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Abstract  

The coronary circulation is both culprit and victim of acute myocardial infarction. The rupture 

of an epicardial atherosclerotic plaque with superimposed thrombosis causes coronary 

occlusion, and this occlusion must be removed to induce reperfusion. However, ischaemia 

and reperfusion cause damage not only in cardiomyocytes but also in the coronary circulation, 

including microembolisation of debris and release of soluble factors from the culprit lesion, 

impairment of endothelial integrity with subsequently increased permeability and oedema 

formation, platelet activation and leukocyte adherence, erythrocyte stasis, a shift from 

vasodilation to vasoconstriction, and ultimately structural damage to the capillaries with 

eventual no-reflow, microvascular obstruction and intramyocardial haemorrhage. Therefore, 

the coronary circulation is a valid target for cardioprotection, beyond protection of the 

cardiomyocyte. Virtually all of the above deleterious endpoints have been demonstrated to be 

favourably influenced by one or the other mechanical or pharmacological cardioprotective 

intervention. However, no-reflow is still a serious complication of reperfused myocardial 

infarction and carries, independently from infarct size, an unfavourable prognosis. 

Microvascular obstruction and intramyocardial haemorrhage can be diagnosed by modern 

imaging technologies, but still await an effective therapy. The current review provides an 

overview of strategies to protect the coronary circulation from acute myocardial 

ischaemia/reperfusion injury. This article is part of a Cardiovascular Research Spotlight Issue 

entitled ‘Cardioprotection Beyond the Cardiomyocyte’, and emerged as part of the discussions 

of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology 

(COST) Action, CA16225. 
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1. Introduction  

Reperfusion is the only way to salvage ischaemic myocardium from infarction, but reperfusion 

per se also inflicts additional injury, such that the resulting myocardial infarct (MI) size is 

determined by both ischaemia- and reperfusion-induced injury.1-3 There is still an unmet 

medical need for adjunct cardioprotection on top of timely reperfusion.4, 5 In type II myocardial 

infarction and in the absence of epicardial  coronary artery occlusion, the distinction of 

ischaemia and reperfusion is less obvious, but there is still infarction and cardioprotection is 

needed.6 Numerous animal experiments have provided robust evidence that MI size can be 

reduced by mechanical or pharmacological interventions before (preconditioning), during 

(perconditioning) or after (postconditioning) myocardial ischaemia. However, the translation of 

cardioprotection to clinical practice has been largely disappointing so far, for many reasons, 

including lack of rigor and reproducibility in experimental studies, as well as conceptual and 

technical faults in clinical trial design.7-10 One important conceptual reason for failure of 

translation may relate to the focus of cardioprotection studies on the cardiomyocyte, and the 

neglect of other tissues in the heart, notably the coronary circulation.11 

 

2. The coronary circulation in acute myocardial ischaemia/reperfusion injury 

The coronary circulation is both culprit and victim of acute myocardial ischaemia/reperfusion 

injury (IRI), and as such a prime target for cardioprotection. Acute ST-segment elevation 

myocardial infarction (STEMI) is induced by rupture of an epicardial coronary atherosclerotic 

plaque with superimposed thrombosis, which occludes the epicardial coronary artery 

completely and renders the dependent perfusion territory ischaemic; residual blood flow to the 

perfusion territory then depends entirely on the coronary collateral circulation which varies 

interindividually and largely depends on its prior adaptation to pre-existing epicardial coronary 

atherosclerotic narrowing. More recent studies have emphasised the increasing importance 

of atherosclerotic plaque erosion rather than rupture, particularly in statin-treated patients and 

particularly for the induction of non-STEMI.12 The epicardial coronary artery with its culprit 

lesion is also the target of interventional therapy by dilatation/stenting with or without 
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thrombectomy. Such percutaneous coronary intervention (PCI) may not only restore epicardial 

coronary blood flow but at the same tissue dislodge atherothrombotic debris from the culprit 

lesion and embolise it into the coronary microcirculation.13  

The coronary circulation distal to the epicardial atherosclerotic culprit lesion is not 

virgin, but characterised by endothelial dysfunction through the typical risk factors (aging, 

hypertension, hyperlipidaemia; diabetes etc.) which characterise atherosclerosis in general.11 

More specifically, the coronary circulation distal to epicardial stenoses remodels, with atrophy 

of the vascular wall in larger coronary arteries and hypertrophy of the vascular wall in smaller 

arteries and arterioles,14, 15 and its autoregulatory vasomotor responses are attenuated.15 The 

coronary microcirculation as such is not only exposed to atherothrombotic debris which is 

dislodged from the epicardial culprit lesion and causes microembolisation, microinfarcts and 

a subsequent inflammatory response,16-18 but also the release of vasoconstrictor, pro-

thrombotic and pro-inflammatory soluble substances from the culprit lesion, notably serotonin, 

thromboxane A2 and TNFα.19, 20 In consequence of coronary microembolisation and in 

response to these soluble substances, coronary vasodilator reserve is severely impaired.18, 21 

 

3. Effects of acute myocardial ischaemia/reperfusion injury on the coronary 

vasculature  

Endothelium, pericytes, and glycocalyx 

Coronary endothelial cells are relatively resistant to ischaemia and survive hypoxia in vitro for 

several days.22 However, in vivo, the interruption of antegrade pulsatile flow and shear stress 

induces swelling and blebbing of endothelial cells.23  The actual disruption of the endothelium 

and subsequent extravasation of cells after reperfusion are probably facilitated by 

destabilisation of the cellular junctions. Reperfused endothelium experiences altered Ca2+ 

homeostasis, increased cytosolic calcium activates the endothelial contractile elements and 

their contraction promotes the formation of intercellular gaps which increase permeability to 

large molecules.24 Activated endothelial cells and platelets result in the expression of adhesion 

molecules and subsequent adhesion of platelets and platelet-leukocyte aggregates to the 
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coronary microvasculature.25 Also, the release of cytokines impairs the stability of cell 

junctions and increases vascular permeability via activation of Src26 and dissociation of the 

VEGFR2/vascular endothelial (VE)-cadherin complex (Figure 1).27 NLRP3 inflammasome 

activation in endothelial cells may initiate caspase 1-mediated cell death.28 Endothelium-

initiated inflammation together with pro-inflammatory effects of debris from cardiomyocyte 

necrosis result in recruitment of inflammatory cells and release of pro-inflammatory factors, 

including vascular endothelial growth factor (VEGF),29 matrix metalloproteases, thrombin, 

myeloperoxidase,30 and platelet activating factor.31 These factors, in turn, increase vascular 

permeability and result in myocardial oedema by different mechanisms, including activation of 

eNOS in caveolae by VEGF.32, 33  Angiopoietin-1 and angiopoietin-like peptide 4 have 

protective effects via stablisation of endothelial cell junctions.29, 34 

Pericytes induce vasoconstriction of the cerebral microvasculature, thereby contributing to 

entrapment of red and white blood cells in areas of no-reflow in the post-ischaemic brain.35 

Although pericytes are present in high numbers in the coronary microvasculature,36 their role 

in the heart remains unclear. In the acutely reperfused rat heart, capillary obstruction was 

associated with the presence of pericytes, with reduced capillary diameter, suggesting that 

cardiac pericytes may also constrict coronary capillaries and reduce microvascular blood flow 

after acute myocardial infarction (AMI). The pericyte relaxant adenosine increased capillary 

diameter, decreased capillary obstruction, and increased perfusion volume.37 Cardiac 

pericytes may therefore represent a novel therapeutic target for protecting the coronary 

microvasculature following AMI. 

The glycocalyx is a matrix structure which covers endothelial cells and pericytes. The coronary 

glycocalyx is sensitive to acute myocardial IRI,38 and its shedding contributes to the 

development of oedema,39 and leukocyte40 and platelet41 adherence. TNFα is involved in 

glycocalyx degradation,42 and nitric oxide (NO) is protective.43 Thus, the glycocalyx may be a 

novel target for coronary vascular cardioprotection. 

  

Oedema  
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Intracellular water accounts for more than 75% of myocardial water content, and reperfusion 

induces cardiomyocyte swelling immediately upon coronary reflow.44 Osmotic swelling 

contributes to sarcolemmal rupture and cell death, and hyperosmotic reperfusion can reduce 

myocardial oedema and MI size.45, 46 In surviving cardiomyocytes, intracellular oedema is 

reversed by restoration of activation of ion pumps, notably sarcolemmal Na+/K+-ATPase.47 

During ischaemia, the accumulation of metabolites increases interstitial osmolality, and the 

exposure to normo-osmotic blood at reperfusion induces immediate interstitial oedema. 

Interstitial oedema then diminishes as catabolite washout eliminates the osmotic gradient 

between the intravascular and the interstitial compartments,44 but there is a second wave of 

oedema caused by increased vascular permeability. Serial cardiovascular magnetic 

resonance (CMR) imaging studies have revealed such bimodal pattern of myocardial oedema 

after reperfusion in pigs and humans.48, 49 

   

Platelets 

Platelets contribute to many processes relevant to acute IRI, including vascular integrity, 

lymphangiogenesis and tissue regeneration.50 After AMI, platelets play a biphasic role, initially 

recruiting neutrophils and amplifying the inflammatory response, and later releasing factors 

that actively support the resolution of inflammation.50 Upon activation, platelets release a 

variety of nucleotides, neurotransmitters, and over 300 proteins from secretory -granules, 

dense granules and lysosomal granules.51 Activated platelets also release microvesicles and 

exosomes which contain miRNA and lipids. The released substances are involved in platelet 

aggregation and coagulation. Some, such as sphingosine-1-phosphate (S1P),52, 53 54, 55 and 

platelet-activating factor,56, 57 can exert direct cardioprotective effects on cardiomyocytes, but 

their protective effect depends on the actual concentrations and circumstances. Other factors 

can affect the coronary microvasculature, including serotonin, growth factors, cytokines and 

chemokines. Intriguingly, both anti- and pro-angiogenic factors (e.g.: VEGF and SDF1) can 

be released from platelet-granules under different circumstances.58  
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Endothelial cells produce prostacyclins, NO and adenosine that inhibit platelet 

aggregation and adhesion. When activated, however, they express adhesion molecules and 

release von Willebrand factor, which activates platelets, causing them to form a plug. 

Conversely, activated platelets release vasoconstrictive compounds such as ADP, serotonin 

and thromboxane A2.59  

Studies in isolated, perfused hearts have shown that platelets can be cardioprotective. 

The barrier function of coronary microvessels in the isolated perfused rat heart is improved 

after perfusion of platelet-rich plasma.60 Myocardial injury measured by cardiac enzymes and 

function in rat hearts subject to IRI was decreased by perfusion with either washed rat platelets 

or with the supernatant of activated rat platelets.61 The precise mechanism is unclear but may 

involve the release of S1P, adenosine, serotonin or thromboxane A2.61 Perfusion of guinea 

pig hearts with constituents released by platelets helped to maintain the integrity of the 

coronary endothelium after IRI.62 The specific action of platelets in a given situation appears 

to depend on their state of activation.56, 57, 63 In rat hearts subjected to acute myocardial IRI, 

perfusion with platelets from AMI patients increased coronary resistance and myocardial injury 

when compared to perfusion with platelets from healthy volunteers.64 Such injury was 

prevented by the P2Y12 receptor antagonist cangrelor and the glycoprotein IIb/IIIa receptor 

blocker abciximab, suggesting that early inhibition of platelet activation may be 

cardioprotective.64  

Given the complex, multi-factorial role of platelets, in vivo studies provide more 

clinically relevant information than in vitro studies which are more reductionist and mechanistic 

in nature.65 Pigs were administered the platelet integrin αIIbβ3 receptor antagonist lamifiban 

prior to reperfusion after 55 min myocardial ischaemia. Lamifiban inhibited platelet 

aggregation and had a potent antithrombotic effect at the culprit lesion as expected, but did 

not reduce microvascular platelet accumulation or MI size.66 Similarly, in a mouse in vivo 

model of 30 min left coronary artery ligation followed by 24 h reperfusion, MI size was not 

affected by inhibition of platelet adhesion or aggregation, but reduced by inhibition of platelet 

activation along with improved perfusion, suggesting a possible effect on the 
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microvasculature.67 Ultimately, even if activated platelets do release substances with 

protective effects on the endothelium, treatment of AMI patients will always include platelet 

inhibition, given the importance of their primary pro-thrombotic activity.64 To complicate 

matters even further, experimental data suggest that P2Y12 receptor inhibition using ticagrelor 

or cangrelor at the onset of reperfusion can itself reduce MI size,68 but whether this 

cardioprotective effect is mediated on the coronary vasculature or the cardiomyocyte is not 

clear.  

 

4. Microvascular obstruction as a target for cardioprotection  

Microvascular obstruction (MVO) following AMI is primarily a reperfusion phenomenon, which 

manifests clinically as coronary no-reflow in the infarct-related artery following primary PCI, 

and has been defined as the “inability to reperfuse a previously ischaemic region”.69 The 

pathophysiology underlying MVO is complex and multifactorial, and has been attributed to: 

endothelial swelling and blebbing obstructing capillary blood flow, cardiomyocyte swelling 

compressing capillaries, platelet activation and aggregation, capillary obstruction due to red 

and white blood cell stasis, and coronary microembolisation (reviewed in 11). Severe MVO can 

result in capillary destruction and extravasation of red blood cells into the myocardium - termed 

intramyocardial haemorrhage (IMH), a condition which portends to worse prognosis following 

AMI. MVO following reperfusion of sustained myocardial ischaemia is always associated with 

infarction.70 The MVO and no-reflow areas are always contained within the infarcted tissue 

and not seen in the risk area which has remained viable.71 Also, there is infarction without 

MVO/no-reflow. These observations would put MVO as a consequence of myocardial 

infarction rather than its cause. However, MI size is robustly identified and quantified no earlier 

than after several hours of reperfusion, for technical reasons.70 Therefore, any early and 

transient MVO which may have contributed to infarct extension may have gone unnoticed. In 

response to cardioprotective interventions, effects on MI size and on MVO can be dissociated. 

In pigs, local and remote ischaemic conditioning procedures reduce MI size but not areas of 

no-reflow.72 Conversely, delayed hypothermia during reperfusion only reduces no-reflow but 
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not MI size.73 Mechanistically, the same factors which cause cardiomyocyte death (necrosis, 

apoptosis, etc.) can also cause death of endothelial and vascular smooth muscle cells, i.e. 

hypoxia per se with re-oxygenation and consequent enhanced formation of reactive oxygen 

species (ROS). Intracellular and interstitial oedema, intravascular platelet and erythrocyte 

aggregates and early inflammatory responses contribute to MVO and cardiomyocyte death, 

but their contribution to MVO and cardiomyocyte death may differ. At this point, the causality 

between MVO and cardiomyocyte cell death remains unresolved, and the two phenomena 

must be considered as separate but intimately related, possibly because of their identical 

underlying mechanisms. MVO and coronary no-reflow occur frequently even after prompt 

epicardial recanalisation of the infarct-related artery,74 and strongly impact on patient 

prognosis.75 Several therapies for preventing MVO, which have been successfully tested in 

experimental models of AMI, have failed in the translation to AMI patients.10, 11 

 

Invasive and non-invasive methods for assessment of coronary no-reflow and MVO 

The thrombolysis in myocardial infarction (TIMI) score grades blood flow in epicardial 

vessels.76 However, MVO may occur in nearly 50% of patients with TIMI flow 3. Angiographic 

methods characterising dye penetration within the myocardium, the myocardial blush grade 

(MBG) and TIMI myocardial perfusion grade, have been developed to shift attention to 

coronary microcirculatory flow.77, 78 The gold standard for assessing coronary microvascular 

function is coronary blood flow by thermodilution or flow velocity by Doppler which in 

combination with quantitative coronary angiography of epicardial coronary arteries also 

provides volumetric coronary blood flow.79 MVO is characterised by systolic retrograde and 

diminished anterograde flow, and by rapid deceleration of diastolic flow. Such impaired 

coronary flow velocity pattern following primary PCI is associated with future cardiovascular 

events.80 The index of microvascular resistance assessed by thermodilution provides a more 

reproducible assessment of the coronary microcirculation and predicts acute microvascular 

injury, left ventricular functional recovery and clinical outcomes after STEMI.81, 82  
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Incomplete ST-segment resolution (STR) has been related to MVO and worse clinical outcome 

after primary PCI.83 A consensus is still lacking over which ECG leads should be analysed, 

the optimal timing of electrocardiogram analysis, and whether standard ECG or continuous 

ECG monitoring is preferable.84 Myocardial contrast echocardiography (MCE) utilises 

ultrasound to visualise contrast microbubbles with a rheology similar to that of erythrocytes, 

and lack of contrast opacification due to MVO predicts poor functional recovery after STEMI.85 

MCE, however, is limited by moderate spatial resolution and operator dependency. CMR 

allows multi-slice imaging with high tissue contrast and high spatial resolution, enabling 

accurate quantification and localisation of MVO and MI size. CMR-defined MVO correlates 

with angiographic and invasive indices of MVO,86 and is associated with worse outcome.87 

MVO is diagnosed as: (i) lack of gadolinium uptake on first pass perfusion (<1 min of contrast 

administration), (ii) lack of early gadolinium enhancement (<2-3 min of contrast administration) 

(ii) lack of late gadolinium enhancement (LGE) (10–15 min after contrast administration).88 

Although first pass perfusion and early contrast gadolinium enhancement detect the presence 

of MVO with greater sensitivity than LGE, the presence of MVO on LGE is a stronger predictor 

of clinical outcomes following STEMI.88 

 

5. Intramyocardial haemorrhage as a target for cardioprotection  

IMH can develop after reperfusion of an infarct-related coronary artery. In dog hearts with 50 

to 60 min coronary occlusion and reperfusion IMH develops in the central core of the infarct; 

ultrastructurally, the endothelium is interrupted at several locations.89, 90 In patients, IMH was 

first observed at autopsy after lytic therapy of AMI.91 IMH is not germane to thrombolysis but 

frequently observed also after mechanical reperfusion and associated with unfavourable 

clinical outcome.92 This relation with adverse clinical outcome is even stronger than that of MI 

size or MVO.93 IMH is associated with larger MI size, longer treatment delay and the use of 

glycoprotein IIb/IIIa inhibitors.94 IMH is not only a bystander phenomenon; extravasation of 

erythrocytes, leukocytes and finally iron deposition further increase myocardial damage via a 

sustained inflammatory reaction.95, 96 Without reperfusion, IMH will not occur as shown both in 
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experimental models,97 and at autopsy of patients with non-reperfused AMI.98 In an ex-vivo 

reperfusion rat model, the endothelial barrier function for microspheres of 0.1 µm diameter 

was lost in hearts exposed to initial 30 min ischaemia followed by 60 min reperfusion whereas 

the barrier function remained intact after 30 min ischaemia without reperfusion, along with 

better preservation of endothelial cellular junctions and less endothelial cell damage.99 Given 

this sequence of events, a therapeutic window apparently exists to prevent microvascular 

damage and subsequent IMH upon reperfusion.  

The first large series of CMR-scanning acutely after STEMI demonstrated specific changes in 

the infarct core in up to 50% of patients treated with primary PCI.87 Using LGE, many patients 

displayed infarct areas completely devoid of contrast.87 Subsequently, contrast-free 

sequences were introduced to specifically detect IMH.100, 101 The degradation of erythrocytes 

and release of oxyhaemoglobin, de-oxyhaemoglobin and methaemoglobin change the CMR 

tissue characteristics, as reflected by a relative decrease in relaxation time and thus relative 

signal attenuation within the infarct zone. Iron deposition in the form of ferritin and hemosiderin 

also induces signal attenuation (Figure 2). T2* shows the lowest increase upon oedema and 

the highest relative decrease upon haemorrhage and thus theoretically is the most accurate 

sequence to detect IMH.95Whether or not CMR-defined MVO and IMH are separate entities is 

still debated. In a combined patient and pig study, there was a very large overlap between 

LGE detected MVO and T2-detected IMH. These areas were confined to the infarct core and 

displayed massive haemorrhage and complete microvascular destruction. Actual MVO was 

only observed in the infarct border zone.102   

 

6. Coronary collateral angiogenesis 

Brief episodes of ischaemia and reperfusion induced by ischaemic preconditioning (IPC) 

enable the preservation of endothelial function of coronary arterioles following acute 

myocardial IRI.103 Coronary endothelial function is sensitive to  acute myocardial IRI, in that 

the vasodilatory action of thrombin under normal conditions is reversed to a vasoconstrictive 

effect following IRI,104 and this original observation by Ku has been confirmed by many 
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groups.105, 106 A well-developed coronary collateral circulation protects against lethal acute 

myocardial IRI by maintaining perfusion to the area at risk. Apparently, similar underlying 

mechanisms are shared by both IPC of cardiomyocytes and coronary collateral growth. 

Activation of hypoxia-inducible factor (HIF) ap dissecting whether the cardioprotective effects of 

ischaemic ears critical for IPC,107 and HIF-dependent genes are required for coronary collateral 

growth in a model of episodic myocardial ischaemia.108, 109 Mitochondrial function also appears 

to be critical for both IPC,110 and for coronary collateral growth.111 Collateral angiogenesis 

cannot be recruited acutely for cardioprotection, but is important for the healing and 

remodelling following acute myocardial infarction.112, 113  

 

7. Targeting the coronary vasculature for cardioprotection  

Interventions to protect the coronary vasculature following acute IRI sustained during AMI 

have been targeted to endothelial dysfunction, loss of endothelial integrity, microembolisation, 

impaired vasomotor function, cardiomyocyte and endothelial swelling compressing capillaries, 

and capillary rupture with IMH (Figure 3).  

The heart can be protected from cell death induced by different endogenous cardioprotective 

strategies, collectively termed ‘ischaemic conditioning’ (reviewed in 114 and comprising the 

application of one or more brief cycles of non-lethal ischaemia and reperfusion to the heart 

itself, either prior to the lethal ischaemic episode (IPC),115 or at the onset of reperfusion 

(ischaemic postconditioning [IPost]).116 Such cardioprotective stimulus can also be applied to 

an organ or tissue away from the heart (remote ischaemic conditioning [RIC]),117-121 either prior 

to (remote ischaemic preconditioning [RIPC]),122 or during the lethal ischaemic episode 

(remote ischaemic perconditioning [RIPerC]),123 or at the onset of reperfusion (remote 

ischaemic postconditioning [RIPost]).124 The majority of experimental and clinical studies have 

focused on the cardioprotective effects of ischaemic conditioning on cardiomyocytes and 

neglected the coronary vasculature. However, dissecting whether the cardioprotective effects 

of ischaemic conditioning protects the coronary vasculature independently of cardiomyocytes 
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is challenging, given the intimate and potentially causal relationship between damage to the 

coronary vasculature and cardiomyocyte death following AMI.70   

 

Protecting the coronary vasculature with IPC 

IPC, in addition to reducing MI size, can protect the coronary vasculature, as evidenced by 

less endothelial damage,125 increased flow-mediated dilator response to vasodilators such as 

adenosine and nitric oxide or a reactive hyperaemia stimulus,103, 126-129 less neutrophil 

adherence,126 and improved endothelial integrity.130 Mechanisms implicated in IPC include 

adenosine,131, 132 KATP channel opening,131, 133 signalling ROS,134 bradykinin B1 receptor 

activation,135 prostaglandin E2,136, NO,137  attenuated formation of detrimental ROS,138 

reduced endothelin-1,139 enhanced eNOS function,140 and preservation of endothelial tight 

junctions.130 However, some studies failed to show beneficial effects with IPC on coronary no-

reflow 72, 141 or coronary vasomotor response.142 The interaction of coronary microembolisation 

with ischaemic conditioning is complex.13 Prior coronary microembolisation does not induce 

IPC,13 and conversely IPC does not protect from coronary microembolisation.143 Coronary 

microembolisation induces however delayed protection from infarction through upregulation 

of TNFα.144  

 In patients with pre-infarction angina (a clinical example of IPC)145, 146 reperfusion,147 

coronary microvascular reflow and flow reserve were improved following AMI, suggesting 

coronary vascular protection with endogenous IPC by pre-infarct angina.148 Whether or not 

pre-infarction angina is a form of IPC is still under debate, and whether or not pre-infarction 

angina is protective under all circumstances is questionable, given the phenomenon of 

hyperconditioning.149 In any event, the need to apply the protective stimulus prior to the lethal 

ischaemic insult has prevented the clinical application of IPC in AMI patients in whom the 

onset of acute myocardial ischaemia cannot be anticipated.  

 

Protecting the coronary vasculature with IPost 
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IPost can be applied at the onset of reperfusion, making its use in STEMI patients at the time 

of primary PCI possible. In the first description of MI-limitation by IPost,116 less myocardial 

oedema, reduced neutrophil adherence and decreased endothelial P-selectin expression, and 

improved vasodilator response to acetylcholine were observed. In pigs, smaller MI size, less 

MVO, improved endothelial function, and preserved coronary blood flow were observed after 

2 hours of reperfusion with IPost.150 A more recent study reported less oedema and MVO, but 

no reduction in MI size with IPost and RIC in a closed-chest pig infarction model.151 Other 

studies failed to show any beneficial effects of IPost on MVO72, 152, 153; one of these studies 

also found no reduction in MI size with IPost,152 but the others did demonstrate a smaller MI 

size with IPost.72, 153 The dissociation between the beneficial effects of IPost on MVO and MI 

size are difficult to interpret at this time. Concomitant IPost and coronary microembolisation, 

as probably occurs during further manipulation of the culprit lesion just after established 

reperfusion, has been shown to not impair protection by IPost.154 

In the clinical setting, the beneficial effects of IPost on MVO appeared to mirror its MI-

limiting effect.155  Reduction of MI size went along with limitation of MVO by 50% with IPost 

(both by CMR).155 In primary PCI-treated STEMI patients less coronary no-reflow with IPost 

was reflected by improved TIMI grade, STR, MBG, and corrected TIMI frame count.156 Also, 

IPost reduced MI size, and improved coronary blood flow and endothelium-dependent 

vasodilator function following STEMI.157  However, other clinical studies have failed to 

demonstrate an effect of IPost on MVO, but these studies also showed no effect of IPost on 

MI size.152, 158 Some studies have even reported detrimental effects of IPost with larger MI 

size, but in these studies there was no detrimental effect on coronary microvascular 

function.159, 160    

 

Protecting the coronary vasculature with limb RIC 

IPost requires further manipulation of the culprit coronary lesion, thereby limiting its clinical 

application. In contrast, RIC can be induced non-invasively by one or more cycles of brief non-

lethal ischaemia and reperfusion to the limb.161 In human volunteers, serial inflations and 
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deflations of a pneumatic cuff on the upper arm improved post-ischaemic endothelial function 

(as measured by increased blood flow response to acetylcholine) in the contralateral arm.161 

Using the same model, limb RIC induced an early and a delayed vasculoprotective effect 24-

48 hours following the stimulus in healthy volunteers and in patients with atherosclerosis  

which was blocked by the KATP channel blocker glibenclamide,162 required a neural pathway 

which was blocked by pharmacological ganglionic blockade,163 and was effective even when 

limb RIC was performed during the acute forearm IRI. An endothelial-protective effect from 

limb RIC was also present with daily limb RIC for 7 days,164 and still present 8 days following 

the protective stimulus,165 suggesting that a chronic daily limb RIC stimulus may be able to 

extend the window of vascular protection. Long-term nitroglycerine and limb RIC each 

separately reduced MI size in rats and attenuated the endothelial dysfunction from forearm 

ischemia/reperfusion in healthy volunteers, but in combination abrogated any protection both 

in the heart and in the peripheral vasculature.166 

 Coronary vascular resistance was reduced and coronary blood flow improved with limb 

RIC in pigs at baseline and following acute myocardial IRI, and this effect was blocked by KATP 

channel blockade with glibenclamide but not by femoral nerve transection.167 In healthy human 

volunteers, limb RIC increased coronary flow velocity (by Doppler), suggesting a hyperaemic 

response with RIC.168 In patients undergoing PCI for stable CAD, limb RIC reduced 

periprocedural myocardial injury and rapidly increased distal coronary occlusive pressure, 

reflecting improved coronary collateral blood flow.169 Also in patients undergoing PCI for stable 

CAD, RIC improved coronary vasomotor responses to acetylcholine, reflecting better 

endothelial function.170, 171 However, several clinical studies have reported reductions in MI 

size with limb RIC in STEMI patients treated by primary PCI, but have not found any beneficial 

effects on coronary no-reflow or MVO,158, 172 suggesting that the cardioprotective effects of 

limb RIC in STEMI patients may be targeted towards ischaemic cardiomyocytes rather than 

the coronary vasculature.  

 

Pharmacological strategies for protecting the coronary vasculature  
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Many pharmacological agents have been tested for their protective effects on the coronary 

vasculature, and only an overview is provided here. A number of drugs are currently given in 

the cardiac characterisation laboratory to treat coronary no-reflow in STEMI patients following 

PCI, and these include nitrates, calcium channel blockers and adenosine. Although these 

drugs can induce coronary vasodilation and in some case reduce MVO, these interventions 

do not appear to improve clinical outcomes following primary PCI.173-175 Most pharmacological 

agents used to induce coronary vascular protection also have protective effects on the 

cardiomyocyte, i.e. adenosine, NO donors, calcium antagonists and P2Y12 inhibitors, making 

it difficult to separate vascular from cardiomyocyte protection. Some novel approaches have 

been tried to reduce coronary no-reflow and prevent MVO in experimental studies.9 

 Administration of angiopoietin-like peptide 4 at reperfusion to target the endothelial 

gap-junction VE-cadherin complex and preserve coronary endothelial integrity following acute 

myocardial IRI reduced MI size, decreased myocardial oedema, and prevented MVO and 

IMH.29 Opening of the mitochondrial permeability transition pore (MPTP) during reperfusion is 

a critical determinant of cell death from acute IRI, and its inhibition at reperfusion using 

cyclosporine-A (CSA) reduced MI size in small animal AMI models,176, 177 although in large 

animals the effect of CSA has been mixed.178-180 CSA reduced MI size in an initial clinical study 

of primary PCI-treated STEMI patients,181 but failed to improve clinical outcomes in 2 

subsequent large clinical studies.182, 183 In one pig study, CSA reduced both MI size and 

MVO;153 however, whether this was due to a direct vasculoprotective effect of CSA or occurred 

secondary to myocardial salvage is not clear. Nitroglycerine can induce a preconditioning-like 

protection of the coronary vasculature, the peripheral vasculature and the myocardium,146, 166 

and its mechanisms are still not fully elucidated, may depend on dose and duration of 

administration and may include hitherto unrecognised effects on the MPTP.184  

 Therapeutic hypothermia limits MI size in experimental IRI studies when initiated 

during ischaemia, whereas clinical studies using invasive interventions to achieve 

hypothermia have had limited success primarily due to logistical issues. Hypothermia in rabbit 

hearts reduced coronary no-reflow following acute IRI, when delayed into reperfusion, even 
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when there was no MI limiting effect,73 raising the possibility for an extended window for 

vascular protection following AMI. Mild hypothermia using a non-invasive ThermoSuit System 

initiated during ischaemia reduced MI size and prevented coronary no-reflow in rabbit and rat 

models of acute myocardial IRI;185 whether or not such protection would be effective if applied 

at the onset of reperfusion needs to be tested.  

 

8. Effect of co-morbidities and co-medications on coronary vascular protection  

Co-morbidities and co-medications can confound cardioprotection elicited by ischaemic 

conditioning strategies.186 In pigs with acute IRI, IPost improved endothelial function and 

reduced MVO in healthy animals, but failed to do so in the presence of 

hypercholesterolemia.150 The abrogation of IPost-induced cardioprotection was attributed to 

detrimental effects of hypercholesterolemia on NOS levels. In another study, IPC provided 

significant microvascular protection in the skeletal muscle from prolonged IRI in normal, but 

not in diabetic rats.187 In young men, flow-mediated dilation (FMD) decreased significantly after 

IRI without but not with prior IPC; such protection by IPC was attenuated in elderly patients.188 

In smokers, the IPC-induced increase in forearm blood flow response to acetylcholine seen in 

healthy volunteers was blunted while the responses to sodium nitroprusside before and after 

the IPC stimulus were similar.189 In contrast to age and smoking, neither hypertension,190 nor 

reduced left ventricular ejection fraction191 affected the protective response of RIC on FMD,190 

or coronary flow reserve (by transthoracic Doppler).191   

Of note, in most studies on co-morbidities animals are untreated. Acute rosuvastatin 

prevented the development of IRI-induced conduit artery endothelial dysfunction.192 In 

contrast, chronic rosuvastatin did not prevent the development of IRI-induced endothelial 

dysfunction.193 The anti-diabetic sulfonylurea glibenclamide abolished RIC- and IPost- induced 

protection on forearm endothelial function in humans during acute IRI.162, 194 On the other 

hand, re-establishment of normoglycemia by islet cell transplantation restored the 

cardioprotection, as reflected by reduced infarct size, from IPost which had been lost in 

diabetes.195 The RIC-induced prevention of FMD impairment following IRI was abrogated by 
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cyclooxygenase (COX) 2 inhibition.196 Non-selective COX inhibition with aspirin 325mg and 

ibuprofen or specific COX-2 inhibition with celecoxib inhibited the protective effects of 

rosuvastatin in the setting of IRI. In contrast, low dose aspirin (81mg daily) – as given for the 

prevention on coronary artery disease - did not have such inhibitory effects.197 Often, low dose 

aspirin is combined with P2Y12-inhibition: clopidogrel given 24 hours prior to an episode of IRI 

limited the adverse effects of ischaemia on endothelial function.198 While acute treatment with 

NO donors might protect endothelial function, such protection might be lost with the 

development of nitrate tolerance, and nitrate tolerance may also interfere with the vascular 

protection by RIC.166 In contrast, inhibition of phosphodiesterase 5 with sildenafil provided 

sustained protection of the endothelium from adverse IRI effects on vascular function.199 

In summary, while there appears to be an effect of co-morbidities and co-treatments 

in peripheral vascular beds, almost nothing is known on their interactions on cardioprotective 

interventions in the coronary circulation. 

 

9. Future perspectives 

MVO and no-reflow are serious consequences of reperfused AMI which carry an adverse 

prognosis. As such these phenomena require attention. Currently, the causal relationship 

between cardiomyocyte and coronary microvascular injury is not clear. Likewise it is not clear 

to what extent protective interventions target the cardiomyocyte, the coronary circulation or 

both. Clearly, however, there is a need for protection of the coronary circulation beyond infarct 

size reduction. At this point, there is no intervention or substance which would specifically 

protect the coronary circulation from ischaemia/reperfusion injury. However, the development 

of specific or additive protective strategies for the coronary circulation is an unmet medical 

need. Protection is needed from enhanced permeability, enhanced platelet and leukocyte 

adherence and transmigration, impaired vasomotion, capillary obstruction by erythrocytes, 

platelets and leukocytes and ultimately capillary destruction and haemorrhage. Thus, all 

structural elements of the coronary vascular wall from glycocalyx to endothelium to smooth 

muscle and adventitia need protection. At this point, the most promising protective 
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substance/molecule to achieve such multi-faceted protection appears to be angiopoietin-like 

peptide 4.29 
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Figure 1: Potential mechanisms underlying capillary damage following AMI 
During thrombotic coronary occlusion and interruption of flow, the endothelium shows 

morphological and functional changes, including swelling and blebbing and loss of endothelial 

junctions via release of angiopoietins and VEGF. Instantaneous opening of the coronary 

vessel by placement of a coronary stent induces additional damage leading to endothelial 

gaps, extravasation of erythrocytes and intramyocardial haemorrhage. Figure reproduced 

from200. 

 
 
 
 
 
 
 
 
Figure 2: Intramyocardial haemorrhage following AMI on cardiac MRI.  
(a) On T2-weighted images relaxation times and thus signal strength increase due to 
myocardial oedema formation after AMI (white arrow heads). In case of intramyocardial 
haemorrhage (IMH), haemoglobin degradation products lead to a relative decrease in 
relaxation time, and thus a relative signal attenuation within the MI zone (black arrow heads). 
(b) On T2* images a relatively lower increase is observed with myocardial oedema (white 
arrow heads), and a relative higher decrease is observed upon IMH (black arrow heads), 
providing a stronger signal separation as compared to T2. (c) On late gadolinium 
enhancement (LGE) images the hypointense core indicates that no gadolinium entered the 
infarct core (yellow arrow heads). Overall infarct area is indicated by the hyperintense signal 
of the gadolinium that is retained within the tissue (white line). Note the large overlap between 
microvascular obstruction (MVO) as assessed by LGE and IMH as assessed by T2 and T2*. 
Figure reproduced from 200. 
 
 

 

 

 

 

 

 
 
 
 
 
Figure 3: Effects of acute myocardial ischaemia/reperfusion injury on the coronary 
vasculature, and therapeutic vascular targets for cardioprotection 
This scheme depicts the diverse consequences of acute myocardial ischaemia/reperfusion 
injury on the coronary vasculature following acute myocardial infarction, and highlights the 
vascular targets of endogenous cardioprotective strategies (IPC, ischaemic preconditioning, 
IPost, ischaemic postconditioning and RIC, remote ischaemic conditioning) and 
Pharmacological agents (Pharm). Figure modified from 11.  
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