1	Movir	ng beyond smalls	solute clearanc	e; what evide	nce is there for more
2		permeab	le dialyzers an	d haemodiatil	tration?
3					
4					
5					
6	Andrew Do	avenport FRCP			
7					
8					
9	UCL Centr	e for Nephrology	y, Royal Free F	lospital, Unive	ersity College London
10	Medical So	chool, London			
11					
12	Andrew Do	avenport	andrewdaven	port@nhs.uk	
13					
14					
15					
16	Address to	or corresponden	ce		
1/					
18	Andrew Do	avenport			
19	UCL Centr	e for Nephrology	Ý		
20	Royal Free	College London			
21	University	College London			
22	Rowiana H	III Street			
23	London IN	W3 2PF			
24 25	+-I 11	2074726457			
25	Tel 44-	20/4/2040/			
20	Tax 44-	20/31/6091			
21					
20 20	ahant titla	heemediefil+	nation		
29 20	Short title	naemoulatin	ration		
31	key words	haemodialvsi	c	K+/Vurea	haemodiafiltration
32	Rey WOI US	hore	5	KI7 Vui eu	ndemodia
32		pore			
34					
35	word count	t abstract	244		
36	wor a courr	body	1699		
37		tables	2		
38		references	27		
39			<i>L</i> /		
57					
40					
<u>4</u> 1					
7 1					
42					

43 <u>Abstract</u>

Dialysers were initially developed for diffusive clearance of uraemic 44 toxins. Diffusion most effectively clears small uncharged solutes from plasma 45 46 water, such as urea. Sessional urea clearance targets have been shown to be 47 important for short term patient survival, but over the longer term, although 48 low flux dialysis can prolong patient survival, accumulation of middle sized 49 uraemic toxins, such as β 2 microglobulin can lead to disabling arthropathy. 50 Although the introduction of high flux dialysers, designed to increase B2 51 microglobulin clearance, has reduced the prevalence of arthropathy, this has not 52 been translated into a demonstrable significant improvement in patient survival. 53 However, analysis of individual patients recruited into trials of haemo-54 diafiltration reported that greater convective clearance was associated with 55 better survival, although the individual trials reported mixed outcomes. Most 56 haemodiafiltration trials were not designed to study the effect of convective 57 dose, so although reported patient survival was greater for those receiving 58 greater convective volume exchange, these results could potentially be 59 confounded by patient or centre effects. An alternative approach to increasing 60 middle sized solute clearances would be to use more permeable dialyzers, but as 61 yet there are no trials reporting survival with larger cut-off dialysers. As such, although there is increasing evidence that increasing middle sized molecular 62 63 uraemic solute clearance is associated with improved patient survival, further 64 prospective trials are required to determine whether as with Kt/Vurea there is

a threshold effect of how much convective or middle sized solute clearance is
 required to improve patient survival.

67

68 Introduction

69	Haemodialysis is a well-established treatment for patients with chronic
70	kidney disease. Initially all dialyzer membranes were low-flux which allowed
71	solute clearance by diffusion. Urea, a by-product of protein turnover,
72	accumulates in kidney failure patients, and being a relatively small uncharged
73	molecule free in plasma water is readily cleared by diffusion. The National Co-
74	operate Dialysis Study demonstrated that a minimum amount of dialysis
75	sessional urea clearance was required to maintain health over 12 months [1].
76	This was described as Kt/Vurea to allow for comparison between different sized
77	patients, and subsequently the sessional target was increased from 1.0 to 1.2 by
78	consensus. Later trials, such as the Haemodialysis trial (HEMO study) did not
79	demonstrate any significant overall survival advantage for greater dialyser
80	sessional urea clearance [2]. However, although some dialysis centres, such as
81	Tassin in France, reported impressive patient survival with low-flux dialysis,
82	after 10 years they noted that their patients were at greater risk of
83	developing carpal tunnel compression and arthropathy [3]. These complications
84	were associated with the deposition of β 2-micrglobulin (β 2M) [4].
85	
86	<u>High-flux haemodialysis</u>

88	Loss of kidney function leads to the accumulation of compounds which are
89	normally filtered by the glomerulus and then reabsorbed into the proximal
90	tubular cells and degraded. As such, the serum concentrations of many
91	inflammatory mediators and hormones increase in the dialysis patient.
92	Traditional low flux dialysis does not adequately clear middle sized uraemic
93	toxins, defined as a molecular weight > 500 Daltons, and as such these
94	accumulate in dialysis patients (table 1). Dialyzer flux is currently defined by
95	eta 2M clearance, with increasing clearance from low to mid to high-flux, with high
96	flux dialysers having a β 2M sieving coefficient of > 0.6 [5]. As such dialyser flux
97	is independent of membrane composition [6]. Although synthetic high flux
98	membranes were developed in the 1980s, due to cost differentials, only a small
99	proportion of patients were initially treated with these dialysers. The use of
100	high-flux dialysers was reported to reduce the incidence of carpal tunnel
101	neuropathy and arthropathy associated with $eta 2M$ deposition in observational
102	reports [7]. Despite the reduction in the long-term complications of β 2M
103	deposition, prospective shorter-term studies of high-flux dialysis did not show
104	an overall survival advantage for treatment with high flux dialysers [2,8].
105	Although sub-analysis of the HEMO study did suggest a survival advantage with
106	high flux haemodialysis for patients who had been previously dialysed for more
107	than 3.5 years, potentially suggesting an advantage for high flux haemodialysis
108	for those patients who had lost residual renal function [2]. In addition, re-
109	analysis of HEMO study did suggest an association between increasing serum
110	β 2M and mortality [9]. However residual renal function is a major determinant

of serum B2M, and preservation of residual renal function is associated with 111 survival A later prospective European trial, the Membrane Permeability Outcome 112 113 (MPO) study reported that high flux dialysis increased survival for some defined 114 patient groups, namely those with diabetes and reduced serum albumin, [8]. 115 In addition to the increased diffusional clearance of middle molecules (>500 Daltons) from the plasma water, there is also increased convective 116 clearance compared to low flux haemodialysers, not only due to ultrafiltration, 117 118 but also convective clearance. As, depending upon the hydraulic permeability of the high flux dialyser, there will be a varying amount of internal diafiltration 119 120 due to the relative differences in hydrostatic pressures at the dialyser inflow 121 and out-flow between the blood and dialysate compartments [10].

122

123 <u>Haemodiafiltration</u>

124 On the assumption that middle sized uraemic solutes contribute to the increased risk of mortality for dialysis patients, then there has been a strive to 125 126 increase larger solute clearance. As the trials of high-flux dialysis did not 127 demonstrate a substantial survival benefit, there has been increased interest in 128 the additional convective clearance obtained with haemodiafiltration. There 129 have been a number of trials of haemodiafiltration, and although 130 haemodiafiltration reduced the risk of intra-dialytic hypotension, most of the 131 trials did not shown any survival benefit [11-13]. However, these trials were not 132 designed to determine whether the amount of convective clearance was important. As there is a variable amount of internal diafiltration with high-flux 133

dialysis, then re-analysis of these trials showed a survival advantage for those 134 135 patients who had received the greatest dose of convective clearance. This 136 concept was supported by one prospective trial of high volume on-line 137 haemodiafiltration [14], and the individual patient analyses of these trials 138 [15,16]. As such, this would suggest that there may be a survival advantage for the greater convective clearance achieved with higher volume 139 140 haemodiafiltration. Only one study included patients who could achieve a 141 prespecified amount of convective volume exchange. As such the amount of 142 convective volume exchange in the other studies could have been confounded, as 143 patients who can achieve higher convective volumes may have been generally 144 healthier with better vascular access than those who cannot [17]. Other studies have reported that centre practices may also influence the convection volumes 145 146 exchanged [18].

To minimise costs, most centres practice post-dilutional on-line 147 haemodiafiltration [19], but this requires faster blood flows to achieve the 148 149 higher convective target volumes now proposed (Table 2). Different dialysis 150 machine manufacturers use different algorithms to regulate the amount of 151 convection according to the pre- and post-dialyser pressures, as too high a 152 filtration fraction risks haemoconcentration within the dialyser and clotting 153 within the fibre bundle. Although haemodiafiltration requires a high flux 154 dialyser, high flux dialysers differ in hydraulic permeability and design. To allow 155 for the removal of large volumes of plasma water, hydraulic permeability is 156 important. However, as the hydrostatic pressure in the blood compartment falls

with increasing distance from the blood inlet, there will come a point when the 157 relative pressures in blood and dialysate compartments are similar and no net 158 159 convection takes place, and distally greater pressure in the dialysate 160 compartment will lead to dialysate entering the blood compartment. Whereas 161 greater surface area is important to increase diffusional losses, the length of the dialyser designed for haemodiafiltration should be shorter compared to that 162 designed for diffusion, so that convective clearance occurs all along the fibre 163 164 length. Similarly, whereas dialysers designed for diffusion traditionally have 165 very narrow internal fibre diameters to minimise the distance for diffusion, 166 designed to increase diffusive clearance, narrow diameter fibres potentially 167 increase the risk of haemoconcentration and clotting when used for haemodiafiltration. So, high flux dialysers designed for haemodiafiltration have 168 169 wider internal diameter fibres [20]. In paediatric practice, blood flows are generally much slower than in 170 adult practice, and as such pre-dilutional haemodiafiltration is the more 171 172 commonly performed. Pre-dilution reduces haemoconcentration, and although in 173 theory would allow greater convective clearances, in clinical practice the removal 174 of larger solutes such as alpha-1 macroglobulin do not differ between pre- and post-dilution modes, due to increased membrane adsorption with the post-175 176 dilution mode. Pre-dilution mode requires greater exchange volumes, and as such 177 mid-dilution dialyzers have been developed to try and obtain some of the 178 benefits of pre-dilution, but without using very large volumes of dialysate.

179 As large volumes of dialysate are directly infused into patients during 180 haemodiafiltration, then ultra-pure dialysis water is required. In theory, ultra-181 pure water should be used for high flux haemodialysis due to the possibility of 182 internal diafiltration with some dialysate passing into the blood compartment of 183 the dialyser. These large volumes of dialysate passing directly into the patient's blood stream increase cooling during the treatment session, and it has been 184 185 argued that the benefits reported with haemodiafiltration may be due to the 186 additional cooling and cardiovascular stability, rather than any increased middle 187 sized solute clearance [21]

188

189 Increased permeability dialysers

190 An alternative approach to haemodiafiltration is to use a dialyzer with 191 enhanced permeability to middle sized solutes. This potentially has advantages 192 over haemodiafiltration, in that the dialysis machine does not require an additional pump for the re-infusion fluid, and may not need the strict volumetric 193 194 control to cope with the large volumes of fluid exchanged during 195 haemodiafiltration, and the additional cost of the re-infusion line [22]. A series 196 of larger pore size superflux diaysers were developed for the intensive care 197 setting, designed to increase the removal of cytokines and other inflammatory 198 mediators [23]. However, these membranes also led to a greater loss of albumin 199 compared to high flux dialysers, and so a new generation of what have been 200 termed medium-cut off dialysers have now been developed, which allow similar 201 or even increased removal of middle sized solutes compared to

haemodiafiltration, but without an increased albumin loss [24]. These dialysers
have only been recently introduced into clinical practice, and as yet there are no
prospective studies to determine whether these offer a survival advantage.

205

206 <u>Solute Adsorption</u>

Although haemodiafiltration and medium-cut off dialysers increase the 207 removal of water soluble middle sized uraemic toxins they do not increase the 208 209 clearance of protein bound uraemic toxins. Some of the more hydrophobic polymers used to manufacture dialysers, such as polymethylmethacrylate 210 211 (PMMA) have an affinity to adsorb proteins, and although this may increase the 212 clearance of protein bound solutes, increasing protein deposition along the 213 dialyser membrane may also reduce diffusional solute clearances [25]. 214 Protein bound solutes can be removed by adsorption. So, an alternative 215 approach has been to create mix-matrix membranes, by coating the dialysate side of standard dialyser fibres with activated carbon or other adsorptive 216 217 particles. Although these mixed membranes have been shown to increase 218 protein bound solutes in the laboratory, they are currently not commercially 219 available [26]. Sorbent cartridges or monoliths can also be used to effectively 220 remove protein-bound solutes in laboratory studies [25], but again are not 221 currently available for clinical usage.

222

223 Summary

224	Although some centres have reported substantial patient survival with
225	low-flux haemodialysis, in the longer term although surviving these patients
226	developed problems associated with β 2M deposition in and around joints and
227	bones, and visceral deposition. Although high flux haemodialysis reduces the
228	prevalence of complications associated with β 2M deposition, studies have failed
229	to demonstrate a significant survival advantage. Increasing middle sized solute
230	clearance by high volume haemodialfiltration appears to improve patient survival,
231	however as most studies were not designed to investigate the effect of
232	convection volume, this potential improvement in survival requires further study.
233	Similarly, there is currently no data on whether increased middle molecule
234	clearance using middle-cut off dialysers improves outcomes. None of these
235	dialysis techniques in current clinical practice effectively clear protein bound
236	solutes, and newer approaches are required to remove these putative toxins in
237	the anuric haemodialysis patient .
238	
239	
240	
241 242	
243	
244	
245	
246	
247	
248	
249 250	
250 251	

252	<u>Refer</u>	rences
253	1.	Lowrie EG, Laird NM, Parker TF, Sargent JA. Effect of the haemodialysis
254		prescription of patient morbidity: report from the National Cooperative
255		Dialysis Study. N Engl J Med. 1981;305:1176-1181
256	2.	Eknoyan G, Beck GJ, Cheung AK, Daugirdas JT, Greene T, Kusek JW, Allon
257		M, Bailey J, Delmez JA, Depner TA, Dwyer JT, Levey AS, Levin NW,
258		Milford E, Ornt DB, Rocco MV, Schulman G, Schwab SJ, Teehan BP, Toto R;
259		Haemodialysis (HEMO) Study Group. Effect of dialysis dose and membrane
260		flux in maintenance haemodialysis. N Engl J Med. 2002;347:2010-2019
261	З.	Charra B, Calemard E, Ruffet M, Chazot C, Terrat JC, Vanel T, Laurent G.
262		Survival as an index of adequacy of dialysis. Kidney Int. 1992;41(5):1286-
263		91
264	4.	Chazot C, Chazot I, Charra B, Terrat JC, Vanel T, Calemard E, Ruffet M,
265		Laurent G. Functional study of hands among patients dialysed for more
266		than 10 years. Nephrol Dial Transplant. 1993;8(4):347-51
267	5.	Davenport A. The role of dialyzer membrane flux in bio-incompatibility.
268		Hemodial Int. 2008;12 Suppl 2:529-33
269	6.	Pickett TM, Cruickshank A, Greenwood RN, Taube D, Davenport A,
270		Farrington K. Membrane flux not biocompatibility determines beta-2-
271		microglobulin levels in haemodialysis patients. Blood Purif. 2002;20(2):161-
272		6
273	7.	Hoshino J, Yamagata K, Nishi S, Nakai S, Masakane I, Iseki K,
274		Tsubakihara Y. Significance of the decreased risk of dialysis-related
275		amyloidosis now proven by results from Japanese nationwide surveys in
276		1998 and 2010. Nephrol Dial Transplant. 2016;31(4):595-602
277	8.	Locatelli F. Martin-Malo A. Hannedouche T. Loureiro A. Papadimitriou M.
278		Wizemann V, Jacobson SH, Czekalski S, Ronco C, Vanholder R; Membrane
279		Permeability Outcome (MPO) Study Group. Effect of membrane
280		permeability on survival of haemodialysis patients. J Am Soc Nephrol.
281		2009;20(3):645-54
282	9.	Cheung AK, Rocco MV, Yan G, Leypoldt JK, Levin NW, Greene T, Agodoa L,
283		Bailey J, Beck GJ, Clark W, Levey AS, Ornt DB, Schulman G, Schwab S,
284		Teehan B, Eknoyan G. Serum beta-2 microglobulin levels predict mortality in
285		dialysis patients: results of the HEMO study. J Am Soc Nephrol.
286		2006;17(2):546-55
287	10	. Davenport A. How can dialyzer designs improve solute clearances for
288		hemodialysis patients ? Hemodial Int. 2014;18 Suppl 1:543-7
289	11	. Locatelli F, Marcelli D, Conte F, Limido A, Malberti F, Spotti D.
290		Comparison of mortality in ESRD patients on convective and diffusive
291		extracorporeal treatments. The Registro Lombardo Dialisi E Trapianto.
292		Kidney Int. 1999;55(1):286-93

293	12. Grooteman MP, van den Dorpel MA, Bots ML, Penne EL, van der Weerd
294	NC, Mazairac AH, den Hoedt CH, van der Tweel I, Lévesque R, Nubé MJ,
295	ter Wee PM, Blankestijn PJ; CONTRAST Investigators. Effect of online
296	hemodiafiltration on all-cause mortality and cardiovascular outcomes. J
297	Am Soc Nephrol. 2012;23(6):1087-96.
298	13. Ok E, Asci G, Toz H, Ok ES, Kircelli F, Yilmaz M, Hur E, Demirci MS,
299	Demirci C, Duman S, Basci A, Adam SM, Isik IO, Zengin M, Suleymanlar G,
300	Yilmaz ME, Ozkahya M; Turkish Online Haemodiafiltration Study.
301	Mortality and cardiovascular events in online haemodiafiltration (OL-HDF)
302	compared with high-flux dialysis: results from the Turkish OL-HDF Study.
303	Nephrol Dial Transplant. 2013;28(1):192-202.
304	14. Maduell F, Moreso F, Pons M, Ramos R, Mora-Macià J, Carreras J, Soler
305	J, Torres F, Campistol JM, Martinez-Castelao A; ESHOL Study Group.
306	High-efficiency postdilution online hemodiafiltration reduces all-cause
307	mortality in hemodialysis patients. J Am Soc Nephrol. 2013;24(3):487-97
308	15. Davenport A, Peters SA, Bots ML, Canaud B, Grooteman MP, Asci G,
309	Locatelli F, Maduell F, Morena M, Nubé MJ, Ok E, Torres F, Woodward M,
310	Blankestijn PJ. Higher convection volume exchange with online
311	haemodiafiltration is associated with survival advantage for dialysis
312	patients: the effect of adjustment for body size. Kidney Int 2016:89
313	(1):193-9
314	16. Peters SA, Bots ML, Canaud B, Davenport A, Grooteman MP, Kircelli F.
315	Locatelli F. Maduell F. Morena M. Nubé M.J. Ok E. Torres F. Woodward M.
316	Blankestiin P.T. HDF Pooling Project Investigators Haemodiafiltration and
317	mortality in end-stage kidney disease patients: a pooled individual
318	participant data analysis from four randomized controlled trials. Nenbrol
319	Dial Transplant 2016:31(6):978-84
320	17 Davennort A Dialysis and Patient Factors Which Determine Convective
320	Volume Exchange in Patients Treated by Postdilution Online
321	Hemodiafiltration Artif Organs 2016:40(12):1121-1127
322	19 Chandelaine T. Maateurus TM. Plankastiin PT. Pata MI. van den Dennel
323 204	10. Chapdelaine I, Mostovaya IM, Blankestijn FJ, Bots ML, van den Dorper
324 225	MA, Levesque R, Nube MJ, fer wee PM, Grooteman MP; CONTRAST
325	investigators. Treatment policy rather than patient characteristics
326	determines convection volume in online post-dilution hemodiatiltration.
327	Blood Purit. 2014;37(3):229-37
328	19 . Tattersall JE, Ward RA; EUDIAL group. Online haemodiafiltration:
329	definition, dose quantification and safety revisited. Nephrol Dial
330	Transplant. 2013;28(3):542-50
331	20. Tangvoraphonkchai K, Riddell A, Davenport A. Platelet activation and
332	clotting cascade activation by dialyzers designed for high volume online
333	haemodiafiltration. Hemodial Int. 2017 Aug 1. doi: 10.1111/hdi.12586
334	PMID: 28762633

335	21. Daugirdas JT. Lower cardiovascular mortality with high-volume
336	hemodiafiltration: a cool effect? Nephrol Dial Transplant. 2016;31
337	(6):853-856
338	22. Oates T, Cross J, Davenport A. Cost comparison of online
339	haemodiafiltration with high-flux haemodialysis. J Nephrol. 2012;25
340	(2):192-7
341	23. Villa G, Zaragoza JJ, Sharma A, Neri M, De Gaudio AR, Ronco C. Cytokine
342	removal with high cut-off membrane: review of literature. Blood
343	purification. 2014;38(3-4):167-73.
344	24. Kirsch AH, Lyko R, Nilsson LG, Beck W, Amdahl M, Lechner P, et al.
345	Performance of hemodialysis with novel medium cut-off dialyzers.
346	2017;32(1):165-172
347	25 . Galli F, Benedetti S, Buoncristiani U, Piroddi M, Conte C, Canestrari F, et
348	al. The effect of PMMA-based protein-leaking dialyzers on plasma
349	homocysteine levels. Kidney international. 2003;64(2):748-55
350	26 . Tijink MS, Wester M, Glorieux G, Gerritsen KG, Sun J, Swart PC, et al.
351	Mixed matrix hollow fiber membranes for removal of protein-bound toxins
352	from human plasma. Biomaterials. 2013;34(32):7819-28.
353	27. Sandeman SR, Howell CA, Phillips GJ, Zheng Y, Standen G, Pletzenauer R,
354	Davenport A, Basnayake K, Boyd O, Holt S, Mikhalovsky S. An adsorbent
355	monolith device to augment the removal of uraemic toxins during
356	haemodialysis. J Mater Sci Mater Med. 2014;25(6):1589-97
357	
358	
359	
360	
361	
362	
363	
364	
365	
366	
367	
368	
369	
3/U 271	
371	
372	
374	
375	
376	

377 Table 1: Middle sized (> 500 Daltons) solutes that potentially increase in the

378 serum of patients with kidney failure

Adrenomedullin
Advanced glycosylation end-products
Angiogenin
Atrial natriuretic peptide
Basic fibroblast growth factor
ß endorphin
β2 microglobulin
Brain natriuretic peptide
Calcitonin gene related peptide
cholecystokinin
Clara cell protein
Complement factor D
Cystatin C
Cytokines (interleukin 1ß, interleukin 6, interleukin 18, tumour necrosis factor a
Degranulation inhibiting protein 1
δ Sleep inducing peptide
Des acyl-ghrelin
Endothelin
Guanylin
Homocysteine
Hyaluronic acid
к Light chains
۸ Light chains
Leptin
Methionine enkephalin
Motiline
Neuropeptide Y
Oxalic acid
Oxidised low density lipoprotein
Parathyroid hormone
Resistin
Substance P
Uroguanylin
Vasoactive intestinal peptide
Vasopressin

386 Table 2. Ideal Equipment required for high volume on-line haemodiafiltration

Site	equipment
Dialysis machine	Pump for replacement solution
	Pre and post dialyser pressure monitoring
	Software to regulate filtration fraction
	Volumetric pump
	Re-infusion line
Dialyser	High flux
	High hydraulic permeability
	Wider internal diameter fibres
Dialysis water	Ultra-filter
	Ultrapure quality