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Sound identity is represented robustly in auditory
cortex during perceptual constancy

Stephen M. Town® !, Katherine C. Wood'2 & Jennifer K. Bizley® '

Perceptual constancy requires neural representations that are selective for object identity,
but also tolerant across identity-preserving transformations. How such representations arise
in the brain and support perception remains unclear. Here, we study tolerant representation
of sound identity in the auditory system by recording neural activity in auditory cortex of
ferrets during perceptual constancy. Ferrets generalize vowel identity across variations in
fundamental frequency, sound level and location, while neurons represent sound identity
robustly across acoustic variations. Stimulus features are encoded with distinct time-courses
in all conditions, however encoding of sound identity is delayed when animals fail to gen-
eralize and during passive listening. Neurons also encode information about task-irrelevant
sound features, as well as animals’ choices and accuracy, while population decoding out-
performs animals’ behavior. Our results show that during perceptual constancy, sound
identity is represented robustly in auditory cortex across widely varying conditions, and
behavioral generalization requires conserved timing of identity information.
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erceptual constancy, also known as perceptual invariance, is

the ability to recognize objects across variations in sensory

input, such as a face from multiple angles, or a word spoken
by different talkers!2. Perceptual constancy requires that sensory
systems, including vision and hearing, develop a level of tolerance
to identity-preserving transformations®#. In hearing, tolerance is
critical for representing sounds such as individual words or
phonemes across talkers, voice pitch, background noise and other
acoustic transformations®, and is a key step in auditory object
formation and scene analysis"-%7.

Both humans and other animals perceive sound features con-
stantly despite variation in sensory input: we can recognize
loudness across variation in location®, frequency across sound
level® and sound identity across talkers!®!1, vocal tract length!?-
14 and fundamental frequency (F0)!°-17. At the neural level,
tolerance is observed within auditory cortex, where neurons
remain informative about the identity of vocalizations'8-20, pure
tones2! and pulse trains?Z across variations in acoustic properties.
For speech sounds such as vowels, multiple sound features
including phoneme identity, location and FO modulate activity of
auditory cortical neurons?>~2°. However, tolerance has yet to be
shown in subjects actively demonstrating perceptual constancy,
and the behavioral relevance of previously demonstrated tolerant
representations in auditory cortex remains unclear. Furthermore,
although auditory cortical processing is modulated by attention
and experience?”, it is unknown how these processes affect tol-
erant representations.

Here, we asked if tolerant representations for complex sounds
exist in early auditory cortex during perceptual constancy, how
tolerance was related to behavior, and how tolerance was modu-
lated by attention and experience. To address these questions, we
recorded auditory cortical neurons in ferrets discriminating
synthesized vowel sounds that varied across identity-preserving
acoustic transformations including F0, sound location, level, and
voicing. These features varied independently and thus repre-
sented orthogonal dimensions in feature space.

We hypothesized that neurons would show tolerance (remain
informative about vowel identity) across the same range of
orthogonal variables over which animals demonstrate perceptual
constancy, and that such tolerance would be degraded if subjects
failed to generalize vowel identity. As auditory cortex represents
multiple stimulus variables, in the cases where animals general-
ized successfully, we expected tolerance would exist for both task-
relevant and irrelevant sound features. Finally, we predicted that
neural correlates of perceptual constancy should be dependent on
animals’ behavioral performance, attentional state and training.
We found that tolerant representations of sound identity exist
during perceptual constancy, and that the timing (but not
quantity) of information about vowel identity is associated with
behavioral performance. However, the ability of auditory cortex
to represent vowel identity exceeds animals’ behavior, and
requires neither training, nor task engagement.

Results

Perceptual constancy during vowel discrimination. To establish
a behavioral model of perceptual constancy, ferrets were trained
in a two-choice task (Fig. 1a) to identify synthesized vowels. Once
animals were trained, vowels were varied in FO (149 to 459 Hz),
location (+90°), sound level (45 to 82.5 dB Sound Pressure Level
[SPL]), or voicing (where vowels were generated to sound whis-
pered and presented on 10 to 20% of trials as probe trials).
Changes in these task-irrelevant, orthogonal dimensions pro-
duced different spectra while preserving the formant peaks in the
spectral envelope (Fig. 1b) critical for vowel identification®8. On
each trial, the animal triggered stimulus presentation consisting of

two tokens of the same vowel (250 ms duration, 250 ms interval).
Subjects then responded to the left or right depending on vowel
identity, with correct responses rewarded with water, and errors
triggering brief timeouts (1 to 5s). Repeated vowel presentation
was not necessary for task performance (Supplementary Fig. 1)
but was used for consistency with earlier work!>!”. In each test
session, vowels varied across only one orthogonal dimension (e.g.,
F0). Variation in each orthogonal dimension was sufficient that,
had the animals been discriminating these features, performance
would have approached ceiling?>2%-32, Here, behavioral training
was required to access subject’s perception, but perceptual con-
stancy itself may occur naturally in ferrets’ perception of sound
timbre33.

Ferrets discriminated vowels accurately across F0, location and
sound level—but not voicing (Fig. 1c). For all FOs, locations and
levels, performance was significantly above chance for all subjects,
while only two subjects discriminated voiceless vowels success-
fully (binomial test vs. 50%, p <0.001, Supplementary Table 1).
There was no effect of FO or location on performance (logistic
regression, p >0.05, Supplementary Table 2), but performance
improved significantly, if modestly, with level (3/4 ferrets, logistic
regression, p<0.01; Supplementary Table 2). Nevertheless,
performance was constant over a range of intensities, and
performance at the lowest sound levels still exceeded chance. For
all subjects, performance was significantly worse for whispered
than voiced vowels. Failure to generalize across voicing may result
from delivery of whispered vowels as probe stimuli on 10 to 20%
of trials, with any response rewarded. Thus, animals did not
receive the same feedback for whispered sounds as for other
orthogonal variables. Nonetheless, whispered sounds were
presented at equivalent rates as each FO or sound level (conditions
where constancy occurred). Our data may, therefore, reflect limits
of ferrets' perceptual constancy resulting from large acoustic
differences between voiced and voiceless sounds.

Ferrets accurately reported vowel identity across variations in
FO, sound location and sound level. We next asked if vowel
discrimination across orthogonal features reflected memorization
of correct responses to each sound, or true generalization of
sound identity across acoustic input. To test generalization, we
calculated animals’ performance as a function of experience:
Ferrets learned the original stimulus-response contingency with a
single FO, level, location and voicing over thousands of trials.
Therefore, if ferrets memorized each stimulus-response associa-
tion, it should take hundreds of trials to successfully discriminate
novel vowels. However, ferrets discriminated vowels with new
FOs, sound levels or locations accurately within ten presentations
(Fig. 1d and Supplementary Fig. 2). On this time-scale,
performance increased with trials, but saturated 10 to 20 trials
after introduction; i.e., much faster than the initial discrimination
was learnt. Thus, animals rapidly generalized vowel identity to
new sounds, arguing against memorization of specific
stimulus-response associations. These results are consistent with
vowel discrimination across many FOs (n=15) for which
memorization is increasingly difficult!’, and the conclusion that
animals perceived a constant sound identity across acoustic
variations. We then moved on to ask how neurons in auditory
cortex recorded during task performance (Fig. 1f) represented
vowels during behavior.

Decoding acoustic features from neural activity. We implanted
microelectrode arrays bilaterally in auditory cortex, where elec-
trodes targeted the low-frequency reversal between tonotopic
primary and posterior fields*3>. We recorded 502 sound-
responsive units (141 single units) and, for each unit, measured
responses to vowels across FO, location, level and/or voicing
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during task performance (Fig. 1f). For some units, activity was
recorded in all conditions; however most were tested in a subset

of conditions.

We quantified the information available about each sound
feature by decoding feature values in one dimension across

changes in the orthogonal dimension from single trial unit
responses. Our decoder compared the Euclidean distances of
time-varying patterns of neural activity, with leave-one-out cross-
validation3® (Supplementary Fig. 3). We varied the time window
over which responses were decoded, and optimized parameters
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Fig. 1 Perceptual constancy during vowel discrimination. a Schematic of task design: Animals initiated trials by visiting a central port (C) and waiting for a
variable period before stimulus presentation. Speakers (S) presented sounds (two tokens of the same vowel; blue) to the left and right of the head in all
conditions except when sounds varied across location—in which case they were presented from either left (S\) or right (Sg) speaker only. Animals
responded at the left (R.) or right (Rg) port depending on vowel identity. b Spectra for 13 examples of one vowel /u/ with varying FO, location, sound level
or voicing. To illustrate the effect of spatial location, the spectra were generated in virtual acoustic space®’, although sounds presented experimentally
varied in their free-field location. ¢ Behavioral performance when discriminating vowels across FO, location, level and voicing. Data are shown as
performance correct across all test sessions, for each subject separately (F1201: orange circles, F1203: red triangles; 1217; blue squares; F1304: gray
diamonds). See Supplementary Table 1 for sample sizes. d Performance of subjects as a function of experience. Each line indicates one ferret as in c.
Dashed lines for € and d show chance performance (50%). e Number of trials required to detect significant task performance when compared to chance
(permutation test, p < 0.001). Symbols show individual ferrets as in c. f Raster and peri-stimulus time histograms (PSTHSs) of neural responses of one multi-
unit to vowels (/u/: black; //: green) across variation in FO (blue), location (magneta), level (red), and voicing (orange). Data plotted during presentation
of the first sound token (gray bar) by vowel identity and by each orthogonal variable. PSTHs show mean £ s.e.m. firing rate across trials

(start time and window duration) in order to compare the timing
of information about different sound features (Supplementary
Figs. 4-6).

Within the decoding parameter space, we saw stimulus-locked
increases in decoding performance (Fig. 2b). For each unit, we
tested whether optimized decoding performance was significantly
better than that observed when randomly shuffling the decoded
feature (permutation test; p <0.05, Supplementary Fig. 5). The
proportion of vowel informative units was highest across the
dimensions for which animals showed perceptual constancy:
Across variation in F0, 37.1% of units (156/421) were informative
about vowel identity, 40.7% (55/135) across location and 35.7%
(79/221) across level (Fig. 2e). Units informative about vowel
identity across one orthogonal feature were also informative
across other orthogonal features, suggesting that identity was
represented robustly across widely varying acoustic inputs
(Supplementary Fig. 7 and Supplementary Table 3). Furthermore,
vowel decoding performance did not vary with FO, level or
location (Supplementary Fig. 8).

The proportion of vowel informative units was smallest (70/
238 units; 29.4%; Supplementary Table 4) for whispered sounds,
where animals also failed to generalize behaviorally. Units were
also less frequently informative about vowels across voicing and
other orthogonal features (Supplementary Fig. 7), and decoding
performance differed significantly between voiced and whispered
sounds (Supplementary Fig. 8). Thus, impaired behavioral
generalization was associated with less widespread and more
poorly conserved encoding of vowels.

Perceptual constancy allows humans to extract particular
features across changes in sensory input, but we remain sensitive
to variation in other dimensions®’. Consistent with this, we could
also decode orthogonal sound features even though they were
irrelevant for task performance: 20.4% of units (86/421) were
informative about FO across vowels, 20.4% (45/221) about level,
and 30.4% (41/135) about location. Fewer units were informative
about FO or level because more feature values were tested (five)
compared to location and voicing (two). If we matched the
number of feature values (comparing 149 vs. 459 Hz or 64.5 vs.
82.5dB SPL), more units were informative about FO (103/423:
24.4%) and level (44/140: 31.4%). Of all orthogonal features, most
units were informative about voicing (46.2%; 110/238), suggesting
that whispered stimuli had easily identifiable effects on neural
activity. FO informative units were also more often informative
about voicing (Supplementary Fig. 7), suggesting that sensitivity
to voicing arises from selectivity for harmonicity. Overall,
successful decoding of orthogonal features indicates that, even
during vowel identification, auditory cortex maintains sensitivity
to multiple sound features.

Multiplexed and multivariate representations of sound. Sensi-
tivity to multiple stimulus features indicates that, as a population,

auditory cortex provides a multivariate representation of sounds.
We next asked if individual units provided multivariate repre-
sentation by testing whether units informative about both vowels
and a given orthogonal feature (dual feature units) were more
frequently observed than expected from the proportion of units
informative about each feature alone. We shuffled unit identity to
measure the proportion of dual feature units arising randomly
and compared the distribution of shuffled values to the observed
occurrence (Fig. 2f). Test permutations were generated using our
recorded population, which contained both single and multi-
units, and so captured trivial multivariate representations
resulting from poor multi-unit isolation. With this control, we
observed that significantly more units represented vowel and F0O
than expected by chance (permutation test; 10* iterations; p =
0.001); similarly, more units were jointly sensitive to vowel and
voicing (permutation test, p = 0.02). Dual-feature sensitivity was
also observed for vowel and location, as well as vowel and level,
but their frequency was not significantly greater than chance.
Thus vowel, FO and/or voicing could be represented by the same
unit, suggesting that auditory cortex maintains multivariate
representations within individual units during perceptual
constancy.

Multivariate encoding poses a challenge as changes in firing
rate are ambiguous with respect to which stimulus feature is
changing. Temporal multiplexing, where neurons represent
different stimulus features at distinct time points, may solve this
problem?3. Given we also saw that decoding was time-dependent
(Fig. 2a, b); we asked if information about different sound
features were systematically represented at different times. To test
this, we compared the center time of the decoding window that
gave best performance across stimulus features. Timing differ-
ences were visualized using cumulative distribution functions
(CDFs) across units that were informative about one (single-
feature) or multiple stimulus features (dual-feature wunits)
(Fig. 2d).

Information about vowel identity arose significantly earlier
than FO, both in dual-feature units that multiplexed FO and vowel
information (time difference (Af): 153 ms, sign-rank test, p =
0.003), and single-feature units representing vowel or FO (At: 233
ms, rank-sum test, p =0.002). Vowel identify was also decoded
later than sound location (dual feature units only, At: 255 ms,
sign-rank, p = 0.008) and voicing (single-feature units only, At:
245 ms, rank-sum, p = 0.016). Vowel identity was decoded earlier
than sound level but timing differences were not significant (dual
feature units, Af: 140 ms, sign-rank, p =0.059, single-feature
units, At: 133 ms, rank-sum, p = 0.059). Timing differences were
driven by changes in start time of decoding rather than window
duration (Supplementary Figs. 9 and 10). Differences in timing
for orthogonal variables were also found as FO and level were
decoded significantly later than location and voicing (Supple-
mentary Table 5). Our results thus show temporal multiplexing of
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sound features in behaving animals, but also that perceptual
constancy (for sound level) occurs without significant temporal
multiplexing.

We next considered the decoding time of units that were
informative about only vowel identity and thus represent only
task-relevant and not task-irrelevant sound features. For these
units, vowel decoding occurred at similar times for stimulus
parameters over which animals successfully generalized (FO,
location and level; Fig. 2g). In contrast, decoding of vowel identity
across voicing (where animals failed to generalize) was delayed

relative to the other conditions. Across all orthogonal features,
timing of vowel information differed significantly
(Kruskall-Wallis test, y>=10.41, p = 0.015). Post-hoc compar-
isons (Tukey-Kramer corrected) showed information about
vowels across voicing emerged significantly later than vowels
varying in FO (p=0.023) or location (p=0.016), and non-
significantly later than vowels varying in level (p =0.155). This
was particularly interesting because, despite these units only being
informative about vowel identity and not orthogonal features, the
timing of vowel identity information was only conserved in the
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Fig. 2 Neural responses and decoding acoustic features. a Performance decoding vowel identity for one unit, for all time windows (defined by start time and
window duration). Black line indicates stimulus onset. b Mean performance decoding vowel identity and orthogonal features for all units that were
informative about vowel and/or orthogonal feature. Bottom: Difference in performance between vowel and orthogonal feature, illustrating consistent
differences in timing of information about vowel and orthogonal features. ¢ Decoding performance when reconstructing vowel and orthogonal values from
single trial responses of individual units. Markers show best decoding performance of each unit, with unit classification shown as: informative about vowel
only (green triangles), orthogonal only (circles), vowel and orthogonal (black diamonds) or neither (gray squares). Single/multi-unit data shown by
unfilled/filled markers. Chance performance for vowel, location and voicing was 50% and 20% for FO and sound level. d Cumulative distribution functions
(CDFs) showing center times (start time + duration/2) for best performance of each unit when decoding vowel (green) or orthogonal variables (FO: blue;
Location: purple; Level: red; Voicing: orange). Units are shown separately by classification as dual feature units (informative about vowel and orthogonal
values), or single-feature units (informative about only vowel or orthogonal values). Gray bars represent stimulus duration. Values (p) indicate comparison
of median center time between decoding of vowel and orthogonal values (dual feature units: sign-rank test; single-feature units: rank-sum test). e Number
of units informative about vowel/orthogonal values when considering responses across all data. f Permutation test comparing the number of units
informative about both vowel and orthogonal features observed (black diamonds) vs. chance (unfilled diamonds indicate mean shuffled performance;
scatter plots show random performance across 104 iterations after shuffling unit identity). Values (p) show the proportion of permutated values above the
observed number of units. g CDFs for decoding vowel across each orthogonal variable (Vowel) and orthogonal values across vowels (Orth). Data are the
same as in d but replotted (and recolored for Vowel) by orthogonal dimensions (FO: blue; Location: purple; Level: red; Voicing: orange). Values (p) show

results from Kruskal-Wallis test

conditions in which the animal could successfully generalize.
Such units may thus provide downstream neurons with an
invariant and temporally dependent representation of sound
identity during successful task performance. When animals failed
to generalize vowels across voicing, vowel identity was still
encoded within auditory cortex but was significantly delayed in
those units providing the most behaviorally relevant
representation.

Orthogonal variables were also decoded at different times
(Fig. 2g) with significant differences in timing identified for dual
(Kruskal-Wallis test, y?>=16.36, p=0.001) and single-feature
units (y?> = 13.22, p = 0.004). Post-hoc comparisons showed FO
was decoded later than location (dual feature, i.e., FO and location
sensitive: p=0.001; single-feature i.e. only significantly FO or
location sensitive: p = 0.022). For dual feature units, FO was also
decoded later than voicing (p = 0.022), while for single-feature
units, sound location was decoded earlier than sound level (p =
0.043). Thus, optimizing the temporal parameters of our decoder
revealed systematic differences in timing of sound features during
perceptual constancy that indicates a time-based, behaviorally
relevant structure of auditory encoding.

Task engagement modulates temporal encoding. To determine
if temporal multiplexing depends on task engagement, neural
responses to sounds varying in FO were compared during vowel
discrimination and passive listening (Fig. 3a). As during task
performance, we could decode vowel identity and FO from indi-
vidual units in passive conditions (Fig. 3b) and vowel identity was
decoded earlier than FO in single-feature units (Fig. 3¢, Af: 123
ms, rank-sum test, p=0.014). Temporal multiplexing was,
therefore, not restricted to task performance and reflected general
auditory processing. However, decoding of vowel identity slowed
significantly during passive listening (Fig. 3d, At: 110 ms) in units
that were vowel informative during task performance (sign-rank
test, p = 0.028). No effect of task engagement was found on FO
decoding time, or when decoding vowel identity across all units.
Thus, timing of information about vowel identity was dependent
upon behavioral context, and vowel discrimination was again
associated with earlier encoding of vowel identity.

Task engagement suppresses cortical activity’®-4? and mod-
ulates receptive fields of auditory cortical neurons*!=47. We also
observed engagement-related suppression of auditory responses
during, but not before, stimulus presentation (Fig. 3e, g): For units
recorded across conditions, firing rates in the 100 ms after stimulus
onset were significantly lower during engaged than passive
conditions (Fig. 3e; sign-rank test, z=3.62, p=2.93x107%). In

the same period, vowel decoding was significantly better during
engaged than passive conditions (Fig. 3f, sign-rank test, z = —2.83,
p =0.005). Engagement-related enhancement of decoding perfor-
mance was limited to sound onset and offsets (Fig. 3h), while
changes in decoding performance and firing rate were not
correlated (linear regression, p > 0.05).

As decoding performance using fixed time windows under-
estimated information content (Supplementary Fig. 6), we also
compared spike rates and vowel decoding in the window giving
best decoding performance, optimized for passive and engaged
conditions independently. Firing rates in optimized windows
were lower in engaged than passive conditions (Fig. 3i; all units:
sign-rank test, z=3.20, p =0.001, vowel informative units: z =
241, p=0.016), but engagement did not improve decoding
performance: For units informative about vowel identity during
the task, decoding performance was statistically indistinguishable
(Fig. 3j; sign-rank test, z= —0.55, p=0.582), while across all
units, a small but significant decline in decoding performance was
observed (sign-rank test, z=2.15, p=0.032). Thus, the main
effect of task engagement was to change the time at which vowel
information was decoded rather than the amount of information
available. Altogether, these results indicate further that perceptual
constancy relies on reliable timing of information about vowel
identity.

Training does not enhance representation of vowel sounds.
Perceptual learning enhances neural discrimination of sound
features such as level, frequency®*$, and timbre*°. However, it’s
unclear whether perceptual learning is required for ferrets to
accurately discriminate vowels, as neurons in anesthetized naive
ferrets are already sensitive to vowel identity2°. To test whether
behavioral training affects representations of vowels varying in
F0, we compared neuronal responses in passive listening when (1)
trained animals were presented with trained and untrained sti-
muli, or (2) the same vowels were presented to trained and naive
animals (Supplementary Fig. 11).

Consistent with anesthetized data, units in untrained animals
discriminated vowels well, as did units in trained animals
presented with untrained vowels. We found that training was
associated with a degraded representation of vowel identity,
reflected by small but significant reductions in decoding
performance (trained vs. untrained sounds, sign-rank test, p =
0.016; trained vs. untrained subjects, rank-sum test, p = 0.003).
Thus, training did not enhance the representation of vowel
sounds, suggesting that naive ferrets may naturally distinguish
vowel timbre. This is consistent with the role of timbre in the
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ferret’s own vocalizations?? and rapid behavioral generalization of
vowel identity to novel sounds (Fig. 1d). Thus, training most
likely conditioned animals to associate existing auditory repre-
sentations with behavioral responses and liberate cortical
resources for representing non-sensory features related to
behavior.

From sound to behavior. Behavioral training was necessary to
measure animals’ perception of sounds across variations in
acoustic input. Our previous analyses used only trials that animals
performed correctly, as these provide the clearest insight into
auditory processing. However on correct trials, sound identity is
confounded with behavioral response as each vowel is associated
with a specific choice to respond left or right. Neurons may
represent choice as well as sound identity>®>! and so we inves-
tigated how behavior affected neural processing by comparing
activity on correct and error trials.

We first asked if representations of sound features were
dependent on the animal’s behavior by decoding neural responses
on error trials, in which the same range of stimuli were presented,
yet subjects made opposite responses to correct trials. If unit
activity was purely stimulus-driven, then decoding should be
similar regardless of trial accuracy; whereas significant differences
in decoding would reveal a relationship between auditory cortex
and behavior. Decoding performance for vowel identity and
orthogonal features was indeed significantly worse on error trials
than correct trials (Wilcoxon sign-rank: p < 0.001, Supplementary
Fig. 12 and Supplementary Tables 7 and 8), suggesting that
cortical activity and behavior were linked.

Behavioral errors may be driven by impaired -cortical
representation of sounds, or cortical responses may convey
choice signals for the animal’s response. We observed that choice-
related decoding declined more markedly on error trials than
stimulus decoding (Supplementary Fig. 12) suggesting that
cortical representations of stimulus identity are less substantially
impaired when animals made mistakes. However, this analysis
was limited because animals made fewer errors than correct
responses. To advance further, we subsampled datasets with equal
numbers of correct and error trials, and matched sample sizes of
vowels and behavioral responses (Fig. 4a) to independently
contrast decoding of sound, choice and task accuracy. Our
matched datasets brought together data in which vowels varied
across FO, location and level, but excluded sounds below 60 dB
SPL or whispered vowels that animals failed to generalize across.
We additionally excluded trials with behavioral responses within
1 s of second sound onset, to avoid confounds related to inclusion
of trial outcome within the decoding window.

Information about sound identity was more widespread than
about behavioral variables: 35.7% of units (94/263, permutation
test, p < 0.05) were significantly informative about sound identity,
22.1% (58/263) about choice and 20.9% (55/263) about accuracy
(Fig. 4b). Decoding was also better for vowel identity (mean + s.e.
m. performance: 71.5+ 0.47%) than for accuracy (69.2 + 0.45%)
or choice (69.4 + 0.43%) (Fig. 4c). Decoding performance differed
significantly across all variables (Kruskal-Wallis test: y2 = 13.6, p
=0.001) with pairwise comparisons (Fig. 4d) confirming that
vowel decoding was better than choice (Tukey-Kramer corrected,
p=0.009) and accuracy (p=0.002). There was no significant
difference between choice and accuracy. Overall, the animal’s
behavioral choice and accuracy could thus be decoded from unit
activity, but auditory cortex predominantly represented sound
identity.

Identity, choice, and accuracy were also decoded at different
times: Information about sound identity emerged -earliest,
followed by accuracy and then choice (Fig. 4e). For 158 units

that were informative about sound identity, choice and/or
accuracy, the time of best decoding differed significantly between
dimensions (Kruskal-Wallis test, y?>=8.13, p=0.017) with
choice represented later than sound identity (Post-hoc pairwise
comparison, Tukey-Kramer corrected, At=100ms, p =0.013).
Timing of accuracy information was not significantly different
from sound or choice (p>0.1). Thus temporal multiplexing
occurred for behavioral, as well as sensory variables, in a sequence
consistent with sensory-motor transformation.

Population decoding accuracy exceeds behavioral performance.
Our analysis of matched datasets contained equal proportions of
errors and correct trials and so animals’ behavioral performance
over these trials would correspond to 50%. Despite this, we could
decode vowel identity from the activity of many units with better
accuracy. This raises the question of how neural encoding of
sounds compared to behavioral discrimination. To answer this,
we used a population decoding approach to approximate how
downstream neurons within the brain might read-out activity
from auditory cortex.

Population decoders summed estimates of vowel identity from
a variable number of units, weighted by the relative spike-distance
between decoding templates and test response (Fig. 5a; see
Methods). Estimates were made using responses sampled in
roving 100 ms windows, with decoding performance peaking at
stimulus onset and offset (Fig. 5b). Across both correct and error
trials, vowel identity could be decoded with 100% accuracy when
sounds varied in FO, even though animals’ performance never
exceeded 90% correct. Similarly, we decoded vowels across sound
location with >93% and voicing with >80% performance when
animals’ performance was below 85% and 72% respectively.
Decoding of vowel across sound level was similar when decoding
neural populations or during behavior. Thus information
available in auditory cortex was sufficient to discriminate vowels
better than animals actually did.

We also analyzed timing of information, focussing on the time
decoding performance peaked. Decoding of vowels across voicing
was slower than decoding of vowel across FO, location or level
(Fig. 5¢). For all populations tested, we asked when each
population performed best in time (Fig. 5d) and compared the
distribution of timing values between dimensions. Decoding
vowels across voicing peaked significantly later than across FO,
level or location (permutation test, p<0.001). Performance
decoding vowels across location also peaked significantly earlier
than across level, but later than across FO (p < 0.05). These timing
differences in population decoding were consistent with results
from individual units, suggesting that information timing may be
as critical to discriminating sounds as information content:
Decoding of vowels was slowest across whispered conditions,
when animals failed to generalize vowels, even though both
individual unit and population decoders performed well.

Discussion

Here, we demonstrate that auditory cortical neurons represent
vowel identity reliably across orthogonal acoustic transformations
that mirror those preserved in perceptual constancy. The neural
representation provided by many neurons was multivariate, as
units represented multiple stimulus features, and temporally
multiplexed, as variables were best represented at different times.
Multivariate encoding extended to behavioral dimensions as units
represented subjects’ choice and accuracy, and decoding perfor-
mance differed between correct and error trials. Altogether our
findings demonstrate that auditory cortex provides sufficient
tolerance across variation in sensory input and behavior to

8 | (2018)9:4786 | DOI: 10.1038/541467-018-07237-3 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/541467-018-07237-3 ARTICLE

Vowel Response Accuracy
0. *3 e &0 IO ) .,_;TF',"; cem %% %% . =
_ _ _ o Sge o, e o oee, TRMSINURTISSRES = . o % oo ge me et
F1201-C02-S195 (MU) B 4ol ;i_.’:‘.,. ComeFeiepe wem sty 8w et LT T
= e S o ) e ¢ 5 2300 Ceg e . oo o, & o
/el o u‘:&.." e 3;’1:.... o i o’ . '; o .;; L LA
P L R RS - S, e U mudtr e
3 Left H <1 Correct 207 % = = ¢ " b
©
< Left Correct
O Right {5 H Error 200 Error
Vowel 100 \
0
F1201-C08-S135 (MU) N
< 500
£15
n= S 250
33 £ -
c O
F1201-C01-S185 (SU)
o
n=
25t
0 01 02 0 0.1 02 0 01 02
Time (s) Time (s) Time (s)
b c
100 100 Unit class
g . v = Neither
8 N> N
2 5 e 3 IR R A Vowel
g (] ® °
kS ® 73 Rl 75 oo e Accuracy
~ 0
S 3 W EA ¢ g:’ . @ Choice
8 ghe # Both
>
50 50
50 75 100 50 75 100
Accuracy (% correct) Choice (% correct)
d p=0.009 e
100 p=0.002 100
p=0.017
° (%]
g £
8 & g 50 Vowel
* 3?2 Choice
Accuracy
0TS S @ 070 0.5 1
S @ o :
A 000 N Center time (s)
v
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/¢/: green), behavioral choice (left: cyan; right: brown) and trial outcome (correct: black; error: red). Data shown as raster plots of spike times on each trial
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Fig. 5 Population decoding can match behavioral performance. a Schematic illustrating population decoder using four constituent units: On each trial, vowel
identity (top row) was estimated independently by each unit within the population (second row) using the distance between the pattern of neural activity
on that trial (third row) and templates built from responses on all other trials (fourth row). For each unit, we obtained an estimate of the stimulus feature
and a weight (individual estimate and confidence score; fifth row). Confidence weights for each vowel were summed (sixth row) to give a population
estimate of each vowel's likelihood, with the maximum weight giving the population estimate. Red lines above templates indicate the time window of
response considered, which was consistent across units and roved in the main analysis. The decoding procedure was repeated across trials using leave-
one-out cross-validation to estimate population performance. Units contributing to each population were randomly subsampled. b Performance decoding
vowel identity across FO, location, level or voicing using varying populations size and neural activity measured in roving 100 ms windows. Surface plots
(left) show mean performance of populations (n=100) sampled with different constituent units. Line plots (right) show decoding performance as a
function of population size using neural activity between O and 100 ms after stimulus onset. Error bars show standard deviation across populations (n =
100) with different constituents. Data points show the behavioral performance of each ferret (F1201: circles; F1203: triangles; F1217: squares; F1304:
diamonds) for each orthogonal dimension. ¢ Mean decoding performance across all population sizes reveals later decoding of vowels across voicing than
other features (FO: blue; Location: purple; Level: red; Voicing: orange). Triangle markers indicate the time of peak performance for each orthogonal
condition. d Comparison of best decoding performance across every population tested. Marker size indicates population size (1-74 units) with marker
position showing the time at which each population decoded vowels best. Boxplots show median, interquartile range (box) and 99.3% intervals (whiskers).
Lines show significant comparisons across dimensions (permutation test, p < 0.001)

accurately represent the identity of target sounds during per- location and level. Both animals and neurons generalized across
ceptual constancy. similar acoustic dimensions (F0, space etc.), while neurons

Ferrets identified vowels by their spectral timbre while sounds represented vowel identity and FO during task performance and
varied across major acoustic dimensions that are key to real- when passively listening (which did not require training).
world hearing, including FO (that determines voice pitch), sound Encoding of multiple features of speech-like sounds, sometimes
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by the same units, supports previous findings of both distributed
coding and temporal multiplexing of multiple stimulus features in
auditory cortex?>>>%3, Tt is notable that these earlier studies were
performed in anesthetized ferrets and reached very similar con-
clusions for vowels varying in FO and virtual acoustic space?”
suggesting that general principles of auditory processing are
observable across anesthetized and behavioral states. However,
because we tested neural representations of phonemes in behav-
ing animals, we could also show that orthogonal variables (e.g.,
FO0) were encoded, even when potentially disruptive to behavior.
This is consistent with our ability to perceive multiple dimensions
of sounds, but raises questions about how behaviorally relevant
sound features are extracted by downstream neurons; specifically,
where in the brain does multivariate encoding give way to uni-
variate representation of only task-relevant dimensions?

One possibility is that univariate encoding already exists within
auditory cortex, in the responses of units that were informative
about vowel identity but not orthogonal features. Although such
units are not the only class recorded, such neurons could provide
a selective, task-relevant output for downstream neurons to
identify sounds robustly. The connectivity and causal relevance of
vowel informative units remains to be tested, although interac-
tions are likely with areas such as prefrontal and higher-order
auditory cortex (dPEG) showing selectivity for behaviorally
relevant sounds*!>#=>7. Correspondingly, units in such areas
would be expected to filter out sensitivity to orthogonal sound
features so that task-irrelevant information is lost.

We decoded vowel identity and orthogonal variables inde-
pendently and with minimal selection of neural response time
windows. This approach showed that vowel identity and ortho-
gonal features were best decoded in distinct time windows.
Temporal multiplexing by units mirrored the time-course of
sound perception: Decoding of vowel identity and sound location
earlier than voicing or FO is consistent with perception of sound
location and vowel identity at sound onset>®>%, while listeners
require longer to estimate F023:00:61 and sound level®263,

Our results, together with previous work?3, demonstrate that
multiplexing is relevant across cortical states (anesthetized,
awake, attentive) and a general feature of auditory processing. In
contrast, encoding of vowel identity early after stimulus onset was
specific to conditions when animals discriminated vowels: When
animals failed to generalize vowels across voicing, or listened
passively, we observed a significant delay in decoding vowel
identity—both with individual units and neural populations. For
whispered sounds, slower encoding may be explained in part by
the noisy sampling of the spectral envelope when compared to
harmonic sounds; however acoustic differences cannot explain
changes in encoding of the same sounds in passive and engaged
conditions. Instead our results suggest that timing of vowel
encoding is dynamic and depends on both stimulus properties
and behavioral state. Moreover, behavioral discrimination only
occurred when vowels were represented in a specific time win-
dow, indicating that downstream regions responsible for decision
making may sample auditory cortical information in critical time
windows. This theory would predict that temporally selective
lesions of auditory cortical activity at stimulus onset (but not
during sustained periods of sounds) should disrupt task perfor-
mance—though this remains to be tested in behaving ferrets.

We also demonstrated that auditory cortex represents beha-
vioral variables: Many units encoded information about the ani-
mals’ choice and/or accuracy, and decoding of sound features was
impaired on error trials. Such findings are consistent with pre-
vious reports of choice-related activity>>4%°1; however we also
recorded units that were sensitive to accuracy and thus predictive
of upcoming mistakes. When combined with results from
population decoding, in which cortical activity could identify

vowels better than animals” behavior, we must ask: why do ani-
mals make mistakes?

It’s possible that errors arise from inattention, which has a
distinct neural signature® that our decoder uses to distinguish
correct and error trials. At present it is unclear whether the
accuracy signal we decode reflects such attentional lapses, or
arises from interactions between representations of sound identity
and behavioral choice, a representation of confidence in auditory
processing, or anticipation of reward®. Future experiments sys-
tematically manipulating confidence or reward value may explain
the precise nature of accuracy information reported here.

Opverall, our results show that tolerant representations of vowel
identity exist when animals show perceptual constancy. We found
that principles of auditory processing such as multivariate
representations of sound features and temporal multiplexing
occur during perceptual constancy, and do not require training or
task engagement. However representation of sound identity early
after stimulus onset was associated with successful sound dis-
crimination, suggesting that timing of acoustic representations is
essential for auditory decision making. Animals failed to use all
the information available in the populations of auditory cortical
units, indicating that animals’ final behavioral responses are
governed by factors including, but also extending beyond, audi-
tory cortex.

Methods

Animals. Subjects were four pigmented female ferrets (1- to 5-years-old) trained to
discriminate vowels across fundamental frequency, sound level, voicing, and
location!>!7. Each ferret was chronically implanted with Warp-16 microdrives
(Neuralynx, MT) housing 16 independently moveable tungsten microelectrodes
(FHC, Bowdoin, ME) positioned over primary and posterior fields of left and right
auditory cortex. A further four ferrets (also pigmented females, 1- to 3-years-old)
implanted with the same microdrives were used as naive animals for passive
recording. These animals were trained in either a two-alternative relative sound
localization or go/no-go multisyllabic word identification task that did not involve
the synthetic vowel sounds presented here.

Subjects were water restricted prior to testing; on each day of testing, subjects
received a minimum of 60 mlkg! of water either during testing or supplemented
as a wet mash made from water and ground high-protein pellets. Subjects were
tested in morning and afternoon sessions on each day for up to 5 days in a week.
Test sessions lasted between 10 and 50 min and ended when the animal lost interest
in performing the task.

The weight and water consumption of all animals was measured throughout the
experiment. Regular otoscopic examinations were made to ensure the cleanliness
and health of ferrets” ears. Animals were maintained in groups of two or more
ferrets in enriched housing conditions. All experimental procedures were approved
by local ethical review committees (Animal Welfare and Ethical Review Board) at
University College London and The Royal Veterinary College, University of
London and performed under license from the UK Home Office (Project License
70/7267) and in accordance with the Animals (Scientific Procedures) Act 1986.

Microdrive implantation. Microdrives were surgically implanted in the anesthe-
tized ferret under sterile conditions. General anesthesia was induced by a single
intramuscular injection of medetomidine (Domitor; 0.1 mgkg™!; Orion, Finland)
and ketamine (Ketaset; 5 mg kg'!; Fort Dodge Animal Health, Kent, UK). Animals
were intubated and ventilated, and anesthesia was then maintained with 1.5%
isoflurane in oxygen throughout the surgery. An iv. line was inserted and animals
were provided with surgical saline (9 mgkg™!) intravenously throughout the pro-
cedure. Vital signs (body temperature, end-tidal CO2 and the electrocardiogram)
were monitored throughout surgery. General anesthesia was supplemented with
local analgesic (Marcaine, 2 mg kg'!, Astra Zeneca) injected at the point of midline
incision. Under anesthesia, the temporal muscle overlying the skull was retracted
and a craniotomy was made over the ectosylvian gyrus. Microdrives were then
placed on the surface of the brain and embedded within silicone elastomer (Kwik-
Sil, World Precision Instruments) around the craniotomy, and dental cement
(Palacos R + G, Heraeus) on the subject’s head. Ground and reference signals were
installed by electrically connecting the microdrive to bone screws (stainless steel,
19010-100, Interfocus) placed along the midline and rear of the skull (two per
hemisphere). A second function of the bone screws was to anchor bone cement to
the skull; this was also facilitated by cleaning the skull with citric acid (0.1 g in 10
ml distilled water) and application of dental adhesive (Supra-Bond C&B, Sun
Medical). Some temporal muscle and skin were then removed in order to close the
remaining muscle and skin smoothly around the edges of the implant. Animals
were allowed to recover for a week before the electrodes were advanced into
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auditory cortex. Pre-operative, peri-operative and post-operative analgesia and
anti-inflammatory drugs were provided to animals under veterinary advice.

Confirmation of electrode position. At the end of the experiment, animals were
anesthetized with medotomidine (0.05 mgkg!, Orion) and ketamine (2.5 mgkg™!,
Vetoquinol, UK) followed by overdose with intraperitoneal administration of
pentobarbitone (300 mgkg ! Pentoject, Animal Care). Animals were then trans-
cardially perfused with 0.9% Saline, followed by 4% paraformaldehyde in phos-
phate buffered solution. The brain was then removed and stored in
paraformaldehyde for > 1 week before cryoprotection in sucrose (30% in dH,0),
freezing in dry ice and histological sectioning (cryostat, section thickness: 50um).
Prior to sectioning, the brain was photographed to record the position of electrode
penetrations on the cortical surface. Sections were then mounted in 3% gelatin on
microscope slides and Nissl stained to visualize the tissue. Electrode tracks were
visible as local disruption of tissue, and the pattern of tracks through the tissue was
aligned with that observed across the cortical surface of the intact brain. Electrodes
that did not enter the Ectosylvian Gyrus were removed from the dataset. We also
discarded data from electrodes recorded below the cortical laminae.

Apparatus. Ferrets were trained to discriminate sounds in a customized pet cage
(80 x 48 x 60 cm, length x width x height) within a sound-attenuating chamber
(IAC) lined with sound-attenuating foam. The floor of the cage was made from
plastic, with an additional plastic skirting into which three spouts (center, left and
right) were inserted. Each spout contained an infra-red sensor (OB710, TT elec-
tronics, UK) that detected nose-pokes and an open-ended tube through which
water could be delivered.

Sound stimuli were presented through two loud speakers (Visaton FRS 8)
positioned on the left and right sides of the head at equal distance and approximate
head height. These speakers produce a smooth response ( + 2 dB) from 200 Hz to
20 kHz, with an uncorrected 20 dB drop-off from 200 to 20 Hz when measured in
an anechoic environment using a microphone positioned at a height and distance
equivalent to that of the ferrets in the testing chamber. A light-emitting diode
(LED) was also mounted above the center spout and flashed (flash rate: 3 Hz) to
indicate the availability of a trial. The LED was continually illuminated whenever
the animal successfully made contact with the IR sensor within the center spout
until a trial was initiated. The LED remained inactive during the trial to indicate
the expectation of a peripheral response and was also inactive during a time-out
following an incorrect response.

The behavioral task, data acquisition, and stimulus generation were all
automated using custom software running on personal computers, which
communicated with real-time signal processors (RZ2 and RZ6, Tucker-Davis
Technologies, Alachua, FL).

Task design. Ferrets discriminated vowel identity in a two-choice task!>. On each
trial, the animal was required to approach the center spout and hold head position
for a variable period (0-500 ms) before stimulus presentation. Each stimulus
consisted of a 250 ms artificial vowel sound repeated once with an interval of 250
ms. The vowel sound was repeated here to maintain the same task design as
previous studies!>!7, although subsequent testing demonstrated that repetition was
not necessary for successful task performance (Supplementary Fig. 1). Animals
were required to maintain contact with the center spout until the end of the
interval between repeats (i.e., 500-1000 ms after initial nose-poke) and could then
respond at either left or right spout. Correct responses were rewarded with water
delivery whereas incorrect responses led to a variable length time-out (3 to 8's). To
prevent animals from developing biases, incorrect responses were also followed by
a correction trial on which animals were presented with the same stimuli. Cor-
rection trials and trials on which the animal failed to respond within the trial
window (60 s) were not analyzed. The only exception to this protocol was for
whispered sounds, which we presented as probe sounds in 10-20% of trials, on
which any response was rewarded and correction trials did not follow.

Animals were initially trained to discriminate vowels that were constant in FO,
voicing location and level, at which point sounds were then roved in level over a 6
to 12 dB range. Following this, animals were exposed to vowels varying in FO with
two different FOs being tested (149 and 200 Hz). We then progressively extended
the range of FOs used in testing by including higher FOs. We later increased the
range of sound levels over which animals were tested from 12 up to 30 dB SPL, and
introduced variation in voicing and sound location. Features (FO0, level etc.) were
trained and tested separately on different sessions but the order of sessions varied
pseudo-randomly within days and weeks such that there was no systematic
progression from one feature to another. Neural data was only recorded once the
animals were fully trained and performance had plateaued.

We recorded neural activity during task performance, and also under passive
listening conditions, in which animals were provided with water at the center port
to recreate the head position and motivational context occurring during task
performance. Sounds were presented with the same two-token stimulus structure
as during task performance, with a minimum of 1s between stimuli. During test
sessions, sound presentation began once the animal approached the center spout
and began licking and ended when the animal became sated and lost interest in
remaining at the spout.

Stimuli and behavioral testing. Stimuli were artificial vowel sounds synthesized in
MATLAB (MathWorks, USA) based on an algorithm adapted from Malcolm
Slaney’s Auditory Toolbox (https://engineering.purdue.edu/~malcolm/interval/
1998-010/). The adapted algorithm simulates vowels by passing a sound source
(either a click train to mimic a glottal pulse train for voiced stimuli, or broadband
noise for whispered stimuli) through a biquad filter with appropriate numerators
such that formants are introduced in parallel. Four formants (F1-4) were modeled:
three subjects were trained to discriminate /u/ (F1-4: 460, 1105, 2857, 4205 Hz)
from /e/ (730, 2058, 2857, 4205 Hz) while one subject was trained to discriminate
/al (936, 1551, 2975, 4263 Hz) from /i/ (437, 2761, 2975, 4263 Hz). Selection of
formant frequencies was based on previously published data!>?® and synthesis
produced sounds consistent with the intended phonetic identity. Formant band-
widths were kept constant at 80, 70, 160, and 300 Hz (F1-4 respectively) and all
sounds were ramped on and off with 5 ms cosine ramps.

To test perceptual constancy, we varied the rate of the pulse train to generate
different fundamental frequencies (149, 200, 263, 330, and 459 Hz) and used
broadband noise rather than pulse trains to generate whispered vowels. For sound
level, we simply attenuated signals in software prior to stimulus generation. For
sound location, we presented vowels only from the left or right speaker whereas all
other tests sounds were presented from both speakers. Across variations in FO,
voicing and space, we fixed sound level at 70 dB SPL. For tests across sound level
and location, voiced vowels were generated with 200 Hz fundamental frequency. In
tests of neural encoding in passively listening animals (both trained and untrained),
we presented vowels /u/ and /e/ at 70 dB SPL with the same FOs (149, 200, 263, 330,
and 459 Hz) that task-engaged animals discriminated. Sound levels were calibrated
using a Briiel & Kjaer (Norcross, USA) sound level meter and free-field % inch
microphone (4191) placed at the position of the animal’s head during trial
initiation.

Neural recording. Neural activity in auditory cortex was recorded continuously
throughout task performance. On each electrode, voltage traces were recorded
using System III hardware and OpenEx software (Tucker-Davis Technologies,
Alachua, FL) with a sample rate of 50 kHz. For extraction of action potentials, data
were bandpass filtered between 300 and 5000 Hz and motion artefacts were
removed using a decorrelation procedure applied to all voltage traces recorded
from the same microdrive in a given session®. For each channel within the array,
we identified spikes (putative action potentials) as those with amplitudes between
-2.5 and -6 times the root-mean squared value of the voltage trace and defined
waveforms of events using a 32-sample window centered on threshold crossings.

For data obtained in task-engaged animals, waveforms were then interpolated
(128 points) and candidate events combined across sessions within a test run for
spike sorting. Waveforms were manually sorted using MClust (A.D. Redish,
University of Minnesota, http://redishlab.neuroscience.umn.edu/MClust/) so that
candidate events were assigned to either single-unit, multi-unit clusters or residual
hash clusters. Single units were defined as those with less than 1% of inter-spike
intervals shorter than 1 millisecond.

We identified 502 sound-responsive units (141 single units; 28.1%) in task-
engaged animals as those whose stimulus evoked response within the 300 ms after
onset of first token differed significantly from spontaneous activity in the 300 ms
before making contact with the spout (Sign-rank test, p <0.05). In passive
conditions, we identified responsive units using a similar comparison; but using
spontaneous activity measured in the 300 ms before stimulus presentation. In
comparisons of neural data between task-engaged and passive animals, we only
used multi-unit activity obtained prior to spike sorting.

Decoding procedure. We decoded stimulus features (e.g., vowel identity, FO etc.)
on single trials using a simple spike-distance decoder with leave-one-out cross-
validation (LOCV). For every trial over which an individual unit was tested in a
given dataset (e.g., vowels varied across FO during task performance), we calculated
template responses for each stimulus class (e.g., each vowel or each F0) as the mean
peri-stimulus time histogram (PSTH) of responses on all other trials. We then
estimated the stimulus feature on the test trial as the template with the smallest
Euclidean distance to the test trial (Supplementary Fig. 3). Where equal distances
were observed between test trial and multiple templates, we randomly estimated
(i.e., guessed) which of the equidistant templates was the true stimulus feature. This
procedure was repeated for all trials and decoding performance was measured as
the percentage of trials on which the stimulus feature was correctly recovered.
Although this approach was simple and did not account for the variance of neural
activity, it provided an intuitive relationship between neural activity and infor-
mation content that we could use with small datasets (sample sizes down to five
trials per condition). Robustness to sample size was particularly important because
the animal’s behavior determined the number of trials in each condition and we
aimed to analyze as many units as possible rather than develop a more sophisti-
cated decoder.

Auditory cortical units showed a wide variety of response profiles that made it
difficult to select a single fixed time window over which to decode neural activity.
To accommodate the heterogeneity of auditory cortical neurons and identify the
time at which stimulus information arose, we repeated our decoding procedure
using different time windows (n = 1550) varying in start time (-0.5 to 1's after
stimulus onset, varied at 0.1 s intervals) and duration (10 to 500 ms, 10 ms
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intervals) (Fig. 2a, b and Supplementary Fig. 4). Within this parameter space, we
then reported the parameters that gave best decoding performance, and where
several parameters gave best performance, we reported the time window with
earliest start time and shortest duration.

To assess the significance of decoding performance, we conducted a
permutation test in which the decoding procedure (including temporal
optimization) was repeated 100 times but with the decoded feature randomly
shuffled between trials to give a null distribution of decoder performance
(Supplementary Fig. 5). The null distribution of shuffled decoding performance
was then parameterized by fitting a Gaussian probability density function, which
we then used to calculate the probability of observing the real decoding
performance. Units were identified as informative when the probability of
observing the real performance after shuffling was <0.05. Parameterization of the
null distribution was used to reduce the number of shuffled iterations over which
decoding was repeated. This was necessary because the optimization search for best
timing parameters dramatically increased the computational demands of decoding.

Population decoding. To decode vowel identity from the single trial responses of
populations of units, we simply the summed the number of units that estimated
each stimulus, weighted by the confidence of each unit’s estimate, and took the
stimulus with the maximum value as the population estimate on that trial (Fig. 4a).
Confidence weights for individual unit (w) estimates were calculated as:

‘min : (1)

Where n was the number of stimulus classes (e.g., vowel identities) and d was
the spike-distance between the test trial response and response templates generated
for each stimulus class. Here, d,,;,, represents the minimum spike-distance that
corresponded to the estimated stimulus for that unit.

We tested populations of up to 74 units, by which point decoder performance
had typically saturated. The decision to use this maximum population size was
motivated by (1) the minimum number of units that were informative about sound
features, and (2) the number of trials each unit was tested with. We only included
units for which we recorded neural responses on at least 8 trials for each vowel.
Both correct and error trials were included in decoding. Populations were
constructed first by selecting the units that perform best at decoding vowel identity
on correct trials at the individual unit level (Fig. 2c). Within this subpopulation, we
randomly sampled 100 combinations of units without replacement from the large
number of possible combinations of units available.

Data analysis. Unless otherwise stated (e.g., permutation tests), all statistical tests
were two-tailed.

Behavior (uniformity of performance): Perceptual constancy was reported when
the orthogonal factor (e.g., F0) did not significantly affect task performance, i.e. the
likelihood of responding correctly. To test this, we analyzed the proportion of
correct trials as a function of each orthogonal dimension using a logistic regression
(Supplementary Table 2). Regressions were performed separately for each animal,
and each orthogonal dimension, and any significant effect (p < 0.05) was reported
as a failure of constancy. We also asked if an animal’s performance at specific
orthogonal values was better than chance (50%) using a binomial test (p < 0.001,
Supplementary Table 1).

Behavior (generalization): To test if animals generalized vowel identity across
orthogonal values (e.g., FO) we compared performance with stimulus experience.
Subjects were initially trained on a specific orthogonal value (e.g., FO = 200 Hz) and
then exposed to varying orthogonal values (e.g., FO =149, 263, 330, and 459 Hz).
Each ferret’s performance was computed in windows beginning with the first trial
experienced, and extending out to consider progressively longer durations. Initial
performance was compared with chance by randomizing the required response
across trials and recalculating percent correct for each time window. To find the
number of trials at which animals first discriminated vowel identity with novel
sounds, we used a permutation test to measure chance performance on 104
iterations and identified significant performance as that with a false-positive
probability of below 0.001. The values reported in Fig. le show the minimum
number of trials at which performance was significant. We also compared initial
performance to long-term accuracy to illustrate the relevance of generalization to
behavior across the study (Supplementary Fig. 2). To measure long-term
performance, we randomly selected sequences of trials taken from the entire
dataset (i.e., not those trials the animal first experienced the particular stimulus)
with a set window length and recalculated performance. This procedure was
repeated 10* times. For analysis of generalization across F0, we also included two
additional FOs (409 and 499 Hz) for which data was only collected prior to
electrode implantation and thus not included in the main text.

Neural activity: The times of spikes was referenced to the onset of the stimulus
on each trial and used to create raster and peri-stimulus time histograms. In our
analysis of task engagement and training, we measured on each trial the firing rate
in 100 ms bins after stimulus onset at 50 ms intervals. For paired comparisons,
firing rates in engaged and passively listening animals were compared using a
Wilcoxon sign-rank test. For unpaired analyses, we normalized firing rates in these

bins relative to the firing rate in a pre-stimulus baseline period in the 450 ms before
stimulus onset (passively listening animals) or before the animal began waiting at
the center spout (task-engaged animals). Across passively listening groups

presented with familiar/unfamiliar sounds (Supplementary Fig. 11), we compared
normalized firing rates and baseline firing rates (i.e., the normalization factors in
each condition) across groups using a Kruskal-Wallis test with pairwise post-hoc
comparisons performed with Tukey-Kramer correction for multiple comparisons.

Individual unit decoding: In addition to classifying whether units were
informative about a particular stimulus feature (permutation test, p < 0.05), we also
compared decoding performances (Figs. 2c, 3f, j, 4c, d, Supplementary Fig. 6,
11b-g, and 12e). When comparing decoding performance across more than two
conditions (i.e., when decoding vowel, accuracy or choice; Fig. 4d), data were
analyzed using a Kruskal-Wallis test with Tukey-Kramer corrected post-hoc
comparisons where relevant. When comparing two conditions directly, we used a
Wilcoxon sign-rank test for paired data (e.g., comparing performance on correct
and error trials; Supplementary Fig. 11b). For comparison of changes in decoding
performance between conditions (e.g., decoding sound identity in naive and
trained animals; Supplementary Fig. 11e), we used a Wilcoxon rank-sum
comparison for unpaired data.

Timing: For each unit, we determined the time window after stimulus onset for
which we achieved best decoding performance (Supplementary Fig. 4) and took the
window center (Fig. 2d), start time (Supplementary Fig. 9) or window duration
(Supplementary Fig. 10). We then compared the change in parameter value (e.g.,
change in center time) for best decoding of vowel identity and orthogonal
dimensions using a Wilcoxon rank-sum test. The same approach was used when
comparing the timing of decoding vowel identity and FO in task-engaged and
passively listening animals (Fig. 3c, d). We also compared the times of best
decoding of vowel identity across orthogonal dimensions using a Kruskal-Wallis
test with Tukey—Kramer correction for post-hoc comparisons (Fig. 2g). We used
the same approach to compare the decoding of orthogonal dimensions, and
decoding of vowel identity, behavioral choice and accuracy (Fig. 4e). Time
differences (At) reported in the main text were shown as the median difference in
center time using a paired comparison (dual feature units) or the difference in
median center time using an unpaired comparison (single-feature units).

Datasets matched for vowel, choice and accuracy (Fig. 4): To study the tolerance
of a given unit to behavioral as well as acoustic variables, we subsampled neural
responses from all conditions in which animals showed perceptual constancy:
Specifically we included sounds varied across F0, sound location and sound level
above 60 (three ferrets) or 70 dB SPL (one ferret). We excluded all data when
sounds were whispered. To prevent trial outcome (water reward or time-out) from
confounding accuracy signals, we also excluded trials on which animals responded
within one second of stimulus onset. Following pooling and exclusion, we balanced
datasets for the number of each vowel, choice and trial outcome by randomly
selecting N trials, where N was the minimum number of trials in which any one
condition (e.g., left responses to /u/) was tested. As with our earlier decoding
analysis, we only considered units for which N>5. We then decoded vowel
identity, behavioral choice and accuracy using the same LOCV decoding procedure
described above. We compared decoding performance for vowel identity, choice
and accuracy across all units with a Kruskal-Wallis anova and post-hoc
comparisons using the Tukey-Kramer correction (Fig. 4d).

Population decoding (Fig. 5): For each unit in a given population, we generated
estimates of the target value on each trial based on the minimum spike-distance
from templates generated on all other trials (i.e., the same LOCV method as for
individual unit decoding—see above). Templates were generated for each unit
using neural activity within a 100 ms roving time window. In addition to an
estimated target value, we also retained a confidence score for that estimate: the
spike-distance from test trial to the closest template, expressed as a proportion of
the sum of spike distances between test trial and all templates. Across the
population, we then summed confidence weights for each possible feature value
and selected the value with the largest sum as the population estimate for that trial.
We then repeated the procedure across trials to get the decoding performance of a
given population.

We compared the timing of population decoding by calculating the time at
which each neural population decoded vowel identity best. This measurement was
performed for every population, of every population size (i.e., 1 to 74 units)—
shown in the scatter plots in Fig. 5d. Timing of vowel decoding was then compared
for sounds varied across orthogonal dimensions using a permutation test: For each
orthogonal dimension, we calculated the mean time across populations that gave
best decoding performance. We then used the difference between means as the
measured variable (i.e., difference between FO and voicing). We then randomly
shuffled the orthogonal dimensions that each population was drawn from and
recalculated the difference in mean timing on 10* iterations.

Error trial analysis (Supplementary Fig. 12): We trained the decoder on correct
trials using the LOCV procedure to estimate vowel identity on each individual
correct trial from templates built on all other correct trials. For error trials, we used
the training templates calculated across all correct trials and estimated vowel
identity on each error trial. Only units that were informative about vowel identity
were analyzed, with the exception of three units recorded when the animal
performed perfectly (i.e., made no errors) when vowels varied across sound
location and thus error trials could not be studied. We repeated the same procedure
for decoding orthogonal variables using only units informative about the relevant
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dimension. Decoding performance was compared for vowel identity, orthogonal
values and for behavioral choice using a Wilcoxon sign-rank test. We compared the
change in decoding performance between correct and error trials when decoding
vowel identity and behavioral choice using a Wilcoxon rank-sum test.

Code availability. Custom-written computer code for behavioral and neural data
collection and analysis is available from the authors on request.

Data availability

The datasets generated during and/or analyzed in the current study are available
from the corresponding authors on reasonable request. Data presented in all figures
are available from figshare with the identifier 10.6084/m9.figshare.7176470 [https://
doi.org/10.6084/m9.figshare.7176470]
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