
Layer by Layer – Combining Monads

Fredrik Dahlqvist, Louis Parlant, and Alexandra Silva?

University College London

Abstract. We develop a modular method to build algebraic structures.
Our approach is categorical: we describe the layers of our construct as
monads, and combine them using distributive laws.
Finding such laws is known to be difficult and our method identifies
precise sufficient conditions for two monads to distribute. We either (i)
concretely build a distributive law which then provides a monad structure
to the composition of layers, or (ii) pinpoint the algebraic obstacles to
the existence of a distributive law and suggest a weakening of one layer
that ensures distributivity.
This method can be applied to a step-by-step construction of a program-
ming language. Our running example will involve three layers: a basic
imperative language enriched first by adding non-determinism and then
probabilistic choice. The first extension works seamlessly, but the sec-
ond encounters an obstacle, resulting in an ‘approximate’ language very
similar to the probabilistic network specification language ProbNetKAT.

1 Introduction

The practical objective of this paper is to provide a systematic and modular
understanding of the design of recent programming languages such as NetKAT [9]
and ProbNetKAT [8,28] by re-interpreting their syntax as a layering of monads.
However, in order to solve this problem, we develop a very general technique for
building distributive laws between monads whose applicability goes far beyond
understanding the design of languages in the NetKAT family. Indeed, the combi-
nation of monads has been an important area of research in theoretical computer
science ever since Moggi developed a systematic understanding of computational
effects as monads in [25]. In this paradigm – further developed by Plotkin, Power
and others in e.g. [26,4] – the question of how to combine computational effects
can be treated systematically by studying the possible ways of combining monads.
This work can also be understood as a contribution to this area of research.

Combining effects is in general a non-trivial issue, but diverse methods have
been studied in the literature. A monad transformer, as described in [4], is a way
to enrich any theory with a specific effect. These transformers allow a step-by-step
construction of computational structures, later exploited by Hudak et al. [21,20].
In [12], Hyland, Plotkin and Power systematized the study of effect combinations

? This work was partially supported by ERC grant ProfoundNet.

2

by introducing two canonical constructions for combining monads, which in
some sense lie at the extreme ends of the collection of possible combination
procedures. At one end of the spectrum they define the sum of monads which
consists in the juxtaposition of both theories with no interaction whatsoever
between computational effects. At the other end of the spectrum they define the
tensor of two monads where both theories are maximally interacting in the sense
that “each operator of one theory commutes with each operation of the other”
([12]). In [11] they combine exceptions, side-effects, interactive input/output,
non-determinism and continuations using these operations.

In some situations neither the sum nor the tensor of monads is the appropriate
construction, and some intermediate level of interaction is required. From the
perspective of understanding the design of recent programming languages which
use layers of non-determinism and probabilities (e.g. ProbNetKAT), there are
two reasons to consider combinations other than the sum or the tensor. First,
there is the unavoidable mathematical obstacle which arises when combining
sequential composition with non-deterministic choice (see the simple example
below), two essential features of languages in the NetKAT family. When combining
two monoid operations with the tensor construction, one enforces the equation
(p;q) + (r;s) = (p + r);(q + s) which means, by the Eckmann-Hilton argument,
that the two operations collapse into a single commutative operation; clearly not
the intended construction. Secondly, and much more importantly, the intended
semantics of a language may force us to consider specific and limited interactions
between its operations. This is the case for languages in the NetKAT family,
where the intended trace semantics suggests distributive laws between operations,
for instance that sequential composition distributes over non-deterministic choice
(but not the converse). For this reason, the focus of this paper will be to explicitly
construct distributive laws between monads.

It is worth noting that existence of distributive laws is a subtle question and
having automatic tools to derive these is crucial in avoiding mistakes. As a simple
example in which several mistakes have appeared in the literature, consider
the composition of the powerset monad P with itself. Distributive laws of P

over P were proposed in 1993 by King [15] and in 2007 [23], with a subsequent
correction of the latter result by Manes and Mulry themselves in a follow-up
paper. In 2015, Klin and Rot made a similar claim [16], but recently Klin and
Salamanca have in fact showed that there is no distributive law of P over itself
and explain carefully why all the mistakes in the previous results were so subtle
and hard to spot [17]. This example shows that this question is very technical
and sometimes counter-intuitive. Our general and modular approach provides a
fine-grained method for determining (a) if a monad combination by distributive
law is possible, (b) if it is not possible, exactly which features are broken by the
extension and (c) suggests a way to fix the composition by modifying one of our
monads. In other words, this enables informed design choices on which features
we may accept to lose in order to achieve greater expressive power in a language
through monad composition.

3

The original motivation for this work is very concrete and came from trying
to understand the design of ProbNetKAT, a recently introduced programming
language with non-determinism and probabilities [8,28]. The non-existence of
a distributive law between the powerset monad and the distribution monad,
first proved by Varacca [30] and discussed recently in [5], is a well known prob-
lem in semantics. As we will show, our method enables us to modularly build
ProbNetKAT based on the composition of several monads capturing the desired
algebraic features. The method derives automatically which equations have to be
dropped when adding the probabilistic layer providing a principled justification
to the work initially presented in [8,28].

A simple example. Let us consider a set P of atomic programs, and build
a ‘minimal’ programming language as follows. Since sequential composition is
essential to any imperative language we start by defining the syntax as:

p ::= skip | p ; p | a ∈ P (1)

and ask that the following programs be identified:

p ; skip = p = skip ; p and p ; (q ; r) = (p ; q) ; r (2)

The language defined by the operations of (15) and the equations of (16) can
equally be described as the application of the free monoid monad (−)∗ to the
set of atomic programs P. If we assign a semantics to each basic program P,
the semantics of the extended language can be defined as finite sequences (or
traces) of the basic semantics. In a next step, we might want to enrich this basic
language by adding a non-deterministic choice operation + and the constant
program abort, satisfying the equations:

abort+p = p = p+abort p+p = p p+q = q+p p+(q+r) = (p+q)+r

(3)
The signature (abort,+) and the axioms (17) define join-semilattices, and the
monad building free semilattices is the finitary powerset monad P. To build
our language in a modular fashion we thus want to apply P on top of our
previous construction and consider the programming language where the syntax
and semantics arise from P(P∗). For this purpose we combine both monads to
construct a new monad P(−∗) by building a distributive law (−)∗P → P(−)∗.
As explained above, this approach is semantically justified by the intended trace
semantics of the language, and will ensure that operations from the inner layer
distribute over the outer ones, i.e.

p;(q + r) = p;q + p;r (q + r);p = q;p + r;p p;abort = abort;p = abort

(4)
Our method proves and relies on the following theorem: if P preserves the
structure of (−)∗-algebra defined by (15)-(16), then the composition P(−∗) has
a monad structure provided by the corresponding distributive law. Applying this
theorem to our running example, the first step is to lift the signature (15), in
other words to define new canonical interpretations in P(P∗) for ; and skip. Once

4

this lifting is achieved, the equations in (16), arising from the inner layer, can be
interpreted in P(−∗). We need to check if they still hold: is the new interpretation
of ; still associative? To answer this question, our method makes use of categorical
diagrams to obtain precise conditions on our monadic constructs. Furthermore,
in the case where equations fail to hold, we provide a way to identify exactly
what stands in the way of monad composition. We can then offer tailor-made
adjustments to achieve the composition and obtain a ‘best approximate’ language,
with slightly modified monads.

Structure of this paper. Section 2 presents some basic facts about monads
and distributive laws and fixes the notation. In Section 3 we recall the well-known
fact [29,24] that there exists a distributive law of any polynomial functor over
a monoidal Set-monad. In particular this shows that operations can be lifted
by monoidal monads. In fact, the techniques presented in this paper can be
extended beyond the monoidal case, but since we won’t need such monads in our
applications, we will focus on monoidal monads for which the lifting of operations
is very straightforward. We then show in Section 4 when equations can also be
lifted. We isolate two conditions on the lifting monad which guarantee that any
equation can be lifted. These two conditions correspond to a monad being affine
[18] and relevant [13]. We also characterise the general form of equations preserved
by monads which only satisfy a subset of these conditions. Interestingly, together
with the symmetry condition (SYM) which is always satisfied by monoidal Set-
monads, we recover what are essentially the three structural laws of classical logic
(see also [13]). In Section 5 we show how the ∗-free fragment of ProbNetKAT can
be built in systematic way by construction distributive laws between the three
layers of the language.

2 A primer on monads, algebras and distributive laws

Monads and (Σ,E)-algebras. For the purposes of this paper, we will always
consider monads on Set ([1,22,25]). The core language described in the introduc-
tion is defined by the signature Σ = { ; , skip} and the set E of equations given
by (16). More generally, we view programming languages as algebraic structures
defined by a signature (Σ, ar : Σ → N) and a set of equations E enforcing
program equivalence. To formalize this we first define a Σ-algebra to be a set
X together with an interpretation JσK : Xar(σ) → X of each operation σ ∈ Σ.
A Σ-algebra can be conveniently represented as an algebra for the polynomial
functor HΣ =

∐
σ∈Σ(−)ar(σ) defined by the signature, i.e. as a set X together

with a map β : HΣX → X. A Σ-algebra morphism between β : HΣX → X and
γ : HΣY → Y is a map f : X → Y such that γ ◦ HΣf = f ◦ β. The category of
Σ-algebras and Σ-algebra morphisms is denoted Alg(Σ). In particular, the set
FΣX of all Σ-terms is a Σ-algebra – the free Σ-algebra over X – and FΣ is a
functor Set→ Alg(Σ) forming an adjunction

FΣ a UΣ : Alg(Σ)→ Set (5)

5

Since it will not lead to any ambiguity we will usually overload the symbol FΣ
to also denote the monad UΣFΣ : Set→ Set arising from this adjunction.

Given a Σ-algebra A, a free Σ-term s built over variables in a set V , and
a valuation map v : V → UΣA, we define the interpretation JsKv of s in A
recursively in the obvious manner. We say that an equation s = t between free
Σ-terms is valid in A, denoted A |= s = t, if for every valuation v : V → UΣA,
JsKv = JtKv. Given a set E of equations we define a (Σ,E)-algebra as a Σ-
algebra in which all the equations in E are valid. We denote by Alg(Σ,E) the
subcategory of Alg(Σ) consisting of (Σ,E)-algebras. There exists a functor
F : Set → Alg(Σ,E) building free (Σ,E)-algebras which is left adjoint to the
obvious forgetful functor:

F a U : Alg(Σ,E)→ Set (6)

In our running example all monads arise from a finitary syntax, and thus from
an adjunction of the type (6).

Eilenberg-Moore categories. An algebra for the monad T is a set X together
with an map α : TX → X such that the diagrams in (7) commute. A morphism

(X,α)
f→ (Y, β) of T -algebras is a morphism X

f→ Y in Set verifying β◦Tf = f◦α.

TTX
µX //

Tα ��
TX

α��
X

ηX //

1 &&

TX
α��

TX
α // X X

(7)

The category of T -algebras and T -algebra morphisms is called the Eilenberg-
Moore category of the monad T , and denoted EM(T). There is an obvious
forgetful functor UE : EM(T) → Set which sends an algebra to its carrier, it
has a left adjoint FE : Set→ EM(T) which sends a set X to the free T -algebra
µX : T 2X → TX. Note that the adjunction FE a UE gives rise to the monad T .
A lifting of a functor F : Set→ Set to EM(T) is a functor F̂ on EM(T) such

that UE ◦ F̂ = F ◦ UE

Lemma 1 ([22] VI.8. Theorem 1). For any adjunction of the form (6),
EM(UF) and Alg(Σ,E) are equivalent categories.

The functors connecting EM(UF) and Alg(Σ,E) are traditionally called compar-
ison functors, and we will denote them by M : EM(UF) → Alg(Σ,E) and
K : Alg(Σ,E) → EM(UF). Consider first the free monad FΣ for a signa-
ture Σ (i.e. the monad generated by the adjunction (5)). The comparison
functor M : Alg(Σ) → EM(FΣ) maps the free FΣ-algebra over X, that is
µFΣ
X : F2

ΣX → FΣX to the free HΣ-algebra over X which we shall denote by
αX : HΣFΣX → FΣX. It is well-known that αX is an isomorphism. Moreover,
the maps αX define a natural transformation HΣFΣ → FΣ . Similarly, in the
presence of equations, if we consider the adjunction F a U of (6) and the asso-
ciated monad T = UF, then the comparison functor M ′ : Alg(Σ,E)→ EM(T)
sends the free T -algebra µTX : T 2X → TX to an HΣ-algebra which we shall
denote ρX : HΣTX → TX. Again, the maps ρX define a natural transformation

6

HΣT → T , but in general ρX is no longer an isomorphism: in the case of monoids
and of a set X = {x, y, z}, we have ρX(x;(y;z)) = ρX((x;y);z).

Distributive laws. Let (S, ηS , µS) and (T, ηT , µT) be monads, a distributive
law of S over T (see [3]) is a natural transformation λ : ST → TS satisfying:

S
SηT

��

ηTS

��
ST

λ
// TS

(DL. 1)

T
ηST

��

TηS

��
ST

λ
// TS

(DL. 2)

STT

SµT

��

λT // TST
Tλ // TTS

µTS
��

ST
λ

// TS

(DL. 3)

SST

µST
��

Sλ // STS
λS // TSS

TµS

��
ST

λ
// TS

(DL. 4)

If λ only satisfies (DL. 2) and (DL. 4), we will say that λ is a distributive law
of the the monad S over functor T , or in the terminology of [14], an EM-law
of S over T . Dually, if λ only satisfies (DL. 1) and (DL. 3), λ is known as a
distributive law of the functor S over the monad T , or Kl-law of S over T [14].

Theorem 1. [3,14,2] EM-laws λ : SF → FS and liftings of F to EM(S) are in
one-to-one correspondence.

If there exists a distributive law λ : TS → ST of the monad T over the monad
S, then the composition of S and T also forms a monad (ST, u,m), whose unit
u and multiplication m are given by:

X
ηTX //

uX
55TX

ηSTX // STX STSTX
SλTX //

mX

22SSTTX
µSTTX // STTX

SµTX // STX

If EM(S) ' Alg(Σ,E) and EM(T) ' Alg(Σ′, E′), then a distributive law
ST → TS implements the distributivity of the operations in Σ over those of Σ′.

3 Building distributive laws between monads

In this section we will show how to construct a distributive law λ : ST → TS
between monads via a monoidal structure on T .

3.1 Monoidal monads

Let us briefly recall some relatively well-known categorical notion. A lax monoidal
functor on a monoidal category (C,⊗, I), or simply a monoidal functor1, is an
endofunctor F : C → C together with natural transformations ψX,Y : FX ⊗
FY → F (X ⊗ Y) and ψ0 : I → FI satisfying the diagrams:

1 We will never consider the notion of strong monoidal functor, so this terminology
should not lead to any confusion.

7

FX ⊗ I
idFX⊗ψ0

//idFX⊗ψ0

//

ρFX

��

FX ⊗ FI

ψX,I

��
FX F (X ⊗ I)

FρXoo

(MF. 1)

(FX ⊗ FY)⊗ FZ
αFX,FY,FZ //

ψX,Y ⊗idFZ
��

FX ⊗ (FY ⊗ FZ)

idFX⊗ψY,Z
��

F (X ⊗ Y)⊗ FZ

ψX⊗Y,Z

��

FX ⊗ F (Y ⊗ Z)

ψX,Y⊗Z

��
F ((X ⊗ Y)⊗ Z)

FαX,Y,Z // F (X ⊗ (Y ⊗ Z)))

(MF. 3)

I ⊗ FX
ψ0⊗idFX//ψ0⊗idFX//

ρ′FX
��

FI ⊗ FX

ψI,X

��
FX F (I ⊗X)

Fρ′Xoo

(MF. 2)

where α is the associator of (C,⊗, I) and ρ, ρ′ the right and left unitors respec-
tively. The diagrams (MF. 1), (MF. 2) and (MF. 3) play a key role in the lifting
of operations and equations in this section and the next. In particular they ensure
that any unital (resp. associative) operation lifts to a unital (resp. associative)
operation. We will sometimes refer to ψ as the Fubini transformation of F .

A monoidal monad T on a monoidal category is a monad whose underlying
functor is monoidal for a natural transformation ψX,Y : TX ⊗ TY → T (X ⊗ Y)
and ψ0 = ηI , the unit of the monad at I, and whose unit and multiplication are
monoidal natural transformations, that is to say:

X ⊗ Y
ηX⊗ηY//

ηX⊗Y &&

TX ⊗ TY

ψX,Y

��
T (X ⊗ Y)

(MM.1) T 2X ⊗ T 2Y

µX⊗µY
��

ψTX,TY// T (TX ⊗ TY)
TψX,Y // TT (X ⊗ Y)

µX⊗Y

��
TX ⊗ TY

ψX,Y // T (X ⊗ Y)

(MM.2)

Moreover, a monoidal monad is called symmetric monoidal if

TX ⊗ TY
ψX,Y //

swapTX,TY

��

T (X ⊗ Y)

T swapX,Y

��
TY ⊗ TX

ψY,X

// T (Y ⊗X)

(SYM)

where swap : (−)⊗ (−)→ (−)⊗ (−) is the argument-swapping transformation
(natural in both arguments).

We now present a result which shows that for monoidal categories which are
sufficiently similar to (Set,×, 1), being monoidal is equivalent to being symmetric
monoidal. The criteria on (C,⊗, I) in the following theorem are due to [27] and
generalize the strength unicity result of [25, Prop. 3.4]. Our usage of the concept
of strength in what follows is purely technical, it is the monoidal structure which

8

is our main object of interest. We therefore refer the reader to e.g. [25] for the
definitions of strength and commutative monad.

Theorem 2. Let T : C → C be a monad over a monoidal category (C,⊗, I)
whose tensor unit I is a separator of C (i.e. f, g : X → Y and f 6= g implies
∃x : I → X s.th. f ◦ x 6= g ◦ x) and such that for any morphism z : I → X ⊗ Y
there exist x : I → X, y → Y such that z = (x⊗ y) ◦ ρ−1I . Then t.f.a.e.

(i) There exists a unique natural transformation ψX,Y : TX⊗TY → T (X⊗Y)
making T monoidal

(ii) There exists a unique strength stX,Y : X × TY → T (X ⊗ Y) making T
commutative

(iii) There exists a unique natural transformation ψX,Y : TX⊗TY → T (X⊗Y)
making T symmetric monoidal

In particular, monoidal monads on (Set,×, 1) are necessarily symmetric
(and thus commutative). As we will see in the next section (Theorem 7), this
symmetry has deep consequences: it means that a large syntactically definable
class of equations can always be lifted by monoidal monads.

3.2 Lifting operations

First though, we show that being monoidal allows us to lift operations. The
following Theorem is well-known and can be found in e.g. [29,24].

Theorem 3. Let T : Set → Set be a monoidal monad, then for any finitary
signature Σ, there exists a distributive law λΣ : HΣT → THΣ of the polynomial
functor associated with Σ over T .

The distributive laws λΣ : HΣT → THΣ built from a monoidal structure ψ
on T in Theorem 3 have the general shape

HΣTX =
∐
s∈Σ(TX)ar(s)

∐
s∈Σ ψ

(ar(s))
X // THΣX (8)

where ψ
(0)
X = ηT1 , ψ

(1)
X = idX , ψ

(2)
X = ψX,X . For k ≥ 3 if we wanted to be

completely rigorous we should first give an evaluation order to the k-fold monoidal
product (TX)k – for example evaluating the products from the left, e.g. (TX)3 :=
(TX ⊗ TX) ⊗ TX – and then define ψ(k) : (TX)k → T (Xk) accordingly by
repeated application of the Fubini transformation ψ – for example defining

ψ
(3)
X = ψX⊗X,X ◦ (ψX,X × id) : (TX ⊗ TX)⊗ TX → T ((X ⊗X)⊗X)

However, we will in general be interested in a variety of evaluation orders for the
tensors (depending on circumstances), and since in Set these different evaluation

9

orders are related by a combination of associators αX,Y,Z which simply re-bracket
tuples, we will abuse notation slightly and write

ψ
(k)
X : (TX)k → T (Xk)

with the understanding that ψ
(k)
X is only defined up to re-bracketing of tuples

which is quietly taking place ‘under the hood’ as called for by the particular situa-
tion. The distributive laws defined by Theorem 3 can be extended to distributive
laws for the free monad associated with the signature Σ.

Proposition 1. Given a finitary signature Σ and a monad T : Set → Set,
there is a one-to-one correspondence between

(i) distributive laws λΣ : HΣT → THΣ of the polynomial functor associated
with Σ over T

(ii) distributive laws ρΣ : FΣT → TFΣ of the free monad associated with Σ
over T

In particular, by Theorem 1, the distributive law (8) also corresponds to a lifting

T̂ of T to EM(FΣ) ' Alg(Σ). Explicitly, given an FΣ-algebra β : FΣX → X,

T̂ (X,β) is defined as the FΣ-algebra

FΣTX
ρΣX // TFΣX

Tβ // TX (9)

Thus whenever T is monoidal, we can ‘lift’ the operations of Σ, or, in programming
language terms, we can define the operations of the outer layer (T) on the language
defined by the operations of the inner layer (FΣ).

3.3 Lifting equations

We now show how to go from a lifting of T on EM(FΣ) ' Alg(Σ) to a lifting of
T on EM(S) ' Alg(Σ,E). More precisely, we will now show how to ‘quotient’
the distributive law ρΣ : FΣT → TFΣ into a distributive law λ : ST → TS. Of
course this is not always possible, but in the next section we will give sufficient
conditions under which the procedure described below does work. The first step
is to define the natural transformation q : FΣ � S which quotients the free
Σ-algebras by the equations of E to build the free (Σ,E)-algebra. At each set X,
let EX denote the set of pairs (s, t) ∈ FΣX such that SX |= s = t and let π1, π2
be the obvious projections. Then q can be constructed via the coequalizers:

EX
π1 //
π2

// FΣX
qX // // SX (10)

By construction q is a component-wise regular epi monad morphism (q ◦ η = ηS

and µS ◦ qq = q ◦µT), and it induces a functor Q : EM(S)→ EM(FΣ) defined by

Q(ξ : SX → X) = ξ ◦ qX : FΣX → X, Q(f) = f

10

which is well defined by naturality of q. This functor describes an embedding, in
particular it is injective on objects: if Q(ξ1) = Q(ξ2) then ξ1 ◦ qX = ξ2 ◦ qX , and
therefore ξ1 = ξ2 since qX is a (regular) epi.

Given two terms u, v ∈ FΣV , we will say that a lifting T̂ : Alg(Σ)→ Alg(Σ)
preserves the equation u = v, or by a slight abuse of notation that the monad T
preserves u = v, if T̂A |= u = v whenever A |= u = v. Similarly, we will say that

T̂ sends (Σ,E)-algebras to (Σ,E)-algebras if it preserves all the equations in E.
Half of the following result can be found in [6] where a distributive law over a
functor is built in a similar way.

Lemma 2. If q : FΣ � T is a component-wise epi monad morphism, ρΣ is a
distributive law of the monad FΣ over the monad T and if there exists a natural
transformation λ : ST → TS such that the following diagram commutes

FΣT
qT // //

ρΣ

��

ST

λ
��

TFΣ
Tq
// TS

(11)

then λ is a distributive law of the monad S over the monad T .

From this lemma we can give an abstract criterion which, when implemented
concretely in the next section, will allow us to go from a lifting of T on EM(FΣ) '
Alg(Σ) to a lifting of T on EM(S) ' Alg(Σ,E).

Theorem 4. Suppose T, S : Set→ Set are finitary monads, that T is monoidal
and that EM(S) ' Alg(Σ,E), and let T̂ : Alg(Σ)→ Alg(Σ) be the unique lifting

of T defined via Theorems 1,3 and Proposition 1. If T̂ sends (Σ,E)-algebras
to (Σ,E)-algebras, then there exists a natural transformation λ : ST → TS
satisfying (11), and therefore a distributive law of S over T .

4 Checking equation preservation

In Section 3 we showed how to build a lifting of T : Set→ Set to T̂ : Alg(Σ)→
Alg(Σ) using a Fubini transformation ψ via (8) and (9). In this section we
provide a sound method to ascertain whether this lifting sends (Σ,E)-algebras to
(Σ,E)-algebras, by giving sufficient conditions for the preservation of equations.
We assume throughout this section that T is monoidal, in particular T lifts to
Alg(Σ) for any finitary signature Σ. We will denote by UΣ : Alg(Σ)→ Set the
obvious forgetful functor.

4.1 Residual diagrams

We fix a finitary signature Σ and let u, v be Σ-terms over a set of variables V .
Recall that the monad T preserves the equation u = v if T̂A |= u = v whenever

11

A |= u = v. If t is a Σ-term, we will denote by V ar(t) the set of variables in t and
by Arg(t) the list of arguments used in t ordered as they appear in t. For example,
the list of arguments of t = f(x1, g(x3, x2), x1) is Arg(t) = [x1, x3, x2, x1].

Let V be a set of variables and A be a Σ-algebra with carrier A, we define
the morphism δVA(t) : A|V | → Ak where k = |Arg(t)| as the following pairing of
projections:

if Arg(t) = [xi1 , xi2 , xi3 , . . . xik] then δVA(t) = 〈πi1 , πi2 , πi3 , . . . πik〉

Intuitively, this pairing rearranges, copies and duplicates the variables used in t
to match the arguments. Next, we define σVA(t) : Ak → A inductively by:

σVA(x) = idA

σVA(f(t1, . . . , ti)) = Ak
σVA(t1)×...×σVA(ti)−−−−−−−−−−−−→ Ai

fA−−→ A

With fA the interpretation of f ∈ Σ in A. Finally we define JtKVA as σVA(t)◦ δVA(t).
The following lemma follows easily from the definitions.

Lemma 3. For any t ∈ FΣV , δVA(t), σVA(t), and thus JtKVA, are natural in A.

We can therefore re-interpret any term t ∈ FΣV as a natural transformation JtKV :
(−)(|V |)UΣ → UΣ which is itself the composition of two natural transformations.
The first one, δV (t) : (−)|V |UΣ → (−)kUΣ , ‘prepares’ the variables by swapping,
copying and deleting them as appropriate. The second one, σV (t) : (−)kUΣ → UΣ ,
performs the evaluation at each given algebra. Of course, the usual soundness
and completeness property of term functions still holds.

Lemma 4. For A a Σ-algebra and u, v ∈ FΣV , JuKVA = JvKVA iff A |= u = v.

Now consider the following diagram:

(−)(|V |)UΣ T̂

JtKV
T̂

((δV
T̂
(t)

//

ψ
|V |
UΣ
��

r

(−)kUΣ T̂

q

σV
T̂
(t)

//

ψ
(k)
UΣ

��

UΣ T̂

UΣ idT̂
��

T (−)|V |UΣ
TδV (t)

//

T JtKV

66T (−)kUΣ
TσV (t)

// UΣ T̂

(12)

Since UΣ ◦ T̂ = T ◦ UΣ by definition of liftings it is clear that the vertical arrows

ψ
(|V |)
UΣ

and ψ
(k)
UΣ

are well-typed. We define Pres(T, t, V) as the outer square of
Diagram (12) and we call the left-hand square r the residual diagram R(T, t, V).
The following Lemma is at the heart of our method for building distributive laws.

12

Lemma 5. If R(T, t, V) commutes, then Pres(T, t, V) commutes.

The following soundness theorem follows immediately from Lemma 5.

Theorem 5. If u, v ∈ FΣV are such that R(T, u, V) and R(T, v, V) commute,
then T preserves u = v.

Proof. If A |= u = v, then JuKVA = JvKVA by Lemma 4 and thus T JuKVA ◦ ψ
(|V |)
A =

T JvKVA ◦ ψ
(|V |)
A . Since R(T, u, V) and R(T, v, V) commute, so do Pres(T, u, V)

and Pres(T, v, V) by Lemma 5, and therefore JuKV
T̂A

= JvKV
T̂A

, that is to say

T̂A |= u = v by Lemma 4.

Therefore residual diagrams act as sufficient conditions for equation preser-
vation. Note that these diagrams only involve ψ, projections and the monad T ,
sometimes inside pairings. In other words, the actual operations of Σ appearing
in an equation have no impact on its preservation. What matters is the variable
rearrangement transformations δV (u) and δV (v), and how they interact with the
Fubini transformation ψ.

The converse of Theorem 5 does not hold. Consider the powerset monad P and
a Σ-algebra A with Σ containing a binary operation •. Clearly P̂A |= x•x = x•x
whenever A |= x•x = x•x, because the equation trivially holds in any Σ-algebra.
In other words, it is preserved by P. However R(P, x • x, {x}) does not commute:
provided that X has more than one element, it is easy to see that R(P, x•x, {x})
evaluated at X is

PA

idPA ��

∆PA // (PA)2

−×−��
PA

P(∆A)
// P(A2)

where ∆ is the diagonal transformation and −×− is the monoidal structure for
P which takes the Cartesian product. This diagram does not commute (in other
words P is not ‘relevant’, see below).

4.2 Examples of residual diagrams

We need a priori two diagrams per equation to verify preservation. However, in
many cases diagrams will be trivially commuting. For instance, associativity and
unit produce trivial diagrams. For associativity we assume a binary operation
• ∈ Σ, let V = {x, y, z} and compute that δVA(x•(y•z)) = 〈π1, π2, π3〉 : A3 → A3

which is just idA3 . It follows that R(T, x• (y •z), V) commutes since ψ3 ◦ idTA3 =
T idA3 ◦ ψ3 which trivially holds. The argument for (x • y) • z is identical, thus
associativity is always lifted. The same argument shows that units are always
lifted as well. This is not completely surprising since we have built-in units and
associativity via Diagrams (MF. 1), (MF. 2) and (MF. 3).

13

Let us now consider commutativity: x • y = y • x. In this case, we put
V = {x, y} and hence δVA(x • y) = idA and R(T, x • y, V) obviously commutes for
the same reason as before. Similarly, it is not hard to check that R(T, y • x, V) is
just diagram (SYM), which we know holds by our assumption that T is monoidal
and Theorem 2. It follows that:

Theorem 6. Monoidal monads preserve associativity, unit and commutativity.

Some equations are not always preserved by commutative monads, we present
here two important examples.

Idempotency: x • x = x Absorption: x • 0 = 0
R(T, x • x, {x}) given by: R(T, x • 0, {x}) given by:

TA

T 〈π1,π1〉
��

TA
id

oo

〈π1,π1〉
��

T (A2) (TA)2
ψ
oo

TA

T !
��

TA
id
oo

!

��
T1 1

η1
oo

(13)

These diagrams correspond to classes of monads studied in the literature.
The residual diagram for idempotency can be expressed as the equation ψA,A ◦
∆TA = T∆A, where ∆ is the diagonal operator. A monad T verifying this
condition is called relevant by Jacobs in [13]. Similarly, one easily shows that the
commutativity of the absorption diagram is equivalent to the definition of affine
monads in [18,13].

4.3 General criteria for equation preservation

As shown in lemma 5 and Theorem 5, the interaction between T and the vari-
able rearrangements operated by δV can provide a sufficient condition for the
preservation of equations. We will focus on three important types of interaction
between a monad T and rearrangement operations. First, the residual diagram
for commutativity, i.e. Diagram (SYM), which corresponds to saying that ‘T
preserves variable swapping’, i.e. that T is commutative/symmetric monoidal,
or in logical terms to the exchange rule. As we have seen, this condition must
be satisfied in order to simply lift operations, so we must take it as a basic
assumption. Second, the residual diagram for idempotency (leftmost diagram
of (13)) which corresponds to ‘T preserves variable duplications’, i.e. that T is
relevant, or in logical terms to the weakening rule. Finally, the residual diagram
for absorption (rightmost diagram of (13)) which corresponds to ‘T allows to
drop variables’, i.e. T is affine, or in logical terms to the contraction rule. To each
of these residual diagrams corresponds a syntactically definable class of equations
which are automatically preserved by a monad satisfying the residual diagram.

Theorem 7. Let T be a commutative monad. If V ar(u) = V ar(v) and if vari-
ables appear exactly once in u and in v, then T preserves u = v.

14

Note that this theorem can be found in [23], where this type of equation is
called linear. Moreover, P is within the scope of this result, which generalises one
direction of Gautam’s theorem ([10]). Let us now present original results by first
treating the case where variables may appear several times.

Theorem 8. Let T be a commutative relevant monad. If V ar(u) = V ar(v), then
T preserves u = v.

Commutative relevant monads seem to preserve many algebraic laws. However,
in the case where both sides of the equation do not contain the same variables,
for instance x • 0 = 0, Theorem 8 does not apply. Intuitively, the missing piece is
the ability to drop some of the variables in V .

Theorem 9. Let T be a commutative affine monad. If variables appear at most
once in u and in v, then T preserves u = v.

Combining the results of Theorems 8 and 9, one gets a very economical – if
very strong – criterion for the preservation of all equations.

Theorem 10. Let T be a commutative, relevant and affine monad. For all u
and v, T preserves u = v.

Examining the existence of distributive laws between algebraic theories, as
well as stating conditions on variable rearrangements, has been studied before in
terms of Lawvere Theories (see for instance [7]). Note that for T commutative
monad, being both relevant and affine (sometimes called cartesian) is equivalent
to preserving products, as seen in [18]. This confirms that such a monad T
preserves all equations of the underlying algebraic structure, in other words it
always has a distributive law with any other monad. This is however a very
strong condition. An example of this type of monad is T (X) = XY for Y an
object of Set.

4.4 Weakening the inner layer when composition fails.

In the case where a residual diagram fails to commute, we cannot conclude that
the equation lifts from A to T̂A. The non-commutativity of the diagram often
provides a counter-example which shows that the equation is in fact not valid in
T̂A (this is the case of idempotency and distributivity in the next section).

However, if our aim is to build a structure combining all operations used
to define T and S, then our method can provide an answer, since it allows us
to identify precisely which equations fail to hold. Let E′ be the subset of E
containing the equations preserved by T . A new monad S′ can be derived from
signature Σ and equations E′ using an adjunction of type (6). Since E′ only
contains equations preserved by T , by theorem 4 the composition TS′ creates a
monad, and its algebraic structure contains all the constructs derived from the
original signature Σ, as well as the new symbols arising from T .

15

This method for fixing a faulty monad composition follows the idea of loosening
the constraints of the inner layer, meaning in this case modifying S to construct a
monad resembling TS. The best approximate language we obtain has the desired
signature, but has lost some of the laws described by S. We illustrate this method
in the following section.

5 Application

As sketched in the introduction, our method aims to incrementally build an im-
perative language: starting with sequential composition, we add a layer providing
non-deterministic choice, then a layer for probabilistic choice.

Adding the non-deterministic layer. We start with the simple programming
language described in the introduction by the signature (15) and equations (16)
– or, equivalently, by the monad (−)∗ – and let A be a set of atomic programs.
Our minimal language is thus given by A∗. Note that the free monoid is not
commutative and thus in our method it cannot be used as an outer layer, it
has to constitute the core of the language we build. More generally, our method
provides a simple heuristic for compositional language building: always start with
the non-commutative monad.

We now add non-determinism via the finitary powerset monad P, which is
simply the free join semi-lattice monad. To build this extension, we want to
combine both monads to create a new monad P((−)∗). As we have shown in
Theorem 4, it suffices to build a lifting of monad P to Mon, the category of
algebras for the signature (15) and equations (16). For this purpose we apply the
method given in section 4.

The first step is lifting P to the category of {skip, ; }-algebras, which means
lifting the operations of A∗ to P(A∗) using a Fubini map. It is well-known that the
powerset monad is commutative, and it follows in particular that there exists a
unique symmetric monoidal transformation ψ : P×P→ P(−×−) which is given
by the Cartesian product: for U ∈ P(X), V ∈ P(Y), we take ψX,Y (U, V) = U×V .
Using this Fubini transformation, we can now define the interpretation in P(A∗)
of skip and ; as:

ŝkip = P(skip) ◦ η1(∗) = {ε}
;̂ = P(;) ◦ ψA∗,A∗ : (PA∗)2 → PA∗, (U, V) 7→ {u ; v | u ∈ U, v ∈ V }

To check that this lifting defines a lifting on Mon, we need to check that equations
(16) hold in P(A∗). These equations describe associativity and unit: by Theorem
6, they are always preserved by a strong commutative monad like P.

It follows from Theorem 4 and 5 that we obtain a distributive law λ : (P(−))∗ →
P((−)∗) between monads (−)∗ and P, hence the composition P((−)∗) is also
a monad, allowing us to apply our method again and potentially add another
monadic layer. The language P(A∗) contains the lifted versions ŝkip and ;̂ of
our previous constructs as well as the new operations arising from P, namely

16

a non-deterministic choice operation +, which is associative, commutative and
idempotent, and its unit abort. Note that since the monad structure on P((−)∗)
is defined by a distributive law of (−)∗ over P, the set of equations E is made
of the equations (16) arising from (−)∗, the equations (17) arising from P, and
finally the equations (4) expressing distributivity of operations of (−)∗ over those
of P. The language we have built so far has the structure of an idempotent
semiring.

Adding the probabilistic layer. We will now enrich our language further by
adding a probabilistic layer. Specifically, we will add the family of probabilistic
choice operators ⊕λ for λ ∈ [0, 1] satisfying the axioms of convex algebras, i.e.

p⊕λ p = p p⊕λ q = q⊕1−λ p p⊕λ (q⊕τ r) = (p⊕ λ
λ+(1−λ)τ

q)⊕λ+(1−λ)τ r

(14)
From a monadic perspective, we want to examine the composition of monads
D(P((−)∗)). It is known (see [30]) that D does not distribute over P. We will see
that our method confirms this result.

We start by lifting the constants and operations {skip, abort, ; ,+} of P((−)∗)
by defining a Fubini map ψ : D(−)×D(−)→ D(−×−). It is well-known that
D is a commutative monad and that the product of measures defines the Fubini
transformation. In the case of finitely supported distributions the product of
measures can be expressed simply as follows: given distributions µ ∈ DX, ν ∈ DY ,
ψ(µ, ν) is the distribution on X × Y defined on singletons (x, y) ∈ X × Y by
(ψ(µ, ν))(x, y) = µ(x)ν(y). Theorem 7 tells us that associativity, commutativity
and unit are preserved by D. It follows that the associativity of both ; and + is
preserved by the lifting operation, and the liftings of skip and abort are their
respective units. Furthermore, the lifting of + is commutative.

We know from Theorem 8 that the idempotency of + will be preserved if
D is relevant. It is easy to see that D is badly non-relevant: consider the set
X = {a, b}, a 6= b and any measure µ on X which assigns non-zero probability to
both a and b. We have:

ψ(∆DX(µ))(a, b) = (ψ(µ, µ))(a, b)

= µ(a)µ(b) 6= 0

= µ(∅)
= µ{x ∈ X | ∆X(x) = (a, b)}
= D(∆X)(µ)(a, b)

It follows that we cannot conclude that the lifting D̂ : Alg({skip, abort, ; ,+}) →
Alg({skip, abort, ; ,+}) defined by the product of measures following (8) sends
idempotent semirings to idempotent semirings, and therefore we cannot conclude
that D(P(−)∗) is a monad (in fact we know it isn’t). It is very telling that
idempotency also had to be dropped in the design of the probabilistic network
specification language ProbNetKAT (see [8, Lemma 1]) which is very similar to
the language we are trying to incrementally build in this Section.

17

Requiring that + be idempotent is an algebraic obstacle, so let us now remove
it and replace as our inner layer the monad building free idempotent semirings
– that is to say P(−)∗ – by the monad building free semirings – that is to say
M(−)∗, where M is the multiset monad (M can also be described as the free
commutative monoid monad). Since we have already checked that the D-liftings
of binary operations preserve associativity, units and commutativity, it only
remains to check that they preserve the distributivity of ; over +. The equation
for distributivity belongs to the syntactic class covered by Theorem 8 since it
has the same set of variables on each side (but one of them is duplicated, so we
fall outside the scope of Theorems 7 and 9). Since we’ve just shown that D is
not relevant, it follows that we cannot lift the distributivity axioms. So we must
weaken our inner layer even further and consider a structure consisting of two
monoids, one of which is commutative. Interestingly, the failure of distributivity
was also observed in the development of ProbNetKAT ([8, Lemma 4]), and
therefore should not come as a surprise.

Having removed the two distributivity axioms we are left with only the
absorption laws to check. In this case the equation has no variable duplication,
but has not got the same number of variables on each side of the equation,
absorption therefore falls in the scope of Theorem 9, and we need to check if D
is affine. Since D1 ' 1, it is trivial to see that η1◦! = D! and hence D is affine.
By Theorem 9, the absorption law is therefore preserved by the probabilistic
extension. It follows that the probabilistic layer D can be composed with the
inner layer consisting of the signature {abort, skip, ; ,+} and the axioms

(i) p ; skip = skip ; p = p

(ii) (p ; q) ; r = p ; (q ; r)
(iii) p + abort = abort + p = p

(iv) p + q = q + p

(v) (p + q) + r = p + (q + r)
(vi) p ; abort = abort = abort ; p

i.e. two monoids, one of them commutative, with the absorption law as the only
interaction between the two operations. This structure, combined with the axioms
of convex algebras (14) and the distributivity axioms

(Dst i) p ; (q⊕λ r) = (p ; q)⊕λ (p ; r)
(Dst ii) (q⊕λ r) ; p = (q ; p)⊕λ (r ; p)

(Dst iii) p+(q⊕λr) = (p+q)⊕λ(p+r)
(Dst iv) (q⊕λr)+p = (q+p)⊕λ(r+p)

forms the ‘best approximate language’ combining sequential composition, non-
deterministic choice and probabilistic choice. Note that the distributive laws above
makes good semantic sense, and indeed hold for the semantics of ProbNetKAT.
What we have built modularly in this section is essentially the ∗-free and test-free
fragment of ProbNetKAT.

6 Discussion and future work.

We have provided a principled approach to building programming languages
by incrementally layering features on the top one another. We believe that our

18

approach is close in spirit to how programming languages are typically constructed,
that is to say by an incremental enrichment of the list of features, and to the
search for modularity initiated by foundational papers [25] and [20].

Our method has assumed throughout that the monad for the outer layer
had to be monoidal/commutative. Our method can in fact be straightforwardly
extended to monads satisfying only (MM.1) and (MM.2). In practice however,
the generality gained in this way is very limited: only a monoidal monad will lift
an associative operation with a left and right unit, and given the importance of
sequential composition with skip, the restriction we have placed on our method
appears fairly natural and benign.

We must be careful about how layers are composed together: our approach
yields distributive interactions between them, but one might want other sorts
of interactions. Consider for example the minimal programming language P∗

described in Section 1, and assume that we now want to add a concurrent
composition operation ‖ to this language with the natural axiom p ‖ skip = p =
p ‖ skip. This addition is not as simple as layering described in Section 5, as the
new construct has to interact with the core layer in a whole new way: skip must
be the unit of ‖ as well. In such cases our approach is not satisfactory, and two
alternative strategies present themselves to us: we can consider ‘larger’ layers, for
example the combined theory of sequential composition, skip and ‖ described
above as a single entity. However, the more complex an inner layer is, the less
likely it is that an outer layer with lift it in its entirety. Alternatively, we may
want to integrate our technique with Hyland and Power’s methods ([12]) and
combine some layers with sums and tensors, and others with distributive laws,
depending on semantic and algebraic considerations.

A comment about our ‘approximate language’ strategy is also in order. As
explained in Section 4, when an equation of the inner layer prevents the existence
of a distributive law we choose to remove this equation, i.e. to loosen the inner
layer. Another option is in principle possible: we could constrain the outer layer
until it becomes compatible with the inner layer. We would obtain in this case a
replacement candidate for one of our monads in order to achieve composition. In
the case of D(P(−)∗) this would be a particularly unproductive idea since the
only elements of D(P(−)∗) which satisfy the residual diagram for idempotency
are Dirac deltas, i.e. we would get back the language P(−)∗.

Another obvious avenue of research is to extend our method to programming
languages specified by more than just equations. One example is the so-called
‘exchange law’ in concurrency theory given by (p ‖ r) ; (q ‖ s) v (p ; q) ‖ (r ; s)
which involves a native pre-ordering on the collection of programs, i.e. moving
from the category of sets to the category of posets. Another example are Kozen’s
quasi-equations ([19]) axiomatizing the Kleene star operations, for example
p ; x ≤ x⇒ p∗ ; x ≤ x. This problem is much more difficult and involves moving
away from monads and distributive laws altogether since quasi-varieties are in
general not monadic categories.

19

References

1. S. Awodey. Category theory. Oxford University Press, 2010.
2. A. Balan and A. Kurz. On coalgebras over algebras. Theoretical Computer Science,

412(38):4989–5005, 2011.
3. J. Beck. Distributive laws. In Seminar on triples and categorical homology theory,

pages 119–140. Springer, 1969.
4. N. Benton, J. Hughes, and E. Moggi. Monads and effects. Lecture notes in computer

science, 2395:42–122, 2002.
5. F. Bonchi, A. Silva, and A. Sokolova. The power of convex algebras. arXiv preprint

arXiv:1707.02344, 2017.
6. M. M. Bonsangue, H. H. Hansen, A. Kurz, and J. Rot. Presenting distributive laws.

In International Conference on Algebra and Coalgebra in Computer Science, pages
95–109. Springer, 2013.

7. E. Cheng. Distributive laws for lawvere theories. arXiv preprint arXiv:1112.3076,
2011.

8. N. Foster, D. Kozen, K. Mamouras, M. Reitblatt, and A. Silva. Probabilistic netkat.
In European Symposium on Programming Languages and Systems, pages 282–309.
Springer, 2016.

9. N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson. A coalgebraic decision
procedure for NetKAT. In ACM SIGPLAN Notices, volume 50, pages 343–355.
ACM, 2015.

10. N.D. Gautam. The validity of equations of complex algebras. Archiv für Mathema-
tische Logik und Grundlagenforschung, 3(3-4):117–124, 1957.

11. M. Hyland, P. Levy, G. Plotkin, and J. Power. Combining continuations with other
effects. In Proc. Continuations Workshop, 2004.

12. M. Hyland, G. Plotkin, and J. Power. Combining effects: Sum and tensor. Theoretical
Computer Science, 357(1):70–99, 2006.

13. B. Jacobs. Semantics of weakening and contraction. Annals of pure and applied
logic, 69(1):73–106, 1994.

14. B. Jacobs, A. Silva, and A. Sokolova. Trace semantics via determinization. In
CMCS, volume 12, pages 109–129. Springer, 2012.

15. D. J. King and P. Wadler. Combining monads. In Functional Programming, Glasgow
1992, pages 134–143. Springer, 1993.

16. B. Klin and J. Rot. Coalgebraic trace semantics via forgetful logics. In International
Conference on Foundations of Software Science and Computation Structures, pages
151–166. Springer, 2015.

17. B. Klin and J. Salamanca. Iterated covariant powerset is not a monad. MFPS
XXXIV, 2018.

18. A. Kock. Bilinearity and cartesian closed monads. Mathematica Scandinavica,
29(2):161–174, 1972.

19. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. In Proc. 6th Symp. Logic in Comput. Sci., pages 214–225, Amsterdam, July
1991. IEEE.

20. S. Liang and P. Hudak. Modular denotational semantics for compiler construction.
Programming Languages and SystemsESOP’96, pages 219–234, 1996.

21. S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 333–343. ACM, 1995.

22. S. Mac Lane. Categories for the working mathematician, volume 5. Springer, 2013.

20

23. E. Manes and P. Mulry. Monad compositions i: general constructions and recursive
distributive laws. Theory and Applications of Categories, 18(7):172–208, 2007.

24. S. Milius, T. Palm, and D. Schwencke. Complete iterativity for algebras with effects.
In CALCO, volume 9, pages 34–48. Springer, 2009.

25. E. Moggi. Notions of computation and monads. Information and computation,
93(1):55–92, 1991.

26. G. Plotkin and J. Power. Notions of computation determine monads. In FoSSaCS,
volume 2, pages 342–356. Springer, 2002.

27. T. Sato. The Giry monad is not strong for the canonical symmetric monoidal closed
structure on Meas. Journal of Pure and Applied Algebra, 2017.

28. S. Smolka, P. Kumar, N. Foster, D. Kozen, and A. Silva. Cantor meets scott:
Semantic foundations for probabilistic networks. arXiv preprint arXiv:1607.05830,
2016.

29. A. Sokolova, B. Jacobs, and I. Hasuo. Generic trace semantics via coinduction.
Logical Methods in Computer Science, 3, 2007.

30. D. Varacca. Probability, nondeterminism and concurrency: two denotational models
for probabilistic computation. PhD thesis, BRICS, 2003.

	Layer by Layer – Combining Monads

