. The key is that the red and yellow pixels/neurons
are topologically organized: their relationship to each other
is for all intents and purposes invariant to the granularity of
the squares/voxels (for more details see: Chaimow, Yacoub,
Ugurbil, & Shmuel, 2011; Freeman, Brouwer, Heeger, &
Merriam, 2011; Swisher et al., 2010).

In contrast, the right image in Figure 1 shows an inher-
ently spatially non-smooth representation of red and yellow
at the sub-voxel level. Each voxel (square in the grid), in
this case, will produce an orange color when its contents are
averaged. Thus, averaging the contents of a voxel in this case
obliterates the representational content: red and yellow; re-
turning instead squares/voxels that are all the same uniform
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BRAIN IMAGING AND THE NEURAL CODE 3

color: orange. The only case in which red and yellow will be
detected in a spatially non-smooth representation is when the
voxel size is incredibly small, a luxury not afforded to fMRI.

Sub-voxel smoothness is consistent with proposed neu-
ral coding schemes, such as population coding (Averbeck,
Latham, & Pouget, 2006; Panzeri, Macke, Gross, & Kayser,
2015; Pouget, Dayan, & Zemel, 2000) in cases where neu-
rons with similar tunings spatially cluster (e.g., Maunsell &
Van Essen, 1983). In population coding, neurons jointly
contribute to represent a stimulus in much the same way as
pixels were contributing to represent different colors in our
toy example of a smooth representation in Figure 1. When
this smoothness breaks down, similarity structures should
be difficult to recover using fMRI. Indeed, a recent study
with macaque monkeys which considered both single-cell
and fMRI measures supports this viewpoint — stimulus as-
pects which were poorly spatially clustered in terms of sin-
gle cell selectivity were harder to decode from the BOLD
response (Dubois, de Berker, & Tsao, 2015).

The same principles extend from the spatial to the tem-
poral domain. For fMRI to be successful, the rate of change
(i.e., smoothness) of neural activity must not exceed what can
be measured within a voxel. Some temporal coding schemes
are not sufficiently sub-voxel smooth for fMRI to be succeed.
For example, in burstiness coding, neural representations are
distinguished from one another not by their average firing
rate but by the variance of their activity (Fano, 1947; Katz,
1996). Under this coding scheme, more intense stimulus val-
ues are represented by burstier units, not units that fire more
overall. Neural similarity is not recoverable by fMRI under a
burstiness coding scheme. Because the BOLD signal roughly
summates through time (Boynton, Engel, Glover, & Heeger,
1996), firing events will sum together to the same number
irrespective of their burstiness.

BOLD will fail to measure other temporal coding
schemes, such as neural coding schemes that rely on the pre-
cise timing of neural events, as required by accounts that
posit that the synchronous firing of neurons is relevant to
coding (Abeles, Bergman, Margalit, & Vaadia, 1993; Gray
& Singer, 1989). Unless synchronous firing is accompanied
by changes in activity that fMRI can measure, such as mean
population activity, it will be invisible to fMRI (Chawla,
Lumer, & Friston, 1999). As before, basic concepts in infor-
mation theory, such as the Nyquist-Shannon sampling theo-
rem, imply that temporally demanding coding schemes will
be invisible to fMRI, much like how spatially non-smooth
representations will be unrecoverable in fMRI (recall Fig-
ure 1).

The success of fMRI does not imply that the brain does
not utilize precise timing information, but it does mean that
such temporally demanding coding schemes cannot carry the
day given the successes fMRI has enjoyed in understanding
neural representations. Other accounts of neural firing are

consistent with the success of fMRI. For example, in rate
coding (discovered by Adrian & Zotterman, 1926) the fre-
quency at which neurons fire is a function of the intensity of
a stimulus. Changes in firing rate for a population of cells
should be recoverable by fMRI as more blood flows to more
active cells.

These examples of smooth and non-smooth representa-
tions at the sub-voxel level make clear that the neural code
must be spatially and temporally smooth with respect to neu-
ral activity (which is several orders of magnitude smaller
than voxels) for fMRI to be successful. Whatever is hap-
pening in the roughly one million neurons within a voxel
(Huettel et al., 2009) through time is being reflected by the
BOLD summation, which would not be the case if each neu-
ron was computing something dramatically different (for in-
depth discussion, see: Kriegeskorte, Cusack, & Bandettini,
2010).

Functional Smoothness

One general conclusion is that important aspects of the
neural code are spatially and temporally smooth at the sub-
voxel level. In a sense, this notion of smoothness is triv-
ial as it merely implies that changes in neural activity must
be visible in the BOLD response for fMRI to be successful.
As a thought experiment, an fMRI machine only capable of
recording a single voxel as big as the entire brain would not
be useful. In this section, we focus on a more subtle sense
of smoothness that must also be satisfied, namely functional
smoothness.

Neighboring voxels predominantly contain similar repre-
sentations, i.e., they are topologically organized like in Fig-
ure 1 (Norman et al., 2006). However, super-voxel smooth-
ness is neither necessary nor sufficient for fMRI to succeed in
recovering similarity structure. Instead, a more general no-
tion of functional smoothness must be satisfied in which sim-
ilar stimuli map to similar internal representations. Although
super-voxel and functional smoothness are both specified at
the super-voxel level, these distinct concepts should not be
confused.

To help introduce the concept of functional smoothness,
we consider two coding schemes used in engineering appli-
cations, factorial and hash coding, which are both inconsis-
tent with the success of fMRI because they do not preserve
functional smoothness. In the next section, we consider cod-
ing schemes, such as deep learning networks, that are func-
tionally smooth to varying extents and are consistent with the
success of fMRI.

Factorial Design Coding. Factorial design is closely re-
lated to the notion of hierarchy. For example, hierarchical
approaches to human object recognition (Serre & Poggio,
2010) propose that simple visual features (e.g., a horizon-
tal or vertical line) are combined to form more complex fea-
tures (e.g., a cross). From a factorial perspective, the simple
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Table 1
Design matrix for a 23 full factorial design.

I A B C AB AC BC ABC
1 −1 −1 −1 1 1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1
1 1 1 −1 1 −1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 −1 1 −1 1 −1 −1
1 −1 1 1 −1 −1 1 −1
1 1 1 1 1 1 1 1

features can be thought of as main effects and the complex
features, which reflect the combination of simple features, as
interactions.

In Table 1, a 23 two-level full factorial design is shown
with three factors A, B, C, three two-way interactions AB,
AC, BC, and a three-way interaction ABC, as well as an in-
tercept term. All columns in the design matrix are pairwise
orthogonal.

Applying the concept of factorial design to modeling the
neural code involves treating each row in Table 1 as a repre-
sentation. For example, each entry in a row could correspond
to the activity level of a voxel. Interestingly, if any region in
the brain had such a distribution of voxels, neural similarity
would be impossible to recover by fMRI. The reason for this
is that every representation (i.e., row in Table 1) is orthogo-
nal to every other row, which means neural similarity is the
same for any pair of items. Thus, this coding scheme cannot
uncover that low distortions are more similar to a category
prototype than high distortions.

Rather than demonstrate by simulation, we can supply a
simple proof to make this case using basic linear algebra.
Dividing each item in the n × n design matrix (i.e., Table 1)
by
√

n, makes each column orthonormal, i.e., each column
will represent a unit vector and be orthogonal to the other
columns. This condition means that the design matrix is or-
thogonal. For an orthogonal matrix, Q, like our design ma-
trix, the following property holds: Q × QT = QT × Q =

I; where QT is the transpose of Q (a matrix obtained by
swapping columns and rows), and I is the identity matrix.
This property of orthogonal matrices implies that rows and
columns in the factorial design matrix are interchangeable,
and that both rows and columns are orthogonal.

The internal representations created using a factorial de-
sign matrix do not cluster in ways that meaningfully reflect
the categorical structure of the inputs. Due to the fact that
each representation is created such that it is orthogonal to
every other, there can be no way for information, correla-
tions within and between categories, to emerge. Two inputs
varying in just one dimension (i.e., pixel) would have zero
similarity; this is inherently not functionally smooth. If the

neural code for a region was employing a technique simi-
lar to factorial design, neuroimaging studies would never re-
cover similarity structures by looking at the patterns of active
voxels in that region.

Hash Function Coding. Hash functions assign arbi-
trary unique outputs to unique inputs, which is potentially
useful for any memory system be it digital or biological.
However, such a coding scheme is not functionally smooth
by design. Hashing inputs allows for a memory, a data store
known as a hash table, that is content-addressable (Hanlon,
1966; Knott, 1975) — also a property of certain types of
artificial neural network (Hopfield, 1982; Kohonen, 1987).
Using a cryptographic hash function means that the arbitrary
location in memory of an input is a function of the input it-
self.

We employed (using the same procedures as detailed be-
low) the secure cryptographic hash algorithm 1 (SHA-1),
an often-used hash function, and applied it to each value in
the input vector (National Institute of Standards Technology,
2015). Two very similar inputs (e.g., members of the same
category) are extremely unlikely to produce similar SHA-1
hashes. Thus, they will be stored distally to each other, and
no meaningful within-category correlation will arise (i.e.,
functional smoothness is violated). Indeed, in cryptography
applications any such similarities could be exploited to make
predictions about the input.

If the neural code in a brain area was underpinned by be-
havior akin to that of a hash function, imaging would be un-
able to detect correlations with the input. This is due to the
fact that hash functions are engineered in such a way as to
destroy any correlations, while nonetheless allowing for the
storage of the input in hash tables.

Although hash tables do not seem well-matched to the
demands of cognitive systems that generalize inputs, they
would prove useful in higher-level mental functions such
as source memory monitoring. Indeed, to foreshadow a re-
sult below, the advanced layers of very deep artificial neural
networks approximate a cryptographic hash function, which
consequently makes it difficult to recover similarity structure
in those layers.

Neural Network Models

In this section, we consider whether neural networks with
random weights are consistent with the success of fMRI
given its limitations in measuring neural activity. Simula-
tions in the next section revisit these issues through the lens
of a deep learning model trained to classify photographs of
real-world categories, such as moped, tiger, guitar, robin, etc.

Each simulation is analogous to performing fMRI on the
candidate neural code. These simple simulations answer
whether in principle neural similarity can be recovered from
fMRI data taken from certain neural coding schemes. Stimuli
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Figure 2. Simulations for the random neural networks in-
volved calculating similarity between a prototype and distor-
tions of it that were formed by adding Gaussian noise. In the
figure, two prototypes are shown (labeled 0) with increasing
levels of distortion shown to the right.

are presented to a model while its internal representations are
scanned by a simulated fMRI machine.

The stimuli consist of simple vectors that are distortions
of an underlying prototype. As noise is added to the proto-
type and the distortion increases, the neural similarity (mea-
sured using Pearson’s correlation coefficient ρ) between the
prototype and its member should decrease. The question is
whether we can recover this change in neural similarity in
our simulated fMRI machine.

To help visualize the category prototype, we use a vec-
tor of pixel intensities taken from natural images (see Fig-
ure 2). This choice is simply for visualization purposes and
we have obtained the same results with with categories based
on Gaussian distributions (µ = 0, σ = 1) as opposed to nat-
ural images. To create input vectors from the natural images,
the image intensities are mean centered (setting µ = 0) and
normalized (setting σ = 1). To create a similarity structure,
progressively greater levels of Gaussian noise are added to a
category prototype. Twenty members per category are cre-
ated by adding levels of Gaussian noise with increasing stan-
dard deviation (σ = σprev + 10) to each prototype (see Fig-
ure 2). Each item is re-normalized and mean centered after
Gaussian noise is added, so that µ = 0 and σ = 1 regardless
of the level of distortion.

Vector Space Coding. The coding schemes that follow
are important components in artificial neural network mod-
els. The order of presentation is from the most basic compo-
nents to complex configurations of network components. To
foreshadow the results shown in Figure 3, fMRI can recover
similarity structure for all of these models to varying degrees
with the simpler models fairing better than the more complex
models.

The first in this line of models considered is vector space
coding (i.e., Rn), in which stimuli are represented as a vec-
tor of real-valued features (in our case pixels). Represent-
ing concepts in multidimensional spaces has a long and suc-
cessful history in psychology (Shepard, 1987). For exam-
ple, in a large space, lions and tigers should be closer to
each other than lions and robins because they are more sim-

ilar. The kinds of operations that are naturally done in vec-
tor spaces (e.g., additions and multiplications) are particu-
larly well suited to the BOLD response. For example, the
haemodynamic response to individual stimuli roughly sum-
mates across a range of conditions (Dale & Buckner, 1997)
and this linearity seems to extend to representational patterns
(Reddy, Kanwisher, & VanRullen, 2009).

In this neural coding scheme, each item (e.g., a dog) is
represented as the set of values in its input vector (i.e., a set
of numbers with range [−1, 1]). This means that for a given
stimulus, the representation this model produces is identical
to the input. In this sense, vector space coding is function-
ally smooth in a trivial sense as the function is identity. As
shown in Figure 3, neural similarity gradually falls off with
added distortion (i.e., noise). Therefore, this very simple
coding scheme creates representational spaces that would be
successfully detected by fMRI.

Gain Control Coding. Building on the basic vector
space model, this scheme encodes each input vector by pass-
ing it through a monotonic non-linear function, the hyper-
bolic tangent function (tanh), which is functionally smooth.
This results in each vector element being transformed, or
squashed, to values between [−1, 1]. Such functions are re-
quired by artificial neural networks (and perhaps the brain)
for gain control (Priebe & Ferster, 2002). The practical ef-
fect of this model is to push the values in the model’s internal
representation toward either −1 or 1. As can be seen in Fig-
ure 3, neural similarity is well-captured by the gain control
neural coding model.

Matrix Multiplication Coding. This model performs
more sophisticated computations on the input stimuli. In line
with early connectionism and Rescorla-Wagner modeling of
conditioning, this model receives an input vector and per-
forms matrix multiplication on it, i.e., computes the weighted
sums of the inputs to pass on to the output layer (Knapp &
Anderson, 1984; Rescorla & Wagner, 1972). These sim-
ple one-layer neural networks can be surprisingly power-
ful and account for a range of complex behavioral findings
(Ramscar, Dye, & Klein, 2013). As we will see in later sub-
sections, when a non-linearity is added (e.g., tanh), one-layer
networks can be stacked on one another to build deep net-
works.

This neural coding scheme takes an input stimulus (e.g., a
dog) and multiplies it by a weight matrix to create an internal
representation, as shown in Figure 4. Interestingly, as shown
in Figure 4, the internal representation of this coding scheme
is completely nonsensical to the human eye and is not super-
voxel smooth, yet it successfully preserves similarity struc-
ture (see Figure 3). Matrix multiplication maps similar inputs
to similar internal representations. In other words, the result
is not super-voxel smooth, but is functionally smooth which
we conjecture is critical for fMRI to succeed.
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Figure 3. A: For the artificial neural network coding schemes, similarity to the prototype falls off with increasing distortion
(i.e., noise). The models, numbered 1-11, are (1) vector space coding, (2) gain control coding, (3) matrix multiplication
coding, (4), perceptron coding, (5) 2-layer network, (6) 3-layer network, (7) 4-layer network, (8) 5-layer network, (9) 6-layer
network (10) 7-layer network, and (11), 8-layer network. The darker a model is, the simpler the model is and the more the
model preserves similarity structure under fMRI. B: A deep artificial neural network and the ventral stream can be seen as
performing related computations. As in our simulation results, neural similarity should be more difficult to recover in the more
advanced layers.

Perceptron Coding. The preceding coding scheme was
a single-layer neural network. To create multi-layer net-
works, that are potentially more powerful than an equivalent
single-layer network, a non-linearity (such as tanh) must be
added to each post-synaptic network layer. Here, we consider
a single-layer network with the tanh non-linearity included
(see Figure 4). As with matrix multiplication previously, this
neural coding scheme is successful (see Figure 3) with “simi-
lar inputs lead[ing] to similar outputs” (Rummelhart, Durbin,
Golden, & Chauvin, 1995, p. 31).

Multi-layered Neural Network Coding. The basic net-
work considered in the previous section can be combined
with other networks, creating a potentially more powerful
multi-layered network. These multi-layered models can be
used to capture a stream of processing as is thought to occur
for visual input to the ventral stream, shown in Figure 3B
(DiCarlo & Cox, 2007; Riesenhuber & Poggio, 1999, 2000;
Quiroga, Reddy, Kreiman, Koch, & Fried, 2005; Yamins &
DiCarlo, 2016).

In this section, we evaluate whether the similarity preserv-
ing properties of single-layer networks extend to deeper, yet
still untrained, networks. The simulations consider networks
with 2 to 8 layers. The models operate in a fashion identi-
cal to the perceptron neural coding model considered in the
previous section. The perceptrons are stacked such that the
output of a layer serves as the input to the next layer. We only
perform simulated fMRI on the final layer of each model.
These simulations consider whether the representations that
emerge in multi-layered networks are plausible given the

success of fMRI in uncovering similarity spaces (see also:
C. R. Cox, Seidenberg, & Rogers, 2015; Cowell, Huber, &
Cottrell, 2009; Edelman, Grill-Spector, Kushnir, & Malach,
1998; Goldrick, 2008; Laakso & Cottrell, 2000). Such rep-
resentations, as found in deep artificial neural network archi-
tectures, are uncovered by adding layers to discover increas-
ingly more abstract commonalities between inputs (Graves,
Mohamed, & Hinton, 2013; G. E. Hinton, Osindero, & Teh,
2006; G. E. Hinton, 2007; G. Hinton, Vinyals, & Dean, 2015;
LeCun, Bengio, & Hinton, 2015).

As shown in Figure 3, the deeper the network the less
clear the similarity structure becomes. However, even the
deepest network preserves some level of similarity struc-
ture. In effect, as layers are added, functional smoothness
declines such that small perturbations to the initial input re-
sult in final-layer representations that tend to lie in arbitrary
corners of the representational space, as the output takes on
values that are +1 or −1 due to tanh. As layers are added,
the network becomes potentially more powerful, but less
functionally smooth, which makes it less suitable for anal-
ysis by fMRI because the similarity space breaks down. In
other words, two similar stimuli can engender near orthog-
onal (i.e., dissimilar) representations at the most advanced
layers of these networks. In the Discussion section, we con-
sider the theoretical significance of this result in tandem with
the deep learning network results (next section).
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Figure 4. The effect of matrix multiplication followed by
the tanh function on the input stimulus. The first line illus-
trates the stimulus being multiplied by the connection weight
matrix. The output of this one-layer network is shown on
the line below, as well as the outcome of applying a non-
linearity to the output of the matrix multiplication. In this
example, functional smoothness is preserved whereas super-
voxel smoothness is not. The result of applying this non-
linearity can serve as the input to the next layer of a multi-
layer network.

Deep Learning Networks

Deep learning networks (DLNs) have led to a revolution
in machine learning and artificial intelligence (Krizhevsky,
Sutskever, & Hinton, 2012; LeCun, Bottou, Bengio, &
Haffner, 1998; Serre, Wolf, Bileschi, Riesenhuber, & Poggio,
2007; Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2015).
DLNs outperform existing approaches on object recognition
tasks by training complex multi-layer networks with millions
of parameters (i.e., weights) on large databases of natural
images. Recently, neuroscientists have become interested in
how the computations and representations in these models
relate to the ventral stream in monkeys and humans (Cadieu
et al., 2014; Dubois et al., 2015; Guclu & van Gerven, 2015;
Hong, Yamins, Majaj, & DiCarlo, 2016; Khaligh-Razavi &
Kriegeskorte, 2014; Yamins et al., 2014; Yamins & DiCarlo,
2016).

In this contribution, one key question is whether func-
tional smoothness breaks down at more advanced layers
in DLNs as it did in the untrained random neural net-
works considered in the previous section. We address this
question by presenting natural image stimuli (i.e., novel
photographs) to a trained DLN, specifically Inception-v3
GoogLeNet (Szegedy, Vanhoucke, et al., 2015), and apply-
ing RSA to evaluate whether the similarity structure of items
would be recoverable using fMRI.

Architecture

The DLN we consider, Inception-v3 GoogLeNet, is a con-
volutional neural network (CNN), which is a type of DLN
especially adept at classification and recognition of visual
inputs. CNNs excel in computer vision, learning from huge
amounts of data. For example, human-like accuracy on test
sets has been achieved by: LeNet, a pioneering CNN that
identifies handwritten digits (LeCun et al., 1998); HMAX,
trained to detect objects, e.g., faces, in cluttered environ-
ments (Serre et al., 2007); and AlexNet, which classifies pho-
tographs into 1000 categories (Krizhevsky et al., 2012).

The high-level architecture of CNNs consist of many lay-
ers (Szegedy, Liu, et al., 2015). These are stacked on top of
each other, in much the same way as the stacked multilevel
perceptrons described previously. A key difference is that
CNNs have more variety especially in breadth (number of
units) between layers.

In many CNNs, some of the network’s layers are convo-
lutional, which contain components that do not receive input
from the whole of the previous layer, but a small subset of it
(Szegedy, Liu, et al., 2015). Many convolutional components
are required to process the whole of the previous layer by
creating an overlapping tiling of small patches. Often (e.g.,
LeNet; LeCun et al., 1998), convolutional layers are inter-
leaved with max-pooling layers, which also contain tile-like
components that act as local filters over the previous layer.
This type of processing and architecture is both empirically
driven by what works best, as well as inspired by the vi-
sual ventral stream, specifically receptive fields (Fukushima,
1980; Hubel & Wiesel, 1959, 1968; Serre et al., 2007).

Convolutional and max-pooling layers provide a structure
that is inherently hierarchical. Lower layers perform compu-
tations on small localized patches of the input, while deeper
layers perform computations on increasingly larger, more
global, areas of the stimuli. After such localized processing,
it is typical to include layers that are fully-connected, i.e., are
more classically connectionist. And finally, a layer with the
required output structure, e.g., units that represent classes or
a yes/no response as appropriate.

Inception-v3 GoogLeNet uses a specific arrangement of
these aforementioned layers, connected both in series and in
parallel (Szegedy, Vanhoucke, et al., 2015; Szegedy, Liu, et
al., 2015; Szegedy, Ioffe, & Vanhoucke, 2016). In total it has
26 layers and 25 million parameters (inclusive of connection
weights Szegedy, Vanhoucke, et al., 2015). The final layer
is a softmax layer that is trained to activate a single unit per
class. These units correspond to labels that have been applied
to sets of photographs by humans, e.g., ‘space shuttle’, ‘ice
cream’, ‘sock’, within the ImageNet database (Russakovsky
et al., 2015).

Inception-v3 GoogLeNet has been trained on millions
of human-labeled photographs from 1000 of ImageNet’s
synsets (sets of photographs). The 1000-unit wide output
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A B

Figure 5. A: The similarity structure in a middle layer of a DLN, Inception-v3 GoogLeNet. The mammals (lions and tigers)
and birds (robins and partridges) correlate forming a high-level domain. Whereas the vehicles (sportscars and mopeds) and
musical instruments (guitars and banjos) form two high-level categories. B: In contrast, at a later layer in this network, the
similarity space shows high within-category correlations and weakened correlations between categories. While some structure
between categories is preserved, mopeds are no more similar to sportscars than they are to robins.

produced by the network when presented with a photograph
represents the probabilities of the input belonging to each of
those classes. For example, if the network is given a photo-
graph of a moped it may also activate the output unit that cor-
responds to bicycle with activation 0.03. This is interpreted
as the network expressing the belief that there is a 3% prob-
ability that the appropriate label for the input is ‘bicycle’.
In addition, this interpretation is useful because it allows for
multiple classes to co-exist within a single input. For exam-
ple, a photo with a guillotine and a wig in it will cause it to
activate both corresponding output units. Thus the network
is held to have learned a distribution of appropriate labels
that reflect the most salient items in a scene. Inception-v3
GoogLeNet, achieves human levels of accuracy on test sets,
producing the correct label in its five most probable guesses
approximately 95% of the time (Szegedy, Vanhoucke, et al.,
2015).

Deep Learning Network Simulation

We consider whether functional smoothness declines as
stimuli progress to the more advanced layers of Inception-v3
GoogLeNet. If so, fMRI should be less successful in brain
regions that instantiate computations analogous to the more
advanced layers of such networks. Unlike the previous sim-
ulations, we present novel photographs of natural categories
to these networks. The key question is whether items from
related categories (e.g., banjos and guitars) will be similar
at various network layers. The 40 photographs (i.e., stimuli)

are divided equally amongst 8 subordinate categories: ban-
jos, guitars, mopeds, sportscars, lions, tigers, robins, and par-
tridges, which in turn aggregate into 4 basic-level categories:
musical instruments, vehicles, mammals, and birds; which in
turn aggregate into 2 superordinates: animate and inanimate.

We consider how similar the internal network representa-
tions are for pairs of stimuli by comparing the resulting net-
work activity, which is analogous to comparing neural activ-
ity over voxels in RSA. Correlations for all possible pairings
of the 40 stimuli were calculated for both a middle and a later
network layer (see Figure 5).

The middle layer (Figure 5A) reveals cross-category simi-
larity at both the basic and superordinate level. For example,
lions are more like robins than guitars. However, at the later
layer (Figure 5B) the similarity structure has broken down
such that subordinate category similarity dominates (i.e., a
lion is like another lion, but not so much like a tiger). At
later layers of the network (not shown), this tendency con-
tinues such that there is effectively no similarity across cat-
egories. Interestingly, the decline in functional smoothness
is not a consequence of sparseness at later layers as the Gini
coefficient (a measure of sparseness; Gini, 1909) is 0.947 for
the earlier middle layer (Figure 5A) and 0.579 for the later
advanced layer (Figure 5B), indicating that network repre-
sentations are distributed in general and even more so at the
later layer. Thus, the decline in functional smoothness at later
layers does not appear to be a straightforward consequence of
training these networks to classify stimuli, although it would
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be interesting to compare to unsupervised approaches of sim-
ilar scale (no such network currently exists).

These DLN results are directly analogous to those with
random untrained networks (see Figure 3). In those simula-
tions, similar input patterns mapped to orthogonal (i.e., dis-
similar) internal representations in later layers. Likewise, the
trained DLN at later layers can only capture similarity struc-
ture within subordinate categories (e.g., a tiger is like another
tiger) which the network was trained to classify. The effect of
training the network was to create equivalence classes based
on the training label (e.g., tiger) such that members of that
category are mapped to similar network states. Violating
functional smoothness, all other similarity structure is dis-
carded such that a tiger is no more similar to a lion than to a
banjo from the network’s perspective. Should brain regions
operate in a similar fashion, fMRI would not be successful
in recovering similarity structure therein. In the Discussion,
we consider the implications of these findings on our under-
standing of the ventral stream and the prospects for fMRI.

Discussion

Neuroscientists would rightly prefer a method that had
both excellent spatial and temporal resolution for measuring
brain activity. However, as we demonstrate in this article, the
fact that fMRI has proven useful in examining neural repre-
sentations, despite limitations in both its temporal and spa-
tial resolution, says something about the nature of the neural
code. One general conclusion is that the neural code must be
smooth, both at the sub-voxel and functional levels.

The latter notion of smoothness is often overlooked or
confused with super-voxel smoothness, but is necessary for
fMRI to recover similarity spaces in the brain. Coding
schemes, such as factorial and hash coding, are useful in
numerous real-world applications and have an inverse func-
tion (i.e., one can go backwards from the internal represen-
tation to recover the unique stimulus input). However, these
schemes are incompatible with the success of fMRI because
they are not functionally smooth. For example, if the brain
used such coding schemes, the neural representation of a
robin would be no more similar to that of a sparrow than
to that of a car. The fact that such neural similarities are re-
coverable by fMRI suggests that the neural code differs from
these schemes in many cases.

In contrast, we found that the types of representations used
and generated by artificial neural networks, including deep
learning networks, are broadly compatible with the success
of fMRI in assessing neural representations. These coding
schemes are functionally smooth in that similar inputs tend
toward similar outputs, which allows item similarity to be re-
flected in neural similarity (as measured by fMRI). However,
we found that functional smoothness breaks down as addi-
tional network layers are added. Specifically, we have shown
that multi-layer networks eventually converge to something

akin to a hash function, as arbitrary locations in memory cor-
respond to categories of inputs.

These results take on additional significance given the re-
cent interest in deep artificial neural networks as computa-
tional accounts of the ventral stream. One emerging view is
that the more advanced the layers of these models correspond
to more advanced regions along the ventral stream (Cadieu et
al., 2014; Dubois et al., 2015; Guclu & van Gerven, 2015;
Hong et al., 2016; Khaligh-Razavi & Kriegeskorte, 2014;
Yamins et al., 2014; Yamins & DiCarlo, 2016).

If this viewpoint is correct, our results indicate that neural
representations should progressively become less function-
ally smooth and more abstract as one moves along the ven-
tral stream (recall Figure 3). Indeed, neural representations
appear to become more abstract, encoding whole concepts or
categories, as a function of how far along the ventral stream
they are located (Bracci & de Beeck, 2016; DiCarlo & Cox,
2007; Riesenhuber & Poggio, 1999, 2000; Yamins & Di-
Carlo, 2016). For example, early on in visual processing, the
brain may extract so-called basic features, such as in broadly-
tuned orientation columns (Hubel & Wiesel, 1959, 1968). In
contrast, later on in processing, cells may selectively respond
to particular individual stimulus classes (i.e., Jennifer Anis-
ton, grandmother, concept, or gnostic cells; Gross, 2002;
Konorski, 1967; Quiroga et al., 2005), irrespective of ori-
entation, etc.

Likewise, we found that Inception-v3 GoogLeNet’s rep-
resentations became symbol-like at advanced network layers
such that items sharing a category label (e.g., tigers) engen-
dered related network states, while items in other categories
engendered orthogonal states (recall Figure 5). Our simu-
lations of random networks also found reduced functional
smoothness at advanced network layers, suggesting a basic
geometric property of multi-layer networks. The effect of
training seems limited to creating network states in which
stimuli that share the same label (e.g., multiple viewpoints
of Jennifer Aniston) become similar and items from all other
categories (even if conceptually related) become orthogonal.

If so, areas further along the ventral stream should prove
less amenable to imaging (recall Figure 3). Indeed, a recent
object recognition study found that the ceiling on observ-
able correlation values becomes lower as one moves along
the ventral stream (Bracci & de Beeck, 2016).

In cognitive science, research is often divided into levels
of analysis. In Marr’s levels, the top level is the problem
description, the middle level captures how the problem is
solved, and bottom level concerns how the solution is im-
plemented in the brain (Marr, 1982). Given that the “how”
and “where” of cognition appear to be merging, some have
questioned the utility of this tripartite division (Love, 2015).

Our results suggest another inadequacy of these three lev-
els of description, namely that the implementation level itself
should be further subdivided. What is measured by fMRI is
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at a vastly more abstract scale than what can be measured in
the brain. For example, major efforts, like the European Hu-
man Brain Project and the Machine Intelligence from Cor-
tical Networks project (Underwood, 2016), are chiefly con-
cerned with fine-grained aspects of the brain that are outside
the reach of fMRI (Chi, 2016; Frégnac & Laurent, 2014).
Likewise, models of spiking neurons (e.g., Wong & Wang,
2006) are at a level of analysis lower than where fMRI ap-
plies.

Nevertheless, fMRI has proven useful in understanding
neural representations that are consequential to behavior.
Perhaps this success suggests that the appropriate level for
relating brain to behavior is close to what fMRI measures.
This does not mean lower-level efforts do not have utility
when the details are of interest. However, fMRI’s success
might mean that when one is interested in the nature of com-
putations carried out by the brain, the level of analysis where
fMRI applies should be preferred. To draw an analogy, one
could construct a theory of macroeconomics based on quan-
tum physics, but it would be incredibly cumbersome and no
more predictive nor explanatory than a theory that contained
abstract concepts such as money and supply. Reductionism,
while seductive, is not always the best path forward.
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