
1 
 

Invasive Assessment Of The Coronary Microcirculation In 
Reperfused STEMI Patients: Where Do We Stand? 

 
Heerajnarain Bulluck1,2,3,4, Nicolas Foin3,4, Jack WC Tan4, Adrian F Low5,  

Murat Sezer6, Derek J Hausenloy1,2,3,4 

 

1The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University 
College London  
2The National Institute of Health Research University College London Hospitals 
Biomedical Research Centre, London, UK 
3Cardiovascular and Metabolic Disorders Program, Duke-National University of 
Singapore 
4National Heart Research Institute Singapore, National Heart Centre Singapore 
5 National University Heart Centre, Singapore 
6Istanbul University, Istanbul Faculty of Medicine, Department of Cardiology, Çapa, 
Istanbul, Turkey 
 
 
Running title: Assessing the coronary microcirculation in STEMI  
 
Disclosures: None 
 
KEYWORDS: ST-segment elevation myocardial infarction; index of microvascular 
resistance; hyperemic microvascular resistance; coronary flow velocity reserve; zero 
flow pressure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Corresponding author: 
 
Professor Derek J Hausenloy 
Cardiovascular & Metabolic Diseases Program 
Duke-NUS Graduate Medical School Singapore 
8 College Road, Singapore 169857 
Tel +65 65166719  
Email derek.hausenloy@duke-nus.edu.sg 



2 
 

ABSTRACT 

For patients presenting with an acute ST-segment elevation myocardial infarction 

(STEMI), the most effective therapy for reducing myocardial infarct (MI) size and 

preserving left ventricular (LV) systolic function is primary percutaneous coronary 

intervention (PPCI). However, mortality and morbidity remain significant. This is 

partly attributed to the development of microvascular obstruction (MVO), which 

occurs in up to 50% of STEMI patients post-PPCI, and it is associated with adverse 

LV remodeling and worse clinical outcomes. Although MVO can be detected by 

cardiac imaging techniques several hours post-PPCI, it may be too late to intervene 

at that time. Therefore, being able to predict the development of MVO at the time of 

PPCI may identify high-risk patients who might benefit from further adjuvant 

intracoronary therapies such as thrombolysis, vasodilators, glycoprotein IIbIIIa 

inhibitors and anti-inflammatory agents that may reduce MVO. Recent studies have 

shown that invasive coronary physiology measurements performed during PPCI can 

be used to assess the coronary microcirculation. In this article, we provide an 

overview of the various invasive methods currently available to assess the coronary 

microcirculation in the setting of STEMI, and how they could potentially be used in 

the future for tailoring therapies to those most at risk. 
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INTRODUCTION 

Prompt restoration of blood flow in the occluded epicardial coronary artery by 

primary percutaneous coronary intervention (PPCI), following an acute ST-segment 

elevation myocardial infarction (STEMI), is currently the gold-standard therapy for 

reducing myocardial infarct (MI) size and preserving left ventricular (LV) systolic 

function1. However, although mortality due to STEMI has declined substantially since 

the introduction of PPCI, morbidity remains significant at one year.2 This has been 

partly attributed to the detrimental effects of prompt restoration of coronary blood flow 

to the acutely ischemic myocardium, which itself can induce coronary microvascular 

injury and cardiomyocyte death, a phenomenon termed ‘Reperfusion Injury (RI)’. 

There are 4 types of RI: myocardial stunning; reperfusion arrhythmias; coronary no 

reflow or microvascular obstruction (MVO); and ‘lethal myocardial reperfusion injury’3 

as illustrated in Figure 1. The first two are considered reversible, as they are usually 

transient or easily treated. To date, there is no effective therapy to prevent or 

minimize the burden of microvascular obstruction (MVO) and ‘lethal myocardial 

reperfusion injury’ and both are currently considered irreversible.  

The phenomenon of MVO was first described in 1966 and it refers to the 

inability to reperfuse a previously ischemic myocardium in the presence of a patent 

epicardial coronary artery.4 MVO occurs in up to 50% of STEMI patients following 

PPCI and is associated with adverse LV remodeling and worse clinical outcomes.5 

MVO can be detected at the time of PPCI by the presence of impaired myocardial 

blush grade (MBG) despite a patent epicardial coronary artery. It can be assessed 

non-invasively by electrocardiography, myocardial contrast echocardiography 

(MCE)6, myocardial scintigraphy7 and contrast-enhanced cardiovascular magnetic 

resonance (CMR)8 but these are typically performed a few hours or days post-PPCI. 
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 Recent studies have shown that invasive coronary physiology measurements 

acquired during PPCI may be used to assess the coronary microcirculation at the 

time of PPCI. This may allow early implementation of adjuvant therapies via the 

intracoronary route to reduce MVO, whilst the patient is still in the cardiac 

catheterization laboratory.  In this article, we provide an overview of the various 

invasive coronary physiology techniques to assess the coronary microcirculation in 

the setting of STEMI and explore their strengths and limitations, and how they could 

potentially be applied in the clinical setting to improve outcomes.  

 

THE DETERMINANTS AND CLINICAL SIGNIFANCE OF MVO 

Five major factors have been shown to contribute to the development of MVO 

namely9: pre-existing coronary microvascular dysfunction; the extent of ischemic 

injury; the presence of RI; distal coronary micro-embolization; and individual 

susceptibility (genetic factors such as 1976T.C polymorphism of the adenosine 2A 

receptors gene predisposing certain patients to the development of MVO; the 

presence of pre-infarct angina in certain patients may protect against the 

development of MVO)9. The pre-existence of coronary microvascular dysfunction and 

individual susceptibility are non-modifiable. The extent of ischemic injury is 

dependent on the symptom onset-to-door and door-to-balloon times, the area-at-risk, 

Thrombolysis in Myocardial Infarction (TIMI) flow pre-PPCI and collateral flow. Efforts 

have already been made to reduce the onset-to-balloon time to a minimum since the 

introduction of PPCI. Therefore, the main focus of research to minimize the burden of 

MVO has been to target both RI and distal coronary micro-embolization. A number of 

mechanisms have been described to contribute to the occurrence of MVO and these 

include external compression of capillaries by interstitial and/or cellular edema, by 

swollen cardiomyocytes and endothelial cells; the release of thrombogenic and 
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vasoactive substances; neutrophil plugging; capillary damage with extravasation of 

red blood cells (leading to intramyocardial hemorrhage - IMH); impaired coronary 

vasodilation; coronary micro-embolization from the atherosclerotic plaque, in-situ 

thrombosis and platelet micro-thrombi as illustrated in Figure 2.10 IMH has been 

shown to be a consequence of the process of reperfusion itself.11 MVO is closely 

linked with the development of IMH12 and clinical studies have supported the notion 

that MVO precedes the development of IMH in a subset of patients and is considered 

a more severe form of microvascular injury due to RI.13, 14  

The presence of MVO following PPCI as assessed by TIMI flow post-PPCI15, 

a combination of ST-segment resolution and MBG16, MCE 17 and CMR18 have all 

strongly been linked with worse outcomes.9 In a recent meta-analysis5 of more than 

1025 STEMI patients reperfused by PPCI and with a CMR performed within the first 

week, MVO was associated with the occurrence of a composite of cardiac death, 

congestive heart failure, and myocardial re-infarction with a hazard ratio of 3.74 (95% 

confidence interval of 2.21 to 6.34) whereas MI size was not, in a multivariate Cox 

regression analysis, after adjusting for confounders.  

Despite having a patent epicardial coronary artery post-PPCI, those patients 

with MVO have areas of ongoing hypoperfusion at the microcirculation level and 

achieving patency of the microcirculation may theoretically reduce MVO, prevent IMH 

and limit MI size. Recently, high dose intra-coronary adenosine and sodium 

nitroprusside failed to reduce MVO and MI size in a cohort of 247 reperfused STEMI 

patients.19 However 67% of those patients had MVO by CMR and it is likely that 

those drugs failed to reach the microcirculation in two third of the patients. Therefore, 

another approach that would more likely improve outcomes in these patients might 

be to identify those patients at risk of MVO at the time of PPCI and subject them to 

low dose intracoronary thrombolysis 20 first, to achieve patency of the 



6 
 

microcirculation, and they treated with an infusion of adenosine or sodium 

nitroprusside, that would then be more likely to reach the microcirculation.19  

 

 

NON-INVASIVE DETECTION ON MVO 

The current techniques for identifying MVO are mainly via non-invasive tests 

(summarized in Table 1) and these are usually performed 3-5 days post-PPCI, when 

it may be too late to intervene. Figure 3 shows an example of a patient with a left 

anterior descending coronary artery occlusion, reperfused by PPCI with TIMI flow 3, 

but with extensive areas of MVO (red arrows) on the delayed enhancement CMR 

images performed on day 3. This imaging modality cannot be performed in most 

centers immediately post-PPCI, and it may be too late to intervene by the time MVO 

is detected using this modality..  

The coronary microvascular circulation can also be assessed in the cardiac 

catheterization laboratory with TIMI flow grade22, corrected TIMI frame count 

(cTFC)23, TIMI myocardial perfusion grade (TMPG)24 and MBG22 (Table 1). However, 

these indexes are semi-quantitative and can be subjective25, although automated 

software are available.26 Furthermore, capillary permeability, microvascular spasm 

and capillary resistance under resting conditions may influence these indices.27 

Therefore, the utility and accuracy of these angiographic methods to detect MVO 

after primary PCI have limited their clinical application. 

INVASIVE ASSESSMENT OF THE CORONARY MICROCIRCULATION  

The coronary circulation can be divided into the epicardial vessels, the 

microcirculation and the venous circulation28 (Figure 2). Under normal resting 

physiological conditions, coronary blood flow is maintained at near constant levels 
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over a wide range of perfusion pressures by autoregulation.29 However, disturbances 

in the autoregulatory process and/or impaired microvascular vasodilatory function 

due to disruption in the coronary microcirculation occurring in the presence of 

prolonged ischemia and MVO can be detected by invasive measures of coronary 

microcirculation. This can be divided into flow-based and resistance-based 

parameters (although flow remains an important component in the derivation of the 

latter parameters) as below: 

1. Flow - based parameters 

a. Coronary flow velocity reserve (CFVR) 

b. Deceleration time of diastolic coronary flow velocity  

c. Presence of systolic flow reversal  

2. Resistance - based parameters 

a. Index of microvascular resistance (IMR) 

b. Hyperemic microvascular resistance (HMR) 

c. Coronary zero flow pressure (Pzf) 

 

Flow – based parameters 

a) Coronary flow velocity reserve  

CFVR is an index providing information on both the epicardial and coronary 

microvascular compartment. It can be derived by using both the Doppler29 and 

thermodilution30 techniques. CFVR is defined as the ratio of hyperemic to resting 

coronary blood flow.29 CFVR has been used to assess the coronary microcirculation 

in the absence of epicardial stenosis. CFVR can also be derived using the 

thermodilution principle [CFVR = Tmn at rest/ Tmn at hyperemia]30. A ratio of ≥ 2.0 is 

considered normal.8 A value of <2.0 has recently been shown to have a sensitivity of 
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79% for MVO and 80% for IMH but with a low specificity of 34% for the detection of 

both MVO and IMH in a large single-center study of 283 patients.8 

  Several studies have shown that CFVR measured in the reperfused infarct-

related artery to be a potential prognostic marker for LV recovery following STEMI31-

34 (online appendix Table 1). CFVR has also shown to correspond well with the 

extent of MVO by CMR35 and was found to be a better marker than TIMI flow, cTFC 

and MBG to predict recovery of LV function.34 An increase in CFVR from the end of 

PPCI to 24 hours later was associated with higher myocardial salvage index, 

whereas a reduction in CFVR at 24 hours was associated with MVO and IMH.36 A 

CFVR of <2.1 has also been shown to be associated with increased mortality at 10 

years.37    

b and c) Diastolic deceleration time and systolic flow reversal 

Rapid deceleration time of coronary diastolic flow velocity (diastolic deceleration time 

< 600 msec) and the presence of early systolic flow reversal in intracoronary Doppler 

recordings obtained after successful PPCI were shown to be associated with larger 

extent of MVO and poor long-term outcome after reperfusion.35, 38, 39 

Resistance – based parameters 

Intraluminal obstruction (athero-embolization, cellular and humoral factors etc.) in 

combination with extravascular compressive pathologies (edema and IMH) impact on 

the increase in microvascular resistance after successful reperfusion achieved by 

PPCI. Microvascular resistance indices (IMR, HMR and Pzf) are therefore extremely 

well suited to determine the extent of the microvascular impairment after PPCI where 

acute changes in microvascular resistance are expected to be the most dramatic. 

Moreover, these parameters are specific for the coronary microcirculation during 

peak hyperemia or zero flow assumptions and are less likely to be influenced by 
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hemodynamic perturbations such as microvascular tone and resistance40, heart 

rate41 and infusion of sodium nitroprusside and dobutamine.41  

a) Index of microvascular resistance (IMR) 

IMR is derived from the thermodilution principle42 using a guide wire with a 

pressure and a temperature sensor, and is defined as the distal coronary pressure 

(Pd) divided by the inverse of the mean transit time (Tmn) during hyperemia, or more 

simply, Pd multiplied by the Tmn (mm Hg · seconds, or units [U]).42 The wire sensor 

is usually positioned in the distal one third of the vessel (> 6cm from guide catheter 

tip). The average of 3 transit times of 3ml of room temperature normal saline solution 

during peak hyperemia is used to calculate Tmn43 and the variability among the 3 

readings should be <20%. An IMR value < 25U is indicative of normal microvascular 

perfusion.44  

IMR has been used as a surrogate to invasively assess the coronary 

microcirculation in STEMI patients for more than a decade (online appendix Table 1). 

High IMR values at the time of PPCI have been associated with larger MI size by 

cardiac enzymes45, less wall motion recovery at follow-up by echocardiography45, 46, 

less viability by 18F-fluorodeoxyglucose positron emission tomography (FDG PET). 

46 Factors predisposing to high IMR values have not been well studied but in a small 

study of 113 STEMI patients, Baek et al47 found age and symptom-to-balloon time to 

be major predictors of high IMR.  

Several studies have correlated IMR at the time of PPCI and CMR findings. 

Patients with high IMR were more likely to have MVO48-52, IMH53, larger MI size48, 

less myocardial salvage53 on the acute scan performed within a week and worse LV 

function at follow-up.48 However not all studies54, 55 have shown that the IMR at the 

end of the PPCI procedure could predict MVO on CMR and this was recently 

summarized in a meta-analysis of studies reporting mean IMR values only.56 These 
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studies individually were small and lacked power but after combining data from 6 

studies (246 patients) reporting mean IMR values, those with MVO had significantly 

higher IMR (49±33U, 99%CI 41-57U) than those without MVO (27±22U, 99%CI 22-

32U). In a recent single-center study of 283 patients by Carrick et al8, IMR was 

shown to be more closely associated with MVO, IMH and adverse LV remodeling by 

CMR and clinical outcomes than TMPG or CFR.  

Data on serial IMR measurements post-STEMI is limited. Sezer et al57 

showed that >33% improvement in IMR in the infarcted territory at 5 months was 

associated with a 50% reduction in MI size assessed by single photon emission 

computed tomography in a small cohort of 35 reperfused STEMI patients. Cuculi et 

al54 showed that, in 30 patients with CMR data at 6 months, those with MVO had a 

lower CFVR immediately post-PPCI and at 24 hours and a trend towards higher IMR. 

At 6 months, there was no difference in IMR and CFVR between these 2 groups of 

patients, despite a larger chronic MI size in the MVO group. However, unlike Sezer et 

al57, they did not explore the reduction in MI size in those with an improvement in 

IMR. Most recently, Hoole et al55 showed in 41 patients that those with an IMR <32U 

pre-stenting had a significant increase in IMR post-stenting and this was attributed to 

iatrogenic microvascular injury. Serial IMR measurements can improve our 

understanding of the microcirculation post-STEMI, but due to its invasive nature, 

getting patients back for repeat invasive measurements in the convalescent/chronic 

phase is challenging as highlighted by the Cuculi et al54 (almost half of the patients 

dropped out at 6 months). 

 Fukunaga et al52 (88 patients) found that the shape of the thermodilution-

derived temperature recovery curve following saline injection could be characterized 

into three categories. Patients in the “bimodal group” had higher prevalence of MVO 

on CMR and were at higher risk of death and rehospitalization for heart failure when 

compared to those in the “narrow unimodal” and “wide unimodal groups”. However 
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the impact of the speed of hand injections and the inter-observer reproducibility of 

these bimodal curves were not assessed and needs further validation.  

Another approach explored by Park et al58 (89 patients) has been to stratify 

STEMI patients according to both IMR and CFVR values. They found that those 

patients with CFVR<2 and IMR>27U did not show an improvement in wall motion 

score index by echocardiography. Ahn et al50 (40 patients) showed that a combined 

high IMR (>36U) and low CFVR (<1.7) were highly predictive of MVO by CMR after 

PPCI. However, Carrick et al59 recently showed that combining IMR >40U with CFR 

≤2.0 did not add prognostic value in 283 patients. All these 3 studies used different 

cut-off values for IMR and CFR and although Carrick et al59 had the largest number 

of patients, it was not powered for clinical outcomes.  

The effect of IMR on clinical outcomes post-PPCI has been investigated in a 

large multi-center study of 253 STEMI patients. Fearon et al60 found that patients 

with an IMR >40U, measured immediately after PPCI, was the only independent 

predictor of death (hazard ratio 4.3, P 0.02) after a median follow-up of 2.8 years. A 

recent meta-analysis56 showed that patients with an IMR >41U at the end of the 

PPCI procedure were more likely to have MVO on the CMR. Most recently, in a 

single-center study of 283 STEMI patients, Carrick et al59 also showed that an IMR 

>40U was a multivariable associate of adverse LV remodeling by CMR at 6 months, 

and was a better predictor of all-cause death or heart failure than the duration of 

ischemia, ST-segment resolution, TMPG and CFR after a median follow-up of 845 

days. 

However IMR remains an indirect measure for the coronary microvascular 

resistance and uses the inverse of transit time as a surrogate for flow. Furthermore, 

the manual injections of normal saline to obtain the transit times are prone to inter 
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and intra-observer variability and not all groups54, 55 have shown IMR could 

differentiate between patients with or without MVO.  

 

b) Hyperemic microvascular resistance (HMR)  

HMR is defined as the Pd divided by mean Doppler flow velocity at peak 

hyperemia simultaneously measured using a coronary guide wire with a combined 

pressure sensor and Doppler transducer61, 62 and measured in mm Hg cm-1 s. A 

guide wire with dual pressure and Doppler flow sensor is placed in the distal one 

third of the infarct-related artery. This dual - sensor guide wire has a Doppler crystal 

at the tip and a pressure sensor at 1.5 cm from the tip. At hyperemia, phasic 

coronary flow velocities are obtained from 3 consecutive cardiac cycles and used to 

calculate the average hyperemic flow velocity.  

The role of HMR in STEMI has been less well studied compared to IMR 

(summarized in the online appendix Table 1). The availability of a dual pressure and 

flow sensor wire allows simultaneous pressure and flow measurements within the 

coronary artery thereby making the measurement of HMR easier. HMR has been 

shown to be as good as CFVR and diastolic deceleration time at predicting regional 

wall motion recovery63 and the transmural extent of MI61, but superior to CFVR to 

predict LV remodeling at 8 months.64 In a small single-center study of 48 patients, an 

HMR value>2.5mm Hg cm-1 s has been shown to be indicative of MVO by CMR 

(sensitivity of 71% and specificity of 63%) and reduced myocardial blood flow on 

PET. In a larger cohort of 145 STEMI patients65, an HMR value>2.82 mm Hg cm-1 s 

was a strong predictor of a composite of death and re-hospitalization for heart failure. 

However, HMR was measured using the mean aortic pressure rather than the 

pressure distal to the coronary lesion in that study and more work with larger number 
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of patients are required to confirm the prognostic significant of HMR immediately post 

PPCI. 

HMR also remains an indirect measure for the microvascular resistance and 

uses half the peak Doppler-derived velocity as a surrogate for flow. Additionally, 

detecting an adequate flow signal using a guide wire tipped with both a Doppler flow 

and a pressure sensor can be technically difficult.  

 

c) Zero flow pressure (Pzf) 

Pzf is defined as the distal coronary pressure when hypothetically there would 

be no flow in the coronary artery. Data from several cardiac cycles are used to plot 

Pd against the peak velocity. There are automated algorithms that can then sample 

the resultant pressure–velocity loop at the mid-diastolic period of the averaged 

cardiac cycle. A regression can then be drawn automatically from the diastolic data 

points, and Pzf is the pressure at which this line crosses the x-axis. This is the 

extrapolated distal coronary pressure at which flow would cease in the infarct-related 

artery.40 It provides comprehensive assessment of the microvascular compartment 

as it assesses coronary flow over a range of pressures, irrespective of cardiac 

contractility and may reflect vascular tone.66 In the context of STEMI, it also provides 

information on the effect of the interstitial myocardial pressure on the coronary 

microcirculation.66 Pzf is derived from pressure-velocity loop analysis67 and it informs 

the operator on the effect of intra-ventricular and interstitial myocardial pressure 

(external forces) over collapsible elements (capillaries) of the microcirculation. 

Therefore, Pzf measured after PPCI can be expected to be dependent mainly on the 

extent of external microcirculatory compression by edema and IMH. After PPCI, 

microvascular impairment may be partly attributed to decrease in total cross-

sectional microvascular area by compressive effect generated by edema and/or IMH. 

Additionally, in patients with STEMI, increased diastolic filling pressures due to 
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increased cardiac muscle stiffness caused by cellular and interstitial edema may also 

decrease intramyocardial vascular capacitance and limits coronary flow in late 

diastole. Therefore, the transmitted increase in intra-cavity and interstitial pressures 

contribute to external compression of microcirculation and result in increased Pzf.  

In small proof-of-concept studies, Pzf was a better predictor of viability by 

FDG PET than CFVR (27 patients)67; was associated with higher left ventricular filling 

pressures (68 patients)66 and adverse LV remodeling (48 patients)68; and was a 

better predictor of chronic MI size by CMR than HMR and IMR (34 patients).40 

However, Pzf was not found to be superior to CFVR, Pzf and diastolic deceleration 

time in predicting the transmural extent of MI by CMR performed at 13 days (27 

patients).61 So far, only one study has evaluated Pzf and MVO by CMR and a cut-off 

value of 42mmHg for Pzf did not differentiate those with and without MVO.40  

As summarized in table 2, Pzf requires off-line post-processing and the 

automated algorithms for its interpretation are not widely available yet. Therefore this 

index currently remains a research tool. 

 

CURRENT APPLICATIONS  

IMR has already been used as a surrogate endpoint in several proof-of-concept 

studies aiming to improve the coronary microcirculation in reperfused STEMI patients 

(summarized in the online appendix Table 2). The impact of strategies such as 

intracoronary streptokinase administered immediately after PPCI 20, nicorandil69, 

sodium nitropruside70, distal protection device71, thrombus aspiration55 and a 

combination of intracoronary abciximab and aspiration thrombectomy51 on IMR has 

been investigated in small proof-of-concept studies and there are several other 

studies that are ongoing (summarized in the online appendix table 2). Of note, none 

of the randomized studies pre-selected patients based on high IMR values. 



15 
 

Hypothetically, in an ideal study, invasive coronary measurement with a reliable 

marker at the end of the PPCI procedure would identify those patients with MVO with 

high sensitivity and specificity. Given that MVO is due to a combination of factors, 

these patients would then be randomized to a combination therapy with intracoronary 

thrombolysis (to achieve patency of the microcirculation) and an intracoronary 

vasodilator with anti-inflammatory properties such as adenosine (which could be 

continued intravenously on the ward) or placebo. The primary endpoint of interest 

should ideally be hard clinical outcomes such as cardiovascular death and 

hospitalization for heart failure. However, such a study would require a large number 

of patients and endpoints such as the extent of IMH, MVO and MI size by CMR 3 

days later and adverse LV remodeling at 6 months could be used as surrogates.  

 

LIMITATIONS OF CURRENT INVASIVE MARKERS AND FUTURE DIRECTIONS 

Table 2 summarizes the limitations of the current invasive markers to assess the 

microcirculation discussed so far. Future studies should aim at addressing these 

limitations in the first instance. Some examples would be:  

To explore the possibility for an automated method (e.g. using a pump injector) to 

inject the 3ml of normal saline to minimize operator-related errors and improve inter-

observer and inter-site reproducibility when performing IMR measurement. 

Further validation work is required to assess the performance of HMR to detect MVO 

by CMR before it can be used to assess the effectiveness of therapies. Moreover, 

improvement in the delivery profile of the Doppler wire would increase the use of this 

technique in future studies.  

The derivation of Pzf is based on the extrapolation from the pressure-velocity loop 

and the analysis techniques are time-consuming and are not available for immediate 
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read-outs of Pzf. Therefore, more work remains to be done to make the analysis of 

fully automated and the Pzf read-outs to be immediately available at the time of 

PPCI, before it can be widely used. 

Limited data are available regarding the strength of diastolic deceleration time and 

systolic flow reversal to identify MVO when compared to IMR, HMR and Pzf. 

Therefore, further, adequately powered, comparative studies using these 

parameters, using a multi-center approach to facilitate recruitment are needed. 

These above steps would help to assess which of these markers would emerge as 

the most robust surrogate marker for predicting MVO at the end of the PPCI 

procedure. Early identification of these high-risk patients is important as already 

described above and early adjuvant intervention could then be started in the cardiac 

catheterization laboratory and administered via the intracoronary route and continued 

intravenously in the ward in needed. Therapies that may be beneficial in this setting 

would be glycoprotein IIb/IIIa inhibitors (e.g. abciximab21 to reduce platelet 

aggregation in the microcirculation); thrombolytics (e.g. half dose alteplase for lysis of 

distal embolization of thrombi); vasodilators (e.g. adenosine19, 72, nicorandil69 for 

spasm of the microcirculation due to release of vasoactive substances); and anti-

inflammatory agents (e.g. methylprednisolone73 to reduce reperfusion edema and 

relieve extrinsic compression of the microcirculation). Other treatments aiming to 

stabilize the endothelium with angiopoietin-1 or tyrosine kinase inhibitors13 may help 

to reduce extravasation of red blood cells and the development of IMH. Using this 

approach would also avoid any adjuvant strategies be given to those patients who 

are unlikely to have MVO, and minimize their exposure to potential adverse events.  

Figure 4 shows a hypothetical approach in future studies to identify and target those 

at high-risk at the end of the PPCI procedure using IMR as an example. Given that 

patients with an IMR of >40U has been shown to more likely have MVO56 and worse 
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outcomes 60 59, this value could be used as a cut-off.  Those patients with an IMR of 

>40U at the end of PPCI could then be targeted with further adjuvant therapies 

mentioned above and this approach may improve outcomes in this group of patients.  

 

CONCLUSION 

Invasive assessment of the coronary microcirculation at the time of PPCI is an 

exciting field that could provide us with the opportunity to interrogate the extent of the 

microvascular injury reliably in the cardiac catheterization laboratory at the end of the 

PPCI procedure despite having a patent infarct-related epicardial coronary artery. 

This approach would potentially identify those patients at high risk of MVO and target 

them with adjuvant therapies. However, more validation work remains to be done 

before one or a combination of these invasive markers described here could be used 

in therapeutic trials aiming to eventually improve outcomes in these patients. 
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Table 1: Non-invasive assessment and angiographic assessment of MVO 

 

Modality Comments Limitations 

ECG ST-segment resolution of <70% at 60 to 90 minutes 

post-reperfusion in the presence of a patent epicardial 

coronary is suggestive of MVO74. 

Inexpensive and portable. 

Discrepancies have been documented between coronary 

angiographic indices of reperfusion and ST-segment 

resolution75. 

There is a delay of at least one hour before it can be acquired 

for comparison. 

MCE Can detect the presence of MVO and can also quantify 

its severity. 

Inexpensive and can be portable. 

Several factors such as labour-intensive data acquisition, sub-

optimal images (especially of the lateral wall), difficulties with 

image interpretation, and safety concerns regarding the use of 

the micro-bubbles have hampered the widespread adoption in 

the clinical setting76 

CMR CMR can differentiate between early MVO using first 

pass perfusion or early gadolinium enhancement and 

late MVO by late gadolinium enhancement. 

CMR is also the gold standard to assess MI size, LV 

volumes and ejection fraction. 

CMR can also quantify the extent of MVO accurately 

and differentiate between hemorrhagic and non-

hemorrhagic MVO, thereby providing an additional layer 

of prognostic information77. 

Usually performed 2 to 7 days post-reperfusion when it may be 

too late to intervene. 

Not applicable to everyone – e.g. those with contra-indication to 

CMR will be excluded. 

Expensive and not yet widely available. 
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MSCT MDCT performed immediately after PPCI could detect 

hypo-enhanced areas that were significantly associated 

with coronary angiographic no-reflow.78 

MDCT performed without contrast reinjection 

immediately after PPCI for the identification of 

heterogeneous enhancement could also predict the 

occurrence of MVO and adverse LV remodeling by 

CMR. 79 

This approach is logistically difficult to implement in most 

centers. 

Limited data from 2 studies so far and warrants further 

validation. 

TIMI flow A TIMI flow grade of <2 in the presence of a patent 

epicardial coronary artery is indicative of no-reflow.22 

Cannot be used to assess the microvascular circulation in those 

with TIMI flow 3.  

cTFC cTFC is a more robust method to assess the epicardial 

flow quantitatively23 and is more reproducible. 

Requires off line post-processing. 

MBG and TMPG MBG is a measure of maximum contrast intensity 

whereas TMPG is a measure of contrast washout time. 

MBG has also been shown to predict mortality in 

patients with TIMI 3 flow80 and may be more practical. 

A normal TMPG has been shown to be a superior 

marker of death than a TIMI flow of 3 in the thrombolytic 

era 24 

Capillary permeability, microvascular spasm and capillary 

resistance under resting conditions may influence these 

indices.27 

ECG: electrocardiography; MCE: myocardial contrast echocardiography; MDCT: contrast-enhanced multi-detector computed tomography; TIMI: 
TIMI: thrombolysis in myocardial infarction; cTFC: corrected TIMI frame count; MBG: myocardial blush grade; TMPG: TIMI myocardial 
perfusion grade;  
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Table 2: Definitions of invasive markers to assess the microvascular circulation 

 

 Comments Limitations 

CFVR  Defined as the ratio of hyperemic to resting 
coronary blood flow29 

 CFVR can also be derived using the 
thermodilution principle [CFVR = Tmn at rest/ 
Tmn at hyperemia]30   

 A ratio of ≥2.0 is considered normal  

 The Doppler flow velocity tracings may not be consistent 
from beat to beat and could be a source of variability. 

 CFVR is unable to distinguish between relative epicardial 
and microvascular contribution to total coronary 
resistance 

 CFVR is dependent upon hemodynamic factors (i.e., 
blood pressure, heart rate, etc.).  

 When using the thermodilution technique, manual 
injection of the saline can be a source of variability.  

 Requires the achievement of hyperemia. In the STEMI 
setting, using adenosine may be ineffective in those 
patients who may have consumed caffeinated products. 

IMR  Defined as Pd divided by the inverse of the 
Tmn during hyperemia, or more simply, Pd 
multiplied by the Tmn (mm Hg · seconds, or 
units [U])42  

 The wire sensor is usually positioned in the 
distal one third of the vessel (> 6cm from guide 
catheter tip)  

 The average of 3 transit times of 3ml of room 
temperature normal saline solution – the 
variability should be <20% - during peak 
hyperemia is used to calculate mean Tmn43 

 An IMR value < 25U is indicative of normal 
microvascular perfusion44.  

 IMR has been shown to be more reproducible 

 Manual injection of the saline can be a source of 
variability.  

 Requires the achievement of hyperemia. In the STEMI 
setting, using adenosine may be ineffective in those 
patients who may have consumed caffeinated products. 
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than CFR and to be independent of 
hemodynamic influences (pacing at 110 bpm, 
nitroprusside infusion or dobutamine infusion)41.  

 It is not affected by epicardial stenosis42  
 In the presence of collaterals, corrected IMR 

(cIMR) using the formula cIMR = Pa x Tmn x 
(Pd - Pw)/(Pa - Pw) is more accurate as this 
takes into account the contribution of collateral 
flow81 82.  

HMR  HMR is derived as the ratio of distal coronary 
pressure and hyperemic flow velocity61 and 
measured in mm Hg cm-1 s 

 A guidewire with dual pressure and Doppler 
flow sensor is placed in the distal one third of 
the infarct-related artery. 

 At hyperemia, phasic coronary flow velocity are 
obtained from 3 consecutive cardiac cycles and 
used to calculate the average hyperemic flow 
velocity 

 

 The Doppler flow velocity tracings may not be consistent 
from beat to beat and could be a source of variability. 

 Requires the achievement of hyperemia. In the STEMI 
setting, using adenosine may be ineffective in those 
patients who may have consumed caffeinated products. 

Pzf  Pzf is defined as the distal coronary pressure 
when hypothetically there would be no flow in 
the coronary artery.   

 Does not require hyperemia.  
 Data from several cardiac cycles are used to 

plot Pd against the peak velocity. There are 
automated algorithms that can then sample the 
resultant pressure–velocity loop at the mid-
diastolic period of the averaged cardiac cycle. A 
regression can then be drawn automatically 
from the diastolic data points, and Pzf is the 

 The Doppler flow velocity tracings may not be consistent 
from beat to beat and could be a source of variability. 

 Requires off-line post-processing. 
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pressure at which this line crosses the x-axis. 
This is the extrapolated distal coronary 
pressure at which flow would cease in the 
infarct-related artery.40  
 

CFVR: coronary flow reserve; IMR: index of microvascular resistance; STEMI: ST-segment elevation myocardial infarction; Pd: distal pressure; 
Tmn: mean transit time; Pw: wedge pressure; Pa: aortic pressure; HMR: hyperemic microvascular resistance; Pzf: zero 
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Figures legend 

Figure 1: Relationship between reperfusion injury (RI) and MVO 

The figure illustrates the different components of reperfusion injury (RI). Myocardial 

stunning and reperfusion arrhythmias are transient and self-limiting/ easily treated. 

However microvascular obstruction (MVO) and lethal myocardial reperfusion injury 

are currently irreversible and contribute up to 50% of the final myocardial infarct (MI) 

size.  
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Figure 2: The coronary circulation and factors contributing to the development 

of MVO 

This is an illustration of the coronary circulation. Coronary flow velocity reserve 

(CFVR) provides an indication of both the epicardial and microvascular circulation 

whereas index of microvascular resistance (IMR) / hyperemic microvascular 

resistance (HMR), diastolic deceleration time (DDT) and systolic flow reversal, and 

zero flow pressure (Pzf) interrogate the microvascular circulation in particular. 

This figure also illustrates the some of the factors contributing to the development of 

microvascular obstruction (MVO), namely external compression of capillaries by 

interstitial and/or cellular edema, by swollen cardiomyocytes and endothelial cells, 

cellular plugging, capillary damage with extravasation of red blood cells, coronary 

micro-embolization of debris and in-situ thrombosis. 

 

 

 

 

 

 

 

 

Figure 3: Microvascular obstruction by cardiovascular magnetic resonance 
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This is an example of a patient with an anterior STEMI with extensive areas of 
microvascular obstruction (MVO) (red arrows) on the late gadolinium enhancement 
images (a: mid ventricular short axis; b: 3-chamber; c: 4-chamber; d: 2-chamber 
views) of a cardiovascular magnetic resonance performed within a week of 
reperfusion by primary percutaneous coronary intervention (PPCI). Despite having a 
patent epicardial coronary at the end of the PPCI procedure with thrombolysis in 
myocardial flow 3 (normal flow), this patient suffered an extensive myocardial 
infarction with a large burden of MVO (red arrows). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A hypothetical approach to identify the patients at high-risk of 

developing MVO using IMR 
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This algorithm shows that index of microvascular resistance (IMR) could be used in 

those with thrombolysis in myocardial infarction (TIMI) flow 3 grade at the end of the 

primary percutaneous coronary intervention (PPCI) to further identify those who 

would benefit from further adjuvant intracoronary therapies. 

 

 


