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Abstract 

We develop and evaluate methods for inferring relatedness among individuals from 

low-coverage DNA sequences of their genomes, with particular emphasis on sequences 

obtained from fossil remains. We suggest the major factors complicating the 

determination of relatedness among ancient individuals are sequencing depth, the 

number of overlapping sites, the sequencing error rate, and the presence of 

contamination from present-day genetic sources. We develop a theoretical model that 

facilitates the exploration of these factors and their relative effects, via measurement of 

pairwise genetic distances, without calling genotypes, and determine the power to infer 

relatedness under various scenarios of varying sequencing depth, present-day 

contamination, and sequencing error. The model is validated by a simulation study as 

well as the analysis of aligned sequences from present-day human genomes. We then 

apply the method to the recently published genome sequences of ancient Europeans, 

developing a statistical treatment to determine confidence in assigned relatedness that 

is, in some cases, more precise than previously reported. As the majority of ancient 

specimens are from animals, this method would be applicable to investigate kinship in 

non-human remains. The developed software grups is implemented in Python and freely 

available. 
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Introduction 

Genetic relatedness among individuals is a fundamental aspect of human society upon 

which many of our laws, traditions, and social structures are based. But as such a 

general concept, precise descriptions of genetic relatedness are elusive, and various 

definitions have been proposed. For our purposes, related individuals share at least one 

allele that is recently identical by descent (IBD). As members of a homogenous 

population are ultimately related by their ancient, common genetic ancestry, we 

examine only relationships whose genetic affinity is beyond the background relatedness 

of an entire population.  

It follows from basic statistical genetics that closely related individuals share 

large fractions of their genomes IBD. For example, on average siblings are expected to 

share in common 50% of their genomes IBD. This degree of relatedness can be 

expressed as r, the coefficient of relationship (e.g. r = 0.5 in the case of sibling and 

parent-offspring relationships), which expresses the probability that, at a given locus, an 

allele randomly selected from each of two individuals will be shared by IBD. But this 

measure of relatedness is only a probability; due to the stochastic nature of meiotic 

recombination, the actual proportion of the genome that is shared between relatives 

varies across the genome and between pairs with the same kinship (Weir et al. 2006; 

Speed & Balding 2014). 

Precise quantification of relatedness is useful in a variety of cases. For example, 

in the field of forensic genetics it is routine to employ microsatellite or single nucleotide 

polymorphism (SNP) markers to determine the relatedness of genetic samples for 

paternity testing and to search for matches to genetic profiles attained from crime 

scenes (Evett & Weir 1998; Weir et al. 2006). An accurate quantification of inter-sample 
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relatedness is also a prerequisite for most population genetic analyses, which often 

establish the probabilities of observing sampled genotypes under the assumption that 

individuals are genetically unrelated.  

Due to rapid progress in next-generation sequencing (NGS) technologies, large 

quantities of genomic sequences can now be obtained quickly and relatively cheaply. 

There exist various methods to quantify individual relatedness using genomic sequences 

(e.g. see Wang [2011] for a non-exhaustive list). The simplest of these calculate genome-

wide averages across a panel of single-SNP haploid or diploid genetic distances (Tal 

2013) or allele-sharing coefficients (Pemberton et al. 2010; Speed & Balding 2014). 

More advanced methods identify IBD regions as shared haplotype segments within 

densely spaced, preferably unlinked genomic markers, and then infer relationships from 

the total proportion of IBD (Purcell et al. 2007; Browning & Browning 2007; Gusev et al. 

2009; Kong et al. 2008; Browning & Browning 2010; Hill & White 2013). The most 

advanced methods can detect distant relationships up to the 9th degree, yielding 

probabilities of relatedness conditional on the total IBD, as in previous methods, as well 

as additional information including the number of IBD chromosomal segments, their 

lengths, and the genotypes they contain (e.g. Albrechtsen et al. 2009; Huff et al. 2011; Li 

et al. 2014). Useful as these methods are, most require high quality, high-depth 

sequences that are not always available, particularly for sequences obtained from fossils 

in which little endogenous DNA remains.  

NGS approaches can also be applied to degraded, archival, and/or ancient DNA 

(aDNA) samples, especially since the advent of in situ hybridization capture technology 

(e.g. St John & Quinn 2008; Briggs et al. 2009; Bahcall 2013). Indeed, numerous recent 

studies reported low-coverage genomic sequences from ancient human specimens (e.g.
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Lazaridis et al. 2013; Haak et al. 2015; Allentoft et al. 2015), and many more still are 

underway. This trend is due in part to advances that mitigate post mortem chemical 

damage of DNA and contamination from present-day DNA, both of which introduce 

errors when calling genotypes from reference-aligned sequences and have created 

problems in the field since its earliest days (Willerslev & Cooper 2005; Briggs et al. 

2007; Ginolhac et al. 2011; Shapiro & Hofreiter 2012). 

Accurate determination of relatedness within ancient human archaeological 

contexts could elucidate pre-historic family structure as well as social behaviors such as 

burial practices, insights that could not be determined without genetic data. But 

previous application of these relatedness determination methods to degraded/ancient 

samples has been limited, usually leading to the exclusion of related individuals from 

further analysis (Green et al. 2010; Lazaridis et al. 2015; Haak et al. 2015). Without a 

statistical model to account for the presence of contaminating DNA from present-day 

humans, precise inference of individual relatedness is complicated due to the unknown 

consequences of contamination on relatedness estimation, and often these 

contaminated samples are also excluded from further analysis (Hofreiter et al. 2001; 

Yang & Watt 2005).  

These more recent datasets motivate the development of methods to determine 

relatedness within real archaeological contexts. In this paper, we seek to determine the 

limitations for discriminating close genetic relationships using very low-coverage NGS 

sequences. Although genome-wide average genetic distance is perhaps the crudest 

statistic for estimating relatedness, it can be determined directly from randomly 

sampled NGS sequences and may be a good option for low-coverage datasets.  
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We carried out simulations of simple pedigrees using present-day human 

genome sequences, allowing us to characterize the distribution of genetic distances for 

several familial relationships under realistic scenarios of contamination, sequencing 

error, and sequencing depth. We aimed specifically to determine the upper bounds of 

allowed sample contamination and lower bounds of NGS sequence depth necessary to 

infer the degree of relatedness between individual ancient humans. We validated the 

simulations first with theory and then with direct measurements of pairwise genetic 

distance from aligned NGS data. Finally, we used simulations to verify relatedness claims 

from previously published ancient human genomic sequences from European 

archaeological samples dated to between 5,311 and 1,780 BCE (Haak et al. 2015), 

determining the most likely coefficient of relationship and, in some cases, revealing 

relatedness that had gone unreported.  
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Materials & Methods 

Genomic sequences for pedigree simulations 

For pedigree simulations, we used 77,818,345 diallelic single nucleotide polymorphisms 

(SNPs) in the autosomes of the human reference genome (build 37) and tracked their 

transmission from parents to offspring. The occurrence of these SNPs in present-day 

populations and individuals were obtained from the phase 3 data release of the 1000 

Genomes Project (G1K hereafter; Abecasis et al. 2010; Abecasis et al. 2012). 

Insertion/deletion variants were ignored. Phased genome sequences of 503 unrelated 

individuals from the European (EUR) super-population were included in pedigree 

simulations. Allele frequencies in the African (AFR) super-population were used for 

simulations of contamination from a different population.  

Pedigree simulations using present-day human genomic sequences 

Simulations were carried out using custom Python scripts. In each simulation replicate, 

we constructed a family pedigree starting with the unrelated EUR individuals. Each 

‘mating’ of two individuals generated an offspring individual with 22 autosomal 

chromosomes produced by recombination of parent haplotype sequences randomly 

selected from all possible combinations of gametes. The probabilities of recombination 

events in intervals along each chromosome were non-uniform and determined using a 

genetic map (Kong et al. 2002; IHMC 2007). Offspring individuals were then ‘mated’ 

with other individuals to produce offspring in accordance with the desired pedigree 

(Figure 1). Replicates (n = 1000 in this study) of the same pedigree were generated 

through random selection of the unrelated initial mating couple. The per-generation 
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mutation rate was assumed to be small enough to ignore, and transmission of sex 

chromosomes was not simulated. 

Simulation parameters and calculations of pairwise genetic distance 

Input to the model includes seven major parameters that can be modified at run-time. 

(a) The source population (e.g., the European super-population EUR) from which 

random genome sequences are selected for pedigree simulation. (b) The minimum allele 

frequency of chosen SNPs in the source population in order for a genome position to be 

included in the SNP panel. (c) The rate at which genome positions harboring known 

SNPs (within the set of all G1K individuals) are randomly selected, which is used to 

construct a SNP panel of particular size. (d) Individual-specific mean sequencing depths 

at targeted genome positions, modeled as the rate of a Poisson distribution. Only sites 

with simulated sequence depth ≥ 1 in both individuals can be considered in calculation 

of pairwise differences, thus modification of this parameter affects the number of sites 

where overlapping sequences enable an assessment to be made. (e) Individual-specific 

sequencing error rates, modeled as the rate at which the observed nucleotide is not 

correct, with the erroneous nucleotide chosen with equal probability from the three 

remaining possibilities. (f) Individual-specific rates of contamination by user-selected 

super-populations, simulated by randomly sampling alleles at a contamination rate c

from a pool with the allele frequencies of the contaminant super-population. 

Contamination by a specified number of individuals randomly chosen from the 

contaminant super-population is also implemented. (g) A heterozygosity down-

sampling parameter that randomly chooses SNPs for which to reduce the minor allele 

frequency in the pedigree population to zero, enabling simulation of pedigrees from 
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populations with mean heterozygosity lower than that of the simulation source 

population.  

Each individual-specific parameter for sequencing error rate, contamination rate, 

and mean sequencing depth can also be expressed as a range. In this case, during each 

pedigree replicate, the model generates a user-selected number of parameter replicates. 

For each parameter replicate, the simulated values of these parameters are randomly 

selected from uniform distribution within a range input by the user. In our explorations 

of uncertainty in sequencing error, five random parameter replicates were generated for 

each pedigree simulation (n = 1000), generating distributions containing a total of 5000 

replicates. 

Once genetic data are simulated for a given scenario, the model computes 

pairwise differences between individuals with particular relationships and reports 

genetic distance as the mean number of mismatches at the randomly selected panel of 

variant positions. The distributions of simulated genetic distances were used to assess 

power to discriminate between different coefficients of relationship r under various 

scenarios. As the simulated genetic distances could not necessarily be assumed to 

conform to normal distributions, we chose to estimate overlap between distributions of 

simulated genetic distance for each pair of relationships with the Bhattacharyya 

coefficient. The possible values of this coefficient exist in the range 0 to 1 and indicate 0 

to 100% overlap (Bhattacharyya 1947): 

��(�, �) = ������

�

���

, Eq. (1)



10

where v and s are the distributions under comparison n is a chosen number of bins, and 

vi and si are the number of samples falling within bin i. We chose a somewhat arbitrary 

number of uniform bins equal to the number of combined data points in the pair of 

distributions, divided by 10 (e.g. n = 2000/10 = 200). In these pairwise tests of 

relationship overlap, a cutoff value of BC ≤ 0.05 was used to determine significant 

separation of two relationships. For relationships with identical expected values of r, 

statistical testing and comparisons were performed conservatively on the relationship 

with the largest actual variance. 

Theoretical expectations 

The joint probability of genotype pairs at a diallelic locus within an outbred population 

are summarized by Slatkin (2008). Considering an ancient and a contaminating present-

day population, the joint probabilities of sampling genotype pairs (one from each 

population) depend on the ancient population allele frequency pA and the contaminating 

population allele frequency pC. Applying Hardy-Weinberg expectations, we demonstrate 

the derivation of a formula for E[ ] (E[M]),the expected value of the probability M of 

observing mismatching nucleotides between single sequences sampled from two 

samples from the same population—each contaminated at known rates c1 and c2 by a 

contaminating population and subject to sequencing error q (Eq. 9, Supplementary 

Materials & Methods). When q = 0 and c1 = c2 = 0, the mean expected value of pairwise 

genetic distance assessed between identical twins or between two samples generated 

from the same individual, reduces to =  (1 − ) (MS = pA (1 - pA)). Similarly, the 

expected value for parent–offspring and sibling–sibling relationships is 
�

�
 (3/2 MS). 

The expected value for grandparent–grandchild, avuncular (i.e. uncle–nephew), and 
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half-sibling relationships is 
�

�
 (7/4 MS), and between cousins it is 

��

�
 (15/8 MS). 

Finally, under these assumptions, the expected value of genetic pairwise distance 

assessed between unrelated individuals is 2�  (2MS). 

Direct observations of genetic distance from published genomic sequences 

Binary sequence Alignment Map (BAM) files from the G1K phase 3 data release were 

obtained from the G1K data repository (www.1000genomes.org/data), and likely PCR 

duplicate sequences were removed using the MarkDuplicates function implemented in 

Picard tools version 1.130 (http://broadinstitute.github.io/picard). BAM files from 

Lazaridis et al. (2013) and Haak et al. (2015) were obtained from the European 

Nucleotide Archive (accession numbers PRJEB6272 and PRJEB8448). We used 

MapDamage2.0 version 2.02 (Jónsson et al. 2013) to mitigate residual DNA damage by 

processing each BAM file using default settings. This software fits a position-specific 

aDNA damage model from Briggs et al. (2007) to aligned genomic sequences, 

recalibrating base quality scores so that they more accurately represent each base’s 

probability of being erroneous.  

For each pairwise comparison, SAMtools version 0.1.19 (Li et al. 2009) was used 

to convert aligned sequences to pileup format, excluding sequences with Phred-scaled 

mapping quality scores < 30 as well as bases quality scores < 30. The pileup file was 

passed to a custom Python script that calculated the mean number of pairwise 

differences observed at a provided panel of target genomic positions, without need for 

genotype calling, by randomly selecting one nucleotide from the observed nucleotides of 

each individual. In tabulating these counts, deletions and insertions in NGS sequences 

were removed from the pool of observations before random sampling. When running 
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the script in transition-filtration mode, transitions were removed, as were sites where 

an individual carried an allele unobserved in the called genotypes of G1K present-day 

human populations. Self-comparisons within a single individual further necessitate that 

at least 2 sequences must be observed at a given position. To mitigate possible biases in 

self-comparisons of low-coverage individuals, a randomly drawn sequence was never 

compared against itself. Replicates of direct observations of genetic distance, each 

generated by randomly sampling from available sequences, were used to determine a 

distribution of observations, enabling the calculation of a variance about the mean value.  

Determination of relatedness from direct observations of genetic distance 

Pedigree simulations were conducted to assist in determining the relatedness of 

individuals using direct observations of pairwise genetic distance from their aligned 

sequences. A pileup file containing all sequences was supplied to the model, and the 

calculation of genetic distance in both the simulated and observed data was carried out 

only at sites where sequences passed the same user-selected filters (possibly including 

base quality, sequence depth, transitions, allele frequency, etc.). This step enables 

calculation of genetic distance at precisely the same positions in both simulations and 

direct observations, generating distributions of genetic distance that were specific to the 

pairwise comparisons being conducted. Contamination was not parameterized in our 

simulations as the aDNA samples considered were all characterized by contamination 

rates < 2%. In order to reduce the impact of aDNA damage, in all analyses with ancient 

samples, sequences at a particular target site were excluded unless they matched an 

allele known from the G1K panel. 
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We assigned a most likely coefficient of relationship r to each BAM-based 

distribution of observed pairwise genetic distance by calculating the probability of 

making those observations given the simulated genetic distances for each relationship. 

For each simulated test relationship, we first conducted one-sample Kolmogorov-

Smirnov tests (Conover 1971), using a critical p-value of 0.01 to determine if simulation 

replicates could be approximated as a normal distribution. Although in theory skewness 

increases with more distant relatedness and none of these relationships should conform 

to true normal distributions (Hill & Weir 2011), in our tests a normal distribution was 

never rejected. Thus for convenience we proceeded to assign a relationship-specific z-

score to the mean of our direct observations by assuming it was drawn from a normal 

distribution with mean and standard deviation equal to the empirical mean and 

standard deviation of simulated genetic distances for each relationship. The most likely 

coefficient of relationship among those considered was identified by the smallest z-score 

(absolute value).  

We used odds ratios (ORs) to assess confidence in our choice of the most likely 

coefficient of relationship. Using normal densities as proxies for the density functions of 

the simulated genetic distances, the probability pObs of the mean BAM-based direct 

observation within each relationship was calculated as the one-tailed probability of 

making an observation further from the mean of that relationship’s probability 

distribution. Then, an OR was calculated as the odds of the most likely relationship 

(pObs,R1/(1-pObs,R1)) divided by the odds of the second-most likely relationship (pObs,R2/(1-

pObs,R2)). The most likely relationship was considered confidently determined if OR > 

100.  Otherwise, a new OR was calculated between the most likely relationship and the 

third-most likely relationship, and so on, until an OR > 100 was obtained.  
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Results 

Confirmation of theoretical expectations of pairwise genetic distance 

We performed 100 simulations of a simple pedigree (Figure 1) so that the genetic 

distance between differently related individuals could be characterized and compared. 

We investigated the following relationships between individuals who were assumed to 

be outbred: (A) unrelated, (B) parent–offspring, (C) siblings, (D) avuncular (e.g. uncle–

nephew), (E) grandparent–grandoffspring, (F) half-siblings, (G) first cousins, and (H) 

self. In a practical case described later, simulations were compared to real genome 

sequences, and a ninth relationship was examined. 

The simulations confirmed our theoretical expectations for the number of 

pairwise differences per site under scenarios with varying sequencing error rate (0% to 

10%), sample-specific mean sequencing depth (0.1X to 10.0X), and contamination rate 

by present-day humans (0% to 75%; Figure S1). Our simulations generally confirm 

theory and previous observations of non-equal variance of genetic distances between 

individuals whose relationship has the same expected value (Hill & Weir 2011; Speed & 

Balding 2014). For example, although sibling and parent–offspring relationships have 

equal expected values for the proportion of the genome IBD, replicates of the sibling 

relationship achieve a wider range of genetic distances. Despite their identical expected 

values, a higher variance was also observed in the grandparent–grandchild relationships 

in comparison with half-sibling or avuncular relationships.  

Effects of the number of target SNPs and their allele frequencies

One of our primary interests was to determine the number of SNP positions necessary to 

determine relatedness coefficients using SNP capture approaches. To this end, we 
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performed simulations assessing pairwise distances using randomly selected SNPs 

ranging in number from 3M to 3k. With the resulting genetic distances, we used the 

estimated overlap of each pair of seven test relationships to approximate the 

separability of the relationship pair. For a hypothetical genetic distance observed 

between relatives under the simulation parameters, this overlap estimates the 

probability that the observation could be incorrectly assigned to an overlapping 

coefficient of relationship rather than to the correct one, or that it could not be assigned 

confidently to either of the two values of r. The simulations confirm our expectation that 

assays with larger numbers of SNPs have more power to discriminate among close 

relationships (Figure S2 a-d). These tests show that whereas a panel of 3k randomly 

selected SNPs is adequate only for reliably discriminating (5% level, i.e. BC<5%) siblings 

from completely unrelated individuals or identical individuals from any other 

relationship, 3M randomly selected SNPs, sequenced to a depth of 10X, are capable of 

distinguishing all tested relatedness values except r = 0.25 from r = 0.125.  

A majority of human genetic variation exists at very low frequency within 

populations, and as such, selection of the SNP panel likely has important consequences 

for relationship determination. Rather than selecting SNPs randomly, assaying only 

variants at some minimum frequency should grant greater discriminatory power. To 

demonstrate, we replicated the previous simulations while requiring the randomly 

selected SNPs to have a minor allele frequency (MAF) ≥ 5% in the EUR super-population. 

Our simulations confirm that the power to discriminate among relationships is higher 

when assaying SNPs at higher frequencies in the population of interest (Figure S2 e-h).  

Effects of mean sequencing depth 
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To determine how our ability to discriminate between close relationships using genetic 

distance is influenced by mean sequencing depth, we performed simulations while 

varying the mean depth parameter from 10.00X to 0.05X (Figure 2). For our panel of 

300k SNPs, there is a strong loss of relatedness separability at depths lower than 0.5X. 

These simulations demonstrate that reduction of sequencing depth reduces the 

discriminatory power of pairwise genetic distance by effectively decreasing the number 

of overlapping sites that achieve the minimum sequence depth in both individuals under 

comparison. However, we show that r = 1.00 can be distinguished from all other tested 

values even down to 0.05X sequencing depth. 

Effects of sequencing error 

Our simulations demonstrate that error rates in sequence assessment (assignment of 

incorrect bases to DNA sequences) in the range of 0% to 10% have very little influence 

on the power to discriminate between close relationships when using a panel of 300k 

SNPs with MAF ≥ 5% (Figure S3a-d). Sequencing error increases the per-site genetic 

distance between individuals, but the effects were still quite small, with a slightly 

stronger influence on discrimination when using panels of 300k SNPs that were not 

filtered for a minimum MAF (Figure S3e-h). Even in the comparison of samples with 

vastly different error rates, sequencing error did not greatly change the power to 

discriminate among different values of r (Figure S4).

We also investigated how not knowing the exact value of the sequencing error 

parameter might impact power in relatedness discrimination. To capture this 

uncertainty effectively requires integration over the range of possible values of the error 

rate during simulation. In our simulations, small, realistic ranges of uncertainty produce 
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distribution overlaps on the order of those seen in simulation with realistic exact error 

rates around 0.1% (Figure S5). However, larger uncertainty (0 to 10%) in the error 

parameter yields distributions of genetic distance that overlap far more than in 

simulations with an exact error rate of 10%. Thus we conclude that for discriminating 

between possible values of r, to some degree certainty in the sequencing error 

parameter is more important than the relative value of the actual sequencing error rate 

(Figure S3, Figure S5). 

Effects of contamination by populations and individuals 

Next we performed simulations designed to demonstrate the effects of contamination of 

a sample by DNA from a foreign, present-day population. Our results show that sample 

contamination has a strong effect on the power of pairwise genetic distance to 

discriminate between possible relatedness coefficients (Figure 3a–d). As contamination 

approaches 100%, pairwise genetic distances between individuals of any relationship 

approach the mean genetic distance between unrelated individuals in the contaminant 

population. The major effect of increasing the contamination rate of all samples is to 

increase the genetic distances between related individuals and to decrease the 

separability of distributions (for several values of r). However, the effect was weak even 

at moderate levels of contamination. Indeed, assaying 300k sites above 5% frequency in 

EUR produces enough relative difference in genetic distance to discriminate at the 

0.01% level all but one pair of simulated values of r even in the presence of 50% 

contamination by a foreign population. Relatedness discrimination was also inversely 

related to the extent of contamination when samples had unequal rates of 
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contamination, and the effect scaled with the total fraction of contamination within the 

two samples (Figure S6a–c). 

Our derived theoretical expectations ignore relatedness in the contaminating 

population. In the most likely scenarios, a single individual (molecular biologist or 

archaeologist) would contaminate each sample, which might produce a very different 

signature of pairwise relatedness. We investigated this by performing simulations in 

which the reads from each ancient individual in the comparison are contaminated by the 

genotypes of a single, random contaminating individual from the AFR super-population. 

We observe that low rates of contamination by a single individual resemble equal rates 

of contamination by population allele frequencies (Figure 3e–g, Figure S6d–f). 

However, at very high rates of contamination (≥ 75%), contamination by a single 

individual further reduces the separability of distributions of genetic distance by 

skewing them toward shorter genetic distances. The underlying cause for this is that 

contamination by a single present-day individual increases the probability of sampling 

the same contaminant allele in the ancient individuals under comparison.

Confirmation of the method using aligned sequences 

To test our method on real genomic sequences, we used publicly available low-coverage 

aligned Illumina sequences published by the G1K. For example, we assessed all pairwise 

and self-comparisons in a subset of six individuals from the Tuscan (TSI) population. 

This subset contained a known pair of siblings and otherwise unrelated individuals. 

Mean sequence depth for the seven genomes ranged from 4X to 8X. Where overlapping 

sequence data permitted, we examined 77,818,345 sites known to harbor a SNP variant 

in present-day human populations. A mean of 58.3M SNP sites could be assessed in 
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these pairwise comparisons. Pairwise comparison of the sibling pair 

(NA20526/NA20792) yielded the expected value of approximately 150% of the within-

individual comparisons (Figure S7).  

To further validate observations of pairwise genetic distance within the Tuscan 

population, we conducted simulations of simple pedigrees using randomly selected EUR 

genomes and reproducing the observed sequence depths. The simulations show that the 

genetic distances observed directly from the G1K aligned sequence data fall within the 

distributions of genetic distance from simulations (Figure S8, Figure S9). In the 

majority of cases, ORs for relatedness r = 0 versus r = 0.125 were > 103.  ORs for r = 1 in 

simulated self-comparisons were very highly significant (ORs > 1029). 

Our method could discern the proper degree of relatedness in the known sibling 

relationship of individuals NA20526 and NA20792, assigning the observed genetic 

distance to a simulated distribution for r = 0.50 with a highly significant OR > 1013. The 

only comparison that could not be assigned a particular value of r with OR > 102 was 

that of NA20526/NA20511; the placement of this comparison within r = 0.00 could not 

be distinguished from the simulations of r = 0.125 (OR = 73).  

Applications to SNP capture in genomes from archaeological samples: Case 1

We obtained BAM files from Haak et al. (2015), which made available aligned sequences 

for numerous sets of individuals from the same archaeological site/horizon and 

sometimes dated to narrow time intervals (Table 1). Sequences from a panel of 380,000 

SNPs previously ascertained in present-day human populations were captured and 

enriched in these samples. Close relationships have been reported in the Haak et al. 

(2015) in some cases, although the exact relationships have not been determined. We 
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observed elevated A/G and C/T mismatches likely related to residual deamination from 

aDNA damage in aligned sequences for these ancient individuals, so we analyzed only 

known transversion SNPs. 

Initially we assessed genetic distances between individuals from the Esperstedt 

(ESP) site in Germany. These samples dated to ~2,500 BCE and consisted of four 

individuals sequenced to depths ranging from 0.5X to 4.0X at the target SNP sites and 

low estimated nuclear genome contamination rates in the range 0.3–3.5%. Using a 

minimum depth of two sequences per site, the number of genomic sites where pairwise 

comparisons could be assessed ranged from 3,000 to 49,000. The self-comparison and 

pairwise comparison values are consistent between different Esperstedt individuals, 

excepting ESP2/ESP29 and ESP3/ESP3 (Figure 4). While all other individuals appear 

unrelated, genetic distance alone allows us to predict a parent-offspring or sibling-

sibling relationship between ESP2 and ESP29. Haak et al. (2015) used genetic distances 

to report that these individuals “form a small group and appear to be genetically closely 

related,” but simulations are necessary to determine the precise degree of relatedness 

with high confidence. 

We performed simulations of simple pedigrees to compare distributions of 

genetic distance between individuals of different coefficients of relationship r with those 

directly observed from aligned sequences. In these simulations, sequencing error and 

present-day contamination were ignored because our previous simulations showed 

them to have only minor effects under realistic values of these parameters. Relatedness 

among the four Esperstedt individuals could often not be resolved beyond the level of 

unrelated or third-order relatives (e.g. first cousins), which was expected from our 

preliminary study given the number of SNPs available (Figure 5). A relationship with r = 
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0.50 between ESP2 and ESP29 was confirmed, and the assignment was highly significant 

with OR > 109. Self-comparison of individual ESP2 placed this individual outside the 

distribution of mean genetic distances for r = 1.00, possibly indicating extreme recent 

inbreeding in this individual’s ancestry. To investigate this possibility, we added an 

inbred individual (the offspring of siblings) to the pedigree (Figure S10). The self-

comparison of individual ESP3 was assigned to this inbred self-relationship distribution 

with a highly significant OR > 1013 over the outbred distribution for r = 1.00. 

Applications to SNP capture in genomes from archaeological samples: Case 2

Next we assessed relatedness in ancient remains from the Els Trocs cave site in Spain. 

These samples had direct dates ranging from 5,311 to 5,066 BCE and consisted of five 

individuals. Haak et al. (2015) noted one pair (Troc3/Troc4) to be “close relatives.” 

Mean sequence depth of target SNP sites was quite low for some individuals and ranged 

from 0.1X to 30.8X. These samples also had very low estimated nuclear genome 

contamination rates in the range 0.0–0.8%. Although genetic distances between most 

individual pairs were close to the theoretical value of 2MS for unrelated individuals 

(Figure S11), the number of overlapping sites achieving a minimum depth of two 

sequences was quite low, for many pairs at around 1,000 sites. Indeed, the Troc1/Troc4 

pair had only 420 overlapping sites. To maximize the number of available sites, we 

elected to examine pairwise genetic distance at sites with a minimum depth of one 

sequence, although this precluded all within-individual comparisons. This increased the 

number of overlapping sites to a mean number of 28,042, and mean values of pairwise 

genetic distances between most sample pairs were increased (Figure S11). 



22

Our initial simulations showed poor agreement with the observed genetic 

distances due to a strong bias toward higher values, resulting in all individuals being at 

least as related as first cousins (Figure S12). We calculated the mean error between the 

mean simulated genetic distance of unrelated individuals and the observed genetic 

distances of putatively unrelated individuals with approximately the same value for 

genetic distance. As we saw increased error in pairwise comparisons with less 

overlapping sequence, we calculated the mean error weighted by the number of 

overlapping sites assessed in each pairwise comparison. The mean weighted error was 

7.04%. This discrepancy is likely due to ascertainment bias in our SNP panel, which 

almost certainly includes sites harboring variants that were maintained at frequencies 

different in the ancient Els Trocs population than in present-day EUR populations. 

Because of this ascertainment bias, the simulations relied on a SNP panel with a higher 

rate of heterozygosity in present-day Europeans than in the population of interest. In 

this case, our 7.04% error rate actually gives us some measure of differentiation 

between the Els Trocs population and the EUR super-population at the overlapping 

sites. 

Thus we conducted additional simulations in which EUR allele frequencies were 

reduced to 0% at a randomly chosen subsample of 7.04% of target SNP positions and 

found these simulations agreed better with the observed genetic distances (Figure S13). 

These simulations facilitated confident assignment of the observed pairwise genetic 

distances to the r = 0.00 distribution in most relationships. Troc4 had the lowest mean 

sequence depth (0.12X) of the samples considered in this study, and as a result 

separability of r = 0.00 and r = 0.125 distributions was often low for this individual. 

However, the Troc3/Troc4 comparison was assigned to the r = 0.50 distribution with 
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high confidence (OR > 105), and Troc3/Troc7 were assigned to the r = 0.125 distribution 

with high confidence (OR > 103). For Troc4/Troc7, r = 0.125 is most likely, although 

neither the ORs for r = 0.125 versus r = 0.00 nor r = 0.25 were significant at the level of 

102.  

The coefficients of relationship assigned within this particular subset of Els Trocs 

samples make it possible to narrow down the possible pedigrees to those compatible 

with the available data. Troc3 was a male, Troc4 and Troc7 were females, and the three 

carried different mitogenome haplotypes (Table 1). Because they do not share 

mitogenome haplotypes, one can rule out that Troc4 was the mother of Troc3. For the 

same reason, Troc3 and Troc4 could not have been full siblings. Although r = 0.125 (a 

first-cousins relationship) is most likely for Troc3/Troc7 and Troc4/Troc7, these 

relationships are not compatible given that Troc3 and Troc4 were not siblings. If Troc3 

was the father of Troc4, then a first-cousins relationship between Troc3 and Troc7 

would have made Troc7 and Troc4 more distantly related, but not entirely unrelated, 

which is consistent with the entirety of the data (Figure S14).
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Discussion 

We set out to determine the feasibility of using pairwise genetic distance to characterize 

genetic relatedness from low-depth next-generation genome sequences. We have shown 

that while in some cases relatedness can be determined in the absence of population 

allele frequencies, estimates of allele frequencies allow for more precise determination 

of relatedness. For ancient human populations, however, estimated allele frequencies 

are not generally available. 

Implications for relatedness studies in ancient samples  

We find that while contamination from present-day sources reduces the power to 

discriminate relatedness among individuals sampled, sequencing error does not. 

However, sequencing error due to deamination (DNA damage, as in aDNA datasets) 

would be expected to increase the similarity of heavily damaged samples, albeit in a way 

that could be parameterized (e.g. Jónsson et al. 2013). We have also shown our method 

is able to estimate relatedness even for inbred individuals, as long as sequences from at 

least one known outbred individual is available to determine the ancient population’s 

‘true’ within-individual genetic distance. 

Our simulations demonstrate the importance of a wisely chosen SNP panel. A 

study that uses SNP loci with a higher frequency in a given test population would have 

more power to discriminate coefficients of relationship. This is seen in our analysis of 

sequences from Haak et al. (2015). Even with relatively low sequencing depth, this panel 

of only 300k SNPs was sufficient to determine most coefficients of relationship in two 

sets of samples. Although the SNP panel was compatible with the ca. 4,000-year old 

(Middle Neolithic) individuals from Esperstedt, Germany, ascertainment bias was 
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apparent in our application of this panel to the ca. 7,200-year old (Early Neolithic) 

samples from Els Trocs, Spain. Multiple major genetic turnovers occurred throughout 

Europe’s Neolithic period (8,000–7,000ya), which helps to explain the different 

magnitudes of divergence of Els Trocs and Esperstedt allele frequencies from the 

present-day populations used for simulation (Haak et al. 2015).  

Our pedigree simulations used present-day EUR genomes with down-sampled 

heterozygosity to reconcile the observations of genetic distance among the Els Trocs 

individuals with corresponding simulations. But in this there is an inherent assumption 

that certain individuals are unrelated. An equally promising alternative approach would 

be to calculate the average error (as the distance from the mean observed value to the 

mean of the simulated distribution) across all self-comparisons, but this would require 

limiting the analysis to sites with minimum depth of two sequences. Since it requires 

only the assumption that no individuals are inbred, this approach is preferable in most 

cases. However, when few sequences are available, as was the case for some Els Trocs 

individuals, an analysis of this type may not be possible without excluding certain 

individuals. Otherwise, increasing the number of sequenced individuals from ancient 

populations would help to identify individuals with unusual pairwise genetic distances. 

Until then, comparisons with the remains of individuals from sites nearby in time or 

space are advised. These additional individuals could be assumed to be from the same 

population, but not the same family.  

Potential applications 

Happily, even under the condition of considerable sequencing error and high 

contamination, pairwise sequence differences are powerful enough to discriminate 
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identical or unrelated biological samples within low-coverage genome sequences with a 

sufficient number of SNPs. This assumes the three major parameters of our model are 

relatively well characterized. The contamination rate can be estimated from haploid 

(mitochondrial and Y chromosome) sequences using simple approaches such as rates of 

heterozygosity and mismatch to the consensus sequence, but more complex, likelihood-

based estimators are often applied to the nuclear genome (Meyer et al. 2012). 

Estimation of sequencing error is more nuanced, although a profile of new Illumina 

platforms’ sequencing error has been characterized with a mean value of 0.18–0.30%, 

suggesting a relatively narrow range within these values for sequences from present-

day genomes (Ross et al. 2013). For aDNA data, damage models like mapDamage 

(Jónsson et al. 2013) can be used to either characterize the error rate contributed by 

DNA damage, or—as in our approach—simply to correct it before sequence analysis. 

In our work with SNPs identified in capture sequences from ancient humans, we 

found that determination of self-relatedness was possible even with low sequence 

coverage. This opens the possibility of high-throughput screening of mixed 

archaeological samples such as bone fragments in order to cobble together those 

fragments belonging to the same individual or to determine the minimum number of 

individuals represented. Our approach would be especially useful for sorting specimens 

heavily contaminated with genetic material from archaeological excavators, museum 

personnel, or other handlers.

This work also has implications for population genetic studies of archaeological 

human populations, as these studies should ideally take into account individual 

relatedness when calculating population genetic statistics. By identifying the degree of 

relatedness in ancient individuals already published and analyzed in a population 
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genomic context, we have demonstrated that this is a possible outcome for future 

population genomic studies. This point is even more relevant in light of our observations 

of inbreeding within these ancient populations. Following on the recent report of 

multiple Neanderthal exomes obtained through targeted sequence capture (Castellano

et al. 2014), we suggest that our method could be applied to low-coverage sequences 

from remains of Neanderthal individuals with a close association in both time and space. 

Relatedness determination within samples such as these, which could represent families 

or clan groups, would extend the potential for fascinating insights into ancient social and 

family structures of our closest relatives. 

Lastly, our framework may one be useful in forensic genomic scenarios—as in 

the aftermath of a disaster (Brenner & Weir 2003)—where genomic sequences from 

degraded and/or mixed samples from the same site could be quickly screened to 

determine if they are genetically identical, or to test for relatedness to potential family 

members from whom corresponding genomic sequence data has been obtained.  

Future directions 

Agreement of our simulations with observed genetic distances depends on the degree of 

differentiation between the observed population and the population(s) used for 

simulations, which complicates comparison of pedigree simulations to populations with 

unknown allele frequency spectra. Thus future work to simulate genetic distances 

within an unknown (ancient) population should attempt to estimate its allele frequency 

spectrum so that appropriate sites can be targeted.  

As it assesses genetic distance only where sequences overlap a panel of sites 

known to harbor variants at high frequency in the population of interest, our method 
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does not use sequences off these targets that may still be informative about pairwise 

relatedness. Assessment of pairwise genetic distance at all sites with overlapping 

sequences would be a desirable alternative, as this would not rely on assumed allele 

frequencies and would use all available genetic information, which is scarce in low-

depth sequencing studies. These genetic distances could then be simulated using 

estimates of contamination, sequencing error, and heterozygosity. But at ~0.1%, the 

Illumina sequencing error rate, which varies between samples and sequencing runs, is 

comparable to the per-base heterozygosity of the human genome (Nakamura et al. 2011; 

Schirmer et al. 2015). Thus if all overlapping sites are assessed in pairwise comparisons, 

sequencing errors threaten to eclipse true genetic differences between individuals. For 

our purposes, the use of all genomic positions where there is overlapping sequence data 

would be possible if an accurate model of sequencing error were used to parameterize 

the sequencing error rate. 

Other recent work (Korneliussen & Moltke 2015; Lipatov et al. 2015) also 

estimates relatedness from low-coverage sequences, building on methods implemented 

in PLINK (Purcell et al. 2007) and related software, but with the inclusion of genotype 

likelihoods based on per-base sequencing error probabilities. The simulation results are 

promising in that these methods, which rely on allele frequencies estimated in a known 

population, enable more accurate determination of relatedness than previous methods 

that utilize called genotypes. For Lipatov et al. (2015), this was true even with 

population divergence up to FST=0.1 from assumed allele frequencies. However, the use 

of genotype likelihoods limits these types of analysis to individuals sequenced to mean 

depth ≥ 2X, and Lipatov et al. (2015) report that their method performs poorly with 

admixed and inbred individuals. Methods of this kind, though, do have added benefits in 
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that they are able to distinguish parent-offspring and sibling-sibling relationships, which 

typically cannot be achieved using only genetic distance. Thus while our method 

accounts for sample contamination and is applicable to any overlapping sequencing data 

regardless of depth, the method of Lipatov et al. (2015) would likely be superior for 

relatedness studies with negligible present-day human contamination and in which the 

study population’s allele frequencies are not strongly divergent from reference 

populations.
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Tables 

Table 1. Provenance of Haak et al. (2015) archaeological samples utilized in this study. 
ETS = Els Trocs, Spain. EG = Esperstedt, Germany. 

Individual 
ID 

Alternate 
ID 

Sampling 
location 

Estimated 
nuclear 
genome 
contam. 
rate (%) 

Date  
(cal BCE) Sex

Mean seq. 
depth at 
targeted 

autosomal 
SNP sites 

(X) 
mtDNA 

haplotype
Y 

haplotype

Troc1 I0409 ETS 0.0 5311-5218 F 0.80 J1c3 

Troc3 I0410 ETS 0.8 5178-5066 M 3.47 pre-T2c1d2 R1b1 

Troc4 I0411 ETS 0.4 5177-5068 F 0.12 K1a2a F* 

Troc5 I0412 ETS 0.6 5310-5206 M 30.82 N1a1a1 12a1b1 

Troc7 I0413 ETS 0.0 5303-5204 F 3.49 V 

ESP2 I0114 EG 0.3 2131-1979 M 1.14 I3a I2a2 

ESP3 I0115 EG 2.8 1931-1780 F 0.55 U5a1 

ESP4 I0116 EG 3.5 2118-1961 M 4.15 W3a1 I2c2 

ESP29 I0117 EG 2.6 2199-2064 F 2.32 I3a 
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Figures 

Figure 1. Diagram of the family pedigree used for simulations and quantification of 
genetic distance between various relationships. Solid connecting lines indicate haploid 
parental contributions to offspring. Dashed connecting lines indicate the following 
genetic relationships simulated throughout the study: A) Unrelated. B) Parent–offspring. 
C) Siblings. D) Avuncular (uncle–nephew). E) Grandparent–grandoffspring. F) Half-
siblings. G) First cousins. H) Self (or equivalently, identical twins). All individuals are 
unrelated unless otherwise indicated.
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Figure 2. Pedigree simulations demonstrate the influence of mean sequence depth on 
power to discriminate relatedness using pairwise distances. Simulations were initialized 
with random, unrelated EUR individuals and were carried out under the following 
parameters: 300k random SNP sites with EUR allele frequency ≥ 5%, contamination rate 
= 0%, sequencing error rate = 0.0%, mean sequence depth ranging from 10X to 0.01X. 
GP–GC, grandparent-grandchild relationship. Heatmaps below each violin plot illustrate 
overlap (BC, Bhattacharyya coefficient) in simulations of each relationship pair. Green, 
BC < 1%. Yellow, BC 1–5%. Red, BC > 5%. T, twins.
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Figure 3. Pedigree simulations demonstrate the influence of sample contamination by a 
foreign population on power to discriminate relatedness using pairwise distances. 
Simulations were initialized with random, unrelated EUR individuals and were carried 
out under the following parameters: 300k random SNP sites with EUR allele frequency ≥ 
5%, mean sequence depth = 10X, sequencing error = 0%. GP–GC, grandparent-
grandchild relationship. Heatmaps below each violin plot illustrate overlap (BC, 
Bhattacharyya coefficient) in simulations of each relationship pair. Green, BC < 1%. 
Yellow, BC 1–5%. Red, BC > 5%. c1 and c2 describe the contamination rates for each 
individual in the pairwise comparison. In panel a, simulations were performed without 
contamination. In panels b – d, each sample’s contaminant sequences were drawn from 
the allele frequencies of the AFR super-population. In panels e – g, each sample’s 
contaminant sequences were drawn from a single, unique AFR individual. 
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Figure 4. Pairwise genetic distances observed between ancient human individuals from 
Esperstedt, Germany dated to 2,199-1,780 cal BCE. A mean of 19,586 target genomic 
positions with overlapping sequence data in both individuals were examined in pairwise 
comparisons. Whiskers indicate ± 2 SD (standard deviation) around the mean of 20 
replicates of pairwise genetic distance generated by randomly sampling from available 
sequences. Positions were included in pairwise comparisons only if they had a minimum 
sequence depth of 2 in both individuals. Sequences were excluded if they did not 
support known transversion alleles.  indicates the mean of self-comparisons of the 
three putatively outbred individuals ESP2, ESP29, and ESP4. 
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Figure 5. Results of pedigree simulations corresponding to pairwise comparison of 
aligned sequence data from ancient human individuals excavated from an archaeological 
site in Esperstedt, Germany. The horizontal black lines indicate the mean (±SD) of 100 
replicate observations of genetic distance generated by randomly sampling from 
available aligned sequences. Simulations were initialized with random, unrelated EUR 
individuals and were carried out under the following parameters: transversion SNP 
positions passing depth and quality filters including a minimum depth of 2 in aligned 
sequences in both individuals, sequencing error = 0%, contamination rate = 0%. GP–GC, 
grandparent-grandchild relationship. OR, odds ratio against second most likely 
coefficient of relationship. a, r = 0.00 or r = 0.125, OR > 103. b, r = 0.00 or r = 0.125, OR > 
102. c) r = 0.50, OR > 109. d, r = 0.00 or r = 0.125, OR > 104. e, r = 0.00, OR > 104. f, r = 
0.00, OR > 102. g, r = 1.00, OR > 1040. h, r = 1.00, OR > 1033. i, r = 1.00, OR > 1037. j, Self-
related (inbred offspring of siblings), OR > 1013. 



Supplementary Materials & Methods 

Theoretical expectations 

At a diallelic locus with alleles A and a, the joint probability of genotype pairs within an 

outbred population depend on p, the frequency of allele a, �, the probability that exactly 

one allele is inherited IBD, and �, the probability that exactly two alleles are inherited 

IBD.  Following from Slatkin (2008) and previous work, these are:  

Pr(AA, AA) = (1 − θ − γ)�� + θ�� + γ��)

Pr(AA, Aa) = Pr(Aa, AA) = (1 − θ − γ)2��(1 − �) + θ��(1 − �)

Pr(AA, aa) = Pr(aa, AA) = (1 − θ − γ)��(1 − �)�

Pr(Aa, Aa) = (1 − θ − γ)4��(1 − �)� + θ�(1 − �) + γ2�(1 − �)

Pr(Aa, aa) = Pr(aa, Aa) = (1 − θ − γ)2�(1 − �)� + θ�(1 − �)�

Pr(aa, aa) = (1 − θ − γ)(1− �)� + θ(1 − �)� + γ(1− �)�

Eq. (2)

At a diallelic locus with alleles A and a, considering an ancient and a contaminating 

present-day population, the joint probabilities of sampling genotype pairs (one from 

each population) depend on the ancient population allele frequency pA and the 

contaminating population allele frequency pC. Thus, from Hardy-Weinberg expectations 

we have: 

Pr(AA, AA) = ��
���

�

Pr(AA, Aa) = 2��
�p�(1 − p�) 

Pr(AA, aa) = ��
�(1 − p�)�

Pr(Aa, AA) = 2p�(1 − p�)��
�

Pr(Aa, Aa) = 4p�(1 − p�)p�(1− p�)

Eq. (3)
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Pr(Aa, aa) = 2p�(1− p�)(1 − p�)�

Pr(aa, AA) = (1 − p�)���
�

Pr(aa, Aa) = 2(1 − p�)�p�(1 − p�)

Pr(aa, aa) = (1 − p�)�(1 − p�)�

Next we consider the probability of observing a mismatch when randomly drawing a 

single sequence from each of two diploid individuals in a pairwise comparison. At a 

single site, the probability M of observing mismatching nucleotides drawn from 

correctly mapped sequences of each individual depends only on the true genotypes and 

the sequencing error rate � (equivalent to the probability of drawing an erroneous 

nucleotide), which here we assume to be equal for both individuals. For example, if both 

individuals have the AA genotype, the probability of observing mismatching alleles is 

the joint probability of observing the true allele of each individual multiplied by the 

probability of the observed alleles being different, summed over all four possible states 

of correctness: 

���,�� = �(1 − �)(1) + (1 − �)�(1) + ��(2/3) + (1 − �)(1− �)(0) Eq. (4)

It follows from this reasoning that the mismatch probabilities for all joint genotypes are: 

���,�� = ���,�� =
�

�
�(3 − 2�)

���,�� = ���,�� = ���,�� =
�

��
(9 + 12� − 8��)

���,�� = ���,�� =
�

�
(9 − 6� + 4��)

Eq. (5)
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���,�� = ���,�� =
�

��
(9 + 12� − 8��)

Thus the expected value of M observed when comparing single sequences sampled from 

two individuals from ancient and contaminating populations is obtained by multiplying 

each joint genotype frequency (Eq. 3) by its corresponding mismatch probability (Eq. 

5), obtaining: 

E��[�] =
�

�
[��(3 − 4�)� − ��(−1 + 2 ��)(3 – 4�)� + (18� − 12��)] Eq. (6)

It follows that the expected value of M observed when comparing two sequences both 

sampled from a large contaminating population is given by:  

E��[�] =
�

�
[��(3 − 4�)� − ��(−1 + 2 ��)(3− 4�)� + (18� − 12��)] Eq. (7)

Similarly, the expected value of M observed when comparing two putatively related 

individuals from the ancient population is derived from Eqns. (2) and (5), depends on �, 

�, q, and pA, and is given by: 

E��[�] =
�

��
[36� − 24�� − p�(3− 4�)�(−4 + 2 γ + θ) + p�

�(3 −

4�)�(−4 + 2 γ + θ)]

Eq. (8)

Finally, we obtain the expected value of M observed between single sequences sampled 

from two genomic datasets from the same population—each contaminated at known 

rates c1 and c2 by a contaminating population—by multiplying the independent 
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probability c of sampling a contaminated sequence by the weight (expected value of M) 

of each scenario: 

E[�] = (1 − ��)(1− ��)E��[�] + ��(1− ��)E��[�]

+ (1 − ��)��E��[�] + ����E��[�]
Eq. (9)

In a pairwise comparison of aligned genomic sequences from two individuals, the 

average number of expected pairwise differences per site ��  is obtained by calculating 

the sum of this value divided by the number of assessed overlapping sites N: 

�� = �
�

�
�∑ E[�]�

�
��� Eq. (10)

When q = 0 and c1 = c2 = 0, the mean expected value of pairwise genetic distance 

assessed between identical twins, between two samples generated from the same 

individual, or within the same individual, reduces to �� =  �� (1 − ��). Similarly, the 

expected value for parent–offspring and sibling–sibling relationships is 
�

�
��. The 

expected value for grandparent–grandoffspring and uncle–nephew relationships is 
�

�
��, 

and between cousins it is 
��

�
�� . Finally, under these assumptions, the expected value of 

genetic pairwise distance assessed between unrelated individuals is 2���. 
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Supplementary Figures 

Figure S1. Theoretical expectations of pairwise genetic distance between relatives are 
confirmed by pedigree simulations (n = 100) under various scenarios of contamination, 
sequence depth, and sequencing error. Open circles indicate the theoretically expected 
mean value of pairwise genetic distance of each replicate for each simulated 
relationship (blue = unrelated, pink = first cousins, red = grandparent–grandoffspring 
and avuncular, purple = siblings and parent–offspring, green = self-related). The height 
of the black box within each violin signifies the interquartile range of all simulation 
replicates around their mean. Box whiskers extend to 1.5 times the interquartile range. 
Simulations were initialized with random, unrelated EUR individuals and carried out 
under the following parameters: 300k random SNP sites with EUR allele frequency ≥ 
5%, contamination by AFR allele frequencies. GP–GC, grandparent-grandchild 
relationship. a, mean sequence depth = 10X, sequencing error = 0%, c1 = c2 = 0%. b, 
mean sequence depth = 0.1X, sequencing error = 0%, c1 = c2 = 0%. c, mean sequence 
depth = 10X, sequencing error = 0.1%, c1 = c2 = 0%. d, mean sequence depth = 10X, 
sequencing error = 0%, c1 = 5%, c2 = 50%. 
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Figure S2. Pedigree simulations demonstrate the influence of the number of targeted 
SNP loci on power to discriminate relatedness using pairwise distances. Violin plots 
represent the distribution of pairwise differences per site in 1000 replicates of each 
analyzed relationship. The height of the black box within each violin signifies the 
interquartile range of all simulation replicates around their mean. Box whiskers extend 
to 1.5 times the interquartile range. GP–GC, grandparent-grandchild relationship. 
Heatmaps below each violin plot illustrate overlap (BC, Bhattacharyya coefficient) in 
simulations of each relationship pair. Green, BC < 1%. Yellow, BC 1–5%. Red, BC > 5%. 
Simulations were initialized with random, unrelated EUR individuals and were carried 
out under the following parameters: mean sequence depth = 10X, sequencing error = 
0%, contamination rate = 0%, number of SNPs ranging from 3M to 3k. Sites were 
retained according to the European minor allele frequency p: a – d, p ≥ 0%. e – h, p ≥ 
5%. T, twins. 
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Figure S3. Pedigree simulations demonstrate the minor influence of sequencing error 
on relationship discrimination using pairwise distances. Simulations were initialized 
with random, unrelated EUR individuals and were carried out under the following 
parameters: 300k random SNP sites, 0% contamination rate, 10.0X mean sequence 
depth, sequencing error rate ranging from 0.0% to 10.0%. GP–GC, grandparent-
grandchild relationship. Heatmaps below each violin plot illustrate overlap (BC, 
Bhattacharyya coefficient) in simulations of each relationship pair. Green, BC < 1%. 
Yellow, BC 1–5%. Red, BC > 5%. a–d, EUR allele frequency p ≥ 5%. a–d, EUR allele 
frequency p ≥ 0% (no filtering of allele frequency).  
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Figure S4. Pedigree simulations demonstrate only a minor influence of unequal rates of 
sequencing error on relationship discrimination using pairwise distances. Simulations 
were performed with random EUR individuals from under the following parameters: 
300k random SNP sites with EUR allele frequency ≥ 5%, mean sequence depth = 10X, 
sequencing error ranging from 0% to 10%. GP–GC, grandparent-grandchild 
relationship. Heatmaps below each violin plot illustrate overlap (BC, Bhattacharyya 
coefficient) in simulations of each relationship pair. Green, BC < 1%. Yellow, BC 1–5%. 
Red, BC > 5%. �� and �� indicate error rates in sequences from the two  individuals 
under comparison. 
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Figure S5. Pedigree simulations demonstrate the influence of uncertainty in the 
sequencing error parameter on relationship discrimination using pairwise distances. 
Simulations were performed with random EUR individuals from under the following 
parameters: 300k random SNP sites with EUR allele frequency ≥ 5%, mean sequence 
depth = 10X, sequencing error ranging from 0% to 10%. GP–GC, grandparent-
grandchild relationship. Heatmaps below each violin plot illustrate overlap (BC, 
Bhattacharyya coefficient) in simulations of each relationship pair. Green, BC < 1%. 
Yellow, BC 1–5%. Red, BC > 5%. � indicates the error rate in sequences from both 
individuals under comparison.
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Figure S6. Pedigree simulations demonstrate the influence of unequal rates of sample 
contamination by a foreign population on relationship discrimination using pairwise 
distances. Simulations were performed with random EUR individuals from under the 
following parameters: 300k random SNP sites with EUR allele frequency ≥ 5%, mean 
sequence depth = 10X, sequencing error = 0%. GP–GC, grandparent-grandchild 
relationship. Heatmaps below each violin plot illustrate overlap (BC, Bhattacharyya 
coefficient) in simulations of each relationship pair. Green, BC < 1%. Yellow, BC 1–5%. 
Red, BC > 5%. In panels a-c, contaminant sequences were drawn from AFR allele 
frequencies. In panels d-f, each sample’s contaminant sequences were drawn from a 
single, unique AFR individual. �� and �� indicate contamination rates in sequences from 
the two individuals under comparison.  
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Figure S7. Pairwise genetic distances observed between individuals from the Tuscan 
(TSI) population. Error bars indicate ± 2 SD (standard deviation) around the mean from 
20 replicates generated by randomly sampling from available sequences. Positions were 
considered in a pairwise comparison only if they had a minimum sequence depth of 2 in 
both individuals. * indicates the known sibling relationship between individuals 
NA20526 and NA20792.
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Figure S8. Results of pedigree simulations corresponding to pairwise comparison of 
aligned sequence data from the Tuscan population. Violin plots represent the 
distribution of pairwise differences per site in 100 replicates of each analyzed 
relationship. Simulations were performed with random EUR individuals under the 
following parameters: SNP positions passing depth and quality filters including a 
minimum sequence depth of 2 in aligned sequence data from each pairwise comparison, 
0% sequencing error, 0%contamination rate. GP–GC, grandparent-grandchild 
relationship. OR, odds ratio against second most likely coefficient of relationship. a, 
NA20792 vs. NA20509 (r = 0, OR > 109). b, NA20792 vs. NA20510 (r = 0, OR > 104). c, 
NA20792 vs. NA20511 (r = 0, OR > 103). d, NA20792 vs. NA20815 (r = 0, OR > 103). e, 
NA20509 vs. NA20510 (r = 0 or 0.125, OR > 105). f, NA20509 vs. NA20511 (r = 0, OR > 
103). g, NA20510 vs. NA20511 (r = 0 or 0.125, OR > 104). h, NA20815 vs. NA20509 (r = 
0, OR > 104). i, NA20815 vs. NA20510 (r = 0 or 0.125, OR > 105). j, NA20815 vs. 
NA20511 (r = 0 or 0.125, OR > 105). k, NA20526 vs. NA20509 (r = 0 or 0.125, OR > 105). 
l, NA20526 vs. NA20510 (r = 0 or 0.125, OR > 104). m, NA20526 vs. NA20511 (r = 0 or 
0.125, OR > 106). n, NA20526 vs. NA20792 (r = 0.50, OR > 1010). o, NA20526 vs. 
NA20815 (r = 0 or 0.125, OR > 107). 
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Figure S9. Results of pedigree simulations corresponding to self-comparison of aligned 
sequence data from Tuscan individuals. Violin plots represent the distribution of 
pairwise differences per site in 100 replicates of each analyzed relationship. 
Simulations were performed with random EUR individuals under the following 
parameters: SNP positions passing depth and quality filters including a minimum 
sequence depth of 2 in aligned sequence data from each pairwise comparison, 0% 
sequencing error, 0% contamination rate. GP–GC, grandparent-grandchild relationship. 
OR, odds ratio against second most likely coefficient of relationship. a, NA20792 vs. 
NA20792 (r = 1, OR > 1023). b, NA20509 vs. NA20509 (r = 1, OR > 1017). c, NA20510 vs. 
NA20510 (r = 1, OR > 1014). d, NA20511 vs. NA20511 (r = 1, OR > 1018). e, NA20815 vs. 
NA20815 (r = 1, OR > 1012). f, NA20526 vs. NA20526 (r = 1, OR > 1019). 
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Figure S10. Diagram of the family pedigree used for simulations including an inbred 
individual that is offspring of siblings. Arrows indicate haploid parental contributions to 
offspring. The dashed line indicates the relationship of an inbred individual to itself. All 
individuals are unrelated unless otherwise indicated.  
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Figure S11. Pairwise genetic distances observed between ancient human individuals 
from the Els Trocs cave site in Spain. Samples were directly dated 5,311 to 5,066 cal 
BCE. Whiskers indicate ± 2 SD around the mean of 100 replicates generated by 
randomly sampling from available sequences. Sequences were considered only if they 
supported known transversion alleles. A mean of 22,699 target genomic positions with 
sequence depths ≥ 2 in both individuals were examined, although overlapping sites 
were as few as 420 in one case (Troc1 vs. Troc4). When targeting genomic positions 
with sequence depths ≥ 1 in both individuals, a mean of 28,042 positions passed filters, 
and the smallest number of overlapping sites assessed was 3,467 (Troc1 vs. Troc4). ��

indicates the mean of within-individual comparisons from the four putatively outbred 
individuals Troc1, Troc3, Troc5, and Troc7. 
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Figure S12. Results of pedigree simulations (without heterozygosity down-sampling) 
corresponding to pairwise comparison of aligned sequence data from ancient human 
individuals from the Els Trocs cave site in Spain. Violin plots represent the distribution 
of pairwise differences per site in 20 replicates of each analyzed relationship. 
Simulations were performed with random EUR individuals under the following 
parameters: transversion SNP positions passing depth and quality filters including a 
minimum sequence depth of 1 in aligned sequence data from each pairwise comparison, 
sequencing error = 0%, contamination rate = 0%. GP–GC, grandparent-grandchild 
relationship. a, Troc1 vs. Troc3. b, Troc1 vs. Troc4. c, Troc1 vs. Troc5. d, Troc1 vs. Troc7. 
e, Troc3 vs. Troc4. f, Troc3 vs. Troc5. g, Troc3 vs. Troc7. h, Troc4 vs. Troc5. i, Troc4 vs. 
Troc7. j, Troc5 vs. Troc7. 
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Figure S13. Results of pedigree simulations (with heterozygosity down-sampling) 
corresponding to pairwise comparison of aligned sequence data from archaeological 
human remains excavated from the Els Trocs cave site in Spain. The horizontal black 
lines indicate the mean (±SD) of 20 replicate observations of genetic distance generated 
by randomly sampling from available aligned sequence data. Simulations were 
initialized with random, unrelated EUR individuals and were carried out under the 
following parameters: transversion SNP positions passing depth and quality filters 
including a minimum sequence depth of 1 in aligned sequence data from each pairwise 
comparison, sequencing error = 0%, contamination rate = 0%, heterozygosity down-
sampling rate = 7.04%. GP–GC, grandparent-grandchild relationship. OR, odds ratio 
against second most likely coefficient of relationship. a, r = 0.00, OR > 102 . b, r = 0.00, 
OR > 104. c, r = 0.00, OR > 1010. d, r = 0.00, OR > 105. e, r = 0.50, OR > 106. f, r = 0.00, OR > 
103. g, r = 0.125, OR > 104. h, r = 0.00, OR > 102. i, r = 0.00 or r = 0.125 , OR > 102. j, r = 
0.00, OR > 105. 
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Figure S14. Possible relationship of three individuals from Els Trocs, Spain cave site. 
Squares represent males and circles represent females. Diamonds represent individuals 
of unknown sex. The available information leads to the most parsimonious pedigree in 
which Troc3 was the father of Troc4, Troc7 was the first cousin of Troc3, and Troc7 was 
the first cousin once removed of Troc4. However, the dashed line indicates that the very 
low number of overlapping nucleotide positions between Troc7 and Troc3 provides less 
confidence in Troc7’s position in the pedigree.  


