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SUMMARY

We consider how different choices of kinetic energy in Hamiltonian Monte Carlo affect al- 10

gorithm performance. To this end, we introduce two quantities which can be easily evaluated,

the composite gradient and the implicit noise. Results are established on integrator stability and

geometric convergence, and we show that choices of kinetic energy that result in heavy-tailed

momentum distributions can exhibit an undesirable negligible moves property, which we de-

fine. A general efficiency-robustness trade off is outlined, and implementations which rely on 15

approximate gradients are also discussed. Two numerical studies illustrate our theoretical find-

ings, showing that the standard choice which results in a Gaussian momentum distribution is not

always optimal in terms of either robustness or efficiency.

Some key words: Markov chain Monte Carlo; Bayesian Inference; Hamiltonian Monte Carlo; Bayesian computation;
Hybrid Monte Carlo; MCMC. 20

1. INTRODUCTION

Hamiltonian Monte Carlo is a Markov chain Monte Carlo method which is now both widely

used in Bayesian inference, and increasingly studied and developed. The idea of the approach is

to use the deterministic measure-preserving dynamics of Hamiltonian flow to promote fast explo-

ration of a parameter space of interest. To achieve this the space is augmented with a momentum 25

variable, and the Markov chain evolves by switching between re-sampling this momentum and

solving Hamilton’s equations for a prescribed amount of time. Typically the equations cannot be

solved exactly and so a time-reversible and volume-preserving numerical integrator is used, with

discretisation errors controlled for using a Metropolis step. Comprehensive reviews are given in

Neal (2011) and Betancourt et al. (2017). 30

The free variables in Hamiltonian Monte Carlo are the time for which Hamilton’s equations

should be solved between momentum refreshments, the choice of numerical integrator and step-

size, and the choice of distribution for the momentum. Typically the Störmer–Verlet or leapfrog

numerical integrator is used, which gives a reasonable balance between energy preservation and

computational cost. Guidelines for step-size choice are given in Beskos et al. (2013), which is 35

typically tuned to reach a 65-80% Metropolis acceptance rate. Heuristics exist for the integration

time (Hoffman & Gelman, 2014), and there is some justification for a stochastic choice given in

Bou-Rabee et al. (2017).

C© 2016 Biometrika Trust
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This paper is concerned with the choice of momentum distribution ν(·), addressing a question

which has been raised previously (Barthelmé & Chopin, 2011; Stephens, 2011). We will assume40

throughout that ν(·) possesses a density which is proportional to exp{−K(p)} for some K(p),
which we call the kinetic energy of the system. The standard choice is K(p) = pT p/2, with

the resulting ν(·) a Gaussian distribution. The general requirements are simply that K(p) is

differentiable, symmetric about zero and that ν(·) can be sampled from. Alternative options to

the Gaussian have recently been suggested (Lu et al., 2017; Zhang et al., 2016). Here we consider45

how such a choice affects the algorithm as a whole, in terms of stability and convergence, and

develop guidelines for practitioners.

Our key findings are that the robustness and efficiency of the method can to some degree

be controlled through the quantity ∇K ◦ ∇U(x), notation defined below, which we term the

composite gradient. In particular, we propose that balancing the tails of the kinetic energy with50

those of the potential to make this approximately linear in x should give good performance,

and that no faster than linear growth is necessary for algorithm stability. When π(·) is very

light-tailed, this can be done by choosing ν(·) to be heavier-tailed. There are, however, serious

disadvantages to choosing any heavier tails than those of a Laplace distribution, which can result

in the sampler moving very slowly in certain regions of the space. We introduce a negligible55

moves property for Markov chains to properly characterize this behaviour. We also find that in

practice considering the distribution of ∇K(p), which we term the implicit noise, is important,

since this governs the behaviour of the sampler in regions where ‖∇U(x)‖ is small. We suggest

various choices for controlling these two quantities, and support our findings with a numerical

study. We also comment on how changing the kinetic energy can affect behaviour when∇U(x) is60

approximated, either through subsampling or within an exact-approximate Monte Carlo scheme.

1·1. Setup, notation and assumptions

Throughout we denote the distribution from which expectations are desired by π(·). We as-

sume that π(·) possesses a density which is proportional to exp{−U(x)}, for some C1(Rd)
potential U : Rd → [0,∞), where x ∈ R

d. The Hamiltonian is formed as H(x, p) = U(x) +65

K(p), where p ∈ R
d and K : Rd → [0,∞) is a continuously differentiable kinetic energy, and

the corresponding Hamiltonian dynamics are given by

ẋ = ∇K(p), ṗ = −∇U(x). (1)

We restrict ourselves to separable Hamiltonians, meaning the distribution for p does not depend

on x, as in this case general purpose and well-studied explicit numerical integrators are available

(Leimkuhler & Reich, 2004). We also focus on the leapfrog numerical integrator (Neal, 2011)70

and a choice of integration time T = Lε, where ε is the integrator step-size and L is the number

of leapfrog steps. We assume that L is drawn from some distribution Ψ(·), which is independent

of the current x and p, and denote the result of solving (1) using this integrator for T units of time

given the starting position and momentum (x, p) as ϕ̃T (x, p). With these tools, the Hamiltonian

Monte Carlo method is described as Algorithm 1 below.75

We work on the Borel space (Rd,B) and product space R2d with the product σ-field. Through-

out let ‖x‖, ‖x‖1 and ‖x‖∞ be the Euclidean, L1 and L∞ norms of x ∈ R
d, Br(x) = {y ∈ R

d :
‖y − x‖ < r} be the Euclidean ball of radius r centred at x, and ∂i = ∂/∂xi. For functions

f, g : Rd → R
d, let f ◦ g(x) = f(g(x)). Whenever a distribution is referred to as having a den-

sity then this with respect to the relevant Lebesgue measure. We write xi for the ith point in a80

Markov chain produced by Hamiltonian Monte Carlo, and xiε for the ith step of the leapfrog

integrator within a single iteration of the method.
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Algorithm 1. Hamiltonian Monte Carlo

Require x0, ε
For i = 1 to i = n

Draw p ∼ ν(·)
Draw L ∼ Ψ(·) and set T = Lε
Propose (x∗, p∗)← ϕ̃T (x

i−1, p)
Set xi ← x∗ with probability 1 ∧ exp

{

H(xi−1, p)−H(x∗, p∗)
}

,

otherwise set xi ← xi−1

Output x = (x0, ..., xn)

2. GENERAL OBSERVATIONS

The effects of changing the proposal input noise distribution are more complex in Hamilto-

nian Monte Carlo than in the random walk Metropolis and the Metropolis-adjusted Langevin 85

algorithm, two methods for which this question has been studied previously (Jarner & Roberts,

2007; Stramer & Tweedie, 1999). For both of these cases the input noise is combined linearly

with some deterministic function of the current point of the Markov chain. As a result, larger

values of this noise will typically result in larger proposed moves, which may be advantageous if

π(·) has heavy tails or possesses multiple modes. By contrast, in Hamiltonian Monte Carlo the 90

choice of kinetic energy alters both the input noise distribution and the Hamiltonian dynamics,

and so the impact of different choices is not so transparent.

If we consider how a single proposal in Hamiltonian Monte Carlo perturbs the current position

xi−1 at iteration i, then setting x0 = xi−1, p0 ∼ ν(·) and solving (1) for T units of time gives

x∗ = x0 +

∫ T

0
∇K

{

p0 −
∫ s

0
∇U(xu)du

}

ds. (2)

An explicit numerical method typically involves the approximation
∫ h
0 ∇U(xu)du ≈ ∇U(x0)h 95

for some suitably chosen h. In the case of the leapfrog integrator the approximate solution over

a single leapfrog step becomes

xε = x0 + ε∇K
{

p0 −
ε

2
∇U(x0)

}

, (3)

with the corresponding momentum update

pε = p0 −
ε

2
{∇U(x0) +∇U(xε)} . (4)

Recalling that K(p) is an even function, meaning ∇K(p) is odd, then it will turn out that in

many cases the function that intuitively governs the speed of the x-dynamics when ‖∇U(x)‖ is 100

large is

∇K ◦ ∇U(x), (5)

which we refer to from this point as the composite gradient. Although in practice the choice of

ε will influence sampler behaviour, we will demonstrate that a qualitative understanding can be

developed by considering only (5). Similarly, when ‖∇U(x)‖ is small, xε will resemble a ran-

dom walk proposal with perturbation ε multiplied by ∇K(p0), which we refer to as the implicit 105

noise. We argue that an appropriate choice of kinetic energy is one for which these two quantities

are both suitably optimized over, and in the next sections we examine both when this can be done

and what a suitable choice for each should be.
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3. THE COMPOSITE GRADIENT

3·1. Geometric convergence and long term stability110

We begin with some general results relating the choice of kinetic energy to the composite

gradient, and potential consequences for the convergence rate of the method.

DEFINITION 1. We call a distribution which has a density f(x) ∝ exp{−g(x)} heavy-tailed

if lim‖x‖→∞ ‖∇g(x)‖ = 0, and light-tailed if lim‖x‖→∞ ‖∇g(x)‖ =∞.

Distributions which do not fall into either category are those for which the tails are heavy in115

some directions and light in others, for which the sampler will behave very differently in distinct

regions of the space. A detailed study of these is beyond the scope of this work, though we

conjecture that the least favourable region would dictate convergence. We also do not include

distributions with exponentially decaying densities, which are often treated as a special case

when analysing Metropolis–Hastings methods (Jarner & Hansen, 2000).120

Recall that a π-invariant Markov chain with transition kernel P is called geometrically ergodic

if for some positive constants C <∞, ρ < 1 and a Lyapunov function V : Rd → [1,∞) the

bound

‖Pn(x, ·) − π(·)‖TV ≤ CV (x)ρn (6)

can be constructed, where ‖µ(·)− ν(·)‖TV denotes the total variation distance between two

measures µ(·) and ν(·). See for example Roberts & Rosenthal (2004) for more details.125

PROPOSITION 1. In either of the following cases Algorithm 1 will not produce a geometrically

ergodic Markov chain:

(i) π(·) is heavy-tailed

(ii) π(·) is light-tailed and the following conditions hold:

1. The composite gradient satisfies130

lim
‖x‖→∞

‖∇K ◦ ∇U(x)‖
‖x‖ =∞, (7)

2. There is a strictly increasing unbounded function φ : [0,∞)→ [1,∞) and m1,m2 <∞ with

m1 ≥ 1 such that for every M ≥ m1 and ‖x‖ ≥ m2

‖y‖ ≥M‖x‖ =⇒ ‖∇U(y)‖ ≥ φ(M)‖∇U(x)‖. (8)

3. Setting △H(x0, p0) = H(xLε, pLε)−H(x0, p0) and △(x0, p0) = ‖xLε‖ − ‖x0‖+
‖pLε‖ − ‖p0‖,

△(x0, p0)→∞ =⇒ △H(x0, p0)→∞. (9)

4. For all δ <∞, there is a Cδ > 0 such that for all x ∈ R
d

135

‖∇K{δ∇U(x)}‖
‖∇K ◦ ∇U(x)‖ ≥ Cδ (10)

5. Either K(p) satisfies

‖p‖ ≥ ‖y‖ =⇒ ‖∇K(p)‖ ≥ ‖∇K(y)‖, (11)

or there is a k : R→ R such that K(p) :=
∑d

i=1 k(pi) and

|pi| ≥ |yi| =⇒ |k′(pi)| ≥ |k′(yi)|. (12)
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for all i.

Remark 1. Condition 4 in part (ii) will be satisfied if, for example, ∇K is a homogeneous

function. It is satisfied for all choices considered in this work. 140

For the standard quadratic choice of kinetic energy the Hamiltonian Monte Carlo method will

not produce a geometrically ergodic Markov chain when π(·) has heavy-tails (Livingstone et al.,

2016). Part (i) of the above states that no choice of kinetic energy which is independent of x
can rectify this. We explain why in subsection 5·3. Part (ii) states that provided the density is

sufficiently regular that (9) holds, and that the degree of tail oscillation in ‖∇U(x)‖ is restricted 145

through (8), then the composite gradient should not grow faster than linearly in ‖x‖ for geometric

ergodicity. Within the class of kinetic energies for which this requirement is met, we motivate an

optimal choice in subsection 3·3.

The composite gradient was deduced based on studying the leapfrog integrator over a single

step. Next, however, we argue that controlling this quantity in fact induces stability over multiple 150

leapfrog steps.

PROPOSITION 2. If for some q > 0 and A,B,C,D <∞

‖∇U(x)‖ ≤ A‖x‖q +B, ‖∇K(p)‖ ≤ C‖p‖
1

q +D, (13)

then lim sup‖x‖→∞ ‖∇K ◦ ∇U(x)‖/‖x‖ <∞, and furthermore if ‖p0‖ ≤ E0‖x0‖q + F0 for

some E0, F0 <∞, then writing xLε and pLε as functions of x0 and p0, it holds that

‖xLε(x0, p0)‖ ≤ EL‖x0‖+ FL, ‖pLε(x0, p0)‖ ≤ GL‖x0‖q +HL.

for some EL, FL,GL,HL <∞ which do not depend on x0. 155

As a contrast, if the assumption on ∇K(p) was replaced with ‖∇K(p)‖ ≤ C‖p‖+D, then the

bound would read ‖xLε(x0, p0)‖ = EL‖x0‖1∨q
L

+ FL, which grows exponentially in L when

q > 1.

3·2. Kinetic energies that induce negligible moves

Next we consider a heavy-tailed choice of ν(·). In this instance the composite gradient will 160

in fact decay as ‖∇U(x)‖ grows, meaning that if π(·) is light-tailed the resulting Markov chain

will move very slowly in some regions of the space. We formalize this intuition below.

DEFINITION 2. We say that a Markov chain on R
d with transition kernel P possesses the

negligible moves property if for every δ > 0

lim
‖x‖→∞

P{x,Bδ(x)} = 1. (14)

PROPOSITION 3. If π(·) is light-tailed and ν(·) is heavy-tailed then a Markov chain produced 165

by the Hamiltonian Monte Carlo method possesses the negligible moves property.

In general this property seems undesirable, the implication being that if the current point x has

large norm then the chain is unlikely to move very far in any appreciable number of steps. It does

not, however, preclude geometric ergodicity, as often such steps can be close to deterministic in

a desirable direction. We give a simple example to illustrate the phenomenon. 170

Example 1. Consider the Markov chain with transition

xi = max(xi−1 − 1 + ξi, 1), ξi ∼ N(0, 1),
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which is geometrically ergodic as shown in section 16.1.3 of Meyn & Tweedie (1993). Then the

transformed Markov chain (yi)i≥1, where each yi = log(xi), is also geometrically ergodic, but

possesses the negligible moves property.

Although a geometrically decaying convergence bound can still be established in such cases,175

the slow movement of the chain when ‖x‖ is large is accounted for in the Lyapunov function

V (x) present in the bound (6).

PROPOSITION 4. If (14) holds for a Hamiltonian Monte Carlo method then any Lyapunov

function V : X → [1,∞) cannot satisfy either of the following:

(i) log V is uniformly lower semi-continuous, meaning for all ǫ′ > 0, there is a δ′ <∞ such180

that if ‖y − x‖ ≤ δ′, uniformly in x, then log V (y) ≥ log V (x)− ǫ′.
(ii) There is an s ∈ (0,∞) such that lim inf‖x‖→∞ V (x)e−s‖x‖ = c for some c ∈ (0,∞).

The above implies that Lyapunov functions will typically exhibit faster than exponential growth

in ‖x‖, meaning the penalty in the bound (6) for starting the chain in the tails of the distribution

will be very large. This reflects the fact that the chain will take a long time to move an appreciable185

distance and hence approach equilibrium. So although the negligible moves property does not

preclude geometric convergence, we regard it as an undesirable feature.

3·3. Illustrative example

Part (ii) of Proposition 1 relates to the numerical solution of (1) using the leapfrog method. If

the composite gradient grows faster than linearly in ‖x‖ then the dynamical system exhibits stiff-190

ness, meaning gradients change very quickly and hence numerical approximations in which they

are assumed to be constant over small time periods will become unstable. Two possible remedies

are to use a more complex implicit numerical method or adaptive step-size control, as discussed

in Okudo & Suzuki (2016). With the standard choice of kinetic energy∇K ◦ ∇U(x) = ∇U(x),
meaning these instabilities occur when ‖∇U(x)‖ grows faster than linearly in ‖x‖. Since the195

composite gradient dictates this phenomenon in general, fast growth in ∇U(x) can be counter-

acted by choosing a kinetic energy which is subquadratic in ‖p‖. Physically, choosing a slowly

growing kinetic energy slows down the Hamiltonian dynamics, meaning the system (1) is no

longer stiff in the x-coordinate and hence simple numerical schemes like the leapfrog method

become stable. We can further use the same idea when ∇U(x) exhibits relatively slow growth200

by choosing a fast-growing kinetic energy which will speed up the flow allowing the chain to

explore the state space more efficiently.

To demonstrate this phenomenon more concretely we consider the family of separable Hamil-

tonians H : R2 → [0,∞) given by

H(x, p) = α−1|x|α + β−1|p|β, (15)

for suitable choices α, β > 1, which is necessary to ensure continuity of the derivative. Hamil-205

ton’s equations are

ẋ = sgn(p)|p|β−1

ṗ = −sgn(x)|x|α−1 (16)

The flow is periodic since the contours of H are closed curves in R
2. These kinetic energies

correspond to choosing ν(·) from the exponential power family of Box & Tiao (1973), for which210

direct sampling schemes are provided in Mineo (2014). Zhang et al. (2016) recommend choosing

this class of momentum distributions in Hamiltonian Monte Carlo. The following proposition

shows how the the period length depends on the initial value of the Hamiltonian.
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PROPOSITION 5. For the class of Hamiltonians given by (15) and dynamics given by the exact

solutions to (16), the period length 215

P(E) = inf
t>0
{t : (xt, pt) = (x0, p0)}

is related to the initial value of the Hamiltonian E = H(x0, p0) through the expression

P(E) = cα,βE
η, η =

1− (β − 1)(α − 1)

αβ
,

where cα,β <∞ does not depend on E. In particular, if α = 1 + γ and β = 1 + γ−1 for some

γ ∈ (0,∞), then ∇K ◦ ∇U(x) = x and η = 0, meaning the period length does not depend on

E.

The above result characterizes precisely how the speed of the Hamiltonian flow depends on 220

the growth rates of the potential and kinetic energies. If η < 0 the flow will be very fast at higher

energies, and so explicit numerical methods will typically become unstable when |x| is large. If

η > 0 then the period length will increase with |x|, so numerical methods will be more stable,

but the sampler may take some time to move from the tails back into the centre of the space.

The ideal choice in terms of finding the right balance between efficiency and numerical 225

stability would therefore appear to be setting η = 0, which for this class of models can be

achieved by choosing the kinetic energy as the Lp dual of the potential. This corresponds to

setting α = 1 + 1/(β − 1), which produces an algorithm for which the flow behaves in an auto-

regressive manner when |x| is large, since the composite gradient will be similar in magnitude to

the current point. In this case tuning the method should also be more straightforward, as a choice 230

of integrator step-size and integration time made in the transient phase should still be reasonable

at equilibrium. When η < 0, for any fixed choice of step-size ε > 0 there is an Mε <∞ such

that when |x| > Mε the algorithm will become numerically unstable, and when η > 0 then it

would be desirable in the transient phase to choose a comparatively large value for ε and take

more leapfrog steps, which may result in many proposals being rejected and unnecessary com- 235

putational expense when the chain reaches equilibrium.

4. THE IMPLICIT NOISE

There are likely to be regions in the centre of the space in which ‖∇U(x0)‖ is small, mean-

ing the increment ε∇K{p0 − ε∇U(x0)/2} ≈ ε∇K(p0). This can occur when the density π(x)
contains flat regions, and we show one such case in section 6. In these regions Hamiltonian 240

Monte Carlo resembles a random walk Metropolis with proposal xLε ≈ x0 + Lε∇K(p0). It

would seem sensible to choose K(p) such that the distribution of ∇K(p) would be an appropri-

ate choice in a random walk Metropolis here.

For the standard quadratic choice∇K(p) = p, which is hence also Gaussian. Different choices

of kinetic energy, which may seem sensible by analysing the composite gradient, can however 245

result in very different distributions for the implicit noise, which can either become bi-modal or

exhibit very light tails. We plot histograms of ∇K(p) for some natural choices of momentum

distribution in figure 1.

The optimum choice of implicit noise will typically be problem dependent, but it would seem

logical to follow the standard choices used in the random walk Metropolis. Bi-modal distribu- 250

tions have recently been suggested for this method (Yang & Rodrı́guez, 2013), but we found that

something which resembles a Gaussian distribution for small values of p performed favourably

in experiments.



8 S. LIVINGSTONE, M. F. FAULKNER AND G. O. ROBERTS

Laplace

∇K (p )

De
ns

it
y

−2 −1 0 1 2

0
1

2
3

4
5

Exponential Power 4/3

∇K (p )
De

ns
it

y
−2 −1 0 1 2

0
.0

0
.2

0
.4

0
.6

Gaussian

∇K (p )

De
ns

it
y

−2 −1 0 1 2

0
.0

0
.1

0
.2

0
.3

0
.4

Exponential Power 4

∇K (p )

De
ns

it
y

−2 −1 0 1 2

0
.0

0
.4

0
.8

Fig. 1. Histograms showing how different choices of the momentum distribution ν(·) can affect
typical values of ∇K(p).

5. GENERAL GUIDELINES AND THE EFFICIENCY-ROBUSTNESS TRADE OFF

The above results allow us to offer some general strategies and observations for choosing a255

kinetic energy, dependent on the objectives of the user.

If we deem the goal to be to maximize the speed of the flow when ‖x‖ is large whilst retaining

numerical stability, then an appropriate choice of kinetic energy for a given potential U is one

for which when ‖∇U(x)‖ is large ∇K{p0 − ε∇U(x0)/2} ≈ −cεx for some cε > 0. This can

be achieved when ∇U(x) is invertible through the choice260

∇K(p) ≈ ∇U−1 (p) , (17)

which implies that ∇K ◦ ∇U(x) ≈ ∇U−1 ◦ ∇U(x) = x. Of course often ∇U(x) will not pos-

sess an inverse, in which case the considering the leading order term in ‖∇U(x)‖ is of greatest

importance. Below we give some examples of how such a choice for K(p) can be constructed.

Example 2. If x ∼ N(0,Σ) then ∇U(x) = Σ−1x, meaning −(∇U)−1(−p) = Σp, implying

the choice p ∼ N(0,Σ−1) and corresponding kinetic energy K(p) = pTΣp/2.265

Remark 2. This result is intuitive, as if K(p) = pTM−1p/2, then the proposal after a single

leapfrog step will be xε = x0 − ε2M−1∇U(x)/2 + εM−1/2z with z ∼ N(0, I). This is equiv-

alent to a Metropolis-adjusted Langevin algorithm proposal with pre-conditioning matrix M−1,

and in that setting it is known that this should be made equal to Σ for optimal sampling (Roberts

& Rosenthal, 2001; Dalalyan, 2017).270

Example 3. Consider a distribution with density π(x) ∝ e−U(x) where

U(x) = C(αx4 − βx2),

for some C,α, β > 0. Such double well potential models are important in many areas of physics,

including quantum mechanical tunnelling (Liang & Müller-Kirsten, 1992). In this case∇U(x) =
4Cαx3 − 2Cβx, which is typically not invertible, but for large |x| we see that ∇U(x)/x3 ≈
4Cα, which motivates the choice ∇K(p) = p1/3/(4Cα) for large |p|.275

Example 4. Park & Casella (2008) suggest a Bayesian version of the bridge estimator for

regression of Frank & Friedman (1993). In this case

U(β) = L(β) + λ

d
∑

j=1

|βj |q,
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for some λ > 0, where L(β) is a suitable loss function. If q > 1 and the asymptotic growth of

L(β) is at most linear in ‖β‖, then the choice K(p) =
∑

i |pi|α with α = 1 + 1/(q − 1) for

large ‖p‖ would maximize the speed of convergence during the transient phase of the algorithm. 280

Logistic regression, the Huberized loss of Park & Casella (2008) and the asymmetric pinball loss

(Yu & Moyeed, 2001) are possible choices for L(β) which fit this criterion.

Example 5. Neal (2003) proposes the hierarchical model xi|ν ∼ N(0, eν) for i = 1, ..., 9,

with ν ∼ N(0, 32), resulting in a joint distribution that resembles a ten-dimensional funnel. Here

U(x1, ..., x9, ν) = ν2/18 + 9ν/2 + e−ν
∑

i x
2
i /2, meaning 285

∇U(x1, ..., x9, ν) =

(

2x1e
−ν , ..., 2x9e

−ν ,
ν

2
+

9

2
− e−ν

2

∑

i

x2i

)T

.

When ν ≪ 0 these gradients can be exponentially large, so a choice of ∇K(p) that is at most

logarithmic in p would be needed, which could arise from the choice of kinetic energy K(pi) ≈
{1 + log(1 + |pi|)}|pi|.

A general appreciation for the consequences of different kinetic energy choices can be gained

by considering a formal Taylor series expansion 290

∇K
{

p0 −
ε

2
∇U(x0)

}

= ∇K
{

−ε
2
∇U(x0)

}

+∇2K
{

−ε
2
∇U(x0)

}

p0 + · · ·

In the Gaussian case ∇2K(p) = I , meaning the refreshed momentum p0 interacts linearly with

the composite gradient term regardless of the current position in the state space. If however,

the momentum distribution is chosen to have heavier than Gaussian tails, then each element of

∇2K(p) will become negligibly small when ‖∇U(x0)‖ is large, reducing the influence of p0.

A sampler with a flow of this type will move towards a high-density region of the space in an 295

almost deterministic fashion when ‖x‖ is large. We formalize this intuition below.

DEFINITION 3. A Hamiltonian Monte Carlo sampler is called deterministic in the tails if as

‖x‖ → ∞
∥

∥

∥
∇2K

{ε

2
∇U(x)− p

}

−∇2K
{ε

2
∇U(x)

}∥

∥

∥
→ 0 (18)

a.s., where p ∼ ν(·).
Given the above intuition, the following result is immediate. 300

PROPOSITION 6. A Hamiltonian Monte Carlo sampler will be deterministic in the tails if π(·)
is light-tailed and K(p) is twice differentiable with

lim
‖p‖→∞

‖∇2K(p)‖ = 0. (19)

Remark 3. Typically if a choice of momentum distribution with heavier than Gaussian tails is

made then (19) will hold.

As alluded to in subsection 3·3, there is a trade off to be made between efficiency and step- 305

size robustness. Choosing a lighter-tailed momentum distribution will result in a faster flow,

and potentially a faster mixing Markov chain as a result, but the risk of numerical instabilities

is higher, and so the algorithm will be very sensitive to the choice of ε. Choosing a heavier-

tailed momentum distribution will result in slower flows, meaning algorithm performance will

be less sensitive to step-size choice, but the best-case mixing time under the optimal step-size 310
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may be slower. We give a numerical example illustrating this in the supplementary material.

If the tails are too heavy then the algorithm will also exhibit the negligible moves property of

section 3·2. A kinetic energy choice with Laplacian tails, for example, would result in a sampler

which may be comparatively slow in the tails but is guaranteed to be numerically stable, since in

this case the composite gradient is sign{p0 − ε∇U(x0)/2}, which is bounded from above and315

below regardless of how fast ‖∇U(x0)‖ grows.

Remark 4. It has recently been shown that by choosing ν(·) to be a Laplace distribution one

can perform Hamiltonian Monte Carlo on problems for which the standard method is not appli-

cable, such as problems with discontinuous likelihoods or involving discrete parameters. We do

not comment further on this here, but see Nishimura et al. (2017) for details.320

5·1. Relativistic power kinetic energies

From the above discussion it would seem sensible to design a kinetic energy function that

looks similar to the Gaussian choice when its argument is small, but also allows a robust and

efficient choice of composite gradient. The relativistic kinetic energy

K(p) =
∑

i

mic
2
i

(

1 +
p2i
m2

i c
2
i

)
1

2

suggested in Lu et al. (2017), has many such desirable features, since it behaves as a quadratic325

function for small p and is linear when p is large. We slightly generalize this choice to allow for

different tail behaviours, resulting in the family of relativistic power kinetic energies

K(p) =
∑

i

β−1
(

1 + γ−1
i p2i

)β/2
, (20)

where β ≥ 1 and each γi > 0. When each p2i ≪ γi then

K(p) ≈
∑

i

β−1(1 + γ−1
i p2i ) =⇒ ∂iK(p) ≈ 2(βγi)

−1pi

and when each p2i ≫ γi

K(p) ≈
∑

i

β−1γ
−β/2
i |pi|β =⇒ ∂iK(p) ≈ γ−β/2

i sgn(p)|pi|β−1.

Drawing samples from this family is a requirement for implementation. In our experiments330

we used adaptive rejection sampling (Gilks & Wild, 1992), which we found to be reasonably

efficient. However, since the distribution is fairly regular in shape it is likely that specialized

methods can be designed to be even more efficient. In addition, other strategies such a dependent

sampling using Metropolis–Hastings could be employed, as in Akhmatskaya & Reich (2008).

5·2. Approximate gradients and doing away with Metropolis–Hastings335

One example in which the robustness-efficiency trade off outlined above can be informative is

when estimates are used in place of∇U(x), which may be either intractable or very expensive to

compute. Examples are given in Chen et al. (2014); Strathmann et al. (2015); Lindsten & Doucet

(2016).

If we assume that at each iteration the approximate gradient ∇̃U(x) satisfies340

∇̃U(x) = ∇U(x) + ηx,
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where ηx follows a distribution that may depend on x, but such that E(ηx) = 0 for all x, then a

similar Taylor expansion gives

∇K
{

p0 −
ε

2
∇̃U(x0)

}

= ∇K
{

−ε
2
∇U(x0)

}

+∇2K
{

−ε
2
∇U(x0)

}

(p0 + ηx) + · · · .

Therefore, if the momentum distribution is chosen to have heavy enough tails that for large ‖x‖
the last term becomes negligibly small, then the effects of such an approximation are mitigated

and the the resulting approximate composite gradient will closely resemble ∇K
{

− ε
2∇U(x0)

}

. 345

In some of the above mentioned approximate implementations, the Metropolis step is also

omitted to reduce computational costs. When the gradient term ‖∇U(x)‖ grows at a faster than

linear rate, then often the resulting Markov chains become transient when this is done, as shown

for the unadjusted Langevin algorithm in Roberts & Tweedie (1996). In such cases it is difficult

to give long time guarantees on the level of bias induced from a finite simulation. Ensuring that 350

the composite gradient grows no faster than linearly should mean that such transience is averted,

meaning a stronger grasp of the degree of approximation can be established. We leave a detailed

exploration of this for future work.

5·3. Heavy-tailed models

Based on the composite gradient intuition, it may seem desirable when π(·) is heavy-tailed to 355

choose a kinetic energy for which ‖∇K(p)‖ → ∞ as ‖p‖ → 0. In this case when ‖x‖ is large

the potential gradient will be very small, so choosing the kinetic energy in this way one could

still make ∇K ◦ ∇U(x) linear in ‖x‖. However, the actual leapfrog perturbation is

ε∇K
{

p0 −
ε

2
∇U(x0)

}

.

When π(·) is light-tailed the p0 term becomes safe to ignore when ‖x‖ is large, but if it is

heavy-tailed then this is no longer the case as for large ‖x‖ typical proposals will be of the form 360

x∗ ≈ x+ Lε∇K(p), where p ∼ ν(·), which resembles a random walk. It is because of this that,

as shown in Part (i) of Proposition 1, no choice of kinetic energy which is independent of x can

produce a geometrically ergodic chain.

It will likely be the case that choosing a heavier-tailed momentum distribution will be of

benefit in this scenario in terms of rates of convergence, since this is true of the random walk 365

Metropolis, as shown in Jarner & Roberts (2007). However, since it is the implicit noise ∇K(p)
which drives the sampler, then care must also be taken with its form. In the case where ν(·) is

a Cauchy distribution, for example, then ∇K(p) = 2p/(1 + p2), which is lighter-tailed than p
itself, so here the benefits of choosing heavier tails are not as strong as those for the random walk

algorithm. 370

6. EXAMPLES

6·1. Quantile regression

We consider a Bayesian quantile regression as introduced in Yu & Moyeed (2001). The

goal is to estimate the τ th quantile of a response y ∈ R conditioned on a collection of covari-

ates x ∈ R
m, written µ(x) = F−1(τ |x). Given n data points {(xi, yi)}ni=1, we take the natural 375

choice µ(xi, β) =
∑m

j=1 xijβj , and follow the approach of Fasiolo et al. (2017) by estimating a

posterior distribution for β as π(β|y, x) ∝ exp {−
∑n

i=1 L(β, xi, yi)}π0(β), using the general

Bayesian updating framework of Bissiri et al. (2016), with L(β, xi, yi) a smoothed version of
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the pinball loss introduced in Fasiolo et al. (2017), given by

L(β, x, y) = (τ − 1)

{

y − µ(x, β)
σ

}

+ ξ log

[

1 + exp

{

y − µ(x, β)
ξσ

}]

+ g(ξ, σ, τ).

Here g(ξ, σ, τ) = log {ξσBeta [ξ(1− τ), ξτ ]}. As ξ → 0 then the non-smooth pinball loss is380

recovered. This is linear in β, meaning that if Lq priors are chosen as in bridge regression (Park

& Casella, 2008) then the corresponding potential is

U(β) =
n
∑

i=1

L(β, xi, yi) + λ
d
∑

j=1

|βj |q,

for 1 < q ≤ 2. The dominant term in U(β) is the contribution from the prior, meaning that each

|∂jU(β)| = O(|βj |q−1) for j = 1, ...,m.

We performed two studies on 20 simulated data points with m = 2, fixing σ = 1, λ = 1 and385

ξ = 0.01. In the first we set q = 2 for each βj , and in the second q = 1.5. Four different momen-

tum distributions were tested: an exponential power family with shape parameter 3, Gaussian,

Laplacian, and a t distribution with 4 degrees of freedom. Although the set up is simple it still

enables a demonstration of both the negligible moves property and how the composite gradient

dictates sampler performance. The number of leapfrog steps was set to 1 and the step size was390

tuned based on achieving a 65-75% acceptance rate at equilibrium. The samplers were then ini-

tialised far from the region of high probability and convergence speed was assessed, and also

initialised at equilibrium to assess mixing in favourable areas. Results are shown in Figure 2. In

the Gaussian prior study the exponential power choice is not shown since the resulting sampler

did not move, as explained by Proposition 1. As expected, the Gaussian choice, which results in395

a linearly growing composite gradient, reaches equilibrium quicker than the others. The Lapla-

cian choice converges in a straight-line fashion, as the size of the proposed jump is always ε
√
2

regardless of the current position. The Student’s t choice exhibits the negligible moves property

as outlined in Proposition 3, with convergence visibly slow during the first 5000 iterations. When

the heavier-tailed prior is chosen, the exponential power choice is now numerically stable and400

produces faster convergence than the Gaussian. Since the potential growth is O(|β|1.5) then this

option results in a linear composite gradient, so the performance is to be expected. The speed

of the remaining choices is dictated by how the composite gradient grows, with the Student’s t

distribution again performing the worst. In this study the difference is not so pronounced, as in

probabilistic terms the sampler is initialised in a region that is not so far into the tails. The slower405

convergence overall compared to the Gaussian study reflects the fact that π(·) is heavier-tailed.

In both studies all samplers mixed similarly well regardless of the kinetic energy when initialised

at equilibrium, with slightly worse performance observed for the Student’s t distribution. As dis-

cussed in Section 4, the optimal choice of implicit noise is likely to be problem specific, with the

Gaussian shape sensible when no other information is available.410

6·2. The Ginzburg–Landau model

As a second example we take the model of phase transitions in condensed-matter physics pro-

posed by Ginzburg and Landau (Goldenfeld, 1992, Chapter 5). We consider a three-dimensional

103 lattice, where each site represents a random variable ψijk ∈ R. The corresponding potential

for the 1000-dimensional parameter ψ is415

U(ψ) =
∑

i,j,k

{

(1− τ)
2

ψ2
ijk +

τα

2
‖∇̃ψijk‖2 +

τλ

4
ψ4
ijk

}

,
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Fig. 2. Trace plots from the quantile regression studies. The solid black line is the expo-
nential power momentum choice, dashed black lines are the Gaussian choice, solid grey
lines are the Laplacian choice and dashed grey lines are the t distribution with 4 degrees

of freedom.

where α, λ, τ > 0 and ∇̃ψijk = (ψi+jk − ψijk, ψij+k − ψijk, ψijk+ − ψijk), where i+ = (i+
1) mod (10), and j+, k+ are defined analogously. The modular structure imposes periodic

boundary conditions on the lattice. When the parameter τ < 1, the conditional distribution for

each ψijk looks Gaussian in the centre of the space but with lighter tails. The model exhibits

a phase transition at τ = 1, so that when τ > 1 each conditional distribution is bi-modal. The 420

parameter α controls the strength of correlation between neighbouring lattice sites, with larger

values making the sampling problem more challenging. When τ < 1, each ψijk is likely to be

close to zero, while in the bi-modal phase they are more likely to be non-negligible in magnitude.

When α is large, neighbouring parameters are likely to have the same sign. The bi-modal phase

therefore represents the system in its ordered state, whereas the system is disordered for τ < 1. 425

The inference problem is to estimate expectations with respect to the distribution with density

proportional to exp{−U(ψ)}. We generate samples using Hamiltonian Monte Carlo with four

different choices of kinetic energy: the standard quadratic choice, the relativistic choice of Lu

et al. (2017), the exponential power choice of Zhang et al. (2016) and the relativistic power

choice introduced in section 5·1. In the latter two cases we set the shape parameter β = 4/3, 430

which results in a composite gradient that is linear when ‖ψ‖ is large.

We perform two studies. In the first we initialize samplers in the centre of the space and

compute the effective sample sizes from 10,000 iterations. In the second we initialize each

ψijk ∼ U [−10, 10], and compute the number of iterations until max |ψijk| ≤ 2. Results are

shown in Table 1. The kinetic energies with Gaussian implicit noise produce larger effective 435

sample sizes in this example. The reason is that there is a sharp drop in density when the quartic

term begins to dominate the potential. As the exponential power choice results in a bi-modal

implicit noise, it is more likely to propose larger jumps which fall into this low density region,

and are hence rejected. To prevent this from happening too often a smaller step-size must be cho-

sen than for the other methods. Among the other choices the Gaussian has the highest effective 440

sample size, though this cannot necessarily be relied upon as the sampler is not geometrically

ergodic. The slower speed for larger values of ‖ψ‖ enforced in the relativistic and to a lesser

degree relativistic power cases appears to slightly reduce efficiency here, which is sacrificed in

favour of robustness. We simply set each tuning parameter γi = 1 in our experiments. This could

be tuned in order to improve performance, but we preferred to use default values to limit the 445

extra tuning required for this choice. Sensitivity checks with γi = 2 and 3 did not yield apprecia-

bly different results. In terms of iterations to the centre, the Gaussian choice performs poorly as

expected. The remaining samplers perform similarly. The relativistic power choice outperforms
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Table 1. Hamiltonian Monte Carlo on the Ginzburg–Landau model

Effective sample size Iterations to centre

Minimum Mean Maximum

Gaussian 6,251 8,748 10,000 N/A

Relativistic Power β = 4/3 5,253 6,777 8,271 4.2

Relativistic 3,591 4,639 5,525 8.6

Exponential Power β = 4/3 810 1,108 1,303 11.9

Effective sample sizes at equilibrium and iterations until maxi |ψi| < 2 for Hamiltonian

Monte Carlo on the Ginzburg–Landau model with α = 0.1, λ = 0.5 and τ = 2. Step-sizes

were chosen based on optimizing effective sample sizes. In each simulation the number of

leapfrog steps was set to 10, and results are averaged over 10 runs.

the exponential power choice because a smaller step-size was needed in the latter case for ade-

quate mixing at equilibrium. The relativistic choice, though slower, is not critically so, because450

10 is not very large in absolute terms, meaning the differences between a drift which is O(1) and

O(‖ψ‖), while visible, is not substantial here.

7. DISCUSSION

We have described how changing the kinetic energy in Hamiltonian Monte Carlo affects per-

formance. In practice, several other strategies could be considered, such as mixtures of kinetic455

energies, or employing a delayed rejection approach as in Mira et al. (2001). In addition, other

stochastic processes that utilise Hamiltonian dynamics, such as underdamped Langevin diffu-

sions, can also be considered (Stoltz & Trstanova, 2016).

In this work kinetic energies of the form K(p) =
∑

iKi(pi) were used. The reason for this

is that ∂iK(p) = ∂iKi(pi), meaning that the when π(x) is of the product form the Hamilto-460

nian flows become independent. If a different choice were made, for example K(p) = β−1(1 +
γ−1pTp)β/2, then ∂iK(p) = (1 + γ−1pT p)β/2−1pi, so this does not always happen, here only

when β = 2. It is unclear which of these approaches is preferable from a theoretical perspective,

but evaluating pT p is certainly a computational burden, and previous empirical evidence favours

our approach (Lu et al., 2017).465

Outside the realm of separable Hamiltonians, in Girolami & Calderhead (2011) the choice

K(x, p) = {log |G(x)| + pTG−1(x)p}/2 is advised. Since an implicit integrator is required, the

composite gradient intuition no longer directly applies. Here instead

xε = x0 +
ε

2

[

{

G−1(x0) +G−1(xε)
}

{

p0 −
ε

2
∇U(x0)−

ε

2
∇f(x0, p ε

2
)
}]

,

where G(x) is some Riemannian metric and 2f(x, p) = log |G(x)| + pTG−1(x)p. Key drivers

of the dynamics are the termsG−1(x0)∇U(x0) and G−1(xε)∇U(x0), which are often called the470

natural gradient (Amari & Nagaoka, 2007). Given recent results (Taylor, 2015), this approach

may be advantageous when π(·) has heavy-tails. The log-determinant term can also be beneficial

(Betancourt & Girolami, 2015).

Another line of further study is to assess how kinetic energy choice affects dynamic imple-

mentations such as the No-U-Turn Sampler (Hoffman & Gelman, 2014). Results in simple cases475

suggest that such implementations are favourable when π(·) is heavy-tailed (Livingstone et al.,

2016).



Biometrika style 15

ACKNOWLEDGEMENT

We thank the reviewers for helping to improve the paper. SL thanks Michael Betancourt for

sharing a calculation related to Proposition 5, Matteo Fasiolo for advice on quantile regression, 480

and Gabriel Stoltz, Zofia Trstanova and Paul Fearnhead for useful discussions. The authors ac-

knowledge support from the Engineering and Physical Sciences Research Council for support

through grants EP/K014463/1, i-like (SL and GOR) and EP/D002060/1, CRiSM (GOR).

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs of propositions along 485

with some intermediate technical results and a numerical example of the efficiency-robustness

trade-off.
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